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Delocalized Nonlinear Vibrational Modes in Graphene:
Second Harmonic Generation and Negative Pressure
Elena A. Korznikova,* Stepan A. Shcherbinin, Denis S. Ryabov, George M. Chechin,
Evgeny G. Ekomasov, Elham Barani, Kun Zhou, and Sergey V. Dmitriev
With the help of molecular dynamics simulations, delocalized nonlinear
vibrational modes (DNVM) in graphene are analyzed. Such modes are
dictated by the lattice symmetry, they are exact solutions to the atomic
equations of motion, regardless the employed interatomic potential and for
any mode amplitude (though for large amplitudes they are typically unstable).
In this study, only one- and two-component DNVM are analyzed, they are
reducible to the dynamical systems with one and two degrees of freedom,
respectively. There exist 4 one-component and 12 two-component DNVM
with in-plane atomic displacements. Any two-component mode includes one
of the one-component modes. If the amplitudes of the modes constituting a
two-component mode are properly chosen, periodic in time vibrations are
observed for the two degrees of freedom at frequencies ω and 2ω, that is,
second harmonic generation takes place. For particular DNVM, the higher
harmonic can have frequency nearly two times larger than the maximal
frequency of the phonon spectrum of graphene. Excitation of some of DNVM
results in the appearance of negative in-plane pressure in graphene. This
counterintuitive result is explained by the rotational motion of carbon
hexagons. Our results contribute to the understanding of nonlinear dynamics
of the graphene lattice.
1. Introduction

Graphene is carbon two-dimensional crystalline material which
has received a great deal of attentiondue to unique combination of
physical and mechanical properties promising for a number of
applications.[1–3] In particular, linear and nonlinear dynamics
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of graphene lattice was extensively studied.
Linear phonon dispersion curves of gra-
pheneandgraphitehavebeenmeasuredand
calculated.[4,5] It hasbeen shownexperimen-
tally[6] and using ab initio density functional
perturbation theory that graphene demon-
strates negative linear thermal expansion
coefficient in a wide temperature range.[7]

Phonon transport in graphene has been
investigated with the help of molecular
dynamics method to demonstrate a very
high thermal conductivity of pristine gra-
phene and a noticeable reduction of thermal
conductivity by defects.[8–10] The effects of
temperature, strain, and size on the thermal
conductivity of suspended graphene have
been analyzed in ref. [11]. Graphene supports
soliton-likedistortions calledwrinklons.[12–16]

Ithasbeenshownthatgrapheneandother sp2

carbon nanomaterials support nonlinear
spatially localized vibrational modes called
discrete breathers or intrinsic localized
modes.[17–30] The role of suchmodes in solid
state physics is actively discussed.[31,32] Dis-
crete breathers canassist energy transfer to ac
driven graphene nanoribbon.[33] Graphene
can act as an elastic damper`[34]
Recently, with the help of the group theory methods,[35–38]

delocalized nonlinear vibrational modes (DNVM), originally
called “bushes of nonlinear normal modes,” have been derived
for the hexagonal lattice[39] (graphene also has hexagonal
lattice). This approach takes into account only symmetry of
crystal lattice, that is why DNVM are exact solutions to the
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dynamical equations of atomic motion for any amplitude and
for any type of interatomic potentials. For large amplitudes
DNVM typically become unstable. Dynamics of N-component
DNVM can be effectively described by a system with N degrees
of freedom.

The study of DNVM is important for at least three reasons.
First, in molecular dynamics simulations, DNVM with
frequencies outside the phonon band can be used for
setting initial conditions suitable for excitation of discrete
breathers. This can be done by imposing a localizing
function with a few physically motivated parameters on such
DNVM. This approach has been used successfully for
excitation of new types of discrete breathers in graphene[23]

and in two-dimensional Morse lattices.[40] Second, DNVM at
sufficiently large amplitudes demonstrate modulational
instability which can result in spontaneous formation of
discrete breathers.[41–48] Third, it was shown that excitation
of DNVM affects elastic properties of the lattice and, in
combination with homogeneous tension, can result in
appearance of auxeticity of the hexagonal lattice (negativity
of its Poisson’s ratio).[48]

It should be noted that materials with negative Poisson’s ratio,
negative thermal expansion, negative compressibility, and other
anomalous characteristics attract considerable attention of
researchers because they are interesting from the theoretical
standpoint and have a potential in applications.[49–77]

In the present study, we investigate dynamics of all possible
one-component and two-component DNVM with in-plane
atomic vibrations in hexagonal lattice, considering realistic,
many-body interatomic potentials for graphene.
2. Simulation Details

Hexagonal lattice of graphene is shown in Figure 1. Cartesian
coordinate system is used with x (y) axis oriented along the
zigzag (armchair) direction. Primitive translational cell includes
two carbon atoms, as shown by the dashed lines. In simulations
the computational cell that includes 6� 6 primitive translational
cells is used. Such cell is sufficient to simulate any of the studied
DNVM, though for some of them even smaller simulation cell
Figure 1. Graphene lattice with zigzag (armchair) direction along x (y)
axis. Primitive translational cell is shown by dashed lines.
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would be sufficient. The simulation cell is subject to periodic
boundary conditions.

All the studied DNVM are excited by applying initial
displacements to the atoms according to the patterns described
in ref. [39] and shown in Figure 2. Initial velocities of atoms are
equal to zero.

We employ the interatomic potentials developed for graphene
by Savin with co-authors.[8] Home made molecular dynamics
code is used for NVE ensemble, which means that number of
atoms, N, volume, V, and total (kinetic plus potential) energy of
the system, E, are conserved. Each atom has three degrees of
freedom but, in our simulations, the out-of-plane displacements
of the atoms were not observed for the in-plane initial
displacements within the simulation run time. That is why
constant volume of the system actually means constant area of
the two-dimensional computational cell.

The equations of atomic motion are integrated with the use of
the Störmer method of sixth order accuracy with the time step of
0.5 fs. This symplectic method is a member of a wider family of
integrators, as demonstrated in ref. [78]. Relative change of total
energy of the system in a typical numerical run was below 10�9.

Atoms in the studied DNVM perform time-periodic motion.
Within one period kinetic energy of the moving atoms vanishes
two times, at times t1 and t2, when the atoms are at maximal
distance from the equilibrium positions. Let the coordinates of
particular moving atom at t1 and t2 are x1; y1

� �
and x2; y2

� �
,

respectively. Then DNVM amplitude is calculated as

A ¼ 1=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x1ð Þ2 þ y2 � y1

� �2q
. DNVM period is T ¼

2 t2 � t1ð Þ and frequency is ω ¼ 1=T.
Excitation of a DNVM produces time-periodic internal in-

plane stresses in graphene, σxx, σyy, and σxy. Averaged over an
oscillation period values of stresses are calculated as follows

hσiji ¼ 1
T

ZT

0

σij tð Þdt: ð1Þ

Averaged over time pressure can be found as

hpi ¼ � 1
2

hσxxi þ hσyyi
� �

: ð2Þ

Since the shape and size of the computational cell were fixed,
we could only calculate the time-averaged in-plane pressure as
given by Equations (1) and (2) but not the equilibrium area of the
computational cell. Some of the studied modes produce positive
pressure but there are the modes producing negative pressure.
In order to calculate equilibrium area of the computational cell
one has to allow expansion or contraction of the cell to keep zero
stresses. This problem was not considered in our study.
3. Results and Discussion

Here we discuss the results of molecular dynamics simulations
of all one- and two-component DNVM in graphene.

There exist four one-component and twelve two-component
DNVM,[39] all of them are shown in Figure 2. The four one-
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2 of 7)
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Figure 2. Delocalized nonlinear vibrational modes supported by hexagonal lattice of graphene.[39] Yellow circles show the unperturbed hexagonal lattice
points. Trajectories of the atoms are shown by the black lines. Small green dots correspond to the atomic positions at the time when they are at maximal
distance from the lattice points. Modes I, II, III, and IV are one-component DNVM and the other modes are two-component DNVM. Modes Ia to Ie
include mode I. Similarly, mode IIa includes mode II, modes IIIa to IIIc include mode III, and modes IVa to IVc include mode IV.
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component DNVM are labeled with Roman numerals from I to
IV. The two-component modes are divided into four groups
related to each one-component mode and they are labeled with a
Roman numeral and a Latin letter. Yellow circles in Figure 2
show the points of the unperturbed hexagonal lattice. Black lines
show the trajectories of the atoms near the lattice points. Small
green dots correspond to the atomic positions at the time when
they are at maximal distance from the lattice sites.

In the following, first we report the frequency-amplitude and
pressure-amplitude dependencies for the one-component
modes. Then we show that all the two-component DNVM
demonstrate the phenomenon of second harmonic generation.
Finally, the effect of negative pressure induced in the graphene
sheet by excitation of particular two-component DNVM is
discussed.
Figure 3. a) Displacement Δy as the function of time for one atom of
DNVM I. The mode amplitude is A¼ 0.238 Å, period is T¼ 0.0250 ps, and
frequency ω¼ 1/T¼ 39.9 THz. b) Frequency as the function of amplitude
for the one-component DNVM from I to IV. c) Pressure as the function of
amplitude for the one-component DNVM from I to IV.
3.1. One-Component DNVM

One-component DNVM are essentially single degree of freedom
vibrational modes. Initial displacements of the atoms according
to the patterns shown for DNVM I, II, III, and IV in Figure 2 by
green dots immediately produce the exact vibrational modes. In
Phys. Status Solidi B 2019, 256, 1800061 © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800061 (3 of 7)
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Figure 5. a) Displacements of the atom circled in Figure 4a as the
functions of time for hypothetical mode X excited with the initial
amplitude AX¼ 0.3 Å. b) Displacements of the atom circled in Figure 4c as
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Figure 3a we plot as the function of time the displacement Δy of
one atom for DNVM I. Displacement varies in time not
sinusoidally, reflecting anharmonicity of the mode. The mode
amplitude A and period T are defined in this plot (see also
Section 2 for the definitions of A and T). DNVM frequency is
ω ¼ 1=T. Particularly, for this example, A¼ 0.238 Å, T¼ 0.0250
ps, and ω¼ 39.9 THz.

In Figure 3b frequency as the function of amplitude is shown
for all four one-component DNVM. It can be seen that DNVM I
and II demonstrate soft-type nonlinearity (decrease of ω with
increasing A), while DNVM III and IV are characterized by the
hard-type nonlinearity, with frequency growing with amplitude.
DNVM frequencies can be compared with the highest phonon
frequency of graphene, which is at about 48 THz. Thus, all
DNVM have frequencies within the phonon band and only
DNVM III at very large amplitudes leaves the phonon spectrum.

In Figure 3c pressure as the function of amplitude is shown
for all four one-component DNVM. As can be expected, all one-
component DNVMproduce positive pressure that increases with
A.
the functions of time for DNVM IIIa excited with the amplitudes AX¼ 0.3
Å and AIII¼ 0.065 Å.
3.2. Two-Component DNVM. Second Harmonic Generation

Two-component DNVM are two degree of freedom vibrational
modes. Let us show the relation between one-component and
two-component modes considering, as an example, the one-
component mode III and two-component mode IIIa (these
modes can be found in the third row of Figure 2). To do so, we
excite the vibrational mode according to the pattern of initial
displacements shown in Figure 4a, let us call it mode X. Here
each atom is displaced by the vector having length AX¼ 0.3 Å,
which is the mode amplitude. For the atom circled in
Figure 4a we calculate the components of its displacement
vector as the functions of time, Δx tð Þ and Δy tð Þ and plot them in
Figure 5a. It can be seen that in addition to the main Δx tð Þ
oscillation component a small Δy tð Þ component appears and
that the vibration is not periodic. From the theoretical
consideration[39] it follows that excitation of mode X inevitably
excites the additional DNVM III. We then combine the mode X
with DNVM III and find that for the mode amplitudes AX¼ 0.3
AX¼ 0.3Å and AIII¼ 0.065 Å periodic motion is realised, see
Figure 5b, and this periodic mode is the two-component DNVM
IIIa.
Figure 4. a) Hypothetical vibrational mode X of amplitude AX . Displacements
component DNVM III. c) Two-component DNVM IIIa obtained by superp
AIII¼ 0.065 Å. Displacements of the circled atom as the functions of time a
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Having the above picture in mind, we now describe how to
initiate a two-component DNVM in the molecular dynamics
simulations. To do so, one has to sum up the initial displace-
ments of the atoms according to the patterns shown by the green
dots in Figure 2 for the one-component and two-component
modes. Namely, the patterns Ia to Ie are summed up with the
pattern I in order to excite the modes Ia to Ie. Similarly, the
pattern IIa is summed up with the pattern II; the patterns IIIa to
IIIc are summed up with the pattern III; and the patterns IVa to
IVc are summed up with the pattern IV. The amplitudes of the
two modes to be mixed should be chosen such that a periodic
motion takes place, as exemplified in Figure 5b for mixing the
modes III and IIIa.

Note that DNVM IIIa has frequency ω¼ 18.0 THz for the
main Δxt component and double frequency for the ΔyðtÞ
component, which is the effect of the second harmonic
generation, see Figure 5b.

In fact, any two-component DNVM includes a one-compo-
nent DNVM with properly chosen amplitude to achieve a
of the circled atom as the functions of time are shown in Figure 5a. b) One-
osition of mode X and DNVM III with the amplitudes AX¼ 0.3 Å and
re shown in Figure 5c.

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim4 of 7)

http://www.advancedsciencenews.com
http://www.pss-b.com


www.advancedsciencenews.com www.pss-b.com
periodic motion. In graphene, this one-component DNVM
always has a smaller amplitude and frequency two times greater
than the main vibrational mode frequency. Thus, any two-
component DNVM generates the second harmonic.

In some cases the second harmonic can have frequencies well
above the maximal phonon frequency. For instance, DNVM Ia
with main amplitude 0.15 Å and main frequency ω ¼ 46:3 THz
has amplitude of DNVM I AI ¼ �0:0163789 Å and frequency
ω ¼ 92:6 THz, which is nearly as twice as the maximal phonon
frequency.

DNVM are natural vibrational modes of graphene lattice and
the existence of the natural vibrations at frequencies consider-
ably above the maximal phonon frequency is, in our opinion, an
interesting finding. Second harmonic generation is a nonlinear
effect, since the amplitude of the second harmonic rapidly
(quadratically) decreases with decreasing amplitude of the main
mode.
3.3. Two-Component DNVM. Negative Pressure

As it was shown in Section 3.1, the excitation of one-component
DNVM produces a positive in-plane pressure in graphene sheet,
see Figure 3c. While most of the two-component DNVM also
produce positive pressure, there are two exceptional DNVM,
namely IIIa and IVa, which produce negative pressure. In
Figure 6, as the functions of main mode amplitude we plot a) the
amplitude of additional DNVM III; (b) frequency; and c)
pressure. These quantities are calculated as follows. First, for
chosen main amplitude A of mode IIIa one finds the amplitude
of mode III, AIII, such that a periodic motion is observed. An
example for A¼ 0.3 Å is given in Figure 5b, where it was shown
that in this case AIII¼ 0.065 Å. The dependence of AIII on A,
when periodic motion is observed, is plotted in Figure 6a. It can
be seen that AIII � A2. The main mode frequency ω is calculated
from Figure 5b for themain displacement oscillation Δx tð Þ and it
is shown as the function of A in Figure 6b. The additional mode
Figure 6. Characteristics of DNVM IIIa as the functions of the main mode
amplitude: (a) amplitude of the additional DNVM III, (b) frequency, (c)
pressure.

Phys. Status Solidi B 2019, 256, 1800061 1800061 (
III oscillates with frequency 2ω, see displacement Δy tð Þ in
Figure 5b. Pressure p for particular A is calculated with the help
of Equations (1) and (2). Pressure as the function of A is plotted
in Figure 6c.

It can be seen from Figure 6c that pressure is negative for
DNVM IIIa and similar result was found for DNVM IVa.
DNVM IIIa and IVa produce negative pressure because of
particular pattern of atomic displacements, in both these
modes one can see rotation of hexagons (Figure 2). Indeed,
looking at the patterns of atomic displacements of modes IIIa
and IVa in Figure 2, one can see that the green dots, showing
the atomic positions at the time when they are at maximal
distance from the lattice points, for the hexagons are displaced
in sync, clockwise for the mode IIIa and anti-clockwise for the
mode IVa. This should be compared to the atomic displace-
ments in the modes IIIc and IVc, where the atoms belonging
to the hexagons move in pairs toward each other. Rotating
hexagons in the modes IIIa and IVa produce tension of the
valence bonds between the hexagons thus resulting in
negative pressure.

Actually, it is well-known that structural units with rotational
degrees of freedom can result in appearance of negative
properties of materials.[79–82]
4. Conclusions

By the method of molecular dynamics, properties of DNVM in
graphene lattice, modeled with the use of the Savin interatomic
potentials,[8] were investigated. All 4 one-component and 12 two-
component DNVM were analyzed, see Figure 2.

It was shown that one-component DNVM have frequencies
mainly within the phonon spectrum of graphene, see Figure 3b.
Only DNVM III at amplitudes greater than 0.2Å has frequency
slightly above the phonon spectrum. One-component DNVM
produce positive in-plane pressure in graphene sheet, see
Figure 3c.

Two-component DNVM are composed of two vibrational
modes, the main mode and a small addition of one of the four
one-component DNVM. More precisely, DNVM Ia to Ie include
small-amplitude DNVM I; DNVM II includes small-amplitude
DNVM II; DNVM IIIa to IIIc include small-amplitude DNVM
III; and DNVM IVa to IVc include small-amplitude DNVM IV.
In order to obtain periodic in time motion, amplitudes of the
main and additional modes should be properly chosen. If ω is
the main mode frequency, then additional small-amplitude
mode has frequency 2ω, that is, the second harmonic
generation takes place. Some of DNVM, for example, Ia can
have second harmonic frequency nearly twice as large as the
maximal phonon frequency. Thus, we demonstrate that
graphene lattice can support natural nonlinear vibrations at
frequencies considerably above the maximal phonon frequency.
This effect arises as a result of nonlinearity of interatomic
interactions. The amplitude of the second harmonic decreases
quadratically with decreasing the main mode amplitude, see
Figure 6a.

Two-component DNVM IIIa and IVa produce negative
pressure, see Figure 6c because in these two modes carbon
hexagons rotate as nearly rigid units.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim5 of 7)
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It is well-known that an isotropic elastic body under negative
pressure becomes an auxetic.[83] Since DNVM IIIa and IVa
produce negative pressure, it would be interesting to analyze
their effect on the elastic properties and particular on auxeticity
of graphene. This will be done in a forthcoming work.
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