MHWHHUCTEPCTBO OBPA30BAHUS U HAYKHA P®

HanuonanbsHsll uccinenoBaTenbckuil TOMCKHN TOCY1apCTBECHHBIN yHUBEPCUTET
ToMmckuii TOCYIapCTBEHHBIM YHUBEPCUTET CUCTEM YIIPABICHUS U PAJUOICKTPOHUKH
Bonrapckas Akagemus HayK
000 «Hay4Ho rccne1oBaTenbeKoe MpeanpusTre «Jla3epHple TEXHOIOT UM

NMHHOBATHUKA-2019

CBOPHUK MATEPUAJIOB

XV MexkayHapoaHoii IIKOJIbI-KOH(epeHIMH CTyAeHTOB,
ACIMPAHTOB M MOJOABIX YYEeHBIX
25-27 anpeas 2019 1.
r. Tomck, Poccus

100 peoaxyueii A.H. Conoamosa, C.JI. Munvkosa

Scientific & Technical Translations
STT
U30ATEJILCTBO
Tomck — 2019




MONTE CARLO LOCALIZATION FOR MOBILE ROBOT
M.V. Shikhman
National Research Tomsk State University
Shikhmar@gmail.com

METO/] TIOKAJIM3ALIMU MOHTE-KAPJIO
JJ11 MOBMJIBHOI'O POBOTA
M.B. lllnxman

Hayuonanvhwiil uccnedosamenvckuti Tomckuil 20cyoapcmeeHHblil yHugepcumem

In many cases, to solve applied problems, the robot needs to know its real location,
which is most often different from the data stored in the on-board system. The article
discusses Monte Carlo localization. The article presents the basic principles of the
algorithm for the operation of a mobile robot.

Keywords: Monte Carlo localization, mobile robot, particle filter.

For successful navigation, the robot must constantly monitor its location,
which is most often different from the data stored in the onboard system. For
unmanned robotic devices, as well as ground-based robots, it’s most effective
to use local navigation algorithms, which consist in determining the coordi-
nates of the device with respect to a certain starting point. In my work, I will
talk about the advantages of the Monte Carlo localization method, the essence
of the method and will show its implementation using the example of a simple
robot.

Let us consider the Monte Carlo localization. We should note that this me-
thod has several advantages. The particle filter, which is central to the Monte
Carlo algorithm, can work with different probability distributions because it
has a non-parametric representation. The time complexity of the particle filter
is linear with respect to the number of particles, so there is a trade-off between
speed and accuracy. The implementation adapts to the available computing
resources. The faster is the processor, the more particles can be generated and,
therefore, we get a more accurate algorithm.

The essence of the algorithm itself is as follows. The algorithm uses a par-
ticle filter to represent the distribution of probable states. A particle is a possi-
ble state, that is, a hypothesis about where the robot is at some point in time.
Most often, the initial representation of the algorithm is a uniform random
distribution of particles in the configuration space. Whenever the robot moves,
it moves the particles in order to predict its new state after movement. If the

123



robot determines familiar landmarks in the surrounding space, the particles are
recalculated. Thus, it’s determined how well the actual perceived data corre-
lates with the predicted state. Ultimately, the particles must converge to the
actual position of the robot [1].

Let us consider a robot in a one-dimensional circular corridor with identical
doors. The robot uses a sensor that detects the presence or absence of a door in
front of it. In this case, in general terms, we can describe the steps of the algo-
rithm as follows. When the robot is located at a certain point in space, it de-
termines the set of particles corresponding to its hypothetical locations. Then,
for each particle, the robot calculates the probability that the indications about
the environment on the map coincided with those of its sensors, if it were in
this place. The weight is assigned to each particle. The weight is proportional
to the specified probability. After that, the robot generates a set of new par-
ticles based on the previous representation with a probability that is propor-
tional to the weights. Particles that are consistent with the readings of the sen-
sors are chosen more often in contrast to particles incompatible with the read-
ings of the sensors. Thus, the particles converge to the best estimate of the
state of the robot. The robot is becoming more confident in its position [2].

Based on the advantages of the Monte Carlo localization, the simulation
was carried out specifically for this method. For this, we chose the following
software: ROS (Robot Operating System), Gazebo software package, Rviz tool
included in ROS, and MATLAB software package. In Gazebo, we used a
TurtleBot robot simulator for simulation of the surrounding space. TurtleBot in
Gazebo is a model of a real robotic device, which uses a Kinect sensor as a
vision.

Then, using the Rviz tool, we created a map resulting from motion of the
robot and receiving information from its sensor (Figure 1). Using the Matlab
software package, the resulting map was transformed into a two-dimensional
binary grid (Figure 2). Each cell in the grid has a value that represents true (1)
or false (0) status of this cell.

The simulation of the Monte Carlo algorithm itself was carried out in the
MatLab software environment. When applying this algorithm, there are two
cases. First, when the approximate position of the robot is known and we just
need to clarify it; and second, when the initial position of the robot is un-
known.

In this paper, we consider the second case because of its higher complexity.
At the beginning, the algorithm assumes that the robot has an equal probability

124



of being anywhere and generates uniformly distributed particles inside this
space (Figure 3).

Binary Occupancy Grid.
™ " ™
\ & I- <&
Q D : O D
> H T =
Fig. 1. Result of building a map Fig. 2. 2D binary grid

The update occurs according to the algorithm and the current position of
the robot is specified (Figure 4). As a result of the algorithm operation, the
robot is localized (Figure 5).

Fig. 3. Start of the algorithm (second update)




Fig. 4. Algorithm operation (13" update)

AMCL update = 33

&
|

¥ faters]

: Q

Fig. 5. The end of the algorithm (33™ update).

In conclusion, it should be noted that the algorithm has been successfully
implemented in practice. It can be used for various types of autonomous ob-
jects. Monte Carlo Localization allows you to specify the current position of
the robot when it moves and to produce global localization in the complete
absence of information about the location of the robot.

The research was carried out with the financial support of the Ministry of Education
and Science of the Russian Federation, a unique project identifier: RFME-
FI57817X0241.

Jlntepatypa
1. Introduction to Monte Carlo Localization. [Dnektponnsii pecypc]. — URL:
http://ais.informatik.uni-freiburg.de/teaching/ws12/practicalB/02-mcl.pdf (mata oOpareHus:

05.11.2018).
2. Robust Monte Carlo Localization for Mobile Robots / Sebastian Thrun, Dieter Fox, Wol-

fram Burgard, Frank Dellaer. Artificial Intelligence. Ne128.2011. C.99-141.

126





