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The existing problem of the orthogonal double covers of the graphs is well-known in
the theory of combinatorial designs. In this paper, a new technique called the one
edge algorithm for constructing the orthogonal double covers of the complete bipartite
graphs by copies of a graph is introduced. The advantage of this algorithm is that it
is accessible to discrete mathematicians not intimately familiar with the theory of the
orthogonal double covers.

Keywords: graph decomposition, symmetric starter, orthogonal double covers.

Nomenclature:
Km complete graph on m vertices;
Km,n complete bipartite graph with independent sets of sizes m and n;
mG m disjoint copies of G ;
Ck(n1, n2, . . . , nk) caterpillar (tree) obtained from the path Pk = x1x2 . . . xk by

joining vertex xi to ni new vertices where k > 1, n1, n2, . . . , nk
are positive integers, n1, nk > 1 and ni > 0 for i ∈ {2, 3, . . . , k − 1}.

Introduction
Graphs serve as a mathematical model to solve many real-world problems successfully.

Some problems in chemistry, physics, computer technology, communication science,
psychology, genetics, linguistics, and sociology can be formulated as problems in graph
theory. Also, many branches of mathematics, such as topology, probability, group theory,
and matrix theory, have close connections with the graph theory. Some puzzles of a practical
nature have been instrumental in the development of various topics in graph theory.
The cyclic graphs theory was developed for solving many problems of electrical networks,
and the study of “trees” is considered a helping tool for enumerating isomers of organic
compounds.

An orthogonal double cover (ODC) of H by G is a collection G = {π(x) : x ∈ V (H)} of
isomorphic subgraphs (to G) of H (called pages) such that (i) every edge of H is contained
in exactly two pages of G and (ii) π(a) and π(b)share an edge if and only if a and b are
adjacent in H.

The existence problem of ODC has attracted much attention during the last few years.
The problem is known to be hard in general as it includes some long-standing open problems
like the existing problems of biplanes. The ODC problem originally stems from problems
in database optimization, statistical design of experiments, and design theory. In [1, 2],
J. Demetrovics et al. have inspected the key of the Armstrong databases of minimum size.
The ODC of Kn whose elements consist of distinct cliques is equivalent to Armstrong
database of size n. Also, ODCs are related to several graph decomposition problems [3, 4].
The initial interest was concerned with the complete graphs, but the specialists have solved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tomsk State University Repository

https://core.ac.uk/display/287384204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On the one edge algorithm for the orthogonal double covers 79

the ODC problem for several graphs such as the Cayley graphs [5] and the complete bipartite
graphs (e.g., [6, 7]).

The labeling of the vertices of the complete bipartite graph Kn,n is defined by the
bijective mapping φ : V (Kn,n) → Zn × Z2. The product (v, j) ∈ Zn × Z2 will be written
as vj referring to the corresponding vertex and the edge (cγ, dδ) ∈ E(Kn,n) if γ 6= δ for all
c, d ∈ Zn and γ, δ ∈ Z2. We shall denote by (c, d) the edge between the vertices c0 and d1.
If G is a subgraph of Kn,n and i ∈ Zn, then G + i is called i-translate of G. The edges of
G+ i are obtained from G by rotating the edges of G, i.e., by mapping the edge (c, d) in G
to the edge (c + i, d + i) in G + i (with calculations modulo n). If e = (p, q) ∈ E(G), then
it has a length defined by d(e) = q − p (with calculations modulo n). For the graph G, if
|E(G)| = n and the lengths of all edges in G are mutually distinct and equal to Zn, then G
is said to be a half starter w.r.t. Zn. R. El-Shanawany et al. [8] have proved the following
three results.
A. The union of all translates ofG forms an edge decomposition ofKn,n, i.e.,

⋃
z∈Zn

E(G+z) =

= E(Kn,n), if and only if G is a half starter.
In what follows, a half starter G will be represented by the vector v(G) = (v0, v1, . . . ,

vn−1) ∈ Znn where vi, i ∈ Zn and (vi)0 is the unique vertex ((vi, 0) ∈ Zn × {0}) that belongs
to the unique edge of length i in G. The two half starter vectors v(G0) and v(G1) are said
to be orthogonal if {vi(G0)− v

i
(G1) : i ∈ Zn} = Zn.

B. If v(G0) and v(G1) are orthogonal two half starter vectors, then G = {Gz,l : (z, l) ∈
∈ Zn × Z2} with Gz,l = Gl + z is considered the ODC of Kn,n.

If the graph Gs is a subgraph of Kn,n with E(Gs) = {(p0, q1) : (q0, p1) ∈ E(G)}, then
Gs is the symmetric graph of G. It is easy to prove that if G is a half starter, then Gs is
also a half starter. Also, if v(G) and v(Gs) are orthogonal, then the half starter G is called
a symmetric starter w.r.t. Zn.
C. If n is any positive integer and G is a half starter with v(G) = (v0, v1, . . . , vn−1), then

G is symmetric starter iff {vi − v−i + i : i ∈ Zn} = Zn.
For illustrative purposes, Fig. 1 exhibits the graph K4,4 and its ODC by K1,4.

Fig. 1. K4,4 and its ODC by K1,4

The aim of this paper is to present a new algorithm which is called the one edge
algorithm. This algorithm is a helping tool for constructing the ODCs of the complete
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bipartite graphs. In addition, we present a number of new results as a direct application
of this algorithm. The difference between our paper and [9] is as follows. In [9], El-Serafi
et al. constructed the orthogonal double cover of complete bipartite graphs by a complete
bipartite graph and the disjoint union of complete bipartite graphs with the cartesian
product of symmetric starter vectors. For several results of ODCs by different graph classes,
see [10 – 12].

1. Main results
In this section, we construct the orthogonal double covers of the complete bipartite

graphs by copies of stars, copies of a caterpillar, and by copies of a complete bipartite
graph.

Definition 1. For k > 2, a caterpillar graph Ck(m1,m2, . . . ,mk) is obtained from a
path Pk = v1v2 . . . vk by attaching ni > 0 pendant vertices ui,j (1 6 j 6 mi) to each vi.

Definition 2. A complete bipartite graph of the form K1,n is called a star.
In what follows, we prove the theorems on existence of ODCs for particular classes of

complete bipartite graphs Kmn,mn and K2mn,2mn with n > 0 and m ≡ 1, 5 (mod 6). Really,
our effort was concentrated on these classes and in the future we hope to solve the problem
for the other classes to be used in the design theory. The proofs of these theorems base
on the direct constructions of ODCs. The main strengths of represented algorithms is that
they are clear for discrete mathematicians not intimately familiar with the theory of the
orthogonal double covers.

Theorem 1. Let m and n be positive integers with m ≡ 1, 5 (mod 6). Then, there is
an ODC of Kmn,mn by mK1,n.

Proof. Algorithm 1 proves the Theorem 1.

Algorithm 1. ODC of Kmn,mn by mK1,n

1: [Inauguration.] Choose the values m,n ∈ N, m ≡ 1, 5 (mod 6).
2: [Initial edge.] Construct the edge (0, 0).
3: [Complementary edges.] Add (0,−β) to (0, 0) where β ∈ Zn \ {0}.
4: [Initial graph The union of the edge set in steps 2, 3 gives

∼= G0.] the edge set of K1,n.
5: [Complementary graphs Add (αn, 2αn) to the edge set of step 4 where α ∈ Zm \ {0}.

∼=
m−1⋃
α=1

Gα.]

6: [Symmetric starter The union of the edge set in steps 4, 5 gives the edge set
∼=

m−1⋃
α=0

Gα.] of G ∼= mK1,n.

7: [Symmetric graph.] If the edge (a, b) belongs to the edge set of step 6, then
(b, a) is an edge of the graph Gs

∼= mK1,n.
8: [Translation.] Add (γ, γ) to the edge set in steps 6, 7 where γ ∈ Zmn.
9: [Done.] Output the edge set of step 8 which represents the ODC

of Kmn,mn by mK1,n.

For more illustration to Theorem 1, let m = 5 and n = 3, then there is an ODC of
K15,15 by 5K1,3, see Fig. 2.
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Fig. 2. Symmetric starter of an ODC of K15,15 by 5K1,3

Theorem 2. Let m and n > 5 be positive integers with m ≡ 1, 5 (mod 6). Then,
there is an ODC of Kmn,mn by 2mK2 ∪mK1,n−2.

Proof. Algorithm 2 proves the Theorem 2.

Algorithm 2. ODC of Kmn,mn by 2mK2 ∪mK1,n−2

1: [Inauguration.] Choose the values of m and n where m and n > 5 are
positive integers with m ≡ 1, 5 (mod 6).

2: [Initial edge.] Construct the edge (0, 0).
3: [Complementary edges.] Add (1 + n, 2n− 1), (2n− 1, 3n− 2), and (0,−2β) to (0, 0)

where β ∈ Zn \ Z3.
4: [Initial graph The union of the edge set in steps 2, 3 gives the edge set of

∼= G0.] 2K2 ∪K1,n−2.
5: [Complementary graphs Add (αn, 2αn) to the edge set of step 4 where α ∈ Zm \ {0}.

∼=
m−1⋃
α=1

Gα.]

6: [Symmetric starter The union of the edge set in steps 4, 5 gives the edge set

of G ∼=
m−1⋃
α=0

Gα.] ∼= 2mK2 ∪mK1,n−2.

7: [Symmetric graph.] If the edge (a, b) belongs to the edge set of step 6, then
(b, a) is an edge of the graph Gs

∼= 2mK2 ∪mK1,n−2.
8: [Translation.] Add (γ, γ) to the edge set in steps 6, 7 where γ ∈ Zmn.
9: [Done.] Output the edge set of step 8 which represents the ODC

of Kmn,mn by 2mK2 ∪mK1,n−2.

For more illustration to Theorem 2, let m = 5 and n = 5, then there is an ODC of
K25,25 by 5K1,3 ∪ 10K2, see Fig. 3.

Fig. 3. Symmetric starter of an ODC of K25,25 by 5K1,3 ∪ 10K2

Theorem 3. Let m and n > 4 be positive integers with m ≡ 1, 5 (mod 6). Then,
there is an ODC of Kmn,mn by mC2(1, n− 2).
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Proof. Algorithm 3 proves the Theorem 3.

Algorithm 3. ODC of Kmn,mn by mC2(1, n− 2)
1: [Inauguration.] Choose the values of m and n where m and n > 4 are

positive integers with m ≡ 1, 5 (mod 6).
2: [Initial edge.] Construct the edge (0, 0).
3: [Complementary edges.] Add (1, 1 + β − n) to (0, 0) where β ∈ Zn \ {0}.
4: [Initial graph The union of the edge set in steps 2, 3 gives the edge set

∼= G0.] of C2(1, n− 2).
5: [Complementary graphs Add (αn, 2αn) to the edge set of step 4 where

∼=
m−1⋃
α=1

Gα.] α ∈ Zm \ {0}.

6: [Symmetric starter The union of the edge set in steps 4, 5 gives the edge set
∼=

m−1⋃
α=0

Gα.] of G ∼= mC2(1, n− 2).

7: [Symmetric graph.] If the edge (a, b) belongs to the edge set of step 6, then
(b, a) is an edge of the graph Gs

∼= mC2(1, n− 2).
8: [Translation.] Add (γ, γ) to the edge set in steps 6, 7 where γ ∈ Zmn.
9: [Done.] Output the edge set of step 8 which represents the ODC

of Kmn,mn by mC2(1, n− 2).

For more illustration to Theorem 3, let m = 5 and n = 4, then there is an ODC of
K20,20 by 5C2(1, 2), see Fig. 4.

Fig. 4. Symmetric starter of an ODC of K20,20 by 5C2(1, 2)

Theorem 4. Let m and n > 2 be positive integers with m ≡ 1, 5 (mod 6). Then,
there is an ODC of K2mn,2mn by mK2,n.

Proof. Algorithm 4 proves the Theorem 4.

Algorithm 4. ODC of K2mn,2mn by mK2,n

1: [Inauguration.] Choose the values of m and n where m and n > 2 are
positive integers with m ≡ 1, 5 (mod 6).

2: [Initial edge.] Construct the edge (0, 0).
3: [Complementary edges.] Add (0,−2β) and (1,−2β) to (0, 0) where β ∈ Zn \ {0}.
4: [Initial graph The union of the edge set in steps 2, 3 gives the edge set

∼= G0.] of K2,n.
5: [Complementary graphs Add (2αn, 4αn) to the edge set of step 4 where α∈Zm\{0}.

∼=
m−1⋃
α=1

Gα.]

6: [Symmetric starter The union of the edge set in steps 4, 5 gives the edge set
∼=

m−1⋃
α=0

Gα.] of G ∼= mK2,n.

7: [Symmetric graph.] If the edge (a, b) belongs to the edge set of step 6, then
(b, a) is an edge of the graph Gs

∼= mK2,n.
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8: [Translation.] Add (γ, γ) to the edge set in steps 6, 7 where γ ∈ Z2mn.
9: [Done.] Output the edge set of step 8 which represents the ODC

of K2mn,2mn by mK2,n.

For more illustration to Theorem 4, let m = 5 and n = 3, then there is an ODC of
K30,30 by 5K2,3, see Fig. 5.

Fig. 5. Symmetric starter of an ODC of K30,30 by 5K2,3

Theorem 5. Let m and n > 5 be positive integers with m ≡ 1, 5 (mod 6). Then,
there is an ODC of Kmn,mn by mC5(1, 0, 0, 0, n− 5).

Proof. Algorithm 5 proves the Theorem 5.

Algorithm 5. ODC of Kmn,mn by mC5(1, 0, 0, 0, n− 5).
1: [Inauguration.] Choose the values of m and n where m and n > 5 are

positive integers with m ≡ 1, 5 (mod 6).
2: [Initial edge.] Construct the edge (0, 0).
3: [Complementary edges.] Add (0, 2− n), (2, 2− n+ β), ((m+ 7)n/2, γ − n) to (0, 0)

where β ∈ Zn \ {0, 2, n− 2, n− 1} and γ ∈ {2, 3}.
4: [Initial graph The union of the edge set in steps 2, 3 gives the edge set

∼= G0.] of C5(1, 0, 0, 0, n− 5).
5: [Complementary graphs Add (αn, 2αn) to the edge set of step 4 where α ∈ Zm\{0}.

∼=
m−1⋃
α=1

Gα.]

6: [Symmetric starter The union of the edge set in steps 4, 5 gives the edge set
∼=

m−1⋃
α=0

Gα.] of G ∼= mC5(1, 0, 0, 0, n− 5).

7: [Symmetric graph.] If the edge (a, b) belongs to the edge set of step 6, then
(b, a) is an edge of the graph Gs

∼= mC5(1, 0, 0, 0, n− 5).
8: [Translation.] Add (γ, γ) to the edge set in steps 6, 7 where γ ∈ Zmn.
9: [Done.] Output the edge set of step 8 which represents the ODC

of Kmn,mn by mC5(1, 0, 0, 0, n− 5).

For more illustration to Theorem 5, let m = 5 and n = 7, then there is an ODC of
K35,35 by 5C5(1, 0, 0, 0, 2), see Fig. 6.
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Fig. 6. Symmetric starter of an ODC of K35,35 by 5C5(1, 0, 0, 0, 2)

Conclusion
In this paper, we study the orthogonal double covers of the complete bipartite graphs

by algorithms for generating the orthogonal double covers by one edge.
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