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ABSTRACT
In this paper, we develop the James–Stein improved method for the
estimation problem of a nonparametric periodic function observed
with Lévy noises in continuous time. An adaptive model selection
procedure based on the weighted improved least squares estimates
is constructed. The improvement effect for nonparametric models
is studied. It turns out that in non-asymptotic setting the accuracy
improvement for nonparametric models is more important than for
parametric ones. Moreover, sharp oracle inequalities for the robust
risks have been shown and the adaptive efficiency property for the
proposed procedures has been established. The numerical simula-
tions are given.
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1. Introduction

Consider the following nonparametric regression model in continuous time

dyt = S(t) dt + dξt , 0 ≤ t ≤ n, (1)

where S(·) is an unknown 1 – periodic function, (ξt)0≤t≤n is an unobserved noise. The
problem is to estimate the function S on the observations (yt)0≤t≤n. Note that, if (ξt)0≤t≤n
is Brownian motion, then we obtain the well-known ‘signal+white noise’ model which is
very popular in statistical radio-physics, see, for example, Kutoyants (1977, 1984), Ibragi-
mov and Khasminskii (1981) and Pinsker (1981). In this paper, we assume that in addition
to intrinsic noises in radio-electronic systems, approximated usually by the gaussian white
or colour noise, the useful signal S is distorted by the impulse flow described by Lévy
processes defined in the next section. The cause of a pulse stream can be, for exam-
ple, either external unintended (atmospheric) or intentional impulse noises or errors in

CONTACT E. A. Pchelintsev evgen-pch@yandex.ru Department of Mathematical Analysis and Theory of
Functions, Tomsk State University, Lenin str. 36, 634050 Tomsk, Russia

Supplemental data for this article can be accessed here https://doi.org/10.1080/10485252.2019.1609672

© American Statistical Association and Taylor & Francis 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Tomsk State University Repository

https://core.ac.uk/display/287384192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10485252.2019.1609672&domain=pdf&date_stamp=2019-07-17
http://orcid.org/0000-0001-7496-2606
http://orcid.org/0000-0001-7521-1177
http://orcid.org/0000-0002-1896-4030
mailto:evgen-pch@yandex.ru
https://doi.org/10.1080/10485252.2019.1609672


JOURNAL OF NONPARAMETRIC STATISTICS 613

the demodulation and the channel decoding for binary information symbols. Note that,
for the first time, the impulse noises for the detection signal problems have been stud-
ied by Kassam (1988) through compound Poisson processes. Later, such processes was
used in Flaksman (2002), Konev and Pergamenshchikov (2012, 2015), Pchelintsev (2013)
and Konev, Pergamenshchikov, and Pchelintsev (2014) for parametric and nonparamet-
ric signal estimation problems. It should be noted that such models are too limited, since
the compound Poisson process can describe only the large impulses influence with a
single-fixed frequency. However, the real technical (for example, telecommunication or
navigation) systems work under noise impulses having different sizes and different fre-
quencies, see, for example, Proakis (1995). To take this into account, one needs to use
many (may be infinite number) different compound Poisson processes in the same obser-
vation model. This is possible to do only in a framework of Lévy processes which are
natural extensions for the compound Poisson processes. Moreover, it should be noted
also that Lévy models are fruitfully used in the different applied problems, see, for exam-
ple, Bertoin (1996), Barndorff-Nielsen and Shephard (2001), Cont and Tankov (2004) and
Comte and Genon-Catalot (2011) and the references therein. In this paper, we consider
the adaptive estimation problem for the function S, i.e. when its regularity properties are
unknown. To do this we use the model selection methods. The interest to such statistical
procedures is explained by the fact that they provide adaptive solutions for the nonpara-
metric estimation through oracle inequalities which give non-asymptotic upper bounds for
the quadratic risks including the minimal risk over chosen the estimators family. It will be
noted that for the first time themodel selectionmethods were proposed byMallows (1973)
and Akaike (1974) for parametric models. Then, these methods have been developed for
nonparametric estimation problems by Barron, Birgé, andMassart (1999) and Fourdrinier
andPergamenshchikov (2007) for regressionmodels in discrete time andKonev andPerga-
menshchikov (2010) in continuous time. Unfortunately, the oracle inequalities obtained in
these papers cannot provide the efficient estimation in the adaptive setting, since the upper
bounds in these inequalities have some fixed coefficients in themain terms which aremore
than one. To obtain the efficiency property one has to obtain the sharp oracle inequalities,
i.e. the inequalities in which the coefficient at the principal term is close to unity. To obtain
such inequalities for general non-Gaussian observations one needs to use the method pro-
posed by Konev and Pergamenshchikov (2009a, 2009b, 2012, 2015) for semimartingale
models in continuous time based on the model selection tool developed by Galtchouk and
Pergamenshchikov (2009a, 2009b) for heteroscedastic non-Gaussian regression models in
discrete time.

The goal of this paper is to develop a new sharp model selection method for estimat-
ing the unknown signal S using the improved estimation approach. Usually, the model
selection procedures are based on the least squares estimates. This paper proposes the
improved least squares estimates which enable us to improve considerably the non-
asymptotic estimation accuracy. For the first time, such idea was proposed by Fourdrinier
and Pergamenshchikov (2007) for regression models in discrete time and by Konev and
Pergamenshchikov (2010) for Gaussian regressionmodels in continuous time.We develop
these methods for the non-Gaussian regression models in continuous time. It should be
noted that generally for the conditionally Gaussian regression models we cannot use the
well-known improved estimators proposed in James and Stein (1961) and Fourdrinier and
Strawderman (1996) for Gaussian or spherically symmetric observations. To apply the
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improved estimation methods to the non-Gaussian regression models in continuous time,
one needs to use the modifications of the well-known James–Stein estimators proposed
in Pchelintsev (2013) and Konev et al. (2014) for parametric problems. We use these esti-
mators to construct model selection procedures for nonparametric models. Then to study
the efficiency property for the proposed estimation procedure we need to obtain a lower
bound for the quadratic risks. Usually, to do this one, uses the van Trees inequality. In
this paper, we show the corresponding van Trees inequality for the Lévy regression mod-
els and then we derive the needed asymptotic sharp lower bound for the normalised risks,
i.e. we find the Pinsker constant for the model (1). As to the upper bound, similarly to
Konev and Pergamenshchikov (2009b), we use the obtained sharp oracle inequality for the
weighted least squares estimators containing the efficient Pinsker procedure. Therefore,
through the oracle inequality, we estimate from above the risk of the proposed procedure
by the risk of the efficient Pinsker procedure up to some coefficient which goes to one. As a
result, we show the asymptotic efficiency without using the smoothness information of the
function S.

The rest of the paper is organised as follows. In Section 2, we describe the noise processes
in (1) and define the main risks for the estimation problem. In Section 3, we construct the
improved least squares estimates and study the improvement effect for the Lévy model. In
Section 4, we construct the improvedmodel selection procedure and show the sharp oracle
inequalities. In Section 5, the Monte Carlo simulation results are given. The asymptotic
efficiency is studied in Section 6. In Section 7, we prove the van Trees inequality for the
model (1). The proofs of the main and auxiliary results are available in Appendices A and
B in the supplementary online materials.

2. Noise process model

First, we assume that the noise process (ξt)0≤t≤n in (1) is defined as

ξt = σ1wt + σ2zt and zt = x ∗ (μ− μ̃)t , (2)

where σ1 and σ2 are some unknown constants, (wt)t≥ 0 is standard Brownian motion, ‘∗’
denotes the stochastic integral with respect to the compensated jump measure μ(ds dx)
with deterministic compensator μ̃(ds dx) = ds�(dx), i.e.

zt =
∫ t

0

∫
R0

x(μ− μ̃)(ds dx).

Here�(·) is a Lévy measure, i.e. some positive measure on R0 = R \ {0}, see, for details,
Jacod and Shiryaev (2002) and Cont and Tankov (2004) such that

�(x2) = 1 and �(x6) < ∞.

We use the notation�(|x|m) = ∫
R0

|z|m�(dz). Note that the Lévymeasure�(R0)may be
equal to +∞. It should be noted that in all papers on the nonparametric signal estimation
in the model (1) the main condition on the jumps is the finiteness of the Lévy measure, i.e.
�(R0) < +∞.
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The process (2) allows us to consider the several independent impulse noise sourceswith
the different frequencies. Indeed, in this case, see, for example, Cont and Tankov (2004,
p. 135), we introduce compound Poisson processes into the model (1) as

zt =
M∑
k=1

Nk
t∑

j=1
Yk,j,

where (N1
t )t≥0, . . . , (NM

t )t≥0 are independent Poisson processes with the intensities
λ1, . . . , λM and the sizes of impulses (Y1,j)j≥1, . . . , (YM,j)j≥1 are independent i.i.d.
sequenceswithEYk,j = 0 and ς2k = EY2

k,j < ∞. In this case, the Lévymeasure for any Borel
set � ⊆ R0 is defined as

�(�) =
M∑
k=1

λkP(Yk,1 ∈ �).

Next, note, that if ∑
k≥1

λkς
2
k < ∞,

then we can introduce the infinite number of the noise jumps setting

zt =
∞∑
k=1

Nk
t∑

j=1
Yk,j.

Moreover, if the total noise intensity
∑

k≥1 λk = +∞, then�(R0) = +∞, i.e. we obtain
the observation model with saturated impulse noise.

In the sequel, we will denote by Q the distribution of the process (ξt)0≤t≤n in the Sko-
rokhod spaceD[0, n] and byQn we denote all these distributions for which the parameters
σ1 and σ2 satisfy the conditions

0 < σ∗ ≤ σ 2
1 and σ = σ 2

1 + σ 2
2 ≤ σ ∗, (3)

where the bounds σ∗ and σ ∗ are functions of n, i.e. σ∗ = σ∗(n) and σ ∗ = σ ∗(n), such that
for any ε > 0

lim inf
n→∞ nεσ∗(n) > 0 and lim

n→∞ n−εσ ∗(n) = 0. (4)

We also assume that the distributionQ of the noise process (ξt)0≤t≤n is unknown.We know
only that this distribution belongs to the distribution familyQn defined in (3)–(4). By these
reasons, we use the robust estimation approach developed for nonparametric problems in
Galtchouk and Pergamenshchikov (2006) and Konev and Pergamenshchikov (2012, 2015).
To this end, we will measure the estimation quality by the robust risk defined as

R∗
n(Ŝn, S) = sup

Q∈Qn

RQ(Ŝn, S), (5)
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where Ŝn is an estimate, i.e. any function of (yt)0≤t≤n, RQ(·, ·) is the usual quadratic risk
defined as

RQ(Ŝn, S) := EQ,S‖Ŝn − S‖2 and ‖S‖2 =
∫ 1

0
S2(t) dt. (6)

The first goal in this paper is to develop shrinkage nonparametric estimationmethods for S
which improve the non-asymptotic robust estimation accuracy (5) with respect to the well-
known least squares estimators. The next goal is to provide non-asymptotic optimality in
the sense of sharp oracle inequalities. Moreover, asymptotically, as n → ∞, our goal is to
show the efficiency property for the proposed shrinkage estimators for the risks (5).

3. James–Stein improvedmethod

Let (φj)j≥ 1 be an orthonormal basis in L2[0, 1]. We extend these functions by the periodic
way on R, i.e. φj(t)=φj(t + 1) for any t ∈ R. We assume the following condition for these
functions.

(B1) The functions (φj)j≥1 are uniformly bounded, i.e. for some φ∗ > 0

sup
0≤j≤n

sup
0≤t≤1

|φj(t)| ≤ φ∗ < ∞. (7)

For example, we can take the trigonometric basis defined as Tr1 ≡ 1 and for j ≥ 2

Trj(x) = √
2

{
cos(2π[j/2]x) for even j;
sin(2π[j/2]x) for odd j,

(8)

where [a] denotes integer part of a.
For estimating the unknown function S in (1) we consider the Fourier expansion S(t) =∑∞
j=1 θjφj(t). The corresponding Fourier coefficients

θj = (S,φj) =
∫ 1

0
S(t)φj(t) dt

can be estimated as

θ̂j = 1
n

∫ n

0
φj(t) dyt .

In view of (1), we obtain

θ̂j = θj + 1√
n
ξj, (9)

where

ξj = 1√
n
In(φj) and In(f ) =

∫ n

0
f (t) dξt .

As Konev and Pergamenshchikov (2009b), we define a class of weighted least squares
estimates for S(t)

Ŝλ =
n∑
j=1

λ(j)θ̂jφj, (10)
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where the weights λ = (λ(j))1≤j≤n ∈ R
n belong to some finite set� from [0, 1]n for which

we set

νn = card(�) and |�|n = max
λ∈�

L(λ), (11)

where card(�) is the number of the vectors λ in � and L(λ) = ∑n
j=1 λ(j). In the sequel,

we assume that all vectors from� satisfies the following condition.
(B2) Assume that for any vector λ ∈ � there exists some fixed integer d = d(λ) such

that their first d components equal to one, i.e. λ(j) = 1 for 1 ≤ j ≤ d for any λ ∈ �.

Remark 3.1: Note that theweight coefficients satisfying the condition (B2)was introduced
by Nussbaum (1985) to construct the efficient estimation for the nonparametric regression
model in discrete time.

Now we need the σ – field generated by the jumps of the process (2), i.e. we set
Gn = σ {zt , 0 ≤ t ≤ n}. To construct the improved estimators, we need the following
proposition.

Proposition 3.1: For any n ≥ 1 the random vector ξ̃d,n = (ξj)1≤j≤d is theGn – conditionally
Gaussian inR

d with zeromean and the covariancematrixGn = (Eξiξj |Gn)1≤i, j≤d such that

inf
Q∈Qn

(trGn − λmax(Gn)) ≥ (d − 1)σ∗, (12)

where λmax(A) is the maximal eigenvalue of the matrix A.

Now, for the first d Fourier coefficients in (9), we use the improved estimation method
proposed for parametric models in Pchelintsev (2013). To this end, we set θ̃λ = (θ̂j)1≤j≤d.
We recall that the parameter d is dependent of λ. In the sequel, we will use the norm |x|2d =∑d

j=1 x
2
j for any vector x = (xj)1≤j≤d from R

d. Now we define the shrinkage estimators as

θ∗
λ,j = (

1 − gλ(j)
)
θ̂j and gλ(j) = cn

|θ̃λ|d
1{1≤j≤d}, (13)

where

cn = cn(λ) = (d − 1)σ∗(
r + √

dσ ∗/n
)
n

and the threshold σ ∗ > 0 is given in the lower bound (12). The positive parameter r is a
function of n, i.e. r = r(n) such that

lim
n→∞ r(n) = ∞ and lim

n→∞
r(n)
nε

= 0 (14)

for any ε > 0.
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Now we introduce a class of shrinkage weighted least squares estimates for S as

S∗
λ =

n∑
j=1

λ(j)θ∗
λ,jφj. (15)

We denote the difference of quadratic risks of the estimates (10) and (15) as

�Q(S) := RQ(S∗
λ, S)− RQ(Ŝλ, S).

Now we study the robust accuracy comparison between these estimators, i.e. uniformly
over the distribution familyQn.

Theorem 3.2: Let the observed process (yt)0≤t≤n describes by the Equations (1)–(2). Then
for any n ≥ 1

sup
Q∈Qn

sup
‖S‖≤r

�Q(S) ≤ −c2n. (16)

Remark 3.2: The inequality (16) means that non-asymptotically, i.e. for non large n ≥ 1,
the estimate (15) outperforms inmean square robust accuracy the estimate (10). As we will
see later in the efficient weight coefficients d ≈ nε as n → ∞ for some ε > 0. Therefore,
in view of the definition of the constant cn in (13) and the conditions (4) and (14) ncn →
∞ as n → ∞. It should be noted also, that for the parametric regression the parameter
dimension d is fixed Pchelintsev (2013), i.e. the James–Stein improvedmethod is essentially
efficient for nonparametric models.

4. Model selection

In this section, we construct a model selection procedure for the estimation of S in (1) on
the basis of the weighted shrinkage estimators (15). To this end, we consider the empirical
squared error defined as

Errn(λ) = ‖S∗
λ − S‖2.

In order to obtain a good estimate, we have to write a rule to choose a weight vector λ ∈ �
in (15). It is obvious, that the best way is to minimise the empirical squared error with
respect to λ. Making use the estimate definition (15) and the Fourier transformation of S
implies

Errn(λ) =
n∑
j=1

λ2(j)(θ∗
λ,j)

2 − 2
n∑
j=1

λ(j)θ∗
λ,jθj + ‖S‖2.

Since the Fourier coefficients (θj)j≥1 are unknown, the weight coefficients (λj)j≥1 cannot
be found by minimising this quantity. To circumvent this difficulty, one needs to replace



JOURNAL OF NONPARAMETRIC STATISTICS 619

the terms θ∗
λ,jθj by their estimators ϑ̄λ,j defined as

ϑ̄λ,j = θ∗
λ,jθ̂j −

σ̂n

n
, (17)

where σ̂n is the estimate for the limiting variance of σ = EQξ 2j which we choose in the
following form

σ̂n =
n∑

j=[
√
n]+1

t̂2j and t̂j = 1
n

∫ n

0
Trj(t) dyt . (18)

For this change in the empirical squared error, one has to pay some penalty. Thus, one
comes to the cost function of the form

Jn(λ) =
n∑
j=1

λ2(j)(θ∗
λ,j)

2 − 2
n∑
j=1

λ(j)ϑ̄λ,j + δP̂n(λ),

where δ is some positive constant, P̂n(λ) is the penalty term defined as

P̂n(λ) = σ̂n|λ|2n
n

.

We define the improved model selection procedure as

S∗ = S∗
λ∗ and λ∗ = argminλ∈�Jn(λ). (19)

It will be noted that λ∗ exists because � is a finite set. If the minimising sequence in (19)
λ∗ is not unique, one can take any minimiser. Now, to write the oracle inequality, we set

�Q,n = (1 + (φ∗)4)(1 + σ ∗)(1 + c∗n)νn,

where c∗n = nmaxλ∈� c2n(λ). It is useful to note that in view of the first condition in (4) and
the properties (14) the constant c∗n is not large as n → ∞, i.e. for any ε > 0

lim
n→∞

c∗n
nε

= 0.

First we study the non-asymptotic properties for the procedure (19).

Theorem 4.1: There exists some constant ľ > 0 such that for any n ≥ 1 and 0 < δ < 1/2,
the risk (6) of estimate (19) for S satisfies the oracle inequality

RQ(S∗, S) ≤ 1 + 5δ
1 − δ

min
λ∈�

RQ(S∗
λ, S)+ ľ

�Q,n

nδ

+ 12|�|nEQ|σ̂n − σ |
n

. (20)
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In the case, when the value of σ is known, one can take σ̂n = σ and

Pn(λ) = σ |λ|2n
n

,

then we can rewrite the oracle inequality (20) in the following form

RQ(S∗, S) ≤ 1 + 5δ
1 − δ

min
λ∈�

RQ(S∗
λ, S)+ ľ

�Q,n

nδ
.

Also we study the accuracy properties for the estimator (18).

Proposition 4.2: Let in the model (1) the function S(·) is continuously differentiable. Then,
there exists some constant ľ > 0 such that for any n ≥ 2 and S

EQ|σ̂n − σ | ≤ ľ
(1 + ‖Ṡ‖2)√

n
,

where Ṡ is the derivative of the function S.

Remark 4.1: It should be noted that to estimate the parameter σ in (17) we use the equal-
ity (9) for the Fourier coefficients tj = (S, Trj) with respect to the trigonometric basis (8),
since, as is shown in Lemma A.6 in Konev and Pergamenshchikov (2009a) for any contin-
uously differentiable function S and for anym ≥ 1 the sum

∑
j≥m t2j can be estimated from

above in an explicit form. Therefore, through the trigonometric basis we can estimate the
variance σ uniformly over the functions S, when we will study the efficiency property for
the proposed procedures.

To obtain the oracle inequality for the robust risk we impose the following additional
conditions.

(C1) Assume that the upper bound for the basic function φ∗ in (7) is a function of n, i.e.
φ∗ = φ∗(n), such that for any ε > 0

lim
n→∞

φ∗(n)
nε

= 0.

(C2) Assume that the set� is such that for any ε > 0

lim
n→∞

νn

nε
= 0 and lim

n→∞
|�|n
n1/2+ε

= 0. (21)

We note that Theorem 4.1 and Proposition 4.2 directly imply the following inequality.

Theorem 4.3: If the conditions (C1)–(C2) hold for the distribution Q of the process ξ in (1),
then for any n ≥ 2 and 0 < δ < 1/2, the robust risk (5) of estimate (19) for continuously
differentiable function S satisfies the oracle inequality

R∗
n(S

∗, S) ≤ 1 + 5δ
1 − δ

min
λ∈�

R∗
n(S

∗
λ, S)+ Bn(1 + ‖Ṡ‖2)

nδ
, (22)

where the term Bn is independent of S and for any ε > 0

lim
n→∞

Bn
nε

= 0.
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Remark 4.2: Note that sharp oracle inequalities similar to (20) and (22) was obtained ear-
lier by Konev and Pergamenshchikov (2009a, 2012, 2015) for model selection procedures
based on the weighted least squares estimates (10). Unfortunately, we cannot use such
oracle inequalities for the model selection procedures, based on the weighted shrinkage
estimates (15) since they depend non-linearly on the coefficients λ. This is a main techni-
cal difficulty which does not allow us to use the obtained oracle inequalities. Moreover, in
all these papers, the oracle inequalities are obtained under condition that the Lévy mea-
sure is finite. The inequalities (20) and (22) are obtained without conditions on the impulse
noises.

Now we specify the weight coefficients (λ(j))j≥1 in the way proposed in Galtchouk
and Pergamenshchikov (2009a) for a heteroscedastic regression model in discrete time.
Consider a numerical grid of the form

An = {1, . . . , kn} × {r1, . . . , rm},

where ri = iρn andm = [1/ρ2n]. Both parameters kn ≥ 1 and 0 < ρn ≤ 1 are the functions
of n such that for any ε > 0

lim
n→∞ kn = +∞, lim

n→∞
kn
ln n

= 0,

lim
n→∞ ρn = 0 and lim

n→∞ nερn = +∞. (23)

One can take, for example,

ρn = 1
ln(n + 1)

and kn = k∗ +
√
ln(n + 1)

for some fixed k∗ ≥ 0. For each α = (β , r) ∈ An, we introduce the weight sequence λα =
(λj(α))j≥1 as

λj(α) = 1{1≤j≤d} + (
1 − (j/ωα)β

)
1{d<j≤ωα} (24)

where d = d(α) = [ωα/ ln(n + 1)],

ωα = (
τβrvn

)1/(2β+1) , τβ = (β + 1)(2β + 1)
π2ββ

and vn = n
σ ∗ .

We set

� = {λ(α), α ∈ An}. (25)

It will be noted that in this case νn = knm. Therefore, the conditions (23) imply the first
limit equality in (21). Moreover, in view of the definition (24) and taking into account that
τβ ≤ 1 for β ≥ 1 the function L(λ) defined in (11) can be estimated for any λ ∈ � as

max
λ∈�

L(λ) ≤ max
λ∈�

ωα ≤ v
1/3
n ρ

−1/3
n .

Therefore, using here the conditions (4) and (23), we get the last limit in (21), i.e. the
condition C2) holds for the set� defined in (25).
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Remark 4.3: It will be observed that the specific form of weights (24) was proposed by
Pinsker (1981) for the filtration problem with known smoothness of the regression func-
tion observed with an additive gaussian white noise in continuous time. Nussbaum (1985)
used such weights for the gaussian regression estimation problem in discrete time.

5. Monte Carlo simulations

In this section, we give the results of numerical simulations to assess the performance and
improvement of the proposed model selection procedure (19). We simulate the model (1)
with 1-periodic function S of the form

S(t) = t sin(2π t)+ t2(1 − t) cos(4π t) (26)

on [0, 1] and the Lévy noise process ξt is defined as

ξt = 0.5wt + 0.5zt .

Here zt is a compound Poisson process with intensity λ = �(x2) = 1 and a Gaussian
N (0, 1) sequence (Yj)j≥1, see, for example, Konev and Pergamenshchikov (2015).

We use the model selection procedure (19) with the weights (24) in which kn =
100 + √

ln(n + 1), ri = i/ ln(n + 1), m = [ln2(n + 1)], σ ∗ = 0.5 and δ = (3 + ln n)−2.
We define the empirical risk as

R(S∗, S) = 1
p

p∑
j=1

Ê
(
S∗
n(tj)− S(tj)

)2 ,

Ê
(
S∗
n(·)− S(·))2 = 1

N

N∑
l=1

(
S∗
n,l(·)− S(·))2 ,

where the observation frequency p=100,001 and the expectations was taken as an average
over N=1000 replications.

Table 1 gives the values for the sample risks of the improved estimate (19) and the
model selection procedure based on the weighted LSE (3.15) from Konev and Pergamen-
shchikov (2012) for different numbers of observation period n. Table 2 gives the values for
the sample risks of the model selection procedure based on the weighted LSE (3.15) from
Konev and Pergamenshchikov (2012) and its improved version for different numbers of
observation period n.

Remark 5.1: Figure 1 shows the behaviour of the procedures (10) and (19) depending on
the values of observation periods n. The bold line is the function (26), the continuous line

Table 1. The sample quadratic risks for different optimal λ.

n 100 200 500 1000

R(S∗λ∗ , S) 0.0118 0.0089 0.0031 0.0009
R(Ŝ

λ̂
, S) 0.0509 0.0203 0.0103 0.0064

R(Ŝ
λ̂
, S)/R(S∗λ∗ , S) 4.3 2.3 3.3 7.1
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Table 2. The sample quadratic risks for the same optimal λ̂.

n 100 200 500 1000

R(S∗
λ̂
, S) 0.0237 0.0103 0.0041 0.0011

R(Ŝ
λ̂
, S) 0.0509 0.0203 0.0103 0.0064

R(Ŝ
λ̂
, S)/R(S∗

λ̂
, S) 2.1 2.2 2.5 5.8

Figure 1. Behaviour of the regression function and its estimates.

is the model selection procedure based on the least squares estimators Ŝ and the dashed
line is the improved model selection procedure S∗. From Table 2 for the same λ with var-
ious observations numbers n we can conclude that theoretical result on the improvement
effect (16) is confirmed by the numerical simulations. Moreover, for the proposed shrink-
age procedure, Table 1 and Figure 1, we can conclude that the benefit is considerable for
non large n.

6. Asymptotic efficiency

In order to study the asymptotic efficiency, we define the following functional Sobolev ball

Wk,r = {f ∈ Ck
p[0, 1] :

k∑
j=0

‖f (j)‖2 ≤ r},

where r>0 and k ≥ 1 are some unknown parameters, Ck
p[0, 1] is the space of k times dif-

ferentiable 1 - periodicR → R functions such that f (i)(0) = f (i)(1) for any 0 ≤ i ≤ k − 1.
In order to formulate our asymptotic results, we define the Pinsker constant which gives
the lower bound for normalised asymptotic risks

lk(r) = ((1 + 2k)r)1/(2k+1)
(

k
π(k + 1)

)2k/(2k+1)
. (27)
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It is well known that for any S ∈ Wk,r the optimal rate of convergence is n−2k/(2k+1), see, for
example, Pinsker (1981) and Nussbaum (1985). On the basis of the model selection proce-
dure, we construct the adaptive procedure S∗ for which we obtain the following asymptotic
upper bound for the quadratic risk, i.e. we show that the parameter (27) gives a lower bound
for the asymptotic normalised risks. To this end we denote by �n the set of all estimators
Ŝn of S measurable with respect to the process (1), i.e. measurable with respect to σ -field
σ {yt , 0 ≤ t ≤ n}.

Theorem 6.1: The robust risk (5) admits the following asymptotic lower bound

lim inf
n→∞ inf

Ŝn∈�n

v
2k/(2k+1)
n sup

S∈Wk,r

R∗
n(Ŝn, S) ≥ lk(r).

We show that this lower bound is sharp in the following sense.

Theorem 6.2: The quadratic risk (5) for the estimating procedure S∗ has the following
asymptotic upper bound

lim sup
n→∞

v
2k/(2k+1)
n sup

S∈Wk,r

R∗
n(S

∗, S) ≤ lk(r).

Theorem 6.2 follows from Theorem 3.2 and Theorem 3.1 in Konev and Pergamen-
shchikov (2009b). It is clear that Theorem 6.2 and Theorem 6.1 imply

Corollary 6.3: The model selection procedure S∗ is asymptotically efficient, i.e.

lim
n→∞(vn)

2k/(2k+1) sup
S∈Wk,r

R∗
n(S

∗, S) = lk(r). (28)

Remark 6.1: Note that the equality (28) implies that the parameter (27) is the Pinsker
constant in this case Pinsker (1981).

Remark 6.2: It should be noted that the equality (28) means that the robust efficiency
holds with the convergence rate

(vn)
2k/(2k+1).

It is well known that for the simple risks the optimal (minimax) estimation convergence
rate for the functions from the setWk,r is n2k/(2k+1), see, for example, Ibragimov and Khas-
minskii (1981), Pinsker (1981) and Nussbaum (1985). So, if the distribution upper bound
σ ∗ → 0 as n → ∞we obtain themore rapid rate, and if σ ∗ → ∞ as n → ∞we obtain the
more slow rate. In the case when σ ∗ is constant the robust rate is the same as the classical
non-robust convergence rate.
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Remark 6.3: The property (28) means that the model selection procedure (19) asymp-
totically has the same efficiency property as the LSE model selection, see, Galtchouk and
Pergamenshchikov (2009b) and Konev and Pergamenshchikov (2009b). So, it means that
the proposed shrinkage method non-asymptotically has benefit with respect to LSE and
asymptotically the shrinkage methods keep the efficiency property.

7. The van Trees inequality for the Lévy processes

In this section, we consider the following continuous time parametric regressionmodel (1)
with the function S defined as

S(t, θ) =
d∑

i=1
θiψi(t),

with the unknown parameters θ = (θ1, . . . , θd)′. Here we assume that the functions
(ψi)1≤i≤d are 1-periodic and orthogonal functions.

Let us denote by νξ the distribution of the process (ξt)0≤t≤n on the Skorokhod space
D[0, n]. From Proposition A.4, it follows that in this space for any parameters θ ∈ R

d, the
distribution Pθ of the process (1) is absolutely continuous with respect to the νξ and the
corresponding Radon-Nikodym derivative, for any function x = (xt)0≤t≤n from D[0, n],
is defined as

f (x, θ) = dPθ
dνξ

(x) = exp
{∫ n

0

S(t, θ)
σ 2
1

dxct −
∫ n

0

S2(t, θ)
2σ 2

1
dt

}
,

where

xct = xt −
∫ t

0

∫
R0

v (μx(ds, dv)−�(dv) ds)

and for any measurable set A in R with 0 /∈ A

μx([0, t] × A) =
∑
0≤s≤t

1{�ξs∈σ2A}.

Let U be a prior density on R
d having the following form:

U(θ) = U(θ1, . . . , θd) =
d∏

j=1
uj(θj),

where uj is some continuously differentiable density in R. Moreover, let g(θ) be a contin-
uously differentiable R

d → R function such that, for each 1 ≤ j ≤ d,

lim
|θj|→∞

g(θ)uj(θj) = 0 and
∫

Rd
|g′
j(θ)|U(θ) dθ < ∞,
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where g′
j(θ) = ∂g(θ)/∂θj. For any B(X )× B(Rd)-measurable integrable function H =

H(x, θ), we denote

ẼH =
∫

Rd

∫
X
H(x, θ) dPθU(θ) dθ

=
∫

Rd

∫
X
H(x, θ)f (x, θ)U(θ) dνξ (x) dθ ,

where X = D[0, n].

Lemma 7.1: For any F y
n-measurable square integrable function ĝn and for any 1 ≤ j ≤ d,

the following inequality holds

Ẽ(ĝn − g(θ))2 ≥
η2j

n‖ψj‖2σ−2
1 + Ij

,

where

ηj =
∫

Rd
g′
j(θ)U(θ) dθ and Ij =

∫
R

u̇2j (z)

uj(z)
dz.

8. Conclusion

In the conclusion, we would like to emphasise that in this paper we develop a new model
selection method based on the improved versions of the least squares estimates. It turns
out that the improvement effect in the nonparametric estimation given in (16) is more
important than for the parameter estimation problems since the accuracy improvement
is proportional to the parameter dimension d which goes to infinity for nonparametric
models. Recall that, the improved estimation methods was usually used for the para-
metric estimation problem only, where the parameter dimension d is always fixed, see,
for example, Fourdrinier and Strawderman (1996). Therefore, the benefit in the non-
asymptotic quadratic accuracy from the application of the improved estimationmethods is
more significant in statistical nonparametric signal processing.Moreover, for the proposed
improved model selection procedures we obtain the sharp oracle inequalities. It should be
emphasised that in this paperwe obtain these inequalities without conditions on the jumps,
i.e. without assumption that the Lévy measure is finite. To this end we developed a special
analytical tool in Proposition A.2 to study the non-asymptotic properties for the corre-
sponding stochastic integrals with respect to the process (2). Moreover, asymptotically,
as n goes to infinity, we shown the adaptive efficiency for the improved model selection
procedures. This is the meaning that the proposed shrinkage model selection procedures
have the benefit with respect to the least squares estimator in the non-asymptotic accuracy
and asymptotically they possess the same efficient properties as the least squares meth-
ods. Moreover, the behaviour of the constructed procedures is illustrated by the numerical
simulations in Section 5.
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