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Abstract: In this paper, we monitor the in vitro tissue clearing process of mouse dorsal skin 
immersed into two types of agents using Mueller matrix microscope. By Mueller matrix polar 
decomposition, we can see that the major difference between polarization changes due to two 
kinds of agents is the opposite trend of phase retardance with clearing. For the insight of the 
connection between different agents with the microstructural and optical changes of cleared 
tissues, we establish various models to mimic the dynamic process of microphysical features 
of tissues with clearing time. The mechanisms considered include refractive index matching, 
collagen shrinkage, more orderly fibers and birefringence variation. We compare the 
experimental results with simulations based on a single mechanism model and a combined 
model, respectively, which confirms that an individual possible mechanism cannot explain 
the polarization phenomena due to clearing. Also by simulations of various clearing models 
involving two possible mechanisms, we can speculate that formamide and saturated sucrose 
as agents have respective impacts on tissue features and then cause different polarization 
changes with clearing. Specifically, collagen shrinkage plus birefringence reduction can better 
explain the tissue cleared by formamide, and refractive index match plus increased 
birefringence model is likely to be a proper description of tissue cleared by sucrose. Both 
simulations and experiments also validate the potential of Mueller matrix microscope as a 
good tool to understand the interaction between clearing agents and tissues. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Tissues contain a mix of components of small size with different refractive indexes (RIs), the 
interactions of light with these heterogeneous components lead to a lack of transparency. 
Tissue clearing methods make tissues transparent by homogenize the RI by removing, 
replacing and modifying some of its components [1]. Due to its contribution to penetration 
depth and then imaging resolution and contrast, tissue optical clearing (TOC) techniques are 
becoming more and more prominent in biomedical applications [2–4]. Related research 
interests include ex-vivo and in-vivo experiments, potential clearing agents and pretreatment 
mode, molecular dynamics simulations and new applications [5–9]. Many optical imaging 
methods such as optical coherence tomography (OCT) [10,11], laser speckle contrast imaging 
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(LSCI) [12], 3D-confocal microscopy [13], polarized microscopy [14], and multiphoton 
imaging [15] can be combined with TOC. These advanced optical methods promote studies 
on the molecular and microstructure and function of tissues in vivo or in vitro also can be 
used to evaluate the efficacy of TOC. 

Usually, simple immersion is passive clearing method by place the thin tissue into high 
refractive index solutions [1]. There are many OCAs which been used as this purpose, such as 
sucrose [16], fructose [17], glycerol [18], formamide [19], and 2,2’-thiodiethanol (TDE) [20]. 
The OC efficacy depends on the type and concentration of OCAs as well as on its treatment 
time [21]. Besides chemical enhancers, physical methods have also been used to improve OC, 
such as microdermabrasion [22], laser irradiation of skin surface [23], iontophoresis [24], 
ultrasound [25] and photothermal and mechanical microperforation [26]. 

There are several possible mechanisms about the explanations of OC process [21]. The 
first and the most common explanation is refractive index matching. The second common 
explanation is collagen shrinkage. There are some corresponding experiments showing that 
sample’s thickness changes significantly with clearing [27]. The third common explanation is 
more orderly collagen, which implies that scatterers’ near-order spatial correlation is 
enhanced, and thus the lateral scattering is minimized or even eliminated [28]. 

Polarization imaging techniques are sensitive to microstructural changes in tissues, and 
can therefore be regarded as potential and label-free tools for physiological process 
monitoring and pathological diagnosis. Recently, polarization techniques are attracting more 
and more attention in biomedicine [29–33]. As a comprehensive description of polarization 
characteristics of scattering samples, Mueller matrix polarimetry has demonstrated promising 
potential in abnormal tissues detection for both backward scattering imaging of bulk tissue 
samples and transmission imaging of thin tissue slices [34–36]. In our previous research, we 
studied the influence of TOC on tissue polarization imaging [37,38], and give some 
preliminary explanations using our Monte Carlo simulations [39] combined with our 
anisotropic tissue model [40]. Also by Mueller matrix polar decomposition method, we show 
a semi-quantitative description on the polarization optical change due to tissue clearing. 

In this paper, we focus on the tissue clearing process using two types of OCAS and try to 
explain the difference of dynamic microstructural change of cleared tissue and understand 
how these two OCAS make tissues clear respectively. Collagen fibers are typical anisotropic 
tissues and can generate obvious polarization optical phenomenon, and there are studies 
showing that hydroxyl molecules in OCAs will interact with collagen and affect the clearing 
results [10]. So we use skin rich in collagen fibers as the research object, and observe the 
polarization features by Mueller matrix imaging and MMPD method combined with Monte 
Carlo simulation of various tissue clearing mechanisms. 

2. Method and experiment setup 

2.1 Sample and OCAs 

Our experimental tissue samples are taken from seven-week-old nude mice from Guangdong 
Medical Lab Animal Center. They were fed under specific pathogen-free conditions. After 
mice being sacrificed, a 3x3 cm skin with a thickness of 1mm was cut from mice’s back. 
Then, we divided the skin into 9 small pieces on average, with each piece 1x1 cm. 
Subsequently, these pieces of skin are immersed in two different types of OCAs and 
measured by polarized forward microscope to obtain their Mueller matrix images. 

Polarization status is an effective way to study the microscopic changes in tissues and is 
especially sensitive to those optical anisotropic features, such as birefringence or fibrous 
microstructures. Collagen fibers are the main components of dermis, and show an apparent 
anisotropic scattering capability in our previous research work [38,41]. There are studies that 
the hydroxyl molecule in OCAs will interact with collagen and cause various possible 
microcosmic changes of fiber content and arrangement. We select formamide and saturated 
sucrose as our agents, because the molecular structure of the latter does contain hydroxyl 
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polarization scattering calculation program and SCBM tissue model and compare them with 
experimental results in the following section. 

In sphere-cylinder birefringence model (SCBM), as shown in Fig. 3, sphere scatterers 
represent cells and other isotropic microstructures, such as nuclei and other organelles. 
Cylindrical scatterers represent fibrous microstructures like collagen fibers in skin tissue. 
Birefringence is introduced in our tissue model considering the optical anisotropy at 
molecular level. By combination of Monte Carlo simulation and SCBM, we can mimic 
various tissue types and simulate the transmission and scattering of polarized light in 
biological tissues. 

In our simulation program, variable parameters for scatterers include scattering 
coefficient, diameter of the spheres and cylinders, the mean value and standard deviation of 
the orientation distribution function for the cylinders. For the ambient medium, variable 
parameters include the refractive index, the absorption coefficient, the optical activity 
coefficient, and the value and orientation of birefringence. 

 

Fig. 3. Sphere-cylinder birefringence model (SCBM). 

The initial state of skin tissue before clearing can be set as follows [42,43]: the tissue 
thickness is 1mm; the diameter of spheres and cylinders are 0.2μm and 1.5μm, respectively; 
the scattering coefficient of spheres and cylinders are 20 cm−1 and 180cm−1; the refractive 
indices of the interstitial medium and the scatterers (including spheres and cylinders) are 1.35 
and 1.43, respectively; the cylinders are along the x-axis direction with a FWHM of 18 degree 
in the orientation distribution considering collagen fibers packed in bundles and arranged in a 
lamellae structure; the birefringence value is 3e-5 and its optical axis is along the x-axis; the 
wavelength of the incident light is 633nm and the simulated photon number is 10e7. 

To mimic tissue optical clearing process by different agents, we consider various dynamic 
models corresponding to several possible clearing mechanisms including refractive index 
match, tissue shrinkage by dehydration, fluctuation of birefringence effect in intercellular 
substance and ordering of fiber arrangement. In the following studies, we will start with the 
simulations based on one single mechanism and compare them respectively with experiments, 
and then we will observe whether the parallel simulations based on two major mechanisms 
can explain the experimental phenomena better. 

3. Results 

3.1 Experimental results of tissue clearing with different agents 

Simple immersion is a very convenient and useful way to make tissue transparent. In Fig. 4 
the skin samples are put on a 1951 United States Air Force (USAF) resolution test target 
before and after treatment with two kinds of agents: formamide and saturated sucrose. White-
light images make clear that these two OCAs we choose have a rapid and apparent effect to 
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According to the above simulations, we can see that a combined model involving multiple 
mechanisms can better explain the trend of phase retardance with clearing than any single 
mechanism model. The differences between simulation results of various combined models 
are the change of depolarization parameter. Then in next simulations we focus on three 
diagonal elements of Mueller matrix: m22, m33, m44, which are closely related with the 
depolarization phenomena of measured tissues. Figure 10 shows the simulated diagonal 
Mueller elements based on different clearing models. By comparing experimental data with 
simulation results, we can deduce the similar possible clearing models. Specifically, the 
experimental depolarization parameter,Δ, cannot be close to 1 after formamide clearing 
(shown in Fig. 10(a)), which supports the model involving collagen shrinkage plus 
birefringence reduction again. From Fig. 10(b), only the combined model involving refractive 
index matching and increased birefringence can better mimic the increase of Δ using saturated 
sucrose as agent than the other two models. 

Figures 7, 8, and 9 demonstrate rather regular oscillations of depolarization Δ and 
retardance δ parameters of the skin during optical clearing at sucrose application. These 
oscillations for studied nude mouse skin occurred with time-period of approx. 2 min, which is 
well fit to temporal characteristics of oscillations of optical properties found as 2.5 and 3.5 
min for hamster and rat skin at clearing by anhydrous glycerol, respectively [23]. Such 
quasiperiodic oscillations were described for the first time in Ref [2]. for collagenous tissues 
like human sclera and then experimentally proved for coherent and polarization (linear 
parallel- and crossed-polarization) properties of human sclera for which the period of 1.5-2 
min was found at application of x-ray contrast trazograph solution [44]. In this paper, it was 
also hypothesized that the oscillations are the result of temporal-spatially irregular optical 
clearing agent diffusion driven by a local multi-step dehydration of collagen and dilution of 
the interstitial fluid. There is a high degree of evidence that a similar mechanism may underlie 
the temporal oscillatory behavior of the depolarization and retardance parameters. 

4. Conclusion 

This paper focus on the influence of different clearing agents on polarization features of 
tissues. By Mueller matrix microscope, we select formamide and saturated sucrose as agents 
and observe the Mueller matrix images and MMPD change of mouse skin with the clearing 
time. The differences in experimental phenomena may originate from their respective clearing 
mechanisms of two kinds of agents. To find out the key factors of making the measured tissue 
transparent, we consider several possible clearing mechanisms and then establish 
corresponding single factor models and combined models. We can mimic the dynamic tissue 
clearing process by simulating the gradual changes of microphysical attributes using our 
Monte Carlo simulations, and then compare our experimental results with simulations results 
based on different clearing models. 

Firstly, the simulations involving only one mechanism cannot approximate the 
experimental MMPD, which confirms that tissue clearing is very likely due to multiple 
mechanisms working together. Further investigation and comparison indicate that different 
agents have respective influence on the cleared tissue, such as shrinkage due to dehydration, 
changes in Fiber Orientation and birefringence variation in intercellular substance. Based on 
the dynamic variations of diagonal Mueller elements, depolarization and phase retardance 
parameters, this paper try to explain the clearing process by formamide and sucrose. 
Specifically, tissue clearing by formamide is mainly due to collagen shrinkage plus decreased 
birefringence, and clearing by saturated sucrose can be mainly due to refractive index 
matching plus increased birefringence. The investigation including experiments and 
simulations provides a way to understand the clearing process according to the connection 
between polarization changes and microphysical features of tissues. In addition, this paper 
also verify that Mueller matrix imaging is potentially a powerful method applied in tissue 
clearing. 
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