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Abstract: In the present investigation, the free convection energy transport was studied in a C-shaped
tilted chamber with the inclination angle α that was filled with the MWCNT (MultiWall Carbon
Nanotubes)-Fe3O4-H2O hybrid nanofluid and it is affected by the magnetic field and thermal flux.
The control equations were numerically resolved by the finite element method (FEM). Then, using the
artificial neural network (ANN) combined with the particles swarm optimization algorithm (PSO),
the Nusselt number was predicted, followed by investigating the effect of parameters including the
Rayleigh number (Ra), the Hartmann number (Ha), the nanoparticles concentration (ϕ), the inclination
angle of the chamber (α), and the aspect ratio (AR) on the heat transfer rate. The results showed
the high accuracy of the ANN optimized by the PSO algorithm in the prediction of the Nusselt
number such that the mean squared error in the ANN model is 0.35, while in the ANN model,
it was optimized using the PSO algorithm (ANN-PSO) is 0.22, suggesting the higher accuracy of
the latter. It was also found that, among the studied parameters with an effect on the heat transfer
rate, the Rayleigh number and aspect ratio have the greatest impact on the thermal transmission
intensification. The obtained data also showed that a growth of the Hartmann number illustrates
a reduction of the Nusselt number for high Rayleigh numbers and the heat transfer rate is almost
constant for low Rayleigh number values.

Keywords: heat transfer; hybrid nanofluid; Nusselt number; artificial neural network; particles
swarm algorithm

1. Introduction

Particles with micrometer size were traditionally added to fluids to increase their thermal
conductivity coefficient. However, these particles did not have the required stability in the suspension
and was quickly deposited, leading to the blockage of the fluid passageway. In comparison, nano-sized
particles form a much more stable suspension and the problem of channel chocking and blocking is
minimized due to lower sedimentation rates. Generally, nanoparticles are produced for the size range
of 1 nm to 100 nm, depending on the type of operation. Nanoparticles can play a significant role in
improving the environment and reducing environmental pollutants. Nanofluids were first prepared
by Choi in 1995 [1]. Since then, they have been considered by many researchers in engineering and
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heat transfer applications owing to their improving heat transfer properties [2–17]. For the stable
distribution of nanoparticles in the closed chambers, energy transport can be essentially improved
compared to the absence of nanoparticles (i.e., base fluid only). It should be noted that nanofluids are
used in different engineering applications such electronics cooling, solar collectors, heat exchangers,
building insulation systems, and so on [18–20]. Khanafer et al. [21] are the first who numerically
simulated the thermal transmission of the nanoliquid within the square-shaped chamber. They used
the Wasp’s and Brinkman correlations for thermal conductivity and viscosity, respectively. Their results
indicated that the energy transport rises with a growth of the nanoparticles concentration. Ganvir
et al. [22] presented a review article of previous studies about heat transfer properties of different
nanofluids and concluded that, in all cases, the thermal conductivity of nanoliquids was more than
the host liquid. Kalidasan and Rajesh [23] examined the use of nanofluids of multi-wall carbon
nanotubes (MWCNTs) and water in increasing the natural convection within a closed chamber.
They observed that thermal transmission can be intensified due to a growth of the Rayleigh number
and concentration of nanotubes. Hasanuzzaman et al. [24] examined the influence of the magnetic field
on thermogravitational convection inside a trapezoidal chamber. They sloped the walls of the chamber
and fixed the temperature of the lower wall. Additionally, the upper wall was adiabatic and the
temperature of the lower wall was considered to be greater than that of the steep wall. By examining
the effects of various characteristics such as Rayleigh and Hartmann numbers, and angle of dip of
the chamber wall on the energy transport, it was revealed that the thermal transmission decreases
for various Rayleigh numbers by raising the nanoparticles concentration and magnetic field intensity.
Sheremet et al. [25] investigated thermogravitational convection within a partially heated irregular
chamber filled with porous medium saturated by the nanofluid in the presence of the Brownian
diffusion and thermophoresis effects. Authors found that waviness has an essential influence on the
liquid circulation and energy transport patterns.

Kasaeipoor et al. [26] investigated the energy transport of nanoliquid in a T-shaped chamber under
a magnetic field influence and ascertained that the thermal transmission enhances with a growth of
Richardson number and the nanoparticles concentration. Rudraiah et al. [27] examined computationally
the impact of applying a constant magnetic field on the circulation of transition free convection in a
square chamber with side borders of constant temperature and thermally isolated horizontal borders.
They demonstrated that with increasing of magnetic field strength the convection current is lost
and the heat transfer intensity is declined. Makulati et al. [28] examined the natural convection of
nanofluid of water-alumina in a chamber under the influence of a magnetic field. They simulated the
processes within the chamber by the conservation laws and examined the effects of Hartmann and
Rayleigh numbers, nanoparticle volume fraction, chamber inclination angle, and chamber geometrical
parameter. Based on their data, the thermal transmission intensity is raised with a growth of the
nanoparticles concentration and the chamber inclination angle. Sidik et al. [29] analyzed the latest
research on the use of hybrid nanoliquids in thermal transfer applications. They found that the
thermal transfer characteristics of hybrid nanoliquids are better than the base fluids and nanofluids
containing one type of nanoparticles. Sundar et al. [30] examined the improvement of convective
energy transport and friction factor for the hybrid nanoliquids of multi-wall carbon nanotubes and iron
oxide (III, II) in a water base fluid under the turbulent flow conditions. This research was conducted
in the case of a fully developed circulation through a pipe whose surface was considered to be at a
constant heat flux. The obtained data revealed that the Nusselt number for the hybrid nanoliquids was
31.1% higher than the host liquid for the Rayleigh number of 22,000. Suresh et al. [31] experimentally
investigated the influence of hybrid nanofluids of copper-aluminum oxide in the water on the thermal
transmission. The experiment was carried out in a tube with a circular cross-section whos surface
temperature was assumed to be constant. The flow was considered at developed regime. Additionally,
the pressure drop along the pipe was investigated. Overall, it was found that, for Rayleigh number of
1730, the Nusselt number increases by 13.56% relative to the base fluid. In addition, the friction factor
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in hybrid nanofluids of copper-aluminum oxide/water with a volume fraction of 0.1% was clearly
higher than that of the aluminum oxide/H2O nanofluids with the same concentration of nanoparticles.

Rahimpour and Moraveji [32] examined the heat transfer of MHD free convection in a C-shaped
chamber filled with Fe3O4/water nanofluids. They examined the impact of Hartmann and Rayleigh
numbers, chamber tilted angle, nanoparticles concentration, and chamber geometrical parameter on
thermal performance and fluid flow structures. In addition, they used an ANN model to model the
Nusselt number and showed that the effect of Rayleigh number and chamber geometrical parameter
on the thermal transmission intensity is higher than that of other variables. Islamoglu and Kurt [33]
developed an ANN for analyzing heat transfer in ripple channels using experimental data. For this
purpose, they used an error back propagation algorithm, which is one of the most common training
algorithms in ANNs. Network inputs were the channel wave angles, the distance between the two
peaks, the hydraulic diameter, and the Reynolds number and its output was the heat transfer rate.
C++ programming code was also used to run the network. Finally, the accuracy of the obtained
results was estimated at 4% relative to the experimental results using the mean absolute relative error.
Esfe et al. [34] performed the modelling of thermal conductivity of magnesium oxide-ethylene glycol
nanofluid using results from experiments and ANN. The influence of nanoparticles concentration,
nanoparticles size, and temperature on the thermal conductivity of the nanofluid was measured and
studied using the ANN based on the measured results. The results demonstrated that the impact of
particles size and concentration of nanoparticles is higher than the influence of temperature factor on
thermal conductivity of nanoparticles. Ahmadi et al. [35] modeled thermal conductivity and dynamic
viscosity of Fe2O3/water nanoliquid using different artificial neural network techniques. Authors
showed that the highest R-squared values belonged to GA-RBF (Genetic Algorithm–Radial Basis
Function) method.

While different machine learning methods have been studied so far for predicting the Nusselt
number, it is still unclear which method has the best performance, because the performance of each
method varies depending on various factors such as the number and range of changes in the dataset
and other parameters. In this research, a novel ANN-PSO network was created to model the energy
transport rate. In this method, the weight and bias parameters of the ANN are optimized using the
PSO algorithm and are determined in such a way that the mean squared error obtained from the
observed values is less than the values predicted using the ANN. We introduce the ANN and the PSO
algorithm in the following.

2. Hybrid Multi-Layer Perceptron Neural Network and Particle Swarm Optimization

2.1. Multi-Layered Artificial Neural Networks

ANNs are new computing systems and methods for machine learning, knowledge representation,
and the application of the knowledge gained to model the outcomes of complicated structures.
The major idea of such networks is the human brain. These systems consist of a huge number of
super-interconnected processing units called neurons that operate together to define a problem and
they transport information through synapses (electromagnetic coupling). An ANN includes three
layers of input, output, and processing. Each layer contains a system of neurons that are generally
related with neurons in other layers, but neurons of each layer are not connected to other neurons of the
same layer. The neuron is the smallest data processing unit in an ANN. In this network, each neuron
operates independently and the overall behavior of the network is the product of numerous neuron
behaviors. Neurons correct one another in a collaborative process. Figure 1 presents the architecture of
an ANN.
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Figure 1. Typical structure of the ANN.

Neurons in the input layer only act as buffers for distributing the input signals Xi (i.e., Ra, Ha, ϕ,
α, and AR) to neurons in the hidden layer. Each neurons j (Figure 1) in the hidden layer sums up its
input signals Xi after weighting them with the strengths of the respective connections wji from the
input layer and computes its output yj as follow:

y j = f

 D∑
i=1

(
W jiXi + b1

) (1)

where D is the number of neurons in the input layer, b1 is bias value for hidden layer, and f can be a
simple threshold function or a sigmoid, hyperbolic tangent, or radial basis function.

During the training process these weights are adjusted to achieve optimal accuracy and
coverage [36].

The training of a neural network involves the minimization of an error function. The error function
for this study is defined as follows:

F(x) =
N∑

i=1

(
Yactual,i −Ypredicted,i

)2
(2)

which is the same as MSE (Mean Squared Error) that should be minimized by an algorithm. N denotes
the number of samples, while Yactual and Ypredicted are the real output (Nuactual) and desired network
output (Nupredicted), respectively.

The standard method for refining a multi-layered feedforward neural network is using an error
Backpropagation (BP) algorithm. During the training phase, the feedforward calculation is combined
with backward error propagation to adjust the weights. Further details about BP algorithm can be
found in Reference [36].

In this study, PSO is used to optimize the weights assigned to the connections between the neurons
within the neural network where each particle represents a neural network with a particular set of
weights. It is a “single objective” optimization which the optimization variables all arrays of the
weighting matrix. The dimension of the matrix can vary as a function of ANN architecture. As all
inputs and output parameters are scaled in [0, 1] so the lower and upper bounds for optimization
variables are defined in the interval of (0, 1). The aim of the PSO is to find «the best weights assigned
to the connections between the neurons within the neural network» producing the smallest value of
the error function. The following is a brief review on PSO.
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2.2. Particle Swarm Optimization (PSO)

PSO is an optimization technique based on a population of initial responses. This technique is
based on the collective behavior of birds and fish species. In this method, the system starts to work
with a population of initial responses and tries to find the optimal response by moving these responses
during successive repetitions. The PSO algorithm shows high performance in many areas such as
finding the optimal solution for functions, training ANNs, and controlling fuzzy systems. The PSO
algorithm starts to work with a number of initial responses (particles) and looks for an optimal solution
to the problem by moving these responses during successive repetitions. For each iteration, two values
are specified: The best place in the current population (Gbest) and the place of the best value for each
particle in its movement (Pbest). After finding the above values, the velocity of the particles and the
next location of each particle are calculated by Equations (3) and (4), respectively.

Vi
j+1 = ω jVi

j + c1r1

(
Wi,best

j −Xi
j

)
+ c2r2

(
W j,best

j −Xi
j

)
(3)

Pi
j+1 = Pi

j + Vi
j (4)

Here r1 and r2 are random values between 0 and 1, ωj is the inertia weight of the jth particle,
which is the effect of previous iteration on the current one, Wi,best

j is the best value for each particle,
and the parameters c1 and c2, also called learning coefficients, are usually equal to 2. P is referred to
each particle position while V is each particle velocity. Like any other algorithm, PSO has a set of
“User-Defined” parameters (i.e., Number of Particles, Maximum Number of Iterations, and inertia
weight), which should be tuned by the users. There is no method for finding the best set of them except
trial and error. Table 1 shows the User-Defined parameters of PSO, which has been set for this study.
For more details about PSO readers are referred to [37].

Table 1. The parameters of PSO algorithm for optimizing artificial neural networks (ANNs).

Parameters

Number of Particles 400
Iterations 240

(c1) 2
(c2) 2
(ω) 0.99

3. Problem Definition

We considered the natural convective energy transport in a C-shaped chamber with an inclination
angleα that was filled with hybrid nanofluid [38,39]. The desired fluid is incompressible and Newtonian
liquid and a two-dimensional problem was considered. The temperature of three internal borders of
the chamber and two external borders of the chamber are constant with values of Tc and Th, where
Th is greater than Tc. Additionally, two other walls are assumed to be thermally insulated and the
lower border of the chamber is under variable heat flux. The length of the three internal walls of the
chamber is equal to H and the length of the three outer walls of the chamber is equal to L. The chamber
is also exposed to a very strong magnetic field B0 and the acceleration of gravity g acts in negative
side of y-coordinate. Figure 2 schematically presents the geometry, coordinate system, and boundary
conditions for the considered problem.



Energies 2019, 12, 2807 6 of 17
Energies 2019, 12, x FOR PEER REVIEW 6 of 17 

 

 
Figure 2. Sketch of the analyzed region. 

4. Governing Equations 

To better understand the problem, first, the governing equations of pure fluid in the closed 
chamber are examined. To simplify physical and mathematical equations, the following 
assumptions are considered: 

- host liquid (pure water) and nano-sized particles Fe3O4-MWCNT are in thermal equilibrium; 
- nanoliquid is an incompressible and Newtonian liquid; 
- the liquid circulation is considered to be stable and 2D; 
- thermal transmission is done by thermogravitational convection and the radiation influence is 

assumed negligible. 
 According to these assumptions mentioned in the physical modelling, three equations of fluid 

conservation, namely, conservation of mass, momentum conservation in the horizontal and 
vertical directions, and energy conservation are shown as follows [10,14,40]: 

0u v
x y

∂ ∂+ =
∂ ∂

 (5) 

( ) ( ) ( )( ) ( )
( ) ( )

2 2

2 2

2
0

1

s i n c o s s i n s i n

h n f

h n f h n f

h n f h n f
c

h n f h n f

u u p u uu v
x y x x y

B v u g T T

μ
ρ ρ

ρ βσ
α α α α

ρ ρ

 ∂ ∂ ∂ ∂ ∂+ = − + + + ∂ ∂ ∂ ∂ ∂ 

+ − + −

 
(6) 

( ) ( ) ( )( ) ( )
( ) ( )

2 2

2 2

2
0

1

c o s s i n c o s c o s

h n f

h n f h n f

h n f h n f
c

h n f h n f

v v p v vu v
x y y x y

B u v g T T

μ
ρ ρ

ρ βσ
α α α α

ρ ρ

 ∂ ∂ ∂ ∂ ∂+ = − + + + ∂ ∂ ∂ ∂ ∂ 

+ − + −

 
(7) 

2 2

2 2hnf
T T T Tu v
x y x y

α  ∂ ∂ ∂ ∂+ = + ∂ ∂ ∂ ∂ 
 (8) 

where x, y, u, and v represent the horizontal and the vertical component of the location, and the 
velocity along the horizontal and vertical directions, respectively. Also, the temperature, pressure, 
density, dynamic viscosity, thermal expansion coefficient, effective electrical conductivity, magnetic 
field strength, gravitational acceleration, and thermal diffusivity are denoted with T, p, ρhnf, µhnf, βhnf, 
σhnf, B0, g, αhnf, respectively. 

Figure 2. Sketch of the analyzed region.

4. Governing Equations

To better understand the problem, first, the governing equations of pure fluid in the closed
chamber are examined. To simplify physical and mathematical equations, the following assumptions
are considered:

- host liquid (pure water) and nano-sized particles Fe3O4-MWCNT are in thermal equilibrium;
- nanoliquid is an incompressible and Newtonian liquid;
- the liquid circulation is considered to be stable and 2D;
- thermal transmission is done by thermogravitational convection and the radiation influence is

assumed negligible.
- According to these assumptions mentioned in the physical modelling, three equations of fluid

conservation, namely, conservation of mass, momentum conservation in the horizontal and
vertical directions, and energy conservation are shown as follows [10,14,40]:

∂u
∂x

+
∂v
∂y

= 0 (5)

u∂u
∂x + v∂u

∂y = − 1
ρhn f

∂p
∂x +

µhn f
ρhn f

[
∂2u
∂x2 + ∂2u

∂y2

]
+

+
σhn f
ρhn f

B2
0 sin(α)(v cos(α) − u sin(α)) +

(ρβ)hn f
ρhn f

g(T − Tc) sin(α)
(6)

u∂v
∂x + v ∂v

∂y = − 1
ρhn f

∂p
∂y +

µhn f
ρhn f

[
∂2v
∂x2 +

∂2v
∂y2

]
+

+
σhn f
ρhn f

B2
0 cos(α)(u sin(α) − v cos(α)) +

(ρβ)hn f
ρhn f

g(T − Tc) cos(α)
(7)

u
∂T
∂x

+ v
∂T
∂y

= αhn f

[
∂2T
∂x2 +

∂2T
∂y2

]
(8)

where x, y, u, and v represent the horizontal and the vertical component of the location, and the
velocity along the horizontal and vertical directions, respectively. Also, the temperature, pressure,
density, dynamic viscosity, thermal expansion coefficient, effective electrical conductivity, magnetic
field strength, gravitational acceleration, and thermal diffusivity are denoted with T, p, ρhnf, µhnf, βhnf,
σhnf, B0, g, αhnf, respectively.

It should be noted that the third and fourth terms in the right part of Equations (6) and (7) describe
the influence of the inclined magnetic field (the third term is an inclined magnetic field effect, where
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the magnetic field inclination angle is α) and inclined gravity force (the forth term characterizes an
effect of the cavity inclination, where the cavity inclination angle is α).

Given the modelling problem, boundary conditions for Equations (5)–(8) are written as follows:

T = Th, u = v = 0 on the walls of BC and AB;
∂T
∂x = 0, u = v = 0 on the walls of DE and AJ;
T = Tc, u = v = 0 on the walls of GJ, FG, and EF;

−khn f
∂T
∂y = q′′ , u = v = 0 on the walls of CD.

The following equations are used to remove the dimension of considered control equations:

X =
x
L

, Y =
y
L

, U =
uL
α f

, V =
vL
α f

, AR =
H
L

, P =
pL2

ρhn fα
2
f

, θ =
T − Tc

Th − Tc
(9)

The dimensionless numbers of Ra, Rayleigh, Ha, Hartmann, and Pr, Prandtl numbers, are defined
as:

Ra =
gβ f (Th − Tc)L3

ν fα f
, Ha = B0L

√
σ f

µ f
, Pr =

ν f

α f
(10)

To solve the above equations, we need the thermophysical properties of the nanoliquids. Density,
specific heat, volumetric expansion coefficient, and electrical conductivity were calculated through the
relations presented in Table 2 [18–20,38,39].

Table 2. Thermophysical properties of the mono and hybrid nanoliquids.

Properties Mono Nanoliquid MWCNT-Fe3O4/Water

Density ρn f = (1−φ)ρ f + φρnp

(
ρCp

)
hn f

= (1−φ)
(
ρCp

)
f
+ φFe3O4

(
ρCp

)
Fe3O4

+

+φMWCNT
(
ρCp

)
MWCNT

φ = φFe3O4 + φMWCNT

Specific heat capacity

(
ρCp

)
n f

= (1−φ)
(
ρCp

)
f
+

+φ
(
ρCp

)
np

(
ρCp

)
hn f

= (1−φ)
(
ρCp

)
f
+ φFe3O4

(
ρCp

)
Fe3O4

+

+φMWCNT
(
ρCp

)
MWCNT

Thermal expansion
coefficient

(ρβ)n f = (1−φ)(ρβ) f + φ(ρβ)np
(ρβ)hn f = (1−φ)(ρβ) f + φFe3O4 (ρβ)Fe3O4

+

+φMWCNT(ρβ)MWCNT

Electrical
conductivity

σn f = σ f

(
1 + 3(σr−1)φ

(σr+2)−(σr−1)φ

)
,

σr =
σnp
σ f

σhn f = σ f

1 +
3
( σFe3O4

σ f
−1

)
φ( σFe3O4

σ f
+2

)
−

( σFe3O4
σ f
−1

)
φ


Taking into account that the value of electrical conductivity of carbon nanotube particles is

order of (O(10−7)) and it is not comparable with that of Fe3O4 nanoparticles where one can find
the following order (O(104)). Therefore, σnp is assumed to equal the electrical conductivity of ferric
oxide nanoparticles.

Effective viscosity and thermal conductivity of single nanofluid (Fe3O4/water) are as follows [41]:

µn f =
µ f

(1−φ)2.5 ,
kn f

k f
=

(
knp + 2k f

)
− 2φ

(
k f − knp

)(
knp + 2k f

)
+ φ

(
k f − knp

) (11)

Additionally, the effective viscosity and thermal conductivity of hybrid nanofluid
(MWCNT-Fe3O4/water) have been measured using experimental data shown in Table 3 [42].
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Table 3. Effective viscosity and thermal conductivity of MWCNT-Fe3O4/water nanoliquid.

Volume Fraction (%) T (◦C) k (W m−1·K−1) µ (mPa·s)

ϕ = 0.0 (host fluid) 20 0.602 0.79
40 0.631 0.54

ϕ = 0.1 20 0.6734 0.91
40 0.72 0.61

ϕ = 0.3 20 0.6856 1.01
40 0.7656 0.76

After removing the dimension of Equations (5)–(8), the final form of these equations are obtained
as follows:

∂U
∂X

+
∂V
∂Y

= 0 (12)

U ∂U
∂X + V ∂U

∂Y = − ∂P
∂X +

µn f
µ f

ρ f
ρn f

Pr
[
∂2U
∂X2 + ∂2U

∂Y2

]
+

σn f
σ f

ρ f
ρn f

Ha2Pr · sin(α)(V cos(α) −U sin(α))+

+
(ρβ)n f

(ρβ) f

ρ f
ρn f

Ra · Pr · θ sin(α)
(13)

U ∂V
∂X + V ∂V

∂Y = − ∂P
∂Y +

µn f
µ f

ρ f
ρn f

Pr
[
∂2V
∂X2 +

∂2V
∂Y2

]
+

σn f
σ f

ρ f
ρn f

Ha2Pr cos(α)(U sin(α) −V cos(α))+

+
(ρβ)n f

(ρβ) f

ρ f
ρn f

Ra · Pr · θ cos(α)
(14)

U
∂θ
∂X

+ V
∂θ
∂Y

=
αn f

α f

[
∂2θ

∂X2 +
∂2θ

∂Y2

]
(15)

The most important characteristic in energy transport is the Nusselt number. The local Nusselt
number is calculated at the hot walls of the chamber, i.e., the orders AB, BC, and CD, as follows:

Nuloc =
khn f

k f

∣∣∣∣∣∂θ∂Y

∣∣∣∣∣ for borders AB and CD (16)

Nuloc =
khn f

k f

∣∣∣∣∣ ∂θ∂X

∣∣∣∣∣ for border BC (17)

After obtaining the local Nusselt numbers, the average Nusselt number is calculated as follows:

Nu =
1
3


A∫

B

NulocdX +

B∫
S

NulocdY +

D∫
C

NulocdX

 (18)

5. Solution of the Governing Equations

The main structure of the control equations in the present research consists of three equations of
fluid conservation (conservation of mass), momentum in the horizontal and vertical directions, and
the energy conservation, which are presented in the partial differential form (PDF). To solve these
equations, we used computational methods and valid methods in computational fluid dynamics (CFD).
In this section, a set of partial differential equations (PDEs) and corresponding boundary conditions at
the walls are defined by the finite element method (FEM). FEM divides the domain of the solution
into regions of elements or simple forms. In addition, in each of the simple elements, an approximate
solution can be developed for a PDE. Then, a general solution is produced by interconnecting and
cladding of partial solutions to ensure the continuity of the boundaries. Therefore, the PDE is satisfied
in each section. The nanofluid proposed in the present study for filling the chamber is hybrid type.
Therefore, the performance of the parameters such as Hartmann and Rayleigh numbers, nanoparticles
concentration, and inclination angle of the chamber is investigated. The obtained data are compared
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with data obtained by previous researchers and the accuracy and feasibility of the proposed model
are evaluated. Also, an ANN-PSO model created in MATLAB software (2017, Math Works, Natick,
MA, USA) was used to predict the heat transfer intensity as a function of the parameters mentioned
and the impact of model characteristics on Nusselt number is examined and discussed. The thermal
and rheological properties of the nano-sized particles and host fluid are presented in Table 4. Due to
the high thermal conductivity transfer coefficient (k) of alumina (Al2O3), adding these nanoparticles
to the fluid will have an essential influence on the increase of the total conductivity parameter of the
nanofluids. The properties available from the research of Rahimpour and Moraveji [32] are shown in
Table 4.

Table 4. Physicochemical properties of H2O with Fe3O4 and Al2O3 nanoparticles.

σ (Ω−1·m−1) β (K−1) K (W m−1·K−1) C (J kg−1·K−1) ρ (kg·m−3) Media

0.05 2.10 × 10−4 0.613 4179 997.1 H2O
25,000 1.30 × 10−5 6 670 5200 Fe3O4
19,900 2.17 × 10−5 30 855 4100 Al2O3

6. Network Independence Analysis

The effect of meshing on the value of Nusselt numbers in different network sizes was investigated
to provide that the research data are not dependent on the size of the solution network and to select
the network that can ensure the validity of the results. Clearly, in a network with tighter meshing,
the issue can be analyzed more accurately, but it needs more processing power to solve the problem.

Therefore, the solution grid should be chosen in such a way as to establish the equilibrium between
these two important things, the accuracy of the results and the calculation burden. In order to find an
appropriate network in the solving process, the Nusselt number was examined in six different standard
network types. The results of examining the sizes of these networks are shown in Table 5. One can
find, the Nusselt number decreases with a decrease in the size of mesh networks and it eventually
remains constant. In general, the Nusselt number remains almost unchanged for the three types of
Fine, Finer, and Extra Fine mesh networks. Hence, the finer mesh grid was selected. This network has
1038 domain elements and 98 border elements with high quality (see Figure 3).

Table 5. The results of examining the independence of the network in terms of ϕ = 0.04, Ha = 40,
and α = 0.

Nu
Ra AR

Extra Fine Finer Fine Normal Coarse Coarser

0.87 0.87 0.87 0.87 0.88 0.88 102 0.2
0.092 0.092 0.092 0.093 0.093 0.094 104 0.2
0.243 0.243 0.244 0.245 0.246 0.248 106 0.2
2.53 2.53 2.53 2.54 2.54 2.55 102 0.05
2.65 2.65 2.66 2.67 2.68 2.60 104 0.05
4.73 4.75 4.76 4.77 4.79 4.81 106 0.05
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7. Validation of Results

To determine the accuracy and reliability of the results obtained in this study, some comparisons
were made with previous studies. The results confirmed the correctness of the solution method and,
as a result, validated the results of this research. For this purpose, the data were compared with
data for the heat transfer of fluid inside the closed chamber under the magnetic field. Table 6 and
Figure 4 demonstrate the data of the present investigation compared with those of Makulati et al. [28]
and Rahimpour and Moraveji [32] on the thermal transmission of pure liquid in a closed chamber.
The results are obtained in the Rayleigh number range of 102 to 106 and the constant parameters
(i.e., ϕ = 0.04, Ha = 0, AR = 0.4, and α = 0). The reported values are consistent with those of the
mentioned studies.

Table 6. Comparison of Nusselt numbers extracted from this study and previous studies.

Ra 102 104 105 106

Makulati et al. [28] 1.882 1.952 2.654 4.823
Rahimpour and Moraveji [32] 1.875 1.853 2.634 4.721

Present study 1.922 2.115 2.853 4.966
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8. ANN Error Analysis

The accuracy of the model in the forecasting process was calculated using the correlation coefficient
according to the below Equation (19), respectively. In these equations, Yactual is the observed value of
the function, Ypredicted is the estimated value, and Y is the mean of the actual values. The mean squared
error must be close to 0 for an optimal value and the R2 coefficient must be maximum and close to 1.

R2 = 1−

N∑
i=1

(
Yactual,i −Ypredicted,i

)2

N∑
i=1

(
Yactual,i −Y

)2
(19)

The results of comparing the output obtained from the ANN and the ANN-PSO show that the
optimization algorithm partially improved the results of ANN. The SME values of the ANN and
ANN-PSO models are 0.35 and 0.22, respectively. Figure 5 presents the linear regression between actual
outputs and ANN outputs optimized for training data sets. This figure displays the prediction of
network based on input data and compares it with the real data. The dispersion of the values predicted
for the Nusselt number shows a close relationship between the CFD results and the results obtained
in the ANN-PSO. Regarding the correlation coefficient R2 = 0.999, the error value is minimal. In this
method, the Nusselt number was predicted accurately using an optimized ANN, indicating its high
ability to provide reliable predictions.
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9. Results and Discussion

In this section, the results of the obtained governing equations are presented in the form of charts
and tables. Initially, the heat transfer within a chamber was modeled using COMSOL software and the
Nusselt number was obtained using output data.

The magnetic field has an essential influence on the motion field and temperature due to the
Lorentz force. The impact of the magnetic field on the energy transport intensity has been investigated
in the form of Hartmann number change in the range of 0 ≤Ha ≤ 80. For this purpose, other parameters
are considered constant (i.e., ϕ = 0.05, AR = 0.5, and α = 0). At the same time, the effect of gravity
force in the case of vertical cavity is significant taking into account the presence of heat sources and
heat sinks with constant high and low temperatures. This influence is described by the Rayleigh
number variation.
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As presented in Figure 6, the ANN-PSO data are in good agreement with the values obtained using
the CFD. For Rayleigh number values between 102 and 104, the variation of Nu with growing of Ha is
negligible and almost is constant. It can also be seen that for higher Rayleigh number values, Nu reduces
linearly with a rising of Ha and a large drop in Nu occurs, especially for Ha that is equal to 80, which
is due to Lorentz force overlying the flotation by increasing the magnetic field. Figure 7 shows the
dependency of Nu on the chamber inclination angle. For this purpose, other parameters are considered
constant (i.e., ϕ = 0.05, Ha = 0, and Ra = 106). According to the curves of Figure 7, Nu enhances with
a raise of the chamber tilted angle. However, for smaller aspect ratios (AR), the increment of Nu is
greater with rising of the inclination angle of the chamber. Here, the highest Nusselt number value
was also recorded at a chamber inclination angle of 90◦. Figure 8 presents the effect of changes of
nanoparticles concetration, flow behavior for various Rayleigh numbers, and ϕ changes in the range
of 0 ≤ ϕ ≤ 0.1. Comparison of the curves of this figure demonstrates that with the increasing of the
nano-sized particles concentration, the Nusselt number increases for low and high Rayleigh numbers
and the increase level in the lower Rayleigh numbers is higher, especially for Rayleigh number of 104.
According to the obtained results, it can be concluded that the increase in nanoparticles concentration
raises the conductivity of the hybrid nanoliquid and thus enhances the energy transport.
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In order to provide the quality of the results obtained by the hybrid nanoliquid, and also to
demonstrate the great effect of using hybrid nanoliquid compared to the mono nanofluid, two types
of nanofluids Fe3O4/H2O and Al2O3/H2O relative to hybrid nanofluid MWCNT-Fe3O4/H2O were
studied at constant operating conditions and the same geometry. In all three studies, the parameters
are considered constant (i.e., ϕ = 0.05, Ha = 0, AR = 0.5, and α = 0). According to Figure 9, the highest
Nusselt number is obtained for hybrid nanofluid at both low and high Rayleigh numbers. Especially,
Nusselt number was recorded 6.2 for Rayleigh number of 106, indicating the superiority of the hybrid
nanofluid to nanofluid.

Energies 2019, 12, x FOR PEER REVIEW 13 of 17 

 

 
Figure 8. The Nusselt number survey relative to the volume of nanoparticles at Ha = 40, AR = 0.5, and 
α = 0. 

 
Figure 9. The Nusselt number survey relative to the Rayleigh number for three different nanofluids 
at φ = 0.05, Ha = 0, AR = 0.5, and α = 0. 

10. Conclusions 

In this research, the thermogravitational convection was investigated in a C-shaped chamber 
with an angle of gravity α that was filled with a hybrid nanoliquid under the influence of magnetic 
field and thermal flux. Then, the impacts of Rayleigh number (102 ≤ Ra ≤ 106), Hartmann number (0 ≤ 
Ha ≤ 80), nanoparticles concentration (0 ≤ φ ≤ 0.1), chamber inclination angle (0 ≤ α ≤ π/2), and aspect 
ratio (0.05 ≤ AR ≤ 0.8) were investigated on Nusselt number. Afterward, using the ANN combined 
with the PSO technique, the Nusselt number was predicted and investigated against the parameters 
mentioned. Overall, the results of this study can be summarized as follows: 

– The results obtained from the analysis of the Nusselt number by the ANN-PSO are in good 
harmony with the Nusselt obtained in CFD, suggesting the prediction accuracy of the optimal 
ANN. 

– The mean squared error in the ANN and ANN-PSO models was 0.35 and 0.22, respectively, 
indicating the accuracy of the latter. 

– The impact of five variables on Nu was investigated that among the variables studied. Ra and 
AR had the greatest effect on Nu so that Nu was increased with a growth of Ra and AR. 
Additionally, the data showed that increasing the Hartmann number for high Ra reduced the 
Nusselt number, while the changes in the Hartmann number did not significantly affect Nu for 
Ra between 104 and 106. 

Figure 9. The Nusselt number survey relative to the Rayleigh number for three different nanofluids at
ϕ = 0.05, Ha = 0, AR = 0.5, and α = 0.

10. Conclusions

In this research, the thermogravitational convection was investigated in a C-shaped chamber with
an angle of gravity α that was filled with a hybrid nanoliquid under the influence of magnetic field and
thermal flux. Then, the impacts of Rayleigh number (102

≤ Ra ≤ 106), Hartmann number (0 ≤ Ha ≤ 80),
nanoparticles concentration (0 ≤ ϕ ≤ 0.1), chamber inclination angle (0 ≤ α ≤ π/2), and aspect ratio
(0.05 ≤ AR ≤ 0.8) were investigated on Nusselt number. Afterward, using the ANN combined with the
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PSO technique, the Nusselt number was predicted and investigated against the parameters mentioned.
Overall, the results of this study can be summarized as follows:

– The results obtained from the analysis of the Nusselt number by the ANN-PSO are in good harmony
with the Nusselt obtained in CFD, suggesting the prediction accuracy of the optimal ANN.

– The mean squared error in the ANN and ANN-PSO models was 0.35 and 0.22, respectively,
indicating the accuracy of the latter.

– The impact of five variables on Nu was investigated that among the variables studied. Ra and AR
had the greatest effect on Nu so that Nu was increased with a growth of Ra and AR. Additionally,
the data showed that increasing the Hartmann number for high Ra reduced the Nusselt number,
while the changes in the Hartmann number did not significantly affect Nu for Ra between 104

and 106.
– According to the results obtained, the use of a hybrid nanofluid instead of a mono nanofluid

increases the heat transfer coefficient so that the Nusselt number increases in both low and high
Rayleigh values.
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Abbreviations

The following abbreviations are used in this manuscript:

AR aspect ratio
b1 bias value for hidden layer
B0 magnetic field strength (T)
c1, c2 particle’s learning coefficients
Cp specific heat at constant pressure (J/kg·K)
D number of neurons
f threshold function
F(X) error function
g gravitational acceleration (m/s2)
H internal length of cavity (m)
Ha Hartmann number
k thermal conductivity (W/m·K)
L external length of cavity (m)
Nu Nusselt number
p dimensional fluid pressure (Pa)
P dimensionless pressure
P j

i particle position
Pr Prandtl number
q′′ heat flux at the bottom wall
R2 correlation coefficient
Ra Rayleigh number
T temperature (K)
u, v dimensional velocity components in the x, y

directions (m/s)
U, V dimensionless velocity components
V j

i particle velocity
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w network weighting parameters
Wi,best

j particle’s best position

x, y Cartesian coordinates (m)
X, Y dimensionless coordinates
Xi neurons in the input layer
Yactual real output
Ypredicted predicted output
Y mean of the actual values
Greek symbols
α inclination angle (deg)
αf thermal diffusivity (m2/s)
β thermal expansion coefficient (1/K)
ϕ nanoparticles volume fraction
σ effective electrical conductivity (1/X·m)
θ dimensionless temperature
νf kinematic viscosity (m2/s)
ρ density (kg/m3)
µ viscosity (mPa·s)
ω inertia weight
Subscripts
f base fluid
loc local
nf nanofluid
np nanoparticles
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