
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

III International Conference "Cognitive Robotics"

IOP Conf. Series: Materials Science and Engineering 516 (2019) 012057

IOP Publishing

doi:10.1088/1757-899X/516/1/012057

1

Methods for robot localization on a map

M V Shikhman, S V Shidlovskiy

National Research Tomsk State University, Tomsk, Russia
E-mail: Shikhmar@gmail.com

Abstract. In many cases, to solve applied problems, the robot needs to know its real location,

which is most often different from the data stored in the on-board system. For unmanned

robotic devices, as well as for ground-based robots, it is most efficient to use local navigation

algorithms, which consist in determining the coordinates of the device with respect to a certain

starting point. The paper discusses localization algorithms provided that the map of the area is

known in advance. Particular attention is paid to the Monte Carlo localization method because

of several advantages. The paper presents an example of modeling the algorithm operation.

1. Introduction
The world has entered the digital era when new technologies are rapidly developing and changing the

habitual way of life, new industries and professions are being formed, and new opportunities for

development are appearing. Among the variety of areas in the digital industry, robotics is of particular

interest. Robotic devices gradually penetrate into all spheres of human activity and have great
prospects for further development. Many problems need to be solved to provide the subsequent

evolution of such devices.

Mobile robots able to move independently in space are singled out the variety of robotic devices.
For successful navigation, the robot must have a map of the area or skills to build it directly in the

process of movement; pre-determine the route and be able to adjust it in the process of movement;

control movement parameters to change its position; obtain environmental information and process it
further; keep track of its location. In this paper, we consider methods for solving the latter problem,

provided that the terrain map is known in advance. Localization is one of the most common tasks of

robotic perception because knowing location of objects and the acting subject is the basis of any

successful physical interaction.

2. The basic principles of building robot localization algorithms

The development of algorithms for robot localization consists of several areas of research including a

mathematical and geometric description of navigation processes, computer technologies and technical
devices that are necessary for implementing these processes. Gyroscopes, encoders, accelerometers,

stereoscopic systems, laser range finders, and ultrasonic sonars can serve as technical devices for

obtaining primary information about the environment, which is necessary for the operation of
algorithms. Let us proceed to the description of the main algorithms used to localize the robot.

3. Iterative Closest Point

The most common algorithm for solving localization problems is the iterative closest point algorithm

(ICP), which, in addition to determining the position of the robot, allows working with algorithms for
finding the optimal route. The main idea of ICP is to combine images of the same object obtained

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tomsk State University Repository

https://core.ac.uk/display/287382516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

III International Conference "Cognitive Robotics"

IOP Conf. Series: Materials Science and Engineering 516 (2019) 012057

IOP Publishing

doi:10.1088/1757-899X/516/1/012057

2

from different angles but with common areas, the so-called overlapping areas. This is implemented by

means of iterative minimization of the average distance between two clouds of points. To do this, first,

an initial assessment of a rough conversion of one cloud to another is made followed by refinement

during the minimization process. As a result, the algorithm finds the best transformation of one cloud
to another for two given clouds of points Р1 and Р2 [1].

The task of minimizing the average distance between the clouds of points P1 and P2 may be

represented as follows:

 1 2

1

1
; min

N

i i

i

F d p p
N 

 

where
1 2

1...
;i i

i N
p p


 
  is a set of pairs of closest points;

 1 2;i id p p is Euclidean distance between the closest points.

To calculate the distance between the point р1 belonging to the cloud Р1 and the cloud Р2, you can

use the so-called ‘point-to-point distance’ metrics. When using them, the distance between points р1

and р2 is minimized.

Another metric is ‘point-to-plane distance’, which minimizes the sum of squares of distances from
1
ip to a plane 1S' that is perpendicular to the plane S1 at a point 2

ip for all pairs of closest points.

In general, the iterative closest point algorithm includes the following steps.

- search for the closest pairs of points
1 2

1...
;i i

i N
p p


 
  ;

- search for shift and rotation parameters, which reduce the F error by minimizing the distance

or by the method of least squares;

- application of the found parameters for the point cloud P1;

- steps 1-3 are repeated until the F error becomes less than a certain threshold value.

4. The method of planes detected in point clouds

Presentation of the initial information received from the sensors in the form of point clouds is not
always appropriate because it is associated with high costs of computing resources. To solve this

problem, representation of points in the form of elementary geometric elements (vertices, lines and

planes) is often used. In this case, objects are characterized by much smaller dimension and noise
level; and finding various relations between them becomes simpler. Thus, the first step in using this

method is detection of linear objects and their parameters, which can be done using the segmentation

method by combining points with close normals.

Then it is necessary to find a match in the database for each detected object. The pair plane is found
based on the rotation and movement of the sensors defining the plane. To do this, we consider the

global and local coordinate system. The local coordinate system is connected directly to the sensor and

has a clear description. We also know the approximate position of this system relative to the global
one, which is described by the linear displacement vector and the rotation matrix allowing us to

directly determine the global plane equation. However, this step may find several paired planes or not

find them at all; therefore, the next step is necessary.
To determine the parameters of the robot motion, you need to use at least three pairs of planes. For

n pairs of planes, you can write a nonlinear system consisting of n equations, each of which includes

values of the rotation angles relative to each plane of the three-dimensional surface and the vector of

the linear displacement. These parameters can be found by optimization methods. As a result, they
must satisfy all pairs of planes with a certain given accuracy, which allows discarding erroneously

proposed planes [2].

III International Conference "Cognitive Robotics"

IOP Conf. Series: Materials Science and Engineering 516 (2019) 012057

IOP Publishing

doi:10.1088/1757-899X/516/1/012057

3

5. Algorithms based on space splitting using an octree type structure

The main idea of these algorithms is to represent the entire surrounding space as a cube and then

divide it into 8 parts (8 small cubes). Such division continues until reaching certain conditions, usually

including the volume of the cube and the number of elements contained in it. Information about the
environment is compared with the initial (stored in the database) through hierarchical access. The

robot processes only visible nodes and the nodes included in them, sequentially from top to bottom.

When the environment is divided into a certain number of cubes, the robot only works with the visible
part of the space, that is, it checks the child nodes only when the main node is visible to the camera

[3].

6. Kalman filter-based localization algorithms

To solve the robot localization problems, the Kalman filter is often used, which applies information
about the laws of the robot's motion at the forecast stage and information from the robot sensors at the

correction stage. The state of the system is the navigation parameters of the robot position (usually, its

coordinates and shift parameters). Predicting the evolution of the state is based on odometric data and
measurements allowing you to calculate the robot position in accordance with the map. The Kalman

filter allows you to evaluate the state of the system based on a noisy prediction of its evolution and

noisy measurements of this state [4].
The Kalman filter algorithm consists of the following steps:

- prediction of the current state based on estimates at the previous time step and taking into

account the control parameters for the current step;

- prediction of observation upon displacement based on the observation model and the
assessment of the state;

- shift of the robot in space;

- correction of the predicted state taking into account the error between the predicted and
implemented observation;

- space shift calculation;

- extraction of reference points from the surrounding space, observation of the state

7. Approximate robot localization algorithm
When describing the method of planes and detected points in clouds, we have already discussed the

reasonability of representing a cloud of points in the form of elementary geometric cells. This

principle is applicable to approximate algorithms for the robot localization. In this case, we may
present a map of terrain in the form of a certain geometric figure, most often a polygon.

At some initial time, the robot is at some point A, and there is some area of visibility S at its

disposal. To determine its current location, the robot needs to compare the area of visibility S with all
areas of the original map stored in the database. However, there may be several similar areas on the

map (Figure 1). Thus, hypothetically, the robot can be at any of the points Аn.

Figure 1. Variability of the robot position on the current map.

To determine exactly where the mobile robot is, it is most logical to use a probabilistic approach,

which includes some kind of uncertainty of location. Thus, the probability of finding a robot at one or

another point P(An) is considered. During the process, the algorithm uses the methods of triangulation

and construction of overlays [5].

III International Conference "Cognitive Robotics"

IOP Conf. Series: Materials Science and Engineering 516 (2019) 012057

IOP Publishing

doi:10.1088/1757-899X/516/1/012057

4

8. Monte Carlo localization

In this case, to solve localization problems, the robot position is determined by the density of the

distribution of probability of locating in a particular place approximated by a large set of particles. The

particle is a hypothesis about the possible state of the robot at some point in time. The larger set of
particles we have, the faster the program will find the right solution, that is the real position of the

robot on the map.

The initial assumption of the algorithm is that there is usually a uniform random distribution of
particles in the configuration space, that is, the robot does not have information about where it is

located, and it is assumed that it can equally be at any point in space.

The algorithm includes two stages: prediction and correction. During the first stage, the robot

motion from the previous time point to the current one and its angle of rotation are tracked. As a
result, we obtain a preliminary set of approximating particles using a motion model. Here, the update

of information about the location of each particle occurs. During the motion update, the robot predicts

its new position based on the location of this trigger command, applying the simulated motion to each
of the particles.

At the second stage, the search for paired planes is performed for each particle and there may exist

several of them. To solve this uncertainty, a concept of ‘particle weight’ is introduced. The particle
weight depends on how accurately the sensor readings coincide with the actual data and is calculated

based on the sensors used. The final stage of correction is the formation of an approximating set of

particles, in which a large particle belongs to the region with maximum weights [6].

8.1 Advantages of Monte Carlo localization
We should note that this method has several advantages. The particle filter, which is central to the

Monte Carlo algorithm, can work with different probability distributions because it has a non-

parametric representation. The time complexity of the particle filter is linear with respect to the
number of particles, so you can find the optimal ratio of speed and accuracy. The implementation

adapts to the available computing resources: the faster is the processor, the more particles can be

generated and, therefore, we get a more accurate algorithm.

9. Implementation of the Monte Carlo localization
Based on the advantages of the Monte Carlo localization, the simulation was carried out specifically

for this method. For this, we chose the following software: ROS (Robot Operating System), Gazebo

software package, Rviz tool included in ROS, and MATLAB software package. In Gazebo, we used a
TurtleBot robot simulator for simulation of the surrounding space. TurtleBot in Gazebo is a model of a

real robotic device, which uses a Kinect sensor as a vision.

Then, using the Rviz tool, we created a map resulting from motion of the robot and receiving
information from its sensor (Figure 2). Using the Matlab software package, the resulting map was

transformed into a two-dimensional binary grid (Figure 3). Each cell in the grid has a value that

represents true (1) or false (0) status of this cell.

Figure 2. Result of building a map. Figure 3. 2D binary grid.

III International Conference "Cognitive Robotics"

IOP Conf. Series: Materials Science and Engineering 516 (2019) 012057

IOP Publishing

doi:10.1088/1757-899X/516/1/012057

5

The simulation of the Monte Carlo algorithm itself was carried out in the MatLab software

environment. When applying this algorithm, there are two cases. First, when the approximate position

of the robot is known and we just need to clarify it; and second, when the initial position of the robot is

unknown. In this paper, we consider the second case because of its higher complexity. At the
beginning, the algorithm assumes that the robot has an equal probability of being anywhere and

generates uniformly distributed particles inside this space (Figure 4). The update occurs according to

the algorithm and the current position of the robot is specified (Figure 5). As a result of the algorithm
operation, the robot is localized (Figure 6).

Figure 4. Start of the algorithm (third update).

Figure 5. Algorithm operation (12
th
 update).

Figure 6. The end of the algorithm (28
th
 update).

10. Conclusion
Monte Carlo localization allows specifying the current position of the robot when it moves and

producing global localization in conditions of the absence of information about the robot location.

III International Conference "Cognitive Robotics"

IOP Conf. Series: Materials Science and Engineering 516 (2019) 012057

IOP Publishing

doi:10.1088/1757-899X/516/1/012057

6

This algorithm has shown its effectiveness in solving the given problem, that is the robot localization

provided that the terrain map is known in advance.

Acknowledgments

The research was carried out in Tomsk State University with the financial support of the Ministry of
Education and Science of the Russian Federation, a unique project identifier: RFMEFI57817X0241.

The authors are grateful to Tatiana B. Rumyantseva from Tomsk State University for English

language editing.

References

[1] Borisov A. G., Gol S. A., Luksha S. S. 2013 Vestnik RGRTU 46 (4-3) 35–42

[2] Kazmin V. N., Noskov V. P. 2015 Proceedings of the Southern Federal University. Technical

science 8 71–83
[3] Poslavskiy S. 2018 Innovatika 2018 118–120

[4] Gafurov O., Syryamkin V., Gafurov A. et al. 2012 Telecommunications and Radio Engineering

71(17) 1565–1574 doi: 10.1615/TelecomRadEng.v71.i17.40
[5] Udovenko S., Sorokin A. 2014 Information processing systems 10 248–254

[6] Dao Zuy Nam, Ivanovskiy S 2014 Scientific Bulletin of NSTU 55(2) 109–121

[7] Sebastian Thrun et al. 2011 Artificial Intelligence 128 99–141
[8] Kuznetsov D., Syryamkin V. 2015 AIP Conference Proceedings 1688 (040004) doi:

10.1063/1.4936037

