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Abstract

We investigated the contributions of commensal bacteria to brain structural maturation by

magnetic resonance imaging and behavioral tests in four and 12 weeks old C57BL/6J spe-

cific pathogen free (SPF) and germ free (GF) mice. SPF mice had increased volumes and

fractional anisotropy in major gray and white matter areas and higher levels of myelination in

total brain, major white and grey matter structures at either four or 12 weeks of age, demon-

strating better brain maturation and organization. In open field test, SPF mice had better

mobility and were less anxious than GF at four weeks. In Morris water maze, SPF mice dem-

onstrated better spatial and learning memory than GF mice at 12 weeks. In fear condition-

ing, SPF mice had better contextual memory than GF mice at 12 weeks. In three chamber

social test, SPF mice demonstrated better social novelty than GF mice at 12 weeks. Our

data demonstrate numerous significant differences in morphological brain organization and

behaviors between SPF and GF mice. This suggests that commensal bacteria are neces-

sary for normal morphological development and maturation in the grey and white matter of

the brain regions with implications for behavioral outcomes such as locomotion and cogni-

tive functions.

Introduction

Microbial communities in the infant intestine, or the intestinal microbiota, are increasingly

considered as a modifiable factor to influence the development of brain and host behavior [1–

4]. Microbiota is acquired around birth and develops to a relative stable community contem-

poraneously with nervous system development during the first 2–3 years and may have direct

and profound impacts on cognition and behavior later in life [5]. Gut microbiota has been

shown to be involved in the early programming of brain circuits that mediate stress response,
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motor activity, anxiety-like behavior and cognitive functions in early childhood as well as the

potential pathogenesis of neurodevelopmental disorders, such as autism, attention-deficit/

hyperactivity disorder, and schizophrenia [6–11].

During the first two years of postnatal life, profound changes occur in the nervous system: a

massive outgrowth of dendrites and axons, synaptogenesis, expansion of glia cells and myeli-

nation [12, 13]. Quantitative magnetic resonance imaging (MRI)-based volumetric studies

have consistently shown that brain morphology changes dynamically from birth to adoles-

cence into adulthood [14, 15]. Studies have demonstrated a general positive correlation

between grey matter volume and IQ performance in normal children and adolescents from

five to 17 years old [16] as well as in adults[17]. Furthermore, age-related expansion and myeli-

nation of the white matter are prominent indictors of brain maturation and cognitive function

later in life [18].

The benefits of the commensal microbiota on host physiology and on brain function and

development are being explored using germ free (GF) mice [19], demonstrating the impor-

tance of microbiota in regulating multiple brain developmental processes including synapto-

genesis and related second messenger pathways [6, 20], myelination [21], the hippocampal

serotonergic system [7], blood-brain barrier permeability[22] as well as the hypothalamic–

pituitary–adrenal axis response to stress [9], and exploratory and anxiety-like behaviors [23].

Studies using stereological volumetric estimation have revealed regional volumetric changes

such as enlarged amygdala and hippocampus, attributed to the reduction in dendritic branch-

ing in adult germ free mice [24]. However, associations between brain structure and micro-

biota profiles have not been described in mice using MRI neuroimaging techniques.

Application of non-invasive and high throughput MRI methods would be of great benefit to

study developmental effects of microbiota on brain structure, as changes are often subtle, dis-

tributed across the brain and evolve with time. Furthermore, the effect of microbiota on the

brain is likely to involve multiple regions and cellular targets, but most of the current studies

are focused on one or two specific regions and behaviors. In this study we specifically

employed unbiased quantitative neuroimaging methods across the whole brain in order to

assess microstructural and volumetric differences between mice with commensal bacteria also

known as specific pathogen free (SPF) and GF mice at four weeks of age (considered as juve-

nile) and 12 weeks of age (considered as adult).

In light of intriguing reports of myelination disturbances in the prefrontal cortex of GF

mice [21] we placed a special emphasis on assessing myelination and white matter develop-

ment at juvenile and adult age. Myelination ensures efficient transfer of information between

neural regions postnatally and is considered a crucial indicator of brain maturation [18]. A

novel in vivo quantitative MRI method, macromolecular proton fraction (MPF) mapping, was

employed to reconstruct parametric maps of a relative amount of macromolecular protons

causing the magnetization transfer effect which provides a biomarker of myelination in neural

tissues [25, 26]. The method has been validated with histological markers of myelin in the nor-

mal rat brain [27] and in a murine model of demyelination [28]. The method has high resolu-

tion, is fast and independent of directional organization of the tissue which uniquely provides

opportunity to assess myelination in gray matter structures [28, 29] and provides complimen-

tary information to diffusion tensor imaging in white matter that is also used in this study.

Understanding of how early life modifications in gut microbiota contribute to vulnerability

to behavioral and cognitive disorders is of paramount importance in clinical and behavioral

neuroscience. The aim of this study was to investigate the contributions of intestinal bacteria

to behavior and related brain structures and function using the C57BL/6J strain of SPF and GF

mice. Since both gender and age related dependent microbiota influences on the brain are

expected [30, 31], systematic characterization of morphological and myelination changes
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across the whole brain between males and females in juvenile and adult mice (four and 12

weeks of age) was performed. Our data demonstrate that commensal bacteria are necessary for

normal morphological development and maturation in the grey and white matter of the brain

regions with implications for behavioral outcomes such as locomotion and cognitive

functions.

Materials and methods

Animals and general plan of the experiments

The study received approval by the Institutional Animal Care and Use Committees of North-

Shore University HealthSystem (NorthShore) under the protocol EH16-264 and the University

of Chicago under the protocol No. 71703, and all studies were conducted strictly in accordance

with the United States Public Health Service’s Policy on Humane Care and Use of Laboratory

Animals and approved Animal Care and Use at The University of Chicago. Germ free (GF)

C57BL/6J mice, originally obtained from the Jackson Laboratory (Bar Harbor, Maine), were

bred and maintained in the gnotobiotic facility of the Digestive Disease Research Core Center

at the University of Chicago. The GF colony was routinely tested for microbes and parasites by

the facility’s staff to ensure germ-free conditions. Specific pathogen free (SPF) C57BL/6J mice

were obtained from the Jackson Laboratory. Mice were tested at two time points in develop-

ment: four weeks (15 males and 15 females SPF, nine males and six females GF) and 12 weeks

(13 males and 13 females SPF, seven males and seven females GF). Separate cohorts were used

for each time point. There was no difference in body weight between the SPF and GF mice of

the same gender (Table 1). Animals were transported to NorthShore in sterile containers 3–5

days before testing to allow an acclimation period. Upon arrival at NorthShore mice were

housed in individually ventilated cages with HEPA filter until the behavioral testing began.

Morris water maze was performed on days 1–5. On days 1–5, we began with Morris water

maze at 10 am in the morning. Animals were allowed to recover for two hours before open

field, elevated plus maze or social interaction test was performed in the afternoon on Day 1, 2,

and 3, respectively. Fear conditioning was performed on days 7 and 8. After the behavioral

testing, mice underwent volumetric and macromolecule proton fraction in vivo magnetic reso-

nance imaging (MRI) on days 9 and 10. Immediately after in vivo MRI, mice were deeply anes-

thetized with sodium pentobarbital (100mg/kg) and transcardially perfused with 30 mL of

phosphate-buffered saline (PBS) (pH 7.4) at room temperature (25˚C). This was followed by

infusion with 30 mL of 4% paraformaldehyde (PFA) in PBS with 2 mM ProHance (Bracco

Diagnostics Inc., Princeton, NJ). Following perfusion, the heads were removed along with the

skin, lower jaw, ears and the cartilaginous nose tip. The remaining skull structures containing

the brain were allowed to postfix in 4% PFA at 4˚C overnight. The samples were transferred

and stored in a PBS and 2 mM ProHance solution and 0.01% sodium azide until they under-

went ex vivo high resolution volumetric and diffusion weighted MRI. After imaging the brains

were processed for immunohistochemistry.

Table 1. Body weights of experimental mice.

Age (week) SPF (Body weight (g)) GF (Body weight (g))

Male Female Male Female

4 15.21±0.50 14.61±0.27 17.20±0.71 13.46±0.47�

12 26.46±0.44 20.47±0.35� 26.05±0.65 21.16±0.30�

�Significantly smaller compared to respective male mice (p<0.001).

https://doi.org/10.1371/journal.pone.0201829.t001
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Magnetic resonance imaging (MRI)

In vivo macromolecule proton fraction (MPF) imaging. Imaging was performed on a

14.1 T Bruker Avance imaging spectrometer (Bruker, Billerica, MA) using a 20-mm resonator.

Mice were sedated with isoflurane (Abbot, IL) inhalation, diluted in air to 5% for induction

and 1.5% for maintenance. Animal respiration rate and rectal temperature were monitored

with a small animal physiological monitor (SAII’s Small Animal Instruments, NY). Body tem-

perature was maintained at 35o C by maintaining in bore ambient temperature at 32 o C using

the spectrometer gradient temperature controller. 3D MPF maps (Fig 1A) were obtained from

three source images (Magnetization transfer (MT)-, Proton density (PD)-, and T1-weighted)

using the single-point method with the synthetic reference image [32]. PD- and T1-weighted

GRE images were acquired with TR/TE = 16/2.6 ms and α = 3˚ and 16˚, respectively. MT-

weighted images were acquired with TR/TE = 25/2.6 ms and α = 9˚. Off-resonance saturation

pulse was applied at the offset frequency 6 kHz with the effective saturation flip angle 500˚. All

images were acquired in the axial plane with whole-brain coverage and resolution 0.125x

0.125x0.25 mm3. All images were obtained with four signal averages and the total scan time of

33 min. In all 3D imaging experiments, linear phase-encoding order with 100 dummy scans,
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Fig 1. MRI methods. (A). Macromolecular proton fraction map of four weeks old mouse. Color bar indicates pseudo-color

mapping of MPF in percent units. (B). High resolution T1-weighed volumes of ex-vivo mouse brain images with skulls in situ. A

group of four brains were imaged at the same time. (C). Automatic structural parcellation of a mouse brain obtained from MT

image using multi-atlas label fusion method.

https://doi.org/10.1371/journal.pone.0201829.g001
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slab-selective excitation, and fractional (75%) k-space acquisition in the slab selection direction

were used. To correct for field heterogeneities, 3D B0 and B1 maps were acquired using the

dual-TE (TR/TE1/TE2 = 20/2.9/5.8 ms, α = 8˚) and actual flip-angle imaging (AFI) (TR1/TR2/

TE = 13/65/4 ms, α = 60˚ methods, respectively [33]. All reconstruction procedures were per-

formed using custom-written C-language software.

Ex vivo MRI. Ex vivo MR imaging occurred from seven to 21-day post-fixation. Skulls

were immersed in non-aqueous media (fomblin Y, Sigma Aldrich, MO). Imaging was per-

formed on a 14.1 T Bruker Avance imaging spectrometer (Bruker, Billerica, MA) using a

30-mm resonator. Four brains were imaged at the same time (Fig 1B). High resolution

T1-weighted image for Tensor based morphometry was obtained with parameters TR/TE/

NEX 17/4.8/8, with 60 μm isotropic resolution. Imaging time was four hours and ten minutes.

Diffusion tensor imaging (DTI) experiments consisted of 30 non-collinear directions diffu-

sion weighted spin echo images with b = 0 and 1.0 ms/μm2, δ/Δ = 3/7 ms. Imaging parameters

were TR/TE/NEX 7500/15.1/1, 40 axial slices 0.25 mm thick with no gap covering whole cere-

brum. In-plane resolution was 125x125 μm and brain volumes were interpolated to isotropic

125 μm3. Imaging time was 11 hours 22 minutes. Diffusion tensor maps were calculated using

multivariate linear fitting of signal attenuation from the acquired diffusion weighted images

[34]. Fractional anisotropy (FA) maps were calculated [35] using in-house software written on

Matlab (MathWorks, Natick, MA).

MRI data processing. Magnetization transfer images of mouse brains, obtained as a com-

ponent of the in vivo MPF experiment and possessing excellent white/gray matter contrast,

were used for automatic structural parcellation using the multi-atlas label fusion method, as

detailed in [36]. Briefly, individual mouse head images were processed for brain extraction,

intensity non-uniformity correction, affine registration to atlas images and label fusion. The

publicly available MRMNeAt atlas database was used, containing 10 individually labeled

C57BL/6J in vivo mouse brains. 21 white and gray matter structures from the atlas were labeled

(Fig 1C) with the addition of prefrontal cortex ROI which was defined as cortex 2 mm from

the beginning of cerebrum. Volumes of individual anatomical areas and values of MPF were

compared between SPF and GF groups.

Tensor based morphometry analysis was performed on ex vivo high resolution T1-weighted

images using FSL (http://www.fmrib.ox.ac.uk/fsl/) routines. Study specific templates were cre-

ated for each studied age by iterative registration of skull-stripped (as above for in-vivo imag-

ing) randomly selected five GF and five SPF brains. For each age, brains were affine-registered

and a randomly selected brain of the corresponding age group concatenated and averaged.

This averaged image was then flipped along the x-axis and the two mirror images re-averaged

to obtain a first-pass, study-specific "affine" template. Second, the brains were re-registered to

this "affine" template using non-linear registration, averaged, and flipped along the x-axis.

Both mirror images were then averaged to create the final symmetric, study-specific "non-lin-

ear" template. All brains (five males and five females of SPF and GF mice for four and 12 week

groups) were non-linearly registered to the study/age-specific template. For each voxel, the

natural logarithm of the Jacobian determinant (JD) of the warp field was calculated and vol-

umes were smoothed with Gaussian kernels, sigma = 0.1 mm. JD is a measure of the deforma-

tion of each voxel with respect to the atlas image. It can be thought of as the amount by which

the volume of that voxel had to be multiplied to reach the consensus average. JD> 1 signifies

expansion and<1 denotes shrinkage of that voxel volume with respect to the volume of the

same voxel in the atlas image. Permutation-based non-parametric inference between SPF and

GF groups was performed on JD using randomize FSL routine and threshold-free cluster

enhancement options to control family-wise error rate.
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For the analysis of ex vivo DTI data, a cross-subject voxel-wise Tract Based Spatial Statistics

analysis (TBSS) [37, 38], was utilized as implemented in the FSL software (http://www.fmrib.

ox.ac.uk/fsl/). All individual FA volumes were registered to a template, the mean FA-map was

calculated and thinned to represent the mean FA skeleton. For each subject, voxel data were

projected from FA maps to the nearest voxels on the mean FA skeleton. The skeleton voxel val-

ues were assigned to the maximum of the projected voxels. The values of voxels on the com-

mon skeleton were analyzed with voxel-wise cross-subject statistical analysis utilizing a general

linear model [37, 38]. In the case of two groups, as in this study, testing the contrast between

the group predictors is equivalent to an unpaired t-test of the mean difference between the

groups. As a result of the procedure, statistical parametric maps were created containing p-val-

ues for the voxel-wise two-sample unpaired t-tests. The results were corrected for multiple

comparisons by controlling the family-wise error rate. Threshold-Free Cluster Enhancement

and 3000 permutations were used for nonparametric permutation inference FSL routine.

Myelin staining

Myelin contents estimation was performed on one of the 20-micron thick series using Luxol

Fast Blue (LFB) stain (Sigma-Aldrich, St Louis, MO). Brains were extracted from skulls, cryo-

protected in 30% sucrose and frozen on dry ice. Serial 20 micron thick sections were cut 400

microns apart on a cryostat and mounted onto poly-L-lysine-coated slides (Sigma-Aldrich).

All slides, consisting of five brains per group (males and females, SPF and GF, 40 slides total)

were processed as one batch with identical settings. Sections were incubated in 0.1% LFB solu-

tion for two hours at 60˚C, differentiated by dipping in 0.05% lithium carbonate solution for

20 seconds, with continuing differentiation by repeatedly dipping in 70% alcohol until gray-

matter contrast developed. The sections were rinsed, dehydrated in alcohols, cleared in xylene

and mounted. Each whole-brain LFB stained series was photographed using a digital camera

with eight megapixel resolution using identical imaging parameters. Images were analyzed

with ImageJ software (National Institutes of Health, Bethesda, MD). Intensities of gray scaled

images were measured in several gray and white matter regions of standard size and standard

location: 1.7 bregma–for frontal cortex, 0 bregma—for anterior commissure, striatum, -1.28

bregma for fimbria, corpus callosum, internal capsule, hippocampus, thalamus and parietal

cortex. Finally, intensities were inverted and normalized to an averaged intensity of all sections

in a brain.

Behavioral studies

Testing took place in a dedicated quiet room. Mice were allowed at least three days to accli-

mate after shipment. Test chambers were cleaned with 70% ethanol and aired for 3 min after

each animal. Animal movements were registered and processed with ANY-maze software

(Stoelting Co., Wood Dale, IL).

Open field test. Animals were placed individually in the center of an open clear field

box (61 × 61 cm), and their spontaneous motor activity was recorded. The computer program

automatically recorded the following parameters: mobile time, mean speed, traveled distance

and time spent traveled in the center (40 x 40 cm) and peripheral zones.

Elevated plus maze test. The elevated plus maze, made of white acrylic plastic, consisted

of four arms (each 28 × 5 cm) and a central area (5 × 5 cm) elevated 50 cm above the floor.

Two arms were open and two were closed with 15-cm-high walls made of the same material.

Mice were individually placed in the center facing an open arm and allowed to explore for 5

min. The following behaviors were scored: time spent in the closed and open arms.
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Morris water maze test. Mice were placed in a circular 120 cm diameter tank with room

temperature (22˚C) water, which had been made opaque with the addition of non-toxic, white

tempera paint. High contrast black and white images were placed on the walls of the testing

room around the tank to serve as visual cues.

At the first stage of the test, the mice were trained to locate a visible 10 cm diameter plat-

form exposed 1 cm above the water. If they did not find the platform within the 60-second

trial limit, they were guided to it and allowed to stay for 20 seconds. The mice were wiped with

towels after removal from the pool and placed under a heating lamp to dry. Five trials were

performed and the platform location was changed for each trial.

At the second stage, mice were tested to find the hidden platform that was submerged 1 cm

below the surface in the southeast quadrant. Mice were tested once a day for four consecutive

days in the afternoon, five trials at a training session, at least 10 mins between the trials. Start-

ing quadrants varied between the trials in the same order for all mice. The latency required to

locate the platform and their path lengths was recorded.

The probe trial was performed on the 5th day, where mice swam for 60 seconds with no

platform in the tank. Time spent in the quadrant where the submerged platform had been in

previous stages was recorded.

Contextual and cued fear conditioning test. The contextual and cued fear conditioning

tests the ability of mice to learn and remember an association between environmental cues

and aversive experiences. In this test, mice were placed into a conditioning chamber and were

given parings of a conditioned stimulus (CS) (an auditory cue) and an aversive unconditioned

stimulus (US) (an electric foot shock). The conditioning chamber consisted of opaque acrylic

plastic 30x30x21 cm with a clear lid and a shocking grid on the floor made of 2 mm diameter

metal rods, 6 mm between runs. During the conditioning stage on day 1, mice were allowed to

freely explore the chamber for 120 seconds. Thereafter, a white 55 dB noise auditory cue was

presented as a CS for 30 seconds, and a 0.8 mA foot shock was given to the mice as an US con-

tinuously during the last 2 seconds of the sound. The presentation of CS-US was repeated

three times per session (120, 240, and 360 seconds after the beginning of the conditioning).

Following the final foot shock, the mice were left undisturbed in the chambers for 90 seconds.

After the conditioning session had been completed, the mice were returned to the same

conditioning chamber 24 h later and scored for freezing behavior to measure contextually con-

ditioned fear (context test). The mice were placed in the conditioning chamber and were

allowed to freely explore the chamber for 300 seconds without CS and US presentations. Cued

test was conducted on the same day two hours after the context test. In this test, the shocking

grid was removed and the walls of the chamber were covered with checkerboard pattern wall-

paper, providing a novel context that was unrelated to the conditioning chamber. Mice were

placed into the testing chamber for 3 min. At the end of the first 3 min, the CS auditory cue

that had been presented at the time of conditioning was given to mice for 3 min. The fear con-

ditioning chamber was wiped with 70% alcohol after each test. Fear memory was assessed

based on freezing behavior to the conditioned cued or the contexts to which mice were previ-

ously exposed. The outcome variables were freezing time in the context test and during the

first and last 30 seconds of the cued test.

Social interaction test. Two social behaviors (social interaction and social memory/nov-

elty recognition) were quantified using a rectangular 3-chamber test that included a 20x45x30

cm middle chamber made of acrylic plastic, with 2 10x10 cm openings leading to two separate

(left and right) chambers of the same size, each containing a steel cage enclosure. Each mouse

(experimental subject) was placed in the middle chamber and allowed to explore and interact

for 10 minutes, with the right chamber empty but an unfamiliar congener (Stranger I) (non-

littermate control SPF mouse of the same gender, housed in a separate container) held in the
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steel cage enclosure in the left chamber. Social interaction was determined by measuring the

time spent by the experimental subject in the chamber holding the unfamiliar congener versus

the right chamber containing empty enclosure. To measure social memory (or novelty recog-

nition), a new novel stimulus mouse (Stranger II) was subsequently placed in the previously

empty right chamber. The tested mouse was allowed to explore and interact for 10 min. The

stages of the test followed each other without delay. The same parameters as above were mea-

sured to determine the preference of the experimental subject for Stranger I or Stranger II. The

social chamber was wiped with 70% alcohol after each test.

Stereological estimation of neuron and oligodendrocyte populations

After MRI, brains were extracted from skulls, cryoprotected in 30% sucrose and frozen on dry

ice. Serial 20 micron thick sections were cut 400 microns apart on a cryostat and mounted

onto poly-L-lysine-coated slides (Sigma-Aldrich, St Louis, MO). Adjacent series were used to

stain for neuronal and oligodendrocyte markers and myelin contents.

The sections used for immunostaining were blocked with 3% goat serum followed by incu-

bation with the primary antibodies overnight at 4˚C. This was followed by incubation with

biotinylated secondary antibodies for 1 h at 21˚C and avidin–biotin complex (Vectastain Elite

ABC Kit, Vector Laboratories, Burlingame, CA) for 1 h. Color was developed using 3, 30-dia-

minobenzidine (Sigma-Aldrich). Primary antibodies used were rabbit anti-NeuN (ab177487,

Abcam, 1:400) and mouse anti-Olig2 (MABN50, Millipore, 1:400). Secondary antibodies were

goat anti-rabbit BA-1000 (1:200) and BA-9200 goat anti-mouse (1:200), both from Vector Lab-

oratories. Labeled sections were visualized under a microscope (Leica Microsystems, Wetzler)

attached to a motorized stage. An optical fractionator probe in StereoInvestigator software

(MBF Bioscience, Williston, VT) was used to obtain an unbiased estimate of the total number

of cells or cell density. Since exact boundaries of motor cortex are difficult to outline precisely,

in order to estimate total neuron number in the region neuronal density in the motor cortex

was estimated in 4 consecutive sections labeled with anti-NeuN from each brain sample start-

ing 2 mm from the front of cerebrum. Boundaries of the motor cortex were outlined with a 5x

objective and the cell counting was performed with a 40x objective. The counting frame size

was 100 μm x 100 μm and the grid size was 600 μm x 600μm. Following the completion of

counting for each section from a brain sample, cell density was computed using the estimated

population and the volume of each counted area, provided by the software, and averaged for

four sections.

To estimate the total number of neurons in the hippocampus, NeuN–positive cell counting

was performed on all serial sections where the hippocampus was present, typically 4–5 per

brain. The boundaries of the hippocampus sub-division were carefully defined using a mouse

brain atlas [39] and by the clear morphological indication of conspicuous smaller and more

densely organized CA1 pyramidal neurons, as compared to the relatively larger and less

packed neurons characterizing the CA2-CA3 subdivisions [40]. Boundaries of the CA1, CA2/3

and dentate gyrus regions cortex were outlined with a 5x objective and the cell counting was

performed with a 40x objective. The counting frame size was 50 μm x 50 μm and the grid size

was 250 μm x 250μm. Estimated cell population number was computed using the stereological

formula.

Oligodendrocyte density was estimated on a single slice in StereoInvestigator by placing a

counting grid with the same parameters as above for NeuN at 0 bregma for striatum and cortex

regions, -0.94 bregma for fimbria, and -1.28 bregma for corpus callosum and internal capsule

regions. Oligodendrocyte density was obtained by dividing estimated population number by

measured volume, provided by StereoInvestigator.
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Statistical analysis

Data are presented as means ± standard error of means. Comparison across treatment and gen-

der groups for each age was made with two-way ANOVA. Post-hoc group comparison was per-

formed by Tukey-Kramer method. A False Discovery Rate (FDR)-adjusted p-value (or q value)

was also calculated using the Benjamini–Hochberg procedure to correct for multiple compari-

sons in MRI volumetric and MPF data. Latency time to platform in Morris water maze test was

analyzed with repeated measures (RM) ANOVA with training day as the repeated factor and

treatment group as the fixed factor. For comparison of outcome measures in behavioral tests, a

predefined limited number of outcome measures (<4) was used and no correction for multiple

comparisons was made [41]. The differences were considered significant at α = 0.05.

Results

Magnetic resonance imaging

Regional volume changes. Regional brain volumes obtained from in vivo atlas based

brain parcellation methodology based on magnetization transfer tissue contract are summa-

rized in absolute volume units in S1 Table and in percentage, normalized to individual mouse

brain, in S2 Table. There was no difference in total brain volume between SPF and GF mice at

either four or 12-week testing (Fig 2A). Relative gray matter volume was higher in SPF mice in

olfactory bulbs, neocortex and cerebellum (Fig 2B–2D), but was lower in thalamus (Fig 2E)

and forebrain/septum (S2 Table) relative to GF mice at four weeks. Olfactory bulbs size was

different at 12 weeks in absolute volume (S1 Table) and post-hoc test revealed that relative

olfactory bulb size was significantly enlarged in male GF mice (Fig 2B). At 12 weeks of age

female SPF mice had significantly higher striatum volume (F1, 30 = 21.19, p<0.001) than GF

mice on post-hoc comparisons (p = 0.0003, Fig 2F).

Local brain volume changes on tensor based morphometry. Tensor-based morphome-

try (TBM) is a statistical mapping method based on a color-coded Jacobian determinant value

developed to quantify regional structural differences relative to the corresponding anatomical

template [42, 43]. No significant difference was found between the groups at four weeks. Sig-

nificant regional expansion of the brain in GF mice was found in olfactory bulbs and prefron-

tal cortex at 12 weeks (Fig 3).

White matter organization and myelination indicated by fractional anisotropy. SPF

mice had significantly increased fractional anisotropy in fimbria, anterior commissure, corpus

callosum, optic tract, internal capsule, and periventricular white matter at four weeks testing

(Fig 4). No significant differences between SPF and GF mice were found at 12 weeks.

Macromolecular proton fraction (a biomarker of myelination) imaging. MPF group

values are summarized in S3 Table. Male SPF mice had increased MPF at four weeks in total

brain (F1,38 = 6.51, p = 0.015), in white matter, including corpus callosum, anterior commis-

sure and internal capsule (Fig 5A–5D), as well in gray matter structures including neocortex

(Fig 5E), hippocampus (Fig 5F), hypothalamus and brainstem/midbrain (S3 Table). Gender

factor and gender x group interaction factors were not significant at four weeks. At 12 weeks

testing, MPF in SPF males was higher in internal capsule (Fig 5D) and gender factor was sig-

nificant for all parceled regions (S3 Table).

Myelin contents by Luxol fast blue staining

Intensity of LFB staining was significantly higher in SPF mice when compared to GF mice

(both genders combined) in anterior commissure, corpus callosum, and internal capsule at

four weeks of age (Fig 6A) and in internal capsule at 12 weeks of age (Fig 6B).
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Fig 2. Regional volume differences between SPF and GF Mice. Regional volume differences in SPF and GF mice at four (n = 15 for both female and male SPF mice;

n = 6 for female and n = 9 for male GF mice) and 12 (n = 13 for both female and male SPF and n = 7 for both female and male GF mice) weeks of age. Asterisks indicate

significant differences when p-value is at least<0.05 between the treatment groups or between the individual groups in post-hoc comparisons where treatment group

factor of two-way ANOVA for each testing age was significant.

https://doi.org/10.1371/journal.pone.0201829.g002
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Behavioral tests

Open field test and elevated plus maze tests. The effects of microbiota on neuronal gen-

eral locomotor activities and anxiety-like behaviors were evaluated using open field test (OFT)

and elevated plus maze (EPM). The key brain macrostructure that contribute to the neural cir-

cuits of anxiety are, but not limited to, amygdala, the bed nucleus of the stria terminalis, the

ventral hippocampus and the prefrontal cortex. SPF mice were significantly more mobile (Fig

7A, F1,39 = 16.85, p< 0.001, two-way ANOVA) and had higher mean speed (Fig 7B, F1,39 =

0.05

0.001
p-val

Fig 3. Tensor based morphometry comparison between SPF and GF mice. Animal numbers: SPF (n = 5 for both females and males) and GF (n = 5 for both

females and males) mice at 12 weeks of age. No significant difference was detected at four weeks of age with the same number of animals in each group. The pseudo-

colored statistical parametric map is overlaid on a gray scale template. Statistically significant regional volume expansion in olfactory bulbs and prefrontal cortex in

GF group is indicated by pseudo-colored voxels in red-yellow scale. Color bar indicates corrected p-values range and p value of<0.05 was considered statistically

significant.

https://doi.org/10.1371/journal.pone.0201829.g003

cc

p-val
0.001

0.05

1

ac

ccpwm
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ot ic
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Fig 4. Statistical parametric maps of comparisons between SPF and GF mice using FA and radial diffusivity metrics. Animal numbers: SPF (n = 5 for both

females and males) and GF (n = 5 for both females and males) mice at four weeks. No significant difference was detected at 12 weeks of age with the same number of

animals in each group. Green skeleton lines were overlaid on gray scale FA, shown on sagittal, coronal and horizontal sections. Statistically significant voxels, where

the parameters were less in the GF group, are depicted in red-yellow scale for FA. Color bar indicates corrected-p-values range and p value of<0.05 was considered

statistically significant. Abbreviations of anatomic structures: ac-anterior commissure, cc-corpus callosum, ic-internal capsule, fi-fimbria, ot-optic tract, pwm-

periventricular white matter.

https://doi.org/10.1371/journal.pone.0201829.g004

Microbiota influence brain development

PLOS ONE | https://doi.org/10.1371/journal.pone.0201829 August 3, 2018 11 / 29

https://doi.org/10.1371/journal.pone.0201829.g003
https://doi.org/10.1371/journal.pone.0201829.g004
https://doi.org/10.1371/journal.pone.0201829


4 weeks

females males
6

8

10

12

14

SPF GF

12 weeks

females males

Internal capsule

6

8

10

12

14

4 weeks

females males
6

7

8

9

10

SPF GF

12 weeks

females males

Hippocampus

6

7

8

9

10

4 weeks

females males
6

8

10

12

14

SPF GF

12 weeks

females males

Corpus callosum/ External capsule

6

8

10

12

14

*

*

*

4 weeks

females males
6

7

8

9

10

%,noitcarf
notorp

elucelo
morca

m

SPF GF

12 weeks

females males

Anterior commissure

6

7

8

9

10

*

4 weeks

females males
6

7

8

9

10

%,noitcarf
notorp

elucelo
morca

m

SPF GF

12 weeks

females males

Neocortex

6

7

8

9

10

*

4 weeks

females males
6

8

10

12

14

%,noitcarf
notorp

elucelo
morca

m

SPF GF

12 weeks

females males

Total brain

6

8

10

12

14

*

*

BA

C D

FE
Fig 5. Macromolecule proton fraction (in percentage) in SPF and GF mice. Animal numbers at four (n = 15 for both female and male SPF mice; n = 6 for female and

n = 9 for male GF mice) and 12 (n = 13 for both female and male SPF and n = 7 for both female and male GF mice) weeks of age. Asterisks indicate significant

differences when p-value is at least<0.05 in between the groups in post-hoc comparisons where treatment group factor of two-way ANOVA for each testing age was

significant.

https://doi.org/10.1371/journal.pone.0201829.g005
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14.95, p< 0.001, two-way ANOVA) than GF mice at four weeks in the OFT. No difference was

found in gender factor and microbiota x gender interaction at four weeks. On post-hoc com-

parison, four-week old SPF females and males had significantly higher mobile time (p = 0.002

and p = 0.043, respectively) and mean speed (p = 0.0049 and p = 0.016, respectively) than GF

females and males. As a result, SPF mice traveled significantly more distance (48.40±2.49 m)

than GF mice (30.72±2.06 m) at four weeks (F1, 39 = 15.37, p< 0.001, two-way ANOVA). No

difference was found in gender factor and microbiota x gender interaction in travel distance at

four weeks of age. On post-hoc comparison, four weeks old SPF females and males were signif-

icantly different than GF females and males (p = 0.0048 and p = 0.018, respectively). Further-

more, four weeks old SPF mice spent significantly more time in center area (Fig 7C, F1, 39 =

4.26, p = 0.045, two-way ANOVA). No difference in mobile time, mean speed, traveled dis-

tance or time spent in the center area was found at 12 weeks testing. In the EPM test, no
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Fig 6. Myelin content determination by Luxol fast blue stain. Animal numbers at four (n = 6 for both SPF and GF

mice) (A) and 12 (n = 6 for both SPF and GF mice) weeks of age (B). Asterisks indicate significant differences when p-

value is at least<0.05 between SPF and GF group.

https://doi.org/10.1371/journal.pone.0201829.g006
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difference in time spent in closed arms was found in gender, microbiota, or microbiota x gen-

der interaction at either four weeks or 12 weeks of age (Fig 7D).

Morris water maze. Spatial learning and memory which are strongly associated with hip-

pocampal circuitry as well as prefrontal cortex, the cingulate cortex, and the neostriatum [44]

were evaluated using the Morris water maze in both SPF and GF mice. In testing latency to

find the platform during training days by two-way ANOVA with one repeated measures

(stage), training day factor was significant at both four weeks (F3, 102 = 11.72, p<0.001) and 12

weeks (F2, 102 = 4.8, p<0.001), demonstrating that in both SPF and GF groups the latency time

to find the hidden platform decreased during training and both groups were learning (Fig 8A

and 8B). The microbiota factor was not significantly different at four weeks, but was significant

at 12 weeks (F1, 36 = 11.72, p = 0.035) during training between SPF and GF mice. Post-hoc
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Fig 7. Open field and elevated plus maze behavioral tests. SPF mice were more mobile (A) and traveled with faster speed (B) at four weeks (n = 15 for both female and

male SPF mice; n = 6 for female and n = 9 for male GF mice), but not at 12 weeks (n = 13 for both female and male SPF and n = 7 for both female and male GF mice).

SPF mice spent more time in the center quadrant in the open field test at four weeks, but not at 12 weeks (C). D. GF mice were not different from SPF mice at four weeks

and at 12 weeks in time spent in closed arm in elevated plus maze. Asterisks indicate significant differences when p-value is at least<0.05.

https://doi.org/10.1371/journal.pone.0201829.g007
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analysis revealed that female SPF had shorter latencies to find the platform at the end of the

training (day 4) (F1, 16 = 12.09, p = 0.003).

The probe trial where the platform had been removed after the training stages revealed no

significant difference between the SPF and GF mice in time spent in the quadrant at the four-

week time point, neither for males nor for females (Fig 8C). At 12 weeks testing SPF mice

spent significantly more time in the quadrant than GF mice (Fig 8C, F1, 36 = 11.76, p = 0.0015,

Two-way ANOVA) and in both genders by post-hoc comparisons.

No difference in average speed was found at four weeks testing (Fig 8D). At 12 weeks of age

SPF mice had significantly higher average swimming speed than that of GF mice (F1, 36 =

11.72, p = 0.0016, two-way ANOVA). On post-hoc comparison, 12-week old SPF males had

higher average speed that GF males (Fig 8D, p = 0.002).

Fear conditioning test. To characterize the hippocampal-dependent and/or amygdala-

dependent long-term memory in SPF and GF mice, mice were subjected to contextual/cued

fear conditioning. No difference in freezing time between SPF and GF mice in either gender

was found before conditioning. There was no difference in freezing time between SPF and GF

mice in contextual fear conditioning (changed environment and no acoustic CS presentation)

at four-week testing (Fig 8E). However, SPF had significantly longer freezing time than GF

mice at 12 weeks (F1, 39 = 11.44, p = 0.022) with specifically significantly more freezing time in

male SPF mice (post-hoc test, p = 0.032). Gender factor was significant (F1, 39 = 11.44,

p = 0.002) due to significantly lower freezing time in SPF males (p = 0.047) at four weeks of

age. At 12 weeks of age, the freezing time of SPF mice in this stage was significantly longer

than that of GF mice (F1, 39 = 11.44, p = 0.002). Post-hoc test revealed that the freezing time of

SPF males was significantly longer than that of GF males (p = 0.047). No difference in freezing

time in the second part of the cued fear conditioning test (changed environment and acoustic

CS presentation) was found at 4 weeks of age, but at 12 weeks of age the freezing time of SPF

mice was significantly shorter than in GF mice (F1,39 = 9.28, p = 0.0043, Fig 8F). Post-hoc test

revealed that the freezing time of SPF was significantly shorter than GF mice (p = 0.047) in

both genders.

Social interaction tests: Sociability and novelty. We further investigated whether there is

a difference between SPF and GF mice in social interactions in the three-chamber social test,

reflecting mostly prefrontal cortex and myelination plasticity. In the sociability test for social

versus empty cage preference, no significant differences between SPF and GF mice in time

spent in chamber with mice (Stranger 1, Fig 9A) or with empty cage were found either at four-

or 12-week testing age (Fig 9B, with discrimination index shown in Figure A in S1 Fig). In the

test for social novelty, no difference between SPF and GF group was found in time spent with

a familiar mouse (Fig 9C), but SPF mice spent significantly more time with a novel mouse

(Stranger 2) than GF mice in both genders at 12 weeks (F1,32 = 5.10, p = 0.030), (Fig 9D, with

discrimination index shown in Figure B in S1 Fig).

Stereological estimation of neurons and oligodendrocyte number

In an attempt to explain the difference in locomotion at four weeks and in spatial memory at

12 weeks, we estimated neuronal numbers in motor cortex and hippocampus and oligoden-

drocyte numbers in cortex and several regions of the white matter. Number of neurons identi-

fied by neuronal nuclear antigen (NeuN) was estimated for the entire hippocampus. No

difference was found between SPF and GF mice in either CA1, CA2/3 or dentate gyrus of the

hippocampus at 12 weeks (Fig 10A). Since exact boundaries of motor cortex are ambiguous to

define, neuronal density was estimated in the central portion of the motor cortex. No signifi-

cant difference in neuronal density was found between SPF and GF mice at four weeks of age
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(Fig 10B). Density of oligodendrocytes, determined by the Olig2 marker of oligodendrocytes

lineage, was significantly higher in the corpus callosum of SPF mice at 12 weeks (p = 0.018)

Fig 8. Memory and learning behavioral tests using Morris water maze and fear conditioning. No significant difference during training was found between SPF

(n = 15 for both females and males) and GF (n = 6 for females and n = 9 for males) mice at 4 weeks (A), but at 12 weeks (B) SPF (n = 13 for both females and males)

mice had significantly higher learning curve slopes than GF (n = 7 for both females and males) mice by RM ANOVA. (C). SPF mice spent significantly more time in

the platform quadrant during the probe trial of the Morris water maze test at 12 weeks, but were not different from SPF mice at 4 weeks. (D). SPF males swim speed

was significantly higher than GF males at 12 weeks. (E). Freezing time was longer in contextual fear conditioning test in male SPF mice at 12 weeks. (F). Freezing time

was shorter for SPF mice in the second part of cued fear conditioning test (different chamber and sound cue presented) at 12 weeks. Asterisks indicate significant

differences when p-value is at least<0.05.

https://doi.org/10.1371/journal.pone.0201829.g008
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Fig 9. Social interaction tests using three-room chamber. In a sociability test SPF and GF mice were not different in time spent in chamber with a strange mouse (A)

or with an empty cage (B) at either four (n = 15 for both female and male SPF mice; n = 6 for female and n = 9 for male GF mice) or 12 (n = 13 for both female and male

SPF and n = 7 for both female and male GF mice) weeks of age. In the test for social novelty, no difference between SPF and GF groups was found in time spent with a

familiar mouse (C), but there was a significant decrease in time spent with a novel mouse in GF mice at 12 weeks (D). Asterisks indicate significant differences when p-

value is at least<0.05.

https://doi.org/10.1371/journal.pone.0201829.g009
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(Fig 10C), with a trend of increase in internal capsule, fimbria, cortex and striatum that did

not reach significant difference.

Discussion

The current study contributes to the rapidly growing body of literature related to the role of

the gut microbiota and gut-brain interactions in shaping brain development and behaviors.

Novel aspects of the study were to apply a combination of function-focusing modalities

(advanced MRI neuroimaging and behavioral tests) with complementary immunohistological

studies to examine the effects of commensal bacteria on brain structure and behaviors in

C57BL/6J mice. Furthermore, novel quantitative macromolecule fraction MRI mapping was

used to evaluate the impact of commensal bacteria on myelination across multiple brain struc-

tures. Both in vivo and ex vivo MRI revealed that SPF mice with commensal bacteria demon-

strated several larger regions in grey matter and other brain regions than GF mice without

commensal bacteria. We furthered observed SPF mice were more myelinated in grey matter

structures including neocortex, hippocampus and several major white matter tracts in juvenile

male mice at four weeks of age and in the internal capsule in males at 12 weeks of age. These

differences in myelination were verified by Luxol fast blue staining for myelin. More impor-

tantly, the observed brain structure differences correlated to differences in behaviors between

SPF and GF mice (Fig 11). We demonstrated that SPF and GF mice display transient differ-

ences in anxiety-related behaviors, and long-term differences in spatial memory, contextual

and cued memory, and social novelty. The volumetric and organization differences between

SPF and GF mice observed in fimbria, corpus callosum, internal capsule and dorsal striatum

development might explain the difference in motor and cognitive outcomes in open field,

Morris water maze, and fear conditioning tests; whereas the volumetric and myelination dif-

ferences in neocortex and prefrontal cortex might contribute to the difference in social behav-

iors. Therefore, by linking affected specific regions of the brain to associated functions, our

study provides evidence that commensal bacteria can influence brain development and

behaviors.
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Asterisks indicate significant differences when p-value is at least<0.05.

https://doi.org/10.1371/journal.pone.0201829.g010
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First, our study demonstrated that microbiota influence the development of volumes of

diverse brain structures. MRI is widely used in neurological development studies as it can

non-invasively quantify brain structural changes and correlate with motor and cognitive devel-

opment in clinical trials[11] and animal studies[13, 45]. Studies of normal brain maturation in

humans report volumetric changes of grey matter and white matter between childhood and

adolescence but relatively stable total brain volume during this period [14, 46]. Similarly, in

mice, total brain volume by MRI has been found to reach stability at three weeks, but grey mat-

ter and white matter maturation including myelination continuously progresses during the

MRI/ Structure FGFPSFGFPSFGFPSFGFPSFGFPSFGFPSFGFPSFGFPS

Immunohistology

Regional volume total brain
olfactory bulbs ↑ ↓ ↑ ↓ ↓ ↑

neocortex ↑ ↓ ↑ ↓ Social chamber novelty ↑ ↓ ↑ ↓

cerebellum ↑ ↓ ↑ ↓ Open field ↑ ↓ ↑ ↓

thalamus ↓ ↑ ↓ ↑ speed ↑ ↓ ↑ ↓

Forbrain/septum ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓

caudate putamen ↑ ↓ Open field ↑ ↓ ↑ ↓

speed ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓

Morris water maze ↑ ↓ ↑ ↓

learning ↑ ↓

contextual ↑ ↓

cued ↓ ↑ ↓ ↑

Tensor Based morphometry olfactory bulbs ↓ ↑ ↓ ↑

prefrontal cortex ↓ ↑ ↓ ↑ Social chamber novelty ↑ ↓ ↑ ↓

FA fimbria ↑ ↓ ↑ ↓ Open field ↑ ↓ ↑ ↓

anterior commissure ↑ ↓ ↑ ↓ speed ↑ ↓ ↑ ↓

corpus callosum ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

internal capsule ↑ ↓ ↑ ↓ Morris water maze ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ learning ↑ ↓

↑ ↓ ↑ ↓ speed ↑ ↓

contextual ↑ ↓

cued ↓ ↑ ↓ ↑

MPF total brain ↑ ↓ Open field ↑ ↓ ↑ ↓

corpus callosum ↑ ↓ speed ↑ ↓ ↑ ↓

anterior commissure ↑ ↓ ↑ ↓ ↑ ↓

internal capsule ↑ ↓ ↑ ↓ Morris water maze ↑ ↓ ↑ ↓

hippocampus ↑ ↓ learning ↑ ↓

neocortex ↑ ↓ speed ↑ ↓

hypothalamus ↑ ↓ contextual ↑ ↓

brainstem/midbrain ↑ ↓ cued ↓ ↑ ↓ ↑

LFB staining for myelin anterior commissure ↑ ↓ ↑ ↓ Social chamber novelty ↑ ↓ ↑ ↓

internal capsule ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

corpus callosum ↑ ↓ ↑ ↓

corpus callosum ↑ ↓ ↑ ↓

4 weeks 12 weeks
Female Male Female Male

4 weeks 12 weeks

Behaviorial tests
Female Male Female Male

Fig 11. Summary of differences in structures and behaviors between SPF and GF Mice. Figure links the morphologic changes of regions in the brain with correlated

behaviors.

https://doi.org/10.1371/journal.pone.0201829.g011
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first three months [47]. Our study, to our knowledge, for the first time, systematically investi-

gated the role of microbiota in volumetric differences. Both automatic brain parcellation in
vivo and tensor based morphometry ex vivo MRI were used. The differences were observed

mostly in the early post-weaning period. SPF mice had transiently higher volume of cortex,

cerebellum, olfactory bulbs and a decrease in thalamus and forbrain/septum volume compared

to GF mice at four weeks of age. These observations agree with the notion [48] that early gut

microbiota is important for early brain development.

Our study next investigated the impact of microbiota on white matter development. DTI is

a frequently used neuroimaging method to evaluate white matter integrity and utilizes derived

index of fractional anisotropy (FA) as a surrogate measure for white matter organization and

myelination. Changes in FA values can assess the maturation of white matter reflecting alter-

ations in axonal number, myelin structure integrity, and axonal cytoskeleton integrity [49]. In

our study, we detected significantly higher FA values in the fimbria, corpus callosum, internal

capsule, periventricular white matter and optic tracts, in both male and female SPF mice at

four weeks compared to the GF mice. A large body of literature connects differences in FA

with behavioral outcomes. In animal studies, fimbria-fornix (fringe of hippocampus) lesions

altered spatial learning/memory and locomotion [50, 51]. In human studies, FA values of sev-

eral white matter tracts including fimbria and corpus callosum have been shown to correlate

positively with fine motor and cognitive scores of Bayley Scales of Infant and Toddler Develop-

ment in children born prematurely and studied at two years of corrected age [52]. The corpus

callosum coordinates sensory, motor, cognitive, and emotional functions from both hemi-

spheres in infants [53]. FA values of corpus callosum have been shown to be positively associ-

ated with cognitive outcomes [54–56]. FA values of the internal capsule [57] are associated

with better connectivity and motor skills in adolescents born prematurely[58] and cognitive

levels in periventricular leukomalacia patients [54] [59, 60]. FA values of periventricular white

matter are positively correlated with white matter development and cognitive functions in the

normal pediatric population [61] and can predict white matter injury in several prematurity-

related conditions [58]. Consistent with this literature, the microbiota dependent differences

we find in FA values of fimbria, corpus callosum, internal capsule and periventricular white

matter might explain the differences in motor activity in the open field test, spatial memory in

the Morris water maze and contextual memory in the fear conditioning test in our study.

One of the major findings of this study is the previously undescribed microbiota depen-

dent-hypomyelination of several gray matter structures including neocortex, hippocampus,

brainstem and major white matter tracts including the corpus callosum, anterior commissure,

and internal capsule specifically in GF mice using MPF imaging. Both cerebral and white mat-

ter myelination provide an assessment of the maturation of the brain [18, 62, 63] and the status

of myelination of the brain is a strong indicator of postnatal neurologic functional maturity

[64]. In our study the difference was mostly significant at four weeks but not at 12 weeks with

the exception of internal capsule. LFB staining agreed with the MPF data in most of the white

matter areas, particularly confirming the higher degree of myelination in SPF mice when com-

pared to GF mice in the internal capsule at 12 weeks. The finding of cortical hypomyelination

at four weeks in our study in GF mice is in contrast to previously reported hypermyelination

of prefrontal cortex found at 10 weeks in Swiss Webster mice [21]. The prefrontal cortex inte-

grates external stimuli and controls several domains of complex behavior [65]. We did not

find differences between SPF and GF mice in myelination specifically in prefrontal cortex

using MRI and LFB staining at 12 weeks. Discrepancies between our findings and others can

be explained by the different mouse strains and techniques used to assess myelination. Use of

MPF on MRI and LFB staining, both of which are imaging techniques, in our study ensures

spatial specificity of gray and white matter sampling. Disturbances in myelination in young
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GF animals suggest the importance of commensal microbiota on brain myelination and

extend the impact of early microbial colonization on brain maturation.

There have been several studies recognizing the differences in behaviors between SPF and

GF mice, especially on risk-avoidance and exploratory tasks, learning and memory, and social

behaviors [4]. However, current literature data are not consistent on behaviors in different

strains of mice. To date, in BALB/c, NMRI and Swiss Webster mouse strains, decreased

exploratory behaviors in SPF mice were reported using open field and elevated maze tests [6,

8, 20, 66] while C57BL/6N SPF mice displayed increased anxiety in the light/dark preference

test but decreased anxiety in the step-down test compared to the GF mice [67]. Even within

the three substrains of C57BL/6 mice, the C57BL/6J, C57/BL6N, and C57BL/6C, C57BL/6J

mice displayed the most exploratory behaviors in the open field and elevated plus maze test

among the three substrains [68]. In our studies, we reported in the open field test that SPF

mice of the C57BL/6J strain expressed higher exploratory activities, and thus greater anxiolytic

behaviors and locomotion at four weeks of age compared to GF mice. We speculate that the

variations in these studies including ours can be attributed to differences in the genetic back-

ground and microbiome profiles in mouse strains. These findings reflect the complexity of

microbiota and host bidirectional interactions while indicating that the microbiota indeed has

a role in shaping host exploratory/anxiety behaviors.

Previously, decreased working memory tested by novel object recognition was found in

female GF Swiss Webster mice [69] and antibiotic-treated SPF C57BL/6 mice [70]. Our data

also reveal SPF mice have a better spatial memory at 12 weeks of age in the Morris Water maze

test compared to GF mice. Early studies have shown that striatal lesions impair animal perfor-

mance in spatial learning tasks [71–73]. Considering the role of the dorsomedial striatum in

spatial-cognitive function, the decrease in striatum volume reported in this study might

explain the spatial memory deficits in GF mice on the Morris water maze at 12 weeks of age.

We also demonstrate that male SPF mice have better contextual memory in the cued fear con-

ditioning test at 12 weeks of age which is hippocampus and frontal/ventromedial/cingulate

cortex dependent [74]. However, they have reduced cued memory retention relative to GF

mice, which is considered amygdala dependent [75]. A recent study from Hoban et. al. using

C57BL/6N demonstrated that SPF mice had better cued memory retention, but were not dif-

ferent from GF mice in context recall [76]. The discrepancy between these findings might be

explained by different mouse strains. Studies have shown that C57BL/6N mice have better con-

textual memory than C57BL/6J mice but no difference in cued memory between the two sub-

strains was found [77]. The variation observed in studies could also be due to the experimental

protocols applied. We used the traditional 24-hour retention protocol while Hoban et. al. used

a modified six-hour retention protocol.

Social impairment in individuals with several neurological disorders such as attention defi-

cit hyperactive disorder [78], autism [79], conduct disorder[80] and compulsive obsessive dis-

order [81] have been documented in children and into adulthood. Interestingly these

disorders are usually associated with GI problems and dysbiosis in gut microbiota [82, 83]. We

found no difference in sociability between C57BL/6J SPF and GF mice. However, SPF mice

had a better preference for social novelty than GF mice with more profound effects found in

males. Previous studies using Swiss Webster mice had conflicting results in sociability and

social novelty in SPF mice compared to GF mice [10] [84]. The discrepancies between the pre-

vious studies were thought to be due, in part, to the differences in protocols, particularly use of

different social partner strains and the age of the animals when tested.

Taken together, the different manifestations of behaviors in these studies including ours

can be attributed to differences in the genetic background as well as differences in the micro-

biota of the different mouse strains [67, 85–87]. Other potential factors affecting the outcomes
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are the age of animals when tests are performed and the tests and protocols chosen [4]. There-

fore, we argue that the interpretation of these studies should pay specific attentions to these

factors. Future studies investigating the mechanisms by which the gut microbiota communi-

cates with the brain are urgently needed.

There is a well-documented sexual dimorphism in behaviors in clinical and animal studies

[88–91]. In humans, the prevalence of depression or anxiety is two to four times higher in

women, whereas autism and ADHD are more common in men [88, 92]. In term of cognitive

functions, women seem to do better on short term memory than men, whereas men perform

better in spatial tasks [93–95]. In animals, C57BL/6J female mice have been previously

reported to be more anxious in EPM test than the male counterparts but no difference was

detected between the sexes in exploratory activities in the open field test [90]. There has also

been no sociability and novelty difference between the female and male C57BL/6J mice in the

three-chamber test [91]. In Morris Water Maze test, male rats show advantages in spatial learn-

ing, which is hippocampus-depended, and reference memory for rats independent of strains,

protocols, ages and rearing environments, but mice show no sexual differences [96, 97]. Our

data largely agrees with most of the reported studies in C57BL/6J mice where we did not find

significant differences between genders (Figs 7–9). This prompts caution when translating ani-

mal model data to human behaviors when using specific strains of rodents. More carefully

designed and controlled animal experiments are required to study sexual dimorphisms since

many factors such as genetic wiring, hormonal stage, circadian rhythms, and different

responses between female and male animals to training regime may influence the rodent

behaviors. Our results, however, strengthen the notion that the differences in behaviors we

observed in this study were driven by the presence or absence of microbiota. The area needed

to be further explored is how the presence of different microbial communities or the absence

of microbiota affects sexes differently. With most of the behaviors we observed not displaying

sexual dimorphism, we specifically found that female GF mice had deficits in spatial learning

and male GF mice had deficits in contextual memory. In one of the limited recent studies [98]

colonizing early postnatal GF mice with human Bifidobacterium spp. improved recognition

memory in both female and male mice but only restored the anxiety-like behaviors in female

GF mice. The mechanisms of this sex-specific host behavior and microbiota interaction are

needed to translate current findings to clinical applications.

Collectively, emerging preclinical studies have made microbiota a potential target to

improve brain plasticity and functions. The current experimental approaches to investigate the

effect of microbiota on brain functions include using prebiotics [99–101], probiotics [98, 102,

103], or antibiotics [23, 70, 104, 105] to manipulate gut microbiota as well as “humanized”

germ free mouse models [9, 98, 106]. For example, human milk oligosaccharides 30 Sialyllac-

tose or 60 Sialyllactose as a prebiotic treatment normalized stress-induced anxiety-like behav-

iors [101]. Feeding Bifidobacteria breve 1205 to innately anxious BALB/c mice reduced the

general anxiety behaviors in EPM test [102]. Perturbation of gut microbiota by oral adminis-

tration of antibiotics induced depression-like behaviors in tail suspension test and reduced

social novelty in three-chamber social interaction test in C57BL/6J mice [104]. Although these

studies explored changes of behaviors and molecular alteration in the brain due to microbiota

manipulation, the knowledge of affected brain structure and organization was lacking. Our

findings describe fundamental differences in brain structures and behaviors between SPF and

GF mice to lay the groundwork for future studies to identify and potentially target brain struc-

tures and/or functions of interest for therapeutic development.

A limitation of the study was that although our animals were housed in positive-pressured

isocages which have been shown to have the ability to maintain the identities of microbial

communities in GF mice for up to six months in several studies [107, 108] therefore
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eliminating possible contamination during transport and housing, we did not maintain the

microbiota free status of the GF mice during the nine-day behavioral testing time. We thus

refer to these mice as “ex-GF.” It is unlikely that morphological changes would occur in the

short testing period of nine days after GF mice first encountered the environment in our

study. Other studies have shown that anxiety levels [67], social cognition impairment [10], and

HPA stress response [9] were not affected during conventionalization of adult GF mice and in

post weaning colonized GF mice, the time points used in this study. Furthermore, SPF mice in

our study were subjected to the same “new” environment as the GF mice. Any effects due to

this short encounter of a new microbial community should apply to both SPF and GF mice,

not GF alone. Therefore, our results in brain development and behavioral differences between

SPF and ex-GF mice can still be interpreted as an effect of commensal microbiota.

Taken together, the current study provides strong evidence in support of the notion that

microbiota affects brain volume, white matter development, and myelination as well as anxi-

ety, cognition and memory and social functions. The differences seen at four weeks, suggest an

impact of the microbiota specifically on early brain development. There may be a developmen-

tal window when the effects of gut microbiota on brain development are the largest and then

not structurally detectable at a later age. This emphasizes the importance of further imaging

and behavioral studies on the effect of gut microbiota on early brain development.
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