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ABSTRACT
Entity Resolution (ER) aims to identify different descriptions in
various Knowledge Bases (KBs) that refer to the same entity. ER
is challenged by the Variety, Volume and Veracity of entity de-
scriptions published in the Web of Data. To address them, we
propose the MinoanER framework that simultaneously fulfills full
automation, support of highly heterogeneous entities, and massive
parallelization of the ER process. MinoanER leverages a token-
based similarity of entities to define a new metric that derives the
similarity of neighboring entities from the most important rela-
tions, as they are indicated only by statistics. A composite blocking
method is employed to capture different sources of matching ev-
idence from the content, neighbors, or names of entities. The
search space of candidate pairs for comparison is compactly ab-
stracted by a novel disjunctive blocking graph and processed by a
non-iterative, massively parallel matching algorithm that consists
of four generic, schema-agnostic matching rules that are quite
robust with respect to their internal configuration. We demonstrate
that the effectiveness of MinoanER is comparable to existing ER
tools over real KBs exhibiting low Variety, but it outperforms them
significantly when matching KBs with high Variety.

1 INTRODUCTION
Even when data integrated from multiple sources refer to the same
real-world entities (e.g., persons, places), they usually exhibit
several quality issues such as incompleteness (i.e., partial data),
redundancy (i.e., overlapping data), inconsistency (i.e., conflicting
data) or simply incorrectness (i.e., data errors). A typical task for
improving various data quality aspects is Entity Resolution (ER).
In the Web of Data, ER aims to facilitate interlinking of data that
describe the same real-world entity, when unique entity identifiers
are not shared across different Knowledge Bases (KBs) describing
them [8]. To resolve entity descriptions we need (a) to compute
effectively the similarity of entities, and (b) to pair-wise compare
entity descriptions. Both problems are challenged by the three Vs
of the Web of Data, namely Variety, Volume and Veracity [10].
Not only does the number of entity descriptions published by
each KB never cease to increase, but also the number of KBs
even for a single domain, has grown to thousands (e.g., there
is a x100 growth of the LOD cloud size since its first edition1).
Even in the same domain, KBs are extremely heterogeneous both
regarding how they semantically structure their data, as well as

*Work conducted during the Ph.D research of the author at ICS-FORTH.
1https://lod-cloud.net
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Figure 1: Parts of entity graphs, representing the Wikidata
(left) and DBpedia (right) KBs.

how diverse properties are used to describe even substantially
similar entities (e.g., only 109 out of ∼2,600 LOD vocabularies are
shared by more than one KB). Finally, KBs are of widely differing
quality, with significant differences in the coverage, accuracy and
timeliness of data provided [9]. Even in the same domain, various
inconsistencies and errors in entity descriptions may arise, due
to the limitations of the automatic extraction tools [34], or of the
crowd-sourced contributions.

The Web of Data essentially calls for novel ER solutions that
relax a number of assumptions underlying state-of-the-art methods.
The most important one is related to the notion of similarity that
better characterizes entity descriptions in the Web of Data - we
define an entity description to be a URI-identifiable set of attribute-
value pairs, where values can be literals, or the URIs of other
descriptions, this way forming an entity graph. Clearly, Variety
results in extreme schema heterogeneity, with an unprecedented
number of attribute names that cannot be unified under a global
schema [15]. This situation renders all schema-based similarity
measures that compare specific attribute values inapplicable [15].
We thus argue that similarity evidence of entities within and across
KBs can be obtained by looking at the bag of strings contained
in descriptions, regardless of the corresponding attributes. As
this value-based similarity of entity pairs may still be weak,
due to a highly heterogeneous description content, we need to
consider additional sources of matching evidence; for instance,
the similarity of neighboring entities, which are interlinked via
various semantic relations.

Figure 1 presents parts of the Wikidata and DBpedia KBs,
showing the entity graph that captures connections inside them.
For example, Restaurant2 and Jonny Lake are neighbor entities in
this graph, connected via a “headChef” relation. If we compare
John Lake A to Jonny Lake based on their values only, it is easy
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Figure 2: Value and neighbor similarity distribution of
matches in 4 datasets (see Table 1 for more details).

to infer that those descriptions are matching; they are strongly
similar. However, we cannot be that sure about Restaurant1 and
Restaurant2, if we only look at their values. Those descriptions
are nearly similar and we have to look further at the similarity of
their neighbors (e.g, John Lake A and Jonny Lake) to verify that
they match.

Figure 2 depicts both sources of similarity evidence (valueSim,
neighborSim) for entities known to match (i.e., ground truth) in
four benchmark datasets that are frequently used in the literature
(details in Table 1). Every dot corresponds to a matching pair
of entities, and its shape denotes its origin KBs. The horizontal
axis reports the normalized value similarity (weighted Jaccard
coefficient [21]) based on the tokens (i.e., single words in attribute
values) shared by a pair of descriptions, while the vertical one
reports the maximum value similarity of their neighbors. The
value similarity of matching entities significantly varies across
different KBs. For strongly similar entities, e.g., with a value
similarity > 0.5, existing duplicate detection techniques work
well. However, a large part of the matching pairs of entities is
covered by nearly similar entities, e.g., with a value similarity
< 0.5. To resolve them, we need to additionally exploit evidence
regarding the similarity of neighboring entities.

This also requires revisiting the blocking (aka indexing) tech-
niques used to reduce the number of candidate pairs [7]. To avoid
restricting candidate matches (i.e., descriptions placed on the
same block) to strongly similar entities, we need to assess both
value and neighbor similarity of candidate matches. In essence,
rather than a unique indexing function, we need to consider a com-
posite blocking that provides matching evidence from different
sources, such as the content, the neighbors or even the names (e.g.,
rdfs:label) of entities. Creating massively parallelizable tech-
niques for processing the search space of candidate pairs formed
by such composite blocking is an open research challenge.

Overall, the main requirements for Web-scale ER are: (i) iden-
tify both strongly and nearly similar matches, (ii) do not rely on a
given schema, (iii) do not rely on domain experts for aligning re-
lations and matching rules, (iv) develop non-iterative solutions to
avoid late convergence, and (v) scale to massive volumes of data.
None of the existing ER frameworks proposed for the Web of

Data (e.g., LINDA [4], SiGMa [21] and RiMOM [31]) simultane-
ously fulfills all these requirements. In this work, we present the
MinoanER framework for a Web-scale ER2. More precisely, we
make the following contributions:
•We leverage a token-based similarity of entity descriptions,

introduced in [27], to define a new metric for the similarity of a set
of neighboring entity pairs that are linked via important relations
to the entities of a candidate pair. Rather than requiring an a priori
knowledge of the entity types or of their correspondences, we rely
on simple statistics over two KBs to recognize the most important
entity relations involved in their neighborhood, as well as, the most
distinctive attributes that could serve as names of entities beyond
the rdfs:label, which is not always available in descriptions.
•We exploit several indexing functions to place entity descrip-

tions in the same block either because they share a common token
in their values, or they share a common name. Then, we intro-
duce a novel abstraction of multiple sources of matching evidence
regarding a pair of entities (from the content, neighbors, or the
names of their descriptions) under the form of a disjunctive block-
ing graph. We present an efficient algorithm for weighting and
then pruning the edges with low weights, which are unlikely to
correspond to matches. As opposed to existing disjunctive block-
ing schemes [3, 18], our disjunctive blocking is schema-agnostic
and requires no (semi-)supervised learning.
•We propose a non-iterative matching process that is imple-

mented in Spark [36]. Unlike the data-driven convergence of ex-
isting systems (e.g., LINDA [4], SiGMa [21], RiMOM [31]), the
matching process of MinoanER involves a specific number of
predefined generic, schema-agnostic matching rules (R1-R4) that
traverse the blocking graph. First, we identify matches based on
their name (R1). This is a very effective method that can be ap-
plied to all descriptions, regardless of their values or neighbor
similarity. Unlike the schema-based blocking keys of relational
descriptions usually provided by domain experts, MinoanER auto-
matically specifies distinctive names of entities from data statistics.
Then, the value similarity is exploited to find matches with many
common and infrequent tokens, i.e., strongly similar matches
(R2). When value similarity is not high, nearly similar matches
are identified based on both value and neighbors’ similarity using
a threshold-free rank aggregation function (R3), as opposed to
existing works that combine different matching evidence into an
aggregated score. Finally, reciprocal evidence of matching is ex-
ploited as a verification of the returned results: only entities that
are mutually ranked in the top positions of their unified ranking
lists are considered matches (R4). Figure 2 abstractly illustrates
the type of matching pairs that are covered by each matching rule.
•We experimentally compare the effectiveness of MinoanER

against state-of-the-art methods using established benchmark data
that involve real KBs. The main conclusion drawn from our exper-
iments is that MinoanER achieves at least equivalent performance
over KBs exhibiting a low Variety (e.g., those originating from
a common data source like Wikipedia) even though the latter
make more assumptions about the input KBs (e.g., alignment of
relations); yet, MinoanER significantly outperforms state-of-the-
art ER tools when matching KBs with high Variety. The source
code and datasets used in our experimental study are publicly
available3.

The rest of the paper is structured as follows: we introduce our
value and neighbor similarities in Section 2, and we delve into the

2A preliminary, abridged version of this paper appeared in [13].
3http://csd.uoc.gr/~vefthym/minoanER
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blocking schemes and the blocking graph that lie at the core of
our approach in Section 3. Section 4 describes the matching rules
of our approach along with their implementation in Spark, while
Section 5 overviews the main differences with the state-of-the-art
ER methods. We present our thorough experimental analysis in
Section 6 and we conclude the paper in Section 7.

2 BASIC DEFINITIONS
Given a KB E, an entity description with a URI identifier i, de-
noted by ei ∈ E, is a set of attribute-value pairs about a real-
world entity. When the identifier of an entity description ej ap-
pears in the values of another entity description ei , the corre-
sponding attribute is called a relation and the corresponding
value (ej ) a neighbor of ei . More formally, the relations of ei
are defined as relations(ei ) = {p |(p, j) ∈ ei ∧ ej ∈ E}, while
its neighbors as neiдhbors(ei ) = {ej |(p, j) ∈ ei ∧ ej ∈ E}. For
example, for the Wikidata KB in the left side of Figure 1 we
have: relations(Restaurant1) = {hasChef, territorial, inCountry},
and neiдhbors(Restaurant1) = {John Lake A, Bray, United King-
dom}.

In the following, we exclusively consider clean-clean ER, i.e.,
the sub-problem of ER that seeks matches among two duplicate-
free (clean) KBs. Thus, we simplify the presentation of our ap-
proach, but the proposed techniques can be easily generalized to
more than two clean KBs or a single dirty KB, i.e., a KB that
contains duplicates.

2.1 Entity similarity based on values
Traditionally, similarity between entities is computed based on
their values. In our work, we apply a similarity measure based
on the number and the frequency of common words between two
values4.

Definition 2.1. Given two KBs, E1 and E2, the value simi-
larity of two entity descriptions ei ∈ E1, ej ∈ E2 is defined as:
valueSim(ei , ej )=

∑
t ∈tokens(ei )∩tokens(ej )

1
loд2(EFE1 (t )·EFE2 (t )+1)

,

where EFE (t) = |{el |el ∈ E ∧ t ∈ tokens(el )}| stands for “En-
tity Frequency”, which is the number of entity descriptions in E
having token t in their values.

This value similarity shares the same intuition as TF-IDF in
information retrieval. If two entities share many, infrequent to-
kens, then they have high value similarity. On the contrary, very
frequent words (resembling stopwords in information retrieval)
are not considered an important matching evidence, when they
are shared by two descriptions, and therefore, they only contribute
insignificantly to the valueSim score. The number of common
words is accounted by the number of terms that are considered in
the sum and the frequency of those words is given by the inverse
Entity Frequency (EF), similar to the inverse Document Frequency
(DF) in information retrieval.

Proposition 1. valueSim is a similarity metric, since it satisfies
the following properties [5]:
• valueSim(ei , ei ) ≥ 0,
• valueSim(ei , ej ) = valueSim(ej , ei ),
• valueSim(ei , ei ) ≥ valueSim(ei , ej ),
•valueSim(ei , ei ) = valueSim(ej , ej ) = valueSim(ei , ej )⇔ei=ej ,
• valueSim(ei , ej ) +valueSim(ej , ez ) ≤ valueSim(ei , ez ) +
valueSim(ej , ej ).

4We handle numbers and dates in the same way as strings, assuming string-dominated
entities.

PROOF. Please refer to the extended version of this paper5. □

Note that valueSim has the following properties: (i) it is not a
normalized metric, since it can take any value in [0,+∞), with 0
denoting the existence of no common tokens in the values of the
compared descriptions. (ii) The maximum contribution of a single
common token between two descriptions is 1, in case this common
token does not appear in the values of any other entity description,
i.e., when EFE1 (t) · EFE2 (t) = 1. (iii) It is a schema-agnostic
similarity metric, as it disregards any schematic information6.

2.2 Entity similarity based on neighbors
In addition to value similarity, we exploit the relations between
descriptions to find the matching entities of the compared KBs.
This can be done by aggregating the value similarity of all pairs
of descriptions that are neighbors of the target descriptions.

Given the potentially high number of neighbors that a descrip-
tion might have, we propose considering only the most valuable
neighbors for computing the neighbor similarity between two
target descriptions. These are neighbors that are connected with
the target descriptions via important relations, i.e., relations that
exhibit high support and discriminability. Intuitively, high support
for a particular relation p indicates that p appears in many entity
descriptions, while high discriminability for p indicates that it has
many distinct values. More formally:

Definition 2.2. The support of a relation p ∈ P in a KB E
is defined as: support(p) = |instances(p) |

|E |2
, where instances(p) =

{(i, j)|ei , ej ∈ E ∧ (p, j) ∈ ei }.

Definition 2.3. The discriminability of a relation p ∈ P in a
KB E is defined as: discriminability(p) =

|ob jects(p) |
|instances(p) | , where

objects(p) = {j |(i, j) ∈ instances(p)}.

Overall, we combine support and discriminability via their
harmonic mean in order to locate the most important relations.

Definition 2.4. The importance of a relation p ∈ P in a KB E
is defined as: importance(p) = 2 · suppor t (p)·discr iminabil ity(p)

suppor t (p)+discr iminabil ity(p) .

On this basis, we identify the most valuable relations and neigh-
bors for every single entity description (i.e., locally). We use
topNrelations(ei ) to denote the N relations in relations(ei ) with
the maximum importance scores. Then, the best neighbors for
ei are defined as: topNneiдhbors(ei ) = {nei |(p,nei ) ∈ ei ∧ p ∈
topNrelations(ei )}.

Intuitively, strong matching evidence (high value similarity) for
the important neighbors leads to strong matching evidence for the
target pair of descriptions. Hence, we formally define neighbor
similarity as follows:

Definition 2.5. Given two KBs, E1 and E2, the neighbor simi-
larity of two entity descriptions ei ∈ E1, ej ∈ E2 is:

neiдhborNSim(ei , ej )=
∑

nei ∈topNneiдhbors(ei )
nej ∈topNneiдhbors(ej )

valueSim(nei ,nej ).

Proposition 2. neiдhborNSim is a similarity metric.

5http://csd.uoc.gr/~vefthym/DissertationEfthymiou.pdf
6Note that our value similarity metric is crafted for the token-level noise in literal
values, rather than the character-level one. Yet, our overall approach is tolerant to
character-level noise, as verified by our extensive experimental analysis with real
datasets that include it. The reason is that it is highly unlikely for matching entities
to have character-level noise in all their common tokens.
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PROOF. Given that neiдhborNSim is the sum of similarity met-
rics (valueSim), it is a similarity metric, too [5]. □

Neither valueSim nor neiдhborNSim are normalized, since the
number of terms that contribute in the sums is an important match-
ing evidence that can be mitigated if the values were normalized.

Example 2.6. Continuing our example in Figure 1, assume
that the best two relations for Restaurant1 and Restaurant2 are:
top2relations(Restaurant1) = {hasChef, territorial} and
top2relations(Restaurant2) = {headChef, county}. Then,
top2neiдhbors(Restaurant1) = {John Lake A, Bray} and
top2neiдhbors(Restaurant2) = {Jonny Lake, Berkshire}, and
neiдhbor2Sim(Restaurant1,Restaurant2) =
valueSim(Bray, JonnyLake)+valueSim(John Lake A, Berkshire)
+valueSim(Bray, Berkshire)+valueSim(John Lake A, Jonny Lake).
Note that since we don’t have a relation mapping, we also consider
the comparisons (Bray, JonnyLake) and (John Lake A, Berkshire).

Entity Names. From every KB, we also derive the global top-k
attributes of highest importance, whose literal values act as names
for any description ei that contains them. Their support is simply
defined as: support(p) = |subjects(p)|/|E |, where subjects(p) =
{i |(i, j) ∈ instances(p)} [32]. Based on these statistics, function
name(ei ) returns the names of ei , and Nx denotes all names in
a KB Ex . In combination with topNneiдhbors(ei ), this function
covers both local and global property importance, exploiting both
the rare and frequent attributes that are distinctive enough to
designate matching entities.

3 BLOCKING
To enhance performance, blocking is typically used as a pre-
processing step for ER in order to reduce the number of unneces-
sary comparisons, i.e., comparisons between descriptions that do
not match. After blocking, each description can be compared only
to others placed within the same block. The desiderata of block-
ing are [6]: (i) to place matching descriptions in common blocks
(effectiveness), and (ii) to minimize the number of suggested
comparisons (time efficiency). However, efficiency dictates skip-
ping many comparisons, possibly yielding many missed matches,
which in turn implies low effectiveness. Thus, the main objective
of blocking is to achieve a good trade-off between minimizing the
number of suggested comparisons and minimizing the number of
missed matches [7].

In general, blocking methods are defined over key values that
can be used to decide whether or not an entity description could be
placed in a block using an indexing function [7]. The ‘uniqueness’
of key values determines the number of entity descriptions placed
in the same block, i.e., which are considered as candidate matches.
More formally, the building blocks of a blocking method can be
defined as [3]:
• An indexing function hkey : E → 2B is a unary function that,

when applied to an entity description using a specific blocking
key, it returns as a value the subset of the set of all blocks B, under
which the description will be indexed.
• A co-occurrence function okey : E × E → {true, f alse} is a

binary function that, when applied to a pair of entity descriptions,
it returns ‘true’ if the intersection of the sets of blocks produced by
the indexing function on its arguments, is non-empty, and ‘false’
otherwise; okey (ek , el ) = true iff hkey (ek ) ∩ hkey (el ) , ∅.

In this context, each pair of descriptions whose co-occurrence
function returns ‘true’ shares at least one common block, and the

distinct union of the block elements is the input entity collection
(i.e., all the descriptions from a set of input KBs). Formally:

Definition 3.1. Given an entity collection E, atomic blocking
is defined by an indexing function hkey for which the generated

blocks, Bkey={bkey1 , . . . , b
key
m }, satisfy the following conditions:

(i) ∀ek , el ∈ bkeyi : bkeyi ∈ Bkey ,okey (ek , el ) = true,

(ii) ∀(ek , el ) : okey (ek , el )=true,∃bkeyi ∈ Bkey , ek , el ∈ b
key
i ,

(iii)
⋃

bkeyi ∈Bkey
b
key
i = E.

Given that a single key is not enough for indexing loosely
structured and highly heterogeneous entity descriptions, we need
to consider several keys that the indexing function will exploit to
build different sets of blocks. Such a composite blocking method
is characterized by a disjunctive co-occurrence function over the
atomic blocks, and it is formally defined as:

Definition 3.2. Given an entity collection E, disjunctive block-
ing is defined by a set of indexing functions H , for which the gen-
erated blocks B =

⋃
hkey ∈H

Bkey satisfy the following conditions:

(i) ∀ek , el ∈ b : b ∈ B,oH (ek , el ) = true,
(ii) ∀(ek , el ) : oH (ek , el ) = true,∃b ∈ B, ek , el ∈ b,

where oH (ek , el ) =
∨
hkey ∈H okey (ek , el ).

Atomic blocking can be seen as a special case of composite
blocking, consisting of a singleton set, i.e., H = {hkey }.

3.1 Composite Blocking Scheme
To achieve a good trade-off between effectiveness and efficiency,
our composite blocking scheme assesses the name and value sim-
ilarity of the candidate matches in combination with similarity
evidence provided by their neighbors on important relations. We
consider the blocks constructed for all entities ei ∈ E using the
indexing function hi (·) both over entity names (∀nj ∈ names(ei ) :
hN (nj )) and tokens (∀tj ∈ tokens(ei ) : hT (tj )). The composite
blocking scheme O of MinoanER is defined by the following
disjunctive co-occurrence condition of any two entities ei , ej ∈ E:
O(ei , ej ) = oN (ei , ej ) ∨ oT (ei , ej )∨
(
∨
(e ′i ,e

′
j )∈topNneiдhbors(ei )×topNneiдhbors(ej ) oT (e

′
i , e
′
j )),where

oN , oT is the co-occurrence function applied on names and to-
kens, respectively. Intuitively, two entities are placed in a common
block, and are then considered candidate matches, if at least one
of the following three cases holds: (i) they have the same name,
which is not used by any other entity, in which case the common
block contains only those two entities, or (ii) they have at least
one common word in any of their values, in which case the size of
the common block is given by the product of the Entity Frequency
(EF ) of the common term in the two input collections, or (iii)
their top neighbors share a common word in any of their values.
Note that token blocking (i.e., hT ) allows for deriving valueSim
from the size of blocks shared by two descriptions. As a result,
no additional blocks are needed to assess neighbor similarity of
candidate entities: token blocking is sufficient also for estimating
neiдhborNsim according to Definition 2.5.

3.2 Disjunctive Blocking Graph
The disjunctive blocking graph G is an abstraction of the dis-
junctive co-occurrence condition of candidate matches in blocks.
Nodes represent candidates from our input entity descriptions,
while edges represent pairs of candidates for which at least one
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Figure 3: (a) Parts of the disjunctive blocking graph corre-
sponding to Figure 1, and (b) the corresponding blocking
graph after pruning.

of the co-occurrence conditions is ‘true’. Each edge is actually
labeled with three weights that quantify similarity evidence on
names, tokens and neighbors of candidate matches. Specifically,
the disjunctive blocking graph of MinoanER is a graph G =
(V ,E, λ), with λ assigning to each edge a label (α , β,γ ), where
α is ‘1’ if oN (ei , ej ) is true and the name block in which ei , ej
co-occur is of size 2, and ‘0’ otherwise, β = valueSim(ei , ej ), and
γ = neiдhborNSim(ei , ej ). More formally:

Definition 3.3. Given a block collection B =
⋃
hkey ∈H Bkey ,

produced by a set of indexing functions H , the disjunctive block-
ing graph for an entity collection E, is a graph G = (V ,E, λ),
where each node vi ∈ V represents a distinct description ei ∈ E,
and each edge <vi ,vj> ∈ E represents a pair ei , ej ∈ E for which
O(ei , ej ) = ‘true ′; O(ei , ej ) is a disjunction of the atomic co-
occurrence functions ok defined along with H , and λ : E → Rn is
a labeling function assigning a tuple [w1, . . . ,wn ] to each edge,
wherewk is a weight associated with each co-occurrence function
ok of H .

Definition 3.3 covers the cases of an entity collection E being
composed of one, two, or more KBs. When matching k KBs, as-
suming that all of them are clean, the disjunctive blocking graph
is k-partite, with each of the k KBs corresponding to a different
independent set of nodes, i.e., there are only edges between de-
scriptions from different KBs. The only information needed to
match multiple KBs is to which KB every description belongs, so
as to add it to the corresponding independent set. Similarly, the
disjunctive blocking graph covers dirty ER, as well.

Example 3.4. Consider the graph of Figure 3(a), which is part
of the disjunctive blocking graph generated from Figure 1. John
Lake A and Jonny Lake have a common name (“J. Lake”), and
there is no other entity having this name, so there is an edge
connecting them with α = 1. Bray and Berkshire have common,
quite infrequent tokens in their values, so their similarity (β in
the edge connecting them) is quite high (β = 1.2). Since Bray is
a top neighbor of Restaurant1 in Figure 1, and Berkshire is a top
neighbor of Restaurant2, there is also an edge with a non-zero
γ connecting Restaurant1 with Restaurant2. The γ score of this
edge (1.6) is the sum of the β scores of the edges connecting Bray
with Berkshire (1.2), and John Lake A with Jonny Lake (0.4).

3.3 Graph Weighting and Pruning Algorithms
Each edge in the blocking graph represents a suggested compari-
son between two descriptions. To reduce the number of compar-
isons suggested by the disjunctive blocking graph, we keep for
each node the K edges with the highest β and the K edges with
the highest γ weights, while pruning edges with trivial weights
(i.e., (α , β,γ )=(0,0,0)), since they connect descriptions unlikely to
match. Given that nodes vi and vj may have different top K edges
based on β or γ , we consider each undirected edge in G as two
directed ones, with the same initial weights, and perform pruning
on them.

Example 3.5. Figure 3(b) shows the pruned version of the
graph in Figure 3(a). Note that the blocking graph is only a con-
ceptual model, which we do not materialize; we retrieve any nec-
essary information from computationally cheap inverted indices.

The process of weighting and pruning the edges of the dis-
junctive blocking graph is described in Algorithm 1. Initially, the
graph contains no edges. We start adding edges by checking the
name blocks BN (Lines 5-9). For each name block b that contains
exactly two entities, one from each KB, we create an edge with
α=1 linking those entities (note that in Algorithm 1, bk , k∈{1, 2},
denotes the sub-block of b that contains the entities from Ek ,
i.e., bk⊆Ek ). Then, we compute the β weights (Lines 10-14) by
running a variation of Meta-blocking [27], adapted to our value
similarity metric (Definition 2.1). Next, we keep for each entity,
its connected nodes from the K edges with the highest β (Lines 15-
18). Line 20 calls the procedure for computing the top in-neighbors
of each entity, which operates as follows: first, it identifies each
entity’s topNneiдbors (Lines 36-43) and then, it gets their reverse;
for every entity ei , we get the entities topInNeiдhbors[i] that have
ei as one of their topNneiдhbors (Lines 44-47). This allows for
estimating the γ weights according to Definition 2.5. To avoid
re-computing the value similarities that are necessary for the γ
computations, we exploit the already computed βs. For each pair
of entities ei ∈ E1, ej ∈ E2 that are connected with an edge with
β > 0, we assign to each pair of their inNeiдhbors, (ini , inj ), a
partial γ equal to this β (Lines 20-27). After iterating over all
such entity pairs ei , ej , we get their total neighbor similarity, i.e.,
γ [i, j] = neiдhborNsim(ei , ej ). Finally, we keep for each entity,
its K neighbors with the highest γ (Lines 28-33).

The time complexity of Algorithm 1 is dominated by the pro-
cessing of value evidence, which iterates twice over all compar-
isons in the token blocks BT . In the worst-case, this results in
one computation for every pair of entities, i.e., O(|E1 | · |E2 |). In
practice, though, we bound the number of computations by remov-
ing excessively large blocks that correspond to highly frequent
tokens (e.g., stop-words). Following [27], this is carried out by
Block Purging [26], which ensures that the resulting blocks in-
volve two orders of magnitude fewer comparisons than the brute-
force approach, without any significant impact on recall. This
complexity is higher than that of name and neighbor evidence,
which are both linearly dependent on the number of input entities.
The former involves a single iteration over the name blocks BN ,
which amount to |N1 ∩ N2 |, as there is one block for every name
shared by E1 and E2. For neighbor evidence, Algorithm 1 checks
all pairs of N neighbors between every entity ei and its K most
value-similar descriptions, performing K · N 2 · (|E1 | + |E2 |) oper-
ations; the cost of estimating the top in-neighbors for each entity
is lower, dominated by the ordering of all relations in E1 and E2
(i.e., |Rmax | · loд |Rmax |), where |Rmax | stands for the maximum
number of relations in one of the KBs.
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Algorithm 1: Disjunctive Blocking Graph Construction.
Input: E1, E2, the blocks from name and token blocking, BN and BT
Output: A disjunctive blocking graph G .

1 procedure getCompositeBlockingGraph(E1, E2, BN , BT )
2 V ← E1 ∪ E2;
3 E ← ∅;
4 W ← ∅ ; // init. to (0, 0, 0)

// Name Evidence
5 for b ∈ BN do
6 if |b1 | · |b2 | = 1 then // only 1 comparison in b
7 ei←b1 .дet (0), ej←b2 .дet (0) ; // entities in b
8 E ← E ∪ {< vi , vj > };
9 W ←W .set (α, < vi , vj >, 1);

// Value Evidence
10 for ei ∈ E1 do
11 β [] ← ∅ ; // value weights wrt all ej ∈ E2
12 for b ∈ BT ∧ b ∩ ei , ∅ do
13 for ej ∈ b2 do // ej ∈ E2
14 β [j]←β [j]+1/loд2( |b1 | · |b2 |+1) ; // valueSim

15 ValueCandidates ← дetTopCandidates(β [], K );
16 for ej ∈ ValueCandidates do
17 E ← E ∪ {< vi , vj > };
18 W ←W .set (β, < vi , vj >, β [j]);

19 for ei ∈ E2 do . . . ; // ...do the same for E2

// Neighbor Evidence
20 inN eiдhbors[] ← дetTopInNeiдhbors(E1, E2);
21 γ [][] ← ∅ ; // neighbor weights wrt all ei , ej ∈ V
22 for ei ∈ E1 do
23 for ej ∈ E2, s.t.W .дet (β, < vi , vj >) > 0 do
24 for inj ∈ inN eiдhbors[j] do
25 for ini ∈ inN eiдhbors[i] do // neighborNSim

26 γ [i][j] ← γ [i][j] +W .дet (β, < ni , nj >);

27 for ei ∈ E2 do . . . ; // ...do the same for E2
28 for ei ∈ E1 do
29 NeiдhborCandidates ← дetTopCandidates(γ [i][], K );
30 for ej ∈ NeiдhborCandidates do
31 E ← E ∪ {< vi , vj > };
32 W .set (γ , < vi , vj >, γ [i][j]);

33 for ei ∈ E2 do . . . ; // ...do the same for E2
34 return G = (V , E,W );

35 procedure getTopInNeighbors(E1, E2)
36 topNeiдhbors[] ← ∅ ; // one list for each entity
37 дlobalOrder ← sort E1’s relations by importance;
38 for e ∈ E1 do
39 localOrder (e)←r elations(e).sor tBy(дlobalOrder );
40 topN relations ← localOrder (e).topN ;
41 for (p, o) ∈ e , where p ∈ topN relations do
42 topNeiдhbors[e].add (o);

43 for ei ∈ E2 do . . . ; // ...do the same for E2
44 topInNeiдhbors[]←∅; // the reverse of topNeighbors

45 for e ∈ E1 ∪ E2 do
46 for ne ∈ topNeiдhbors[e] do
47 topInNeiдhbors[ne].add (e);

48 return topInNeiдhbors ;

4 NON-ITERATIVE MATCHING PROCESS
Our matching method receives as input the disjunctive blocking
graph G and performs four steps – unlike most existing works,
which involve a data-driven iterative process. In every step, a
matching rule is applied with the goal of extracting new matches
from the edges of G by analyzing their weights. The functionality
of our algorithm is outlined in Algorithm 2. Next, we describe its
rules in the order they are applied:
Name Matching Rule (R1). The matching evidence of R1 comes
from the entity names. It assumes that two candidate entities

Algorithm 2: Non-iterative Matching.
Input: E1, E2, The pruned, directed disjunctive blocking graph G .
Output: A set of matches M .

1 M ← ∅; // The set of matches

// Name Matching Value (R1)
2 for < vi , vj >∈ G .E do
3 if G .W .дet (α, < vi , vj >) = 1 then
4 M ← M ∪ (ei , ej );

// Value Matching Value (R2)
5 for vi ∈ G .V do
6 if ei ∈ E1 \M then // check the smallest KB for

efficiency
7 vj ← arдmaxvk ∈G .VG .W .дet (β, < vi , vk >) ; // top

candidate
8 if G .W .дet (β, < vi , vj >) ≥ 1 then
9 M ← M ∪ (ei , ej );

// Rank Aggregation Matching Value (R3)
10 for vi ∈ G .V do
11 if ei ∈ E1 ∪ E2 \M then
12 aдд[] ← ∅; // Aggregate scores, init. zeros
13 valCands ← G .valCand (ei ) ; // nodes linked to ei

in decr. β
14 rank ← |valCands |;
15 for ej ∈ valCands do
16 aдд[ei ].update(ej , θ · rank/ |valCands |);
17 rank ← rank − 1;

18 nдbCands ← G .nдbCand (ei ) ; // nodes linked to ei
in decr. γ

19 rank ← |nдbCands |;
20 for ej ∈ nдbCands do
21 aдд[ei ].update(ej , (1 − θ ) · rank/ |nдbCands |);
22 rank ← rank − 1;

23 M ← M ∪ (ei , дetTopCandidate(aдд[ei ]));

// Reciprocity Matching Value (R4)
24 for (ei , ej ) ∈ M do
25 if < vi , vj >< G .E ∨ < vj , vi >< G .E then
26 M ← M \ (ei , ej );

27 return M ;

match, if they, and only they, have the same name n. Thus, R1
traverses G and for every edge <vi ,vj> with α = 1, it updates the
set of matches M with the corresponding descriptions (Lines 2-4
in Alg. 2). All candidates matched by R1 are not examined by the
remaining rules.
Value Matching Rule (R2). It presumes that two entities match,
if they, and only they, share a common token t , or, if they share
many infrequent tokens. Based on Definition 2.1, R2 identifies
pairs of descriptions with high value similarity (Lines 5-9). To
this end, it goes through every node vi of G and checks whether
the corresponding description stems from the smaller in size KB,
for efficiency reasons (fewer checks), but has not been matched
yet. In this case, it locates the adjacent node vj with the maximum
β weight (Line 7). If β ≥ 1, R2 considers the pair (ei , ej ) to be
a match. Matches identified by R2 will not be considered in the
sequel.
Rank Aggregation Matching Rule (R3). This rule identifies fur-
ther matches for candidates whose value similarity is low (β < 1),
yet their neighbor similarity (γ ) could be relatively high. In this
respect, the order of candidates rather than their absolute similarity
values are used. Its functionality appears in Lines 10-23 of Algo-
rithm 2. In essence, R3 traverses all nodes of G that correspond to
a description that has not been matched yet. For every such node
vi , it retrieves two lists: the first one contains adjacent edges with
a non-zero β weight, sorted in descending order (Line 13), while
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Figure 4: The architecture of MinoanER in Spark.

the second one includes the adjacent edges sorted in decreasing
non-zero γ weights (Line 18). Then, R3 aggregates the two lists
by considering the normalized ranks of their elements: assuming
the size of a list is K , the first candidate gets the score K/K , the
second one (K − 1)/K , while the last one 1/K . Overall, each ad-
jacent node of vi takes a score equal to the weighted summation
of its normalized ranks in the two lists, as determined through the
trade-off parameter θ ∈ (0, 1) (Lines 16 & 21): the scores of the β
list are weighted with θ and those of the γ list with 1-θ . At the end,
vi is matched with its top-1 candidate match vj , i.e., the one with
the highest aggregate score (Line 23). Intuitively, R3 matches ei
with ej , when, based on all available evidence, there is no better
candidate for ei than ej .
Reciprocity Matching Rule (R4). It aims to clean the matches
identified by R1, R2 and R3 by exploiting the reciprocal edges of
G. Given that the originally undirected graph G becomes directed
after pruning (as it retains the best edges per node), a pair of nodes
vi and vj are reciprocally connected when there are two edges
between them, i.e., an edge from vi to vj and an edge from vj
to vi . Hence, R4 aims to improve the precision of our algorithm
based on the rationale that two entities are unlikely to match, when
one of them does not even consider the other to be a candidate
for matching. Intuitively, two entity descriptions match, only if
both of them “agree” that they are likely to match. R4 essentially
iterates over all matches detected by the above rules and discards
those missing any of the two directed edges (Lines 24-26), acting
more like a filter for the matches suggested by the previous rules.

Given a pruned disjunctive blocking graph, every rule can be
formalized as a function that receives a pair of entities and returns
true (T ) if the entities match according to the rule’s rationale, or
false (F ) otherwise, i.e., Rn : E1 × E2 → {T , F }. In this context,
we formally define the MinoanER matching process as follows:

Definition 4.1. The non-iterative matching of two KBs E1,
E2, denoted by the Boolean matrix M(E1, E2), is defined as a
filtering problem of the pruned disjunctive blocking graph G:
M(ei , ej ) = (R1(ei , ej ) ∨ R2(ei , ej ) ∨ R3(ei , ej )) ∧ R4(ei , ej ).

The time complexity of Algorithm 2 is dominated by the size
of the pruned blocking graph G it receives as input, since R1, R2
and R3 essentially go through all directed edges in G (in practice,
though, R1 reduces the edges considered by R2 and R3, and so
does R2 for R3). In the worst case, G contains 2K directed edges
for every description in E1∪E2, i.e., |V |max = 2 ·K · (|E1 |+ |E2 |).
Thus, the overall complexity is linear with respect to the number
of input descriptions, i.e., O(|E1 |+|E2 |), yielding high scalability.

4.1 Implementation in Spark
Figure 4 shows the architecture of MinoanER implementation in
Spark. Each process is executed in parallel for different chunks of
input, in different Spark workers. Each dashed edge represents a
synchronization point, at which the process has to wait for results
produced by different data chunks (and different Spark workers).

In more detail, Algorithm 1 is adapted to Spark by applying
name blocking simultaneously with token blocking and the ex-
traction of top neighbors per entity. Name blocking and token
blocking produce the sets of blocks BN and BT , respectively,
which are part of the algorithm’s input. The processing of those
blocks in order to estimate the α and β weights (Lines 5-9 for BN
and Lines 10-18 for BT ) takes place during the construction of
the blocks. The extraction of top neighbors per entity (Line 20)
runs in parallel to these two processes and its output, along with
the β weights, is given to the last part of the graph construction,
which computes the γ weights for all entity pairs with neighbors
co-occuring in at least one block (Lines 21-33).

To minimize the overall run-time, Algorithm 2 is adapted to
Spark as follows: R1 (Lines 2-4) is executed in parallel with
name blocking and the matches it discovers are broadcasted to be
excluded from subsequent rules. R2 (Lines 5-9) runs after both
R1 and token blocking have finished, while R3 (Lines 10-23) runs
after both R2 and the computation of neighbor similarities have
been completed, skipping the already identified (and broadcasted)
matches. R4 (Lines 24-26) runs in the end, providing the final,
filtered set of matches. Note that during the execution of every
rule, each Spark worker contains only the partial information of
the disjunctive blocking graph that is necessary to find the match
of a specific node (i.e., the corresponding lists of candidates based
on names, values, or neighbors).

5 RELATED WORK
To the best of our knowledge, there is currently no other Web-
scale ER framework that is fully automated, non-iterative, schema-
agnostic and massively parallel, at the same time. For example,
WInte.r [22] is a framework that performs multi-type ER, also
incorporating the steps of blocking, schema-level mapping and
data fusion. However, it is implemented in a sequential fashion
and its solution relies on a specific level of structuredness, i.e., on a
schema followed by the instances to be matched. Dedoop [20] is a
highly scalable ER framework that comprises the steps of blocking
and supervised matching. However, it is the user that is responsible
for selecting one of the available blocking and learning methods
and for fine-tuning their internal parameters. This approach is
also targeting datasets with a predefined schema. Dedupe [16]
is a scalable open-source Python library (and a commercial tool
built on this library) for ER; however, it is not fully automated, as
it performs active learning, relying on human experts to decide
for a first few difficult matching decisions. Finally, we consider
progressive ER (e.g., [1]) orthogonal to our approach, as it aims
to retrieve as many matches as possible as early as possible.

In this context, we compare MinoanER independently to state-
of-the-art matching and blocking approaches for Web data.

Entity Matching. Two types of similarity measures are com-
monly used for entity matching [21, 31]. (i) Value-based simi-
larities (e.g., Jaccard, Dice) usually assess the similarity of two
descriptions based on the values of specific attributes. Our value
similarity is a variation of ARCS, a Meta-blocking weighting
scheme [12], which disregards any schema information and con-
siders each entity description as a bag of words. Compared to
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ARCS, though, we focus more on the number than the frequency
of common tokens between two descriptions. (ii) Relational simi-
larity measures additionally consider neighbor similarity by ex-
ploiting the value similarity of (some of) the entities’ neighbors.

Based on the nature of the matching decision, ER can be char-
acterized as pairwise or collective. The former relies exclusively
on the value similarity of descriptions to decide if they match
(e.g., [20]), while the latter iteratively updates the matching deci-
sion for entities by dynamically assessing the similarity of their
neighbors (e.g., [2]). Typically, the starting point for this similarity
propagation is a set of seed matches identified by a value-based
blocking.

For example, SiGMa [21] starts with seed matches having iden-
tical entity names. Then, it propagates the matching decisions
on the ‘compatible’ neighbors, which are linked with pre-aligned
relations. For every new matched pair, the similarities of the neigh-
bors are recomputed and their position in the priority queue is
updated. LINDA [4] differs by considering as compatible neigh-
bors those connected with relations having similar names (i.e.,
small edit distance). However, this requirement rarely holds in the
extreme schema heterogeneity of Web data. RiMOM-IM [23, 31]
is a similar approach, introducing the following heuristic: if two
matched descriptions e1, e ′1 are connected via aligned relations r
and r ′ and all their entity neighbors via r and r ′, except e2 and e ′2,
have been matched, then e2 and e ′2 are also considered matches.

All these methods employ Unique Mapping Clustering for
detecting matches: they place all pairs into a priority queue, in
decreasing similarity. At each iteration, the top pair is considered
a match, if none of its entities has been already matched. The
process ends when the top pair has a similarity lower than t .

MinoanER employs Unique Mapping Clustering, too. Yet,
it differs from SiGMa, LINDA and RiMOM-IM in five ways:
(i) the matching process iterates over the disjunctive blocking
graph, instead of the initial KBs. (ii) MinoanER employs statistics
to automatically discover distinctive entity names and important
relations. (iii) MinoanER exploits different sources of matching
evidence (values, names and neighbors) to statically identify can-
didate matches already from the step of blocking. (iv) MinoanER
does not aggregate different similarities in one similarity score;
instead, it uses a disjunction of the different evidence it considers.
(v) MinoanER is a static collective ER approach, in which all
sources of similarity are assessed only once per candidate pair. By
considering a composite blocking not only on the value but also
on the neighbors similarity, we discover in a non-iterative way
most of the matches returned by the data-driven convergence of
existing systems, or even more (see Section 6).

PARIS [33] uses a probabilistic model to identify matches,
based on previous matches and the functional nature of entity
relations. A relation is considered functional if, for a source entity,
there is only one destination entity. If r (x ,y) is a function in one
KB and r (x ,y′) a function in another KB, then y and y′ are con-
sidered matches. The functionality of a relation and the alignment
of relations along with previous matching decisions determine
the decisions in subsequent iterations. Unlike MinoanER, PARIS
cannot deal with structural heterogeneity, while it targets both
ontology and instance matching.

Finally, [30] parallelizes the collective ER approach of [2], re-
lying on a black-box matching and exploits a set of heuristic rules
for structured entities. It essentially runs multiple instances of
the matching algorithm in subsets of the input entities (similar
to blocks), also keeping information for all the entity neighbors,
needed for similarity propagation. Since some rules may require

the results of multiple blocks, an iterative message-passing frame-
work is employed. Rather than a block-level synchronization, the
MinoanER parallel computations in Spark require synchronization
only across the 4 generic matching rules (see Figure 4).

Regarding the matching rules, the ones employed by MinoanER
based on values and names are similar to rules that have already
been employed in the literature individually (e.g., in [21, 23, 31]).
In this work, we use a combination of those rules for the first time,
also introducing a novel rank aggregation rule to incorporate value
and neighbor matching evidence. Finally, the idea of reciprocity
has been applied to enhance the results of Meta-blocking [28], but
was never used in matching.

Blocking. Blocking techniques for relational databases [6] rely
on blocking keys defined at the schema-level. For example, the
Sorted Neighborhood approach orders entity descriptions accord-
ing to a sorting criterion and performs blocking based on it; it is ex-
pected that matching descriptions will be neighbors after the sort-
ing, so neighbor descriptions constitute candidate matches [17].
Initially, entity descriptions are lexicographically ordered based
on their blocking keys. Then, a window, resembling a block, of
fixed length slides over the ordered descriptions, each time com-
paring only the contents of the window. An adaptive variation of
the sorted neighborhood method is to dynamically decide on the
size of the window [35]. In this case, adjacent blocking keys in
the sorted descriptions that are significantly different from each
other, are used as boundary pairs, marking the positions where
one window ends and the next one starts. Hence, this variation cre-
ates non-overlapping blocks. In a similar line of work, the sorted
blocks method [11] allows setting the size of the window, as well
as the degree of desired overlap.

Another recent schema-based blocking method uses Maximal
Frequent Itemsets (MFI) as blocking keys [19] – an itemset can
be a set of tokens. Abstractly, each MFI of a specific attribute
in the schema of a description defines a block, and descriptions
containing the tokens of an MFI for this attribute are placed in a
common block. Using frequent itemsets to construct blocks may
significantly reduce the number of candidates for matching pairs.
However, since many matching descriptions share few, or even
no common tokens, further requiring that those tokens are parts
of frequent itemsets is too restrictive. The same applies to the
requirement for a-priori schema knowledge and alignment, thus
resulting in many missed matches in the Web of Data.

Although blocking has been extensively studied for tabular
data, the proposed approaches cannot be used for the Web of Data,
since their blocking keys rely on the existence of a global schema.
However, the use of schema-based blocking keys is inapplicable
to the Web of Data, due to its extreme schema heterogeneity [15]:
entity descriptions do not follow a fixed schema, as even a single
description typically uses attributes defined in multiple LOD vo-
cabularies. In this context, schema-agnostic blocking methods are
needed instead. Yet, the schema-agnostic functionality of most
blocking methods requires extensive fine-tuning to achieve high
effectiveness [29]. The only exception is token blocking, which
is completely parameter-free [26]. Another advantage of token
blocking is that it allows for computing value similarity from
its blocks, as they contain entities with identical blocking keys –
unlike other methods like Dedoop [20] and Sorted Neighborhood
[17], whose blocks contain entities with similar keys.

SiGMa [21] considers descriptions with at least two common
tokens as candidate matches, which is more precise than our token
blocking, but misses more matches. The missed matches will be
considered in subsequent iterations, if their neighbor similarity is
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Table 1: Dataset statistics.
Restau- Rexa- BBCmusic- YAGO-

rant DBLP DBpedia IMDb
E1 entities 339 18,492 58,793 5,208,100
E2 entities 2,256 2,650,832 256,602 5,328,774

E1 triples 1,130 87,519 456,304 27,547,595
E2 triples 7,519 14,936,373 8,044,247 47,843,680

E1 av. tokens 20.44 40.71 81.19 15.56
E2 av. tokens 20.61 59.24 324.75 12.49

E1/E2 attributes 7 / 7 114 / 145 27 / 10,953 65 / 29
E1/E2 relations 2 / 2 103 / 123 9 / 953 4 / 13
E1/E2 types 3 / 3 4 / 11 4 / 59,801 11,767 / 15
E1/E2 vocab. 2 / 2 4 / 4 4 / 6 3 / 1

Matches 89 1,309 22,770 56,683

strong, whereas MinoanER identifies such matches from the step of
blocking. RiMOM-IM [31] computes the tokens’ TF-IDF weights,
takes the top-5 tokens of each entity, and constructs a block for
each one, along with the attribute this value appears. Compared to
the full automation of MinoanER, this method requires attribute
alignment. [25] iteratively splits large blocks into smaller ones by
adding attributes to the blocking key. This leads to a prohibitive
technique for voluminous KBs of high Variety.

Disjunctive blocking schemes have been proposed for KBs of
high [18] and low [3] levels of schema heterogeneity. Both meth-
ods, though, are of limited applicability, as they require labelled
instances for their supervised learning. In contrast, MinoanER
copes with the Volume and Variety of the Web of Data, through an
unsupervised, schema-agnostic, disjunctive blocking.

Finally, LSH blocking techniques (e.g., [24]) hash descriptions
multiple times, using a family of hash functions, so that similar
descriptions are more likely to be placed into the same bucket
than dissimilar ones. This requires tuning a similarity threshold
between entity pairs, above which they are considered candidate
matches. This tuning is non-trivial, especially for descriptions
from different domains, while its effectiveness is limited for nearly
similar entities (see Figure 2).

6 EXPERIMENTAL EVALUATION
In this section, we thoroughly compare MinoanER to state-of-the-
art tools and a heavily fine-tuned baseline method.
Experimental Setup. All experiments were performed on top
of Apache Spark v2.1.0 and Java 8, on a cluster of 4 Ubuntu
16.04.2 LTS servers. Each server has 236GB RAM and 36 Intel(R)
Xeon(R) E5-2630 v4 @2.20GHz CPU cores.
Datasets. We use four established benchmark datasets with en-
tities from real KBs. Their technical characteristics appear in
Table 1. All KBs contain relations between the described entities.

Restaurant7 contains descriptions of restaurants and their ad-
dresses from two different KBs. It is the smallest dataset in terms
of the number of entities, triples, entity types8, as well as the
one using the smallest number of vocabularies. We use it for two
reasons: (i) it is a popular benchmark, created by the Ontology
Alignment Evaluation Initiative, and (ii) it offers a good example
of a dataset with very high value and neighbor similarity between
matches (Figure 2), involving the easiest pair of KBs to resolve.

Rexa-DBLP9 contains descriptions of publications and their
authors. The ground truth contains matches between both publica-
tions and authors. This dataset contains strongly similar matches in
terms of values and neighbors (Figure 2). Although it is relatively

7http://oaei.ontologymatching.org/2010/im/
8Extracted using the attribute w3.org/1999/02/22-rdf-syntax-ns#type.
9oaei.ontologymatching.org/2009/instances/

Table 2: Block statistics.
Restaurant Rexa- BBCmusic- YAGO-

DBLP DBpedia IMDb
|BN | 83 15,912 28,844 580,518
|BT | 625 22,297 54,380 495,973

| |BN | | 83 6.71·107 1.25·107 6.59·106

| |BT | | 1.80·103 6.54·108 1.73·108 2.28·1010

|E1 | · |E2 | 7.65·105 4.90·1010 1.51·1010 2.78·1013

Precision 4.95 1.81·10−4 0.01 2.46·10−4

Recall 100.00 99.77 99.83 99.35
F1 9.43 3.62·10−4 0.02 4.92·10−4

easy to resolve, Table 1 shows that it exhibits the greatest differ-
ence with respect to the size of the KBs to be matched (DBLP is
2 orders of magnitude bigger than Rexa in terms of descriptions,
and 3 orders of magnitude in terms of triples).

BBCmusic-DBpedia [14] contains descriptions of musicians,
bands and their birthplaces, from BBCmusic and the BTC2012
version of DBpedia10. In our experiments, we consider only en-
tities appearing in the ground truth, as well as their immediate
in- and out-neighbors. The most challenging characteristic of this
dataset is the high heterogeneity between its two KBs in terms
of both schema and values: DBpedia contains ∼11,000 different
attributes, ∼60,000 entity types, 953 relations, the highest number
of different vocabularies (6), while using on average 4 times more
tokens than BBCmusic to describe an entity. The latter feature
means that all normalized, set-based similarity measures like Jac-
card fail to identify such matches, since a big difference in the
token set sizes yields low similarity values (see Figure 2). A thor-
ough investigation has shown that in the median case, an entity
description in this dataset contains only 2 words in its values that
are used by both KBs [14].

YAGO-IMDb [33] contains descriptions of movie-related enti-
ties (e.g., actors, directors, movies) from YAGO11 and IMDb12.
Figure 2 shows that a large number of matches in this dataset has
low value similarity, while a significant number has high neighbor
similarity. Moreover, this is the biggest dataset in terms of entities
and triples, challenging the scalability of ER tools, while it is the
most balanced pair of KBs with respect to their relative size.
Baselines. In our experiments, we compare MinoanER against
four state-of-the-art methods: SiGMa, PARIS, LINDA and Ri-
MOM. PARIS is openly available, so we ran its original imple-
mentation. For the remaining tools, we report their performance
from the original publications13. We also consider BSL, a custom
baseline method that receives as input the disjunctive blocking
graph G, before pruning, and compares every pair of descriptions
connected by an edge in G. The resulting similarities are then
processed by Unique Mapping Clustering. Unlike MinoanER,
though, BSL disregards all evidence from entity neighbors, relying
exclusively on value similarity. Yet, it optimizes its performance
through a series of well-established string matching methods that
undergo extensive fine-tuning on the basis of the ground-truth.

In more detail, we consider numerous configurations for the
four parameters of BSL in order to maximize its F1: (i) The
schema-agnostic representation of the values in every entity. BSL
uses token n-grams for this purpose, with n ∈ {1, 2, 3}, thus repre-
senting every resource by the token uni-/bi-/tri-grams that appear

10datahub.io/dataset/bbc-music, km.aifb.kit.edu/projects/btc-2012/
11www.yago-knowledge.org
12www.imdb.com
13RiMOM-IM [31] is openly available, but no execution instructions were made
available to us.
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Figure 5: Sensitivity analysis of the four configuration parameters of our MinoanER.

in its values. (ii) The weighting scheme that assesses the impor-
tance of every token. We consider TF and TF-IDF weights. (iii)
The similarity measure, for which we consider the following well-
established similarities: Cosine, Jaccard, Generalized Jaccard and
SiGMa (which applies exclusively to TF-IDF weights [21]). All
measures are normalized to [0, 1]. (iv) The similarity threshold
that prunes the entity pairs processed by Unique Mapping Clus-
tering. We use all thresholds in [0, 1) with a step of 0.05. In total,
we consider 420 different configurations, reporting the highest F1.

6.1 Effectiveness Evaluation
Blocks Performance. First, we examine the performance of the
blocks used by MinoanER (and BSL). Their statistics appear in
Table 2. We observe that the number of comparisons in token
blocks (| |BT | |) is at least 1 order of magnitude larger than those of
name blocks (| |BN | |), even if the latter may involve more blocks
(|BN |> |BT | over YAGO-IMDb). In fact, | |BN | | seems to depend
linearly on the number of input descriptions, whereas | |BT | | seems
to depend quadratically on that number. Nevertheless, the over-
all comparisons in BT ∪ BN are at least 2 orders of magnitude
lower than the Cartesian product |E1 | · |E2 |, even though recall is
consistently higher than 99%. On the flip side, both precision and
F-Measure (F1) remain rather low.
Parameter Configuration. Next, we investigate the robustness of
our method with respect to its internal configuration. To this end,
we perform a sensitivity analysis, using the following meaningful
values for the four parameters of MinoanER: k ∈ {1, 2, 3, 4, 5}
(the number of most distinct predicates per KB whose values
serve as names), K ∈ {5, 10, 15, 2, 25} (the number of candidate
matches per entity from values and neighbors), N ∈ {1, 2, 3, 4, 5}
(the number of the most important relations per entity), and
θ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} (the trade-off between value- vs
neighbor-based candidates). Preliminary experiments demonstrated
that the configuration (k,K ,N ,θ ) = (2, 15, 3, 0.6) yields a perfor-
mance very close to the average one. Therefore, we use these
parameter values as the default ones in our sensitivity analysis.

In more detail, we sequentially vary the values of one parameter,
keeping the others fixed to their default value, so as to examine its
effect on the overall F1 of MinoanER. The results appear in the
diagrams of Figure 5. We observe that MinoanER is quite robust
in most cases, as small changes in a parameter value typically
lead to an insignificant change in F1. This should be attributed to
the composite functionality of MinoanER and its four matching
rules,in particular: even if one rule is misconfigured, the other
rules make up for the lost matches. There are only two exceptions:

(i) There is a large increase in F1 over BBCmusic-DBpedia
when k increases from 1 to 2. The former value selects completely
different predicates as names for the two KBs, due to the schema
heterogeneity of DBpedia, thus eliminating the contribution of the
name matching rule to F1. This is ameliorated for k=2.

(ii) F1 is significantly lower over BBCmusic-DBpedia and
YAGO-IMDb for θ < 0.5. This should be expected, since Figure

Table 3: Evaluation of MinoanER in comparison to the state-
of-the-art methods and the heavily fine-tuned baseline, BSL.

Restau- Rexa- BBCmusic- YAGO-
rant DBLP DBpedia IMDb

SiGMa [21]
Prec. 99 97 - 98
Recall 94 90 - 85
F1 97 94 - 91

LINDA [4]
Prec. 100 - - -
Recall 63 - - -
F1 77 - - -

RiMOM [23]
Prec. 86 80 - -
Recall 77 72 - -
F1 81 76 - -

PARIS [33]
Prec. 95 93.95 19.40 94
Recall 88 89 0.29 90
F1 91 91.41 0.51 92

BSL
Prec. 100 96.57 85.20 11.68
Recall 100 83.96 36.09 4.87
F1 100 89.82 50.70 6.88

MinoanER
Prec. 100 96.74 91.44 91.02
Recall 100 95.34 88.55 90.57
F1 100 96.04 89.97 90.79

2 demonstrates that both datasets are dominated by nearly-similar
matches, with the value similarity providing insufficient evidence
for detecting them. Hence, θ should promote neighbor-similarity
at least to the same level as the value-similarity (i.e., θ ≥ 0.5).

As a result, next, we can exclusively consider the configuration
(k,K ,N ,θ ) = (2, 15, 3, 0.6) for MinoanER. This is the suggested
global configuration that works well over all datasets, but parame-
ter tuning per individual dataset may yield better results.
Comparison with Baselines. Table 3 shows that MinoanER of-
fers competitive performance when matching KBs with few at-
tributes and entity types, despite requiring no domain-specific
input. Specifically, it achieves 100% F1 in Restaurant, which is
3% higher than SiGMa, 9% higher than PARIS, and ∼20% higher
than LINDA and RiMOM. BSL also achieves perfect F1, due
to the strongly similar matches (see Figure 2). In Rexa-DBLP,
MinoanER also outperforms all existing ER methods. It is 2%
better than SiGMa in F1, 4.6% better than PARIS, 20% better than
RiMOM, and 6% better than BSL. In YAGO-IMDb, MinoanER
achieves similar performance to SiGMa (91% F1), with more iden-
tified matches (91% vs 85%), but lower precision (91% vs 98%).
Compared to PARIS, its F1 is 1% lower, due to 3% lower precision,
despite the 1% better recall. The high structural similarity between
the two KBs make this dataset a good use case for PARIS. BSL
exhibits the worst performance, due to the very low value similar-
ity of matches in this KB. Most importantly, MinoanER achieves
the best performance by far over the highly heterogeneous KBs
of BBCmusic-DBpedia. PARIS struggles to identify the matches,
with BSL performing significantly better, but still poorly in abso-
lute numbers. In contrast, MinoanER succeeds in identifying 89%
of matches with 91% precision, achieving a 90% F1.

Comparing the performance of MinoanER to that of its input
blocks, precision raises by several orders of magnitude at the cost
of slightly lower recall. The lower recall is caused by missed
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Table 4: Evaluation of matching rules.

Restau- Rexa- BBCmusic- YAGO-
rant DBLP DBpedia IMDb

R1
Precision 100 97.36 99.85 97.55
Recall 68.54 87.47 66.11 66.53
F1 81.33 92.15 79.55 79.11

R2
Precision 100 96.15 90.73 98.02
Recall 100 30.56 37.01 69.14
F1 100 46.38 52.66 81.08

R3
Precision 98.88 94.73 81.49 90.51
Recall 98.88 94.73 81.49 90.50
F1 98.88 94.73 81.49 90.50

¬R4
Precision 100 96.03 89.93 90.58
Recall 100 96.03 89.93 90.57
F1 100 96.03 89.93 90.58

No Precision 100 96.59 89.22 88.05
Neigh- Recall 100 95.26 85.36 87.42
bors F1 100 95.92 87.25 87.73

matches close to the lower left corner of Figure 2, i.e., with very
low value and neighbor similarities. This explains why the impact
on recall is larger for BBCmusic-DBpedia and YAGO-IMDb.
Evaluation of Matching Rules. Table 4 summarizes the perfor-
mance of each matching rule in Algorithm 2, when executed alone,
as well as the overall contribution of neighbor similarity evidence.
• Name Matching Rule (R1). This rule achieves both high pre-

cision (> 97%) and a decent recall (> 66%) in all cases. Hence,
given no other matching evidence, R1 alone yields good matching
results, emphasizing precision, with only an insignificant num-
ber of its suggested matches being false positives. To illustrate
the importance of this similarity evidence in real KBs, we have
marked the matches with identical names in Figure 2 as bordered
points. Thus, we observe that matches may agree on their names,
regardless of their value and neighbor similarity evidence.
• Value Matching Rule (R2). This rule is also very precise

(> 90% in all cases), but exhibits a lower recall (> 30%). Never-
theless, even this low recall is not negligible, especially when it
complements the matches found from R1. In the case of strongly
similar matches as in Restaurant, this rule alone can identify all
the matches with perfect precision.
• Rank Aggregation Matching Rule (R3). The performance of

this rule varies across the four datasets, as it relies on neighbor-
hood evidence. For KBs with low value similarity (left part of
Figure 2), this rule is the only solution for finding matches having
no/different names. In BBCmusic-DBpedia and YAGO-IMDb, it
has the highest contribution in recall and F1 of all matching rules,
with the results for YAGO-IMDb being almost equivalent to those
of Table 3 (YAGO-IMDb features the lowest value similarities in
Figure 2). For KBs with medium value similarity (middle part of
Figure 2), but not enough to find matches with R2, aggregating
neighbor with value similarity is very effective. In Rexa-DBLP,
R3 yields almost perfect results. Overall, R3 is the matching rule
with the greatest F1 in 3 out of 4 datasets.
• Reciprocity Matching Rule (R4). Given that R4 is a filtering

rule, i.e., it does not add new results, we measure its contribution
by running the full workflow without it. Its performance in Table 4
should be compared to the results in Table 3. This comparison
shows that this rule increases the precision of MinoanER, with a
small, or no impact on recall. Specifically, it increases the preci-
sion of BBCmusic-DBpedia by 1.51%, while its recall is decreased
by 1.38%, and in the case of YAGO-IMDb, it improves precision
by 0.44% with no impact on recall. This results in an increase of
0.04% and 0.21% in F1. Overall, R4 is the weakest matching rule,
yielding only a minor improvement in the results of MinoanER.

Contribution of neighbors. To evaluate the contribution of neigh-
bor evidence in the matching results, we have repeated Algo-
rithm 2, without the rule R3. Note that this experiment is not
the same as our baseline; here, we use all the other rules, also
operating on the pruned disjunctive blocking graph, while the
baseline does not use our rules and operates on the unpruned
graph. The results show that neighbor evidence plays a minor or
even no role in KBs with strongly similar entities, i.e., Restaurant
and Rexa-DBLP, while having a bigger impact in KBs with nearly
similar matches, i.e., BBCmusic-DBpedia and YAGO-IMDb (see
Figure 2). Specifically, compared to the results of Table 3, the use
of neighbor evidence improves precision by 2.22% and recall by
3.19% in BBCmusic-DBpedia, while, in YAGO-IMDB, precision
is improved by 2.97% and recall by 3.15%.

6.2 Efficiency Evaluation
To evaluate the scalability of matching in MinoanER, we present
in Figure 6 the running times and speedup of matching for each
dataset, as we change the number of available CPU cores in our
cluster, i.e., the number of tasks that can run at the same time. In
each diagram, the left vertical axis shows the running time and the
right vertical axis shows the speedup, as we increase the number
of available cores (from 1 to 72) shown in the horizontal axis14.
Across all experiments, we have kept the same total number of
tasks, which was defined as the number of all cores in the cluster
multiplied by a parallelism factor of 3, i.e., 3 tasks are assigned
to each core, when all cores are available. This was to ensure
that each task would require the same amount of resources (e.g.,
memory), regardless of the number of available cores.

We observe that the running times decrease as more cores be-
come available, and this decrease is steeper when using a small
number of cores. For example, resolving Rexa-DBLP with 6 cores
is 6 times faster than with 1 core, while it is 10 times faster with
12 cores than with 1 core (top-right of Figure 6). We observe a
sub-linear speedup in all cases, which is expected when synchro-
nization is required for different steps (see Section 4.1). Though,
the bigger datasets have a speedup closer to linear than the smaller
ones, because the Spark overhead is smaller with respect to the
overall running time in these cases. We have also measured the
percentage of time spent for the matching phase (Algorithm 2)
compared to the total execution time of MinoanER. In Restau-
rant and Rexa-DBLP, matching takes 45% of the total time, in
BBCmusic-DBpedia 30% and in YAGO-IMDb 20%. Thus, in all
cases, matching takes less than half the execution time, while it
takes smaller percentage of time as the tasks get bigger.

It is not possible to directly compare the efficiency of Mi-
noanER with the competitive tools of Table 3; most of them are
not publicly available, while the available ones do not support
parallel execution using Spark. The running times reported in the
original works are about sequential algorithms executed in ma-
chines with a different setting than ours. However, we can safely
argue that our fixed-step process, as opposed to the data-iterative
processes of existing works, boosts the efficiency of MinoanER at
no cost in (or, in most cases, with even better) effectiveness. In-
dicatively, the running time of MinoanER for Rexa-DBLP was 3.5
minutes (it took PARIS 11 minutes on one of our cluster’s servers
- see Experimental Setup - for the same dataset), for BBCmusic-
DBpedia it was 69 seconds (it took PARIS 3.5 minutes on one of

14We could not run MinoanER on the YAGO-IMDb dataset with only 1 core, due
to limited space in a single machine, so we report its running time starting with a
minimum of 4 cores. This means that the linear speedup for 72 tasks would not be
72, but 18 (72/4).
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Figure 6: Scalability of matching in MinoanER w.r.t. running time (left vertical axis) and speedup (right vertical axis) as more
cores are involved.

our cluster’s servers), while the running time for YAGO-IMDb
was 28 minutes (SiGMa reports 70 minutes, and PARIS reports
51 hours). In small datasets like Restaurant, MinoanER can be
slower than other tools, as Spark has a setup overhead, which is
significant for such cases (it took MinoanER 27 seconds to run
this dataset, while PARIS needed 6 seconds).

7 CONCLUSIONS
In this paper, we have presented MinoanER, a fully automated,
schema-agnostic and massively parallel framework for ER in the
Web of Data. To resolve highly heterogeneous entities met in
this context, MinoanER relies on schema-agnostic similarity met-
rics that consider both the content and the neighbors of entities. It
exploits these metrics in a composite blocking scheme and concep-
tually builds a disjunctive blocking graph - a novel, comprehensive
abstraction that captures all sources of similarity evidence. This
graph of candidate matches is processed by a non-iterative al-
gorithm that consists of four generic, schema-agnostic matching
rules, with linear cost to the number of entity descriptions and
robust performance with respect to their internal configuration.

The results show that neighbor evidence plays a minor role
in KBs with strongly similar entities, such as Restaurant and
Rexa-DBLP, while having a big impact in KBs with nearly sim-
ilar entities, such as in BBCmusic-DBpedia and YAGO-IMDb.
MinoanER achieves at least equivalent performance with state-of-
the-art ER tools over KBs exhibiting low Variety, but outperforms
them to a significant extent when matching KBs with high Variety.
The employed matching rules (R1, R2, R3, R4) manage to cover
a wide range of matches, as annotated in Figure 2, but there is
still room for improvement, since the recall of blocking is better
than that of matching. As an improvement, we will investigate
how to create an ensemble of matching rules and how to set the
parameters of pruning candidate pairs dynamically, based on the
local similarity distributions of each node’s candidates.
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