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Abstract 

The immunosuppressive microenvironment in glioblastoma (GBM) prevents an efficient 

antitumoral immune response and enables tumor formation and growth. Although an 

understanding of the nature of immunosuppression is still largely lacking, it is important for 

successful cancer treatment through immune system modulation. To gain insight into 

immunosuppression in GBM, we performed a computational analysis to model relative immune 

cell content and type of immune response in each GBM tumor sample from The Cancer Genome 

Atlas RNA-seq dataset. We uncovered high variability in immune system-related responses and 

in the composition of the microenvironment across the cohort, suggesting immunological 

diversity. Immune cell compositions were associated with typical alterations such as IDH 

mutation or inactivating NF1 mutation/deletion. Furthermore, our analysis identified three GBM 

subgroups presenting different adaptive immune responses:  Negative, Humoral, and Cellular- 

like. These subgroups were linked to transcriptional GBM subtypes and typical genetic 

alterations. All G-CIMP and IDH-mutated samples were in the Negative group, which was also 

enriched by cases with focal amplification of CDK4 and MARCH9. IDH1-mutated samples 

showed lower expression and higher DNA methylation of MHC-I -type HLA genes. Overall, our 

analysis reveals heterogeneity in the immune microenvironment of GBM and identifies new 

markers for immunosuppression. Characterization of diverse immune responses will facilitate 

patient stratification and improve personalized immunotherapy in the future. 

 

Statement of Significance 

This study utilizes a computational approach to characterize the immune environments in 

glioblastoma and shows that glioblastoma immune microenvironments can be classified into 

three major subgroups, which are linked to typical glioblastoma alterations such as IDH 

mutation, NF1 inactivation, and CDK4-MARCH9 locus amplification. 

 

Background 

Glioblastoma (GBM) is the most common malignant brain tumor in adults. Despite 

improvements in treatment, the median survival time of GBM patients remains approximately 

only 15 months after diagnosis (1,2). Poor prognosis is mostly due to the high proliferation rate, 
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treatment resistance against chemotherapy and all tested targeted therapies, and aggressive 

infiltration of the cancer cells into surrounding non-malignant brain tissue. Immunotherapies, 

which have delivered encouraging and long-lasting responses in many human cancers (3), have 

become a topic of great interest in GBM as well (4–6). Their general scope is to overcome the 

immunosuppression in the tumor microenvironment to activate the patient's own immune system 

to fight against the tumor. Immunosuppression can be generated via different mechanisms, such 

as regulatory T cells, checkpoint inhibitors and by secreting cytokines that inhibit the function of 

the effector cells (7). Understanding the mechanisms through which immunosuppression is 

established in GBM tumors is the key for successful personalized immunotherapies in the near 

future. The immune microenvironment of GBM has been characterized by the presence of 

specific immune cell types, but the implications of these cell types to the disease state are not 

well understood. Some studies associate the presence of tumor-infiltrating lymphocytes (TILs) 

with improved patient overall survival in GBM (8,9) while others have not observed such a 

correlation (10,11). Likewise, the total number of macrophages has been reported to correlate 

positively with patient survival (12) but opposite results have also been reported (13). Thus, the 

clinical relevance of TIL and macrophage infiltration remains unclear.  

 

Both microglia and peripherally recruited macrophages can act as tumor-associated macrophages 

in the GBM microenvironment (14–16). Infiltration of either or both is a common feature in 

GBM (4,17–19), while the lymphocyte infiltration rate is generally low (19,20). The number of 

immune cells in the GBM microenvironment has been associated with specific alterations (21–

24). For example, IDH mutation has recently been shown to associate with decreased immune 

cell infiltration (22,23), whereas inactivated NF1 has been associated with increased macrophage 

infiltration (24).  

 

We developed a computational analysis framework for modeling the GBM immune 

microenvironment to better understand the function and role of the immune system in GBM. Our 

approach builds on the regression analysis-based gene expression deconvolution that has been 

successfully used to estimate relative proportions of selected cell types from RNA expression 

data (25–27). We used regression analysis to computationally estimate the proportions of 

immune cell types and other normal cell components in the GBM microenvironment. The 
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regression analysis was combined with a data driven-analysis of immune system and immune 

response-related gene sets. This approach enabled us to study different prevailing immunological 

states in the GBM microenvironment and facilitated the analysis of both structural and functional 

aspects of the tumor-immune system interaction.  

 

Materials and Methods 

RNA-seq data processing 

Raw sequencing reads from RNA-seq experiments of 156 primary GBM samples generated by 

the Cancer Genome Atlas (TCGA) were downloaded from the NCI Genomic Data Commons. 

Raw sequencing reads from RNA-seq data of normal cell types (granulocyte, macrophage M1, 

macrophage M2, neuron, fibroblast, CD4+ T cell, CD8+ T cell, endothelial cell, neutrophil, B cell 

and neural stem cell (NSC)) and RNA-seq of brain tissue were obtained from the NCBI Gene 

Expression Omnibus (GEO; Supplementary Table S1). Sequencing reads were aligned using 

STAR aligner version 2.4.0 (28) and Ensembl reference genome GRC37. Expression levels were 

quantified as RPKM based on Gencode annotations release 19 using bedtools version 2.19.0. 

Data were quantile normalized and log2 transformed. In the case of multiple GBM samples from 

the same patient (patients TCGA-06-0211 and TCGA-06-0156) in the TCGA dataset, samples 

were combined by taking the mean. The final processed TCGA dataset consisted of 154 unique 

GBM samples. Likewise, the mean expressions of macrophage M1 and macrophage M2 were 

used as a macrophage sample and the mean expression of neutrophil and granulocyte was used 

as a granulocyte sample in the analysis. For validation, an independent RNA-seq dataset 

including of 59 primary GBM samples and two RNA-seq datasets including whole blood 

samples containing 5 (dataset 1) and 2 (dataset 2) samples with observed cell proportions (27), 

were downloaded from GEO and processed as described above.  

 

Microarray analysis 

Raw microarray data from mixtures of four transformed cell lines and data from the individual 

cell lines were downloaded from the GEO (Accession number GSE11058). Mixtures of cell lines 

contain Raji (from B cells), IM-9 (from B cells), Jurkat (from T cells) and THP-1 (from 

monocytes) cell lines in four different known proportions. R packages ‘affy’ and ‘annotate’ were 
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used to process the raw data. The data were background corrected using RMA and the probe sets 

were annotated using the ‘hgu133plus2.db’ (version 2.1) array annotation data. 

 

Clinical data, genomic alterations, and methylation data 

Clinical data for GBM samples were downloaded from TCGA data portal. Mutation and copy 

number variation (CNV, determined using GISTIC 2.0), data were downloaded from cBioPortal 

(29,30) for typically mutated and altered genes in GBM (Supplementary Table S1). Beta values 

from Illumina Infinium Human DNA Methylation 450 array of 155 GBM samples generated by 

TCGA were downloaded from the NCI Genomic Data Commons. 

 

Statistical analyses 

Statistical analyses were performed using R version 3.2.2. All analyses testing for differences in 

cluster activities were performed using Wilcoxon’s rank-sum test, and all analyses testing for 

differences in immune cell proportions were performed using Fisher’s exact test. In Fisher’s 

exact test samples were divided into groups based on, e.g., alteration and subgroup, and based on 

whether the coefficient of a specific immune cell type was negative, zero or positive. 

Associations with patient survival were tested using the log-rank test.  

  

Identification of the immune system related gene clusters 

Clustering analysis was performed on gene expression data of 154 GBM samples by using the 

Markov Cluster Algorithm (31) and absolute values of Pearson correlation as a similarity metric. 

Before clustering analysis genes were filtered based on their variance and the genes with low 

variance, below 0.035, were omitted. Filtering resulted in expression profiles for 27172 genes. 

Clusters containing fewer than 10 genes were excluded from the analysis. For the remaining 

gene clusters, gene set enrichment for Gene Ontology categories and KEGG pathways was tested 

using Fisher’s exact test. Categories with p-values smaller than 0.05 were considered statistically 

significant. After the enrichment analysis the clusters that showed an enrichment of immune 

response related Gene Ontology and KEGG pathway terms were chosen for further analyses and 

named based on the enrichments and Ingenuity Pathway Analysis (IPA) (QIAGEN, CA, USA) 

results. 
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Regression analysis 

Regression analysis was performed for RNA-seq and microarray data as follows; in each sample, 

the expression profile of each gene was modeled as the sum of the expression profiles of that 

gene times the proportion of each cell type in the sample (principle outlined in Supplementary 

Fig. S1). For each sample separately, this can be written as an equation: 

 

𝑦 = 𝑋𝛽 + 𝑥'()𝛽'() + 𝛽* + 𝜀, where 𝑋 ∈ ℝ./0, 𝛽 ∈ ℝ0, 𝑦 ∈ ℝ., 

where 𝑋 is the matrix of the expression levels of 𝑚 genes (rows) in 𝑛 cell types (columns), 𝑦	 is 

the vector of expression levels of all genes in one sample, 𝛽 is the vector of relative levels of cell 

types present in the sample, x'() is a median sample composed from a separate sample group, 

𝛽'() is the relative level of median sample present in the sample, 𝛽0 is constant and ε is the 

residual. We use logarithmic data for expression levels in X and y, so that the equation is a 

locally linear approximation of the variability in the cell type content between samples around 

the reference expression profile. The logarithmic data is also a better fit to our model, and 

involves the effects of genes with low expression in the model fit.  To estimate β, β'(), and β* in 

the equation, linear regression with elastic net regularization (32) was used, minimizing the error 

criterion 

 

7
8.
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(7CD)9Fβ,	β𝑟𝑒𝑓G9H
H

8
+ 𝛼 9Fβ, 	β𝑟𝑒𝑓G97

J, where 𝜆 ≥ 0, 0 ≤ 𝛼 ≤ 1. 

 

Elastic-net mixing parameter	𝛼	mixes ridge (𝛼 = 0) and lasso (𝛼 = 1) regression. The 

regularization parameter 𝜆, which gives the most regularized model such that the error is within 

one standard error of the minimum, was chosen using 10-fold cross-validation, and a value of 0.5 

was used for the elastic-net mixing parameter 𝛼. 

 

Code for the regression analysis is available at http://github.com/NykterLab/GBM_immune. 

 

Validation of the regression analysis using simulated and real measurement data 
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For generation of validation data, RNA-seq data from four normal cell types (B cell, granulocyte, 

macrophage and neuron) and from a randomly chosen GBM sample (TCGA-27-1834) were used 

as a starting point. First, 20 different proportions of GBM sample were used from range [0, 1]. 

The proportions of four normal cell types were randomly chosen from the range [0, 1] so that the 

proportions of cell types and the GBM sample added up to one for each sample. The expression 

profiles were weighted with the corresponding proportions and added together. Noise was added 

to the simulated samples (0-100% of the variance of the data). One hundred samples were 

simulated using this process in each case.  

 

Next, to test the effect of the missing reference cell type, the proportion of the GBM sample was 

set to 0.8 and the proportion of macrophage was set to 16 different proportions from the range [0, 

0.15]. Again, the proportions of other cell types were randomly chosen from the range [0,1] so 

that the total proportion of all cell types and GBM sample was one for each sample and weighted 

expression profiles were added together. Noise was also added to these simulated samples (0-

100% of the variance of the data). As a third validation dataset, microarray data from mixtures of 

four transformed cell lines and individual cell lines was used.  

 

The regression analysis was performed for all simulated, cell line data, dataset 1, and dataset 2 as 

follows. Regression analysis was performed for all five datasets using all the genes in the 

identified 8 immune system related gene clusters. For the first set of simulated samples, all four 

normal cell types and median GBM reference were used as reference cell types. The GBM 

reference was composed by taking the median from the expression of 12 randomly chosen GBM 

samples. For sets of simulated samples with varying macrophage proportion, the regression 

analysis was performed without the expression profile of macrophage as reference. For mixtures 

of four cell lines, all cell lines were used as a reference together with a median mixture sample in 

the regression analysis. One replicate of each mixture was randomly chosen and the resulting 

four samples were used to generate the median sample, whereas the regression analysis was 

performed for the remaining replicates. For dataset 1 median of the B cell and T cell profiles, 

neutrophil, and macrophage were used as reference cell types together with the median of four 

whole blood samples. For dataset 2 median of the T cell profiles, B cell, and macrophage were 

used as reference cell types. No median sample was used due to the low number of samples.  
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Regression analysis for glioblastoma samples 

The regression analysis for the GBM samples was performed as described for 142 GBM samples 

not used for the GBM reference sample. Data from normal cell types (granulocyte, macrophage, 

neuron, fibroblast, endothelial cell, CD4+ T cell, CD8+ T cell, B cell, neural stem cell) and 

normal brain tissue were used as explanatory variables. In addition, a GBM reference was used 

as an explanatory variable.  

 

Cluster activity  

For each identified immune related cluster, cluster activity was calculated as follows. For each 

gene, expression values were scaled to the interval [0,1] after truncating values below the 3rd 

and above the 97th percentiles to corresponding percentiles to remove outliers from the data. As 

some of the clusters contained a smaller subset of genes that negatively correlate with other 

genes in the cluster, cluster activity was calculated as a median of the majority of genes having a 

positive pairwise correlation with each other.  

  

Clustering 

Data in heat maps were clustered using Euclidean distance and complete linkage if not otherwise 

specified.  

 

A consensus clustering of samples was performed using cluster activities from all 8 immune 

system related clusters, with Pearson’s correlation as a similarity metric and k-means clustering.  

 

Demethylation experiments 

BT142mut glioma cells were purchased from the American Type Culture Collection (ATCC, 

Manassas, VA, USA), authenticated with targeted sequencing and grown under recommended 

culture conditions with regular Mycoplasma testing. Cells were seeded onto 24-well plates 

(120,000 cells/well) and treated with 1µM 5-aza-2’-deoxycytidine (abbreviated as DAC, Sigma 

Aldrich, St Louis, MO, USA) or corresponding DMSO control for seven days. The drug was 

replenished every other day. 
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Quantitative real-time PCR analysis 

Total RNA was extracted using RNeasy Mini kit (Qiagen, Hilden, Germany). HLA and GAPDH 

(normalization control) expression (primer sequences in Supplementary Table S1) was measured 

with CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA) 

using Maxima SYBR Green qPCR master mix (ThermoFisher Scientific, Waltham, MA, USA) 

without ROX.  

 

Results 

Patterns of immune response related gene signatures in glioblastoma 

The proportion of nonmalignant cells in the TCGA GBM tumor samples can be up to 40% (33). 

This normal cell contamination includes stromal cells but also accumulated immune cells that are 

likely to induce immune response related signatures into the expression data. To extract these 

signatures from 154 of the TCGA RNA-seq samples generated from primary GBMs (see 

Methods, Supplementary Table S2), we organized all the genes into gene sets based on co-

expression using the Markov Cluster Algorithm (31) and chose immune system related gene sets 

from them. Next, gene set enrichment analysis was used to identify 8 clusters that showed a 

statistical enrichment of immune responses related to Gene Ontology or KEGG pathway terms 

(Fig. 1A, Supplementary Table S3). These clusters, containing 17 to 1436 genes, were 

considered as signatures for immune system activity in the tumor microenvironment. For each 

cluster, cluster activity was quantified (see Methods). Different clusters had distinct cluster 

activity profiles across the patient cohort (Fig. 1B), revealing the heterogeneity in immune 

system-related responses in GBM.  

 

We ran the IPA upstream analysis for the genes in each cluster (Supplementary Table S4) and 

used this information together with Gene Ontology and KEGG enrichments when naming the 

gene clusters. Four clusters (‘Macrophages and T cell response’, ‘Humoral response and 

lymphocytes’, ‘Antigen presentation and interferon response’, and ‘Gamma delta T cells’) are 

strongly associated with immune responses whereas three clusters (‘Negative regulation of 

lymphocyte response’, ‘Leukocyte migration’ and ‘Leukocyte differentiation and chemotaxis’) 

contain a smaller proportion of immune response related terms. Lower proportions of immune-
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related associations may result from correlation between immune response and some other 

cellular processes in the tumor.   

 

The largest cluster, called ‘Macrophages and T cell response’, contains several macrophage and 

lymphocyte-related genes, and the cluster has many inflammation-related upstream regulators, 

e.g., IL10, IL6, STAT3, NFkB, TLR4, and MYD88 (Supplementary Tables S2 and S4). Several 

genes in this cluster, such as FOXP3, IL2, TGFB1, and IL6, are linked to the regulation and 

function of regulatory T (Treg) cells and Th17 cells, but the majority of lymphocyte-associated 

genes are general CD4+ T cell genes, such as CDs and interleukin receptors. On the other hand, 

the ‘Humoral response and lymphocytes’ cluster was associated with many Th2- and B-cell 

related regulators, such as IL4, CD3, EBF1, CD40, and CD79A. The ‘Gamma delta T cells’ 

cluster includes several gamma delta T cell TCR subunits as well as other genes involved in 

cellular and T cell immune responses. Both clusters ‘Antigen presentation and interferon 

response’ and ‘Negative regulation of T-cell activation, PD-L1’ show association with interferon 

responses but with slight differences: the former is associated with type I interferons, e.g., 

different IFNAs and IFNBs as upstream regulators, whereas the latter is associated with type II 

interferon IFN- response and IFNG is an upstream regulator of this cluster. IFN- is known to 

induce PD-L1 expression (34,35). The ‘Negative regulation of lymphocyte response’ cluster 

shows positive associations with many central nervous system-related terms. It was named due to 

the associations with negative regulation of lymphocyte chemotaxis and with the negative 

regulation of antigen processing and presentation. 

 

Development and validation of the model for estimation of immune cell composition 

We developed a regression model (see Methods) that utilizes the expression of genes from the 

selected immune system-related clusters to understand the composition of the microenvironment 

in more detail. The gene expression pattern in each sample was modeled as a combination of the 

reference samples representing cell and tissue types that can be present in the microenvironment. 

For the initial method validation, we computationally mixed measurement data from immune 

cell types to obtain simulated datasets of varying quality (see Methods). We ran the regression 

analysis for these simulated datasets in two different conditions: (1) with varying proportions of 

GBM and (2) with the lack of one reference cell type as an explanatory component. In all the 
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cases, our model was able to infer the coefficients with high accuracy (Supplementary Fig. S2). 

Missing a reference cell type has the largest effect on the accuracy of the model (Supplementary 

Fig. S2). 

  

To validate the ability of our model to estimate the relative composition of the microenvironment 

from real measurement data, we applied the model to expression data from mixtures of four cell 

lines of immune origin and for two different RNA-seq datasets from whole blood samples (see 

Materials and Methods). With these real data, our model was able to infer the relative cell 

compositions with high accuracy (Supplementary Fig. S2 and Supplementary Fig. S3). 

 

GBM samples differ in their estimated immune cell composition 

Next, we modeled the composition of the microenvironment in GBM samples. Expression 

profiles from 9 normal cell types and normal brain tissue were used to infer the regression 

coefficients using genes from immune system related clusters. The GBM reference was included 

in the regression model type to improve its performance. As a consequence, relative cell 

components should be interpreted as differences from the median GBM reference. The resulting 

coefficients for immune cells and all the cell types and samples are shown in Figure 2A and 

Supplementary Figure S4, respectively. The regression coefficients are referred to as relative 

immune cell components in later analyses. The obtained results reveal a high degree of diversity 

with interesting patterns of contributions of immune cell types to the expression profiles across 

the samples. The sum of our immune cell type estimates correlated with the leukocyte 

component estimated from DNA methylation data from same GBM tumors, and our results were 

also consistent with results obtained with CIBERSORT method (25) (Supplementary Fig. S5). 

 

We wanted to determine the associations between the estimated immune cell type components 

and cluster activities to identify the most informative clusters in the context of immune cell type 

compositions. This was done using Pearson’s correlation. The strongest positive correlations 

were observed between the activity of the ‘Humoral response and lymphocytes’ cluster and 

components of B cells and and CD4+ T cells (Fig. 2B). Macrophage components had the 

strongest association with activity of the ‘Macrophage and T cell response’ cluster. All the 

immune cell components except the CD8+ T cell component had a negative correlation with the 
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activity of the ‘Negative regulation of lymphocyte response’ cluster. The CD8+ T cell component 

had a negative correlation with clusters ‘Macrophage and T cell response’, ‘Leukocyte 

migration’ and ‘Leukocyte differentiation and chemotaxis’. As the ‘Macrophage and T cell 

response’ cluster was positively associated with CD4+ T cell accumulation and the cluster 

includes several typical CD4+ T cell genes, negative association with the CD8+ T cell component 

suggests that CD4+ and CD8+ T cells do not really co-accumulate in the GBM 

microenvironment. The lack of co-accumulation of CD4+ and CD8+ T cells can also be observed 

in Figure 2A, and it can be considered one of the failures impairing a successful anti-tumoral 

response. 

 

Immune system related responses are associated with genetic alterations and patient survival 

When we compared the estimated immune cell components and cluster activities to typical 

genetic alterations in GBM, several associations were observed (Fig. 2C, Supplementary Fig. S6, 

Supplementary Table S5). Samples with an IDH1 mutation or amplification of the genetic locus 

containing CDK4 were associated with a lower macrophage component (p < 0.05 and p < 0.01, 

respectively, Fisher’s exact test) whereas NF1 inactivation was associated with higher 

macrophage component (p < 0.001, Fisher’s exact test) (Fig. 2C). Likewise, the activity of the 

‘Macrophage and T cell response’ cluster was decreased in samples with CDK4 locus 

amplification (p < 0.05, Wilcoxon rank-sum test) and increased in samples with NF1 inactivation 

(p < 0.05, Wilcoxon rank-sum test) (Fig. 2C). IDH1 mutated samples were also associated with a 

lower CD4+ T cell component (p < 0.05, Fisher’s exact test) and CDK4 locus amplified samples 

had a lower CD4+ T cell component compared to the samples with CDK4 locus gain (p < 0.05, 

Fisher’s exact test) (Fig. 2C).  

 

The association of CDK4 amplification with a low CD4+ T cell component, low macrophage 

component, high activity of the ‘Negative Regulation of Lymphocyte Response’ cluster, and low 

activity of the ‘Macrophage and T cell response’ cluster was somewhat surprising, as CDK4 is a 

known cell cycle regulator. As genes that are co-amplified with CDK4 might generate the 

association, we screened the adjacent genomic neighborhood for genes with a potential to 

dysregulate the immune system. The adjacent AGAP2, TSPAN31 and MARCH9 genes were 

focally co-amplified with CDK4 in TCGA GBM data (Supplementary Table S6). Among them, 



 13 

an E3 ubiquitin-protein ligase MARCH9 was the most prominent candidate as it is known to 

mediate MHC-I ubiquitination, which targets MHC-I to lysosomal degradation. This decreases 

MCH-I levels on the cell surface (36), leading to impaired antigen presentation by MARCH9 

overexpressing cells. The locus containing the focal amplification of CDK4 and MARCH9 will 

be referred to as CDK4-MARCH9 locus in this article. Despite the CDK4-MARCH9 locus 

amplification and IDH mutation being similarly associated with a shortage of immune responses, 

CDK4 amplification was not associated with patient survival in the cohort.  

 

When we analyzed how cluster activities and immune cell type components are associated with 

GBM transcriptional subclassification (37), several significant associations were discovered 

(Supplementary Fig. S7, Supplementary Fig. S8). High cluster activities were observed in 

mesenchymal samples; this was most evidently the case for the ‘Macrophage and T cell 

response’ cluster (p < 0.01, Wilcoxon rank-sum test) (Supplementary Fig. S7). Similarly, the 

macrophage component was also high in the mesenchymal subtype (p < 0.001, Fisher’s exact 

test) (Supplementary Fig. S8). Furthermore, high B cell and CD4+ T components were 

commonly observed in the mesenchymal samples, consistent with a previous report (21) 

(Supplementary Fig. S8). On the other hand, cluster activities and immune cell components tend 

to be low in proneural samples, except for the cluster ‘Negative regulation of lymphocyte 

response’, which had a significantly higher activity in proneural samples than in all other 

subgroups (p < 0.001, Wilcoxon’s rank-sum test) (Supplementary Fig. S7). 

 

We performed survival analysis to determine whether the prevailing immune response affects the 

patient survival. None of the immune cell components or the immune cluster activities was 

directly associated with overall patient survival. However, among samples with a significantly 

higher macrophage component than our median GBM reference, high activity of the ‘Antigen 

presentation and interferon response’ cluster was associated with prolonged overall patient 

survival (p = 0.0038, log-rank test) (Fig. 2D) when median cluster activity in the analyzed cohort 

was used as threshold. In the same cohort, a trend towards worse survival was seen with high 

activity of the ‘Humoral response and lymphocytes’ cluster. The difference was statistically 

significant when the cluster activity value 0.060 was used as a threshold (p = 0.035, log-rank 

test) (Fig. 2D) instead of the median cluster activity (0.099).  
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GBM cases can be computationally grouped into three immune response related subgroups 

We performed a k-means based consensus clustering analysis for cluster activities to determine 

whether prevailing immune responses could identify patient subgroups (Supplementary Fig. S9). 

This analysis identified three sample groups that were associated with TCGA transcriptional 

subtypes (classification from year 2010, based on whole sample expression (37), and from year 

2017, based on the expression in malignant cells (24)), G-CIMP status, genetic alterations, 

cluster activities, and estimated immune cell components (Fig. 3). The patterns of cluster 

activities and estimated immune cell type components indicate that the sample subgroups present 

distinct prevailing adaptive immune responses in the tumor microenvironment. Sample 

subgroups were named as Negative (54 samples), Humoral (14 samples), and Cellular-like (74 

samples) to represent these different responses (Supplementary Table S7). As an independent 

validation, similar subgroups were also obtained when consensus clustering was performed for 

cluster activities of primary GBM samples published by Bao et al. (38) (Supplementary Fig. 

S10).  

 

As illustrated in Fig. 3A, the Negative subgroup is enriched by the proneural subtype and by 

amplification of CDK4-MARCH9 locus. All G-CIMP positive and IDH1 mutated samples belong 

to this group. High activity of the ‘Negative regulation of lymphocyte response’ cluster is 

associated with the Negative group as well. The Negative group has no other positive 

associations to cluster activities or immune cell components (Figs. 3A-B). The Humoral 

subgroup is associated with higher activities of the ‘Humoral response and lymphocytes’ and 

‘Macrophages and T cell response’ clusters as well as high B cell and CD4+ T cell components. 

(Figs. 3A-B). This group consists mostly of samples of the mesenchymal subtype (Fig. 3A). The 

Cellular-like subgroup has a higher activity of the ‘Negative regulation of T-cell activation, PD-

L1’ cluster than other subgroups, and it is also positively associated with activity of the ‘Gamma 

delta T cells’ cluster. The Cellular-like group is enriched by the classical subtype and by samples 

with a high macrophage component. It also has more samples with EGFR amplification than the 

other two groups. Interestingly, some of the alterations, such as inactivating NF1 

mutations/deletions, which were associated with estimated immune cell proportions or cluster 

activities (Fig. 2C, Supplementary Figs. S6-S7, Supplementary Table S5), did not show any 
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association with the immune subgroups, suggesting a linkage to other aspects of immune 

microenvironment. Altogether, the consensus clustering provided a framework for categorizing 

GBM tumors based on immune status in the tumor microenvironment and revealed genetic 

alterations that are associated with this status.  

 

CD8+ cytotoxic T cells recognize and target malignant cells via MHC-I mediated antigen 

presentation on the surface of the malignant cells (39). As our analysis indicates low adaptive 

immune response in the Negative subgroup cases, we analyzed the MHC-I expression in these 

tumors. All the potential MHC-I subunit human leukocyte antigens (HLAs), namely HLA-A, 

HLA-B, and HLA-C, had significantly lower expression in the Negative subgroup than in other 

subgroups (Supplementary Fig. S11). A clear difference was also observed, when IDH1-mutated 

tumors were compared with other tumors (Fig. 4A). As IDH mutation is associated with 

hypermethylator phenotype (40), we postulated that increased DNA methylation might drive 

decreased HLA gene expression in these tumors. Indeed, HLA genes were significantly more 

methylated in IDH-mutated than other tumors (Fig. 4B, Supplementary Table S7). HLA protein 

levels were also low in an IDH1-mutated glioma cell line BT142mut when compared to IDH1 

wild-type glioma cell lines and patient-derived glioblastoma cultures (Supplementary Fig. S12). 

Furthermore, the expression of HLAs was increased in methyltransferase inhibitor DAC -treated 

cells when compared to control-treated cells (Fig. 4C). Our data shows that in Negative group 

expression of the HLA components of MHC-I are decreased, especially in IDH1-mutated cells, at 

least partly due to DNA methylation-driven suppression of gene expression. This suggests 

decrease in MHC-I-mediated antigen presentation in tumors of Negative group. 

  

Discussion 

Immune therapies have become a promising option for cancer treatment, which increases the 

demand for better stratification of the patients based on the function of the immune system in 

their tumor microenvironment. When previous computational studies have analyzed immune 

system function in the tumor microenvironment, they have concentrated on estimating the 

compositions of immune cells present in the tumor microenvironment (26,41). However, these 

studies typically lack information on the type of the immune response associated with the 

accumulation of the analyzed immune cells. We have used computational methods to identify the 
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immune system-related gene signatures across the dataset and estimated the immune cell 

compositions in the tumor microenvironment separately for each sample. To our knowledge, we 

are the first to have integrated the computational estimation of immune cell compositions to the 

data driven analysis of the immune system related signatures present in the tumor 

microenvironment. We have shown that the TCGA GBM cohort includes subgroups of samples 

with different prevailing immune responses. We have also demonstrated that the type of immune 

response is relevant for the disease and patient survival. These results were largely obtained due 

to our approach, which allows combining the information on immune cell compositions and 

immune signatures from the same samples. As TCGA data represents retrospective study, further 

prospective studies are needed to fully confirm the relevance of our findings for patient care and 

personalized immunotherapy.   

 

Several studies have shown good performance and utility of computational methods in 

estimating the cell type proportions from the gene expression profile of cell type mixtures or 

tissue. Both deterministic and probabilistic modeling approaches have been successfully 

implemented (25–27,41). We decided to use known reference expression profiles from normal 

cell types instead of blind deconvolution. In this case, a straightforward way to perform the 

analysis is to use standard regression models. We ended up using linear regression with elastic 

net regularization, as the biological data is highly correlated and the elastic net can work with 

strongly correlated predictors, still giving a sparse solution as an output (32). This regularization 

helps to prevent overfitting and performs variable selection to output models that show the most 

significant cell types for each sample. 

 

Recently, two publications reported that the IDH mutation is associated with a decreased number 

of immune cells in the glioma tumor microenvironment (22,23). A decreased number of immune 

cells might be due to the dysfunction of leukocyte migration, as genes that regulate chemotaxis 

are down-regulated in IDH1 mutated tumors (22). Consistently, we showed that IDH1 mutated 

GBM samples are characterized by low recruitment of CD4+ T cells and macrophages, and low 

activity of most immune system related clusters. We also showed that MHC-I -type HLA genes 

were both less expressed and more methylated in IDH1-mutated tumors than in other tumors, 

and their expression was also increased when methyltransferases were inhibited in IDH1-
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mutated cells (Fig. 4). This suggests that low immune response in IDH-mutated tumors is at least 

partly due to epigenetically decreased MHC-I expression and thus MHC-I -mediated antigen 

presentation. Also samples with amplification of the CDK4-MARCH9 locus were associated with 

the Negative subgroup and they typically had fewer CD4+ T cells and macrophages and lower 

activity of most immune cell clusters compared to the other samples in our data (Fig. 2C and 

3A). Unlike in the IDH1-mutated tumors, the decreased immune cell proportions might be 

caused by downregulation or loss of MHC-I proteins from the cell surface as MARCH9 has been 

reported to promote this and lysosomal destruction of MHC-I (36). IDH mutation is associated 

with better prognosis, whereas amplification of CDK4-MARCH9 locus is not associated with 

prognosis in either the whole GBM cohort or within the Negative subgroup. It is likely that better 

survival of IDH mutated cases is at least partly related to other aspects of these tumors, such as a 

better response to radiation and chemotherapy (42,43), and not directly caused by a certain 

immune system status. 

 

Consensus clustering organized the GBM samples into three subgroups (Negative, Humoral, and 

Cellular-like). Several features, including genetic alterations, cluster activities, estimated 

immune cell proportions, and DNA methylation, significantly differed between the subgroups 

(Table 1). The subgroups can be considered to represent different lymphocyte responses: Th2-

cell mediated Humoral response, Th1-type Cellular-like response, and the absence of either 

response in the Negative group. Proper Th1-cell and cytotoxic T cell mediated response is 

needed for proper antitumoral immune response (44), and the Cellular-like subgroup can thus be 

considered to include cases where cellular response is partly partly – but not fully – induced. 

This subgroup was associated with higher activity of ‘Negative regulation of T-cell activation, 

PD-L1’ and ‘Gamma delta T cells’ clusters. PD-L1 is one of the checkpoint regulators that 

suppress T cell activation and function (45–47), and PD-1/PD-L1 interaction has been 

successfully targeted in several malignancies (4,48–50). None of the studied alterations was 

positively associated with the activity of  the ‘Negative regulation of T-cell activation, PD-L1’ 

cluster. PD-L1 is known to be induced by IFN-𝛾 (34,35) and our GBM data supports this, as the 

cluster also included other IFN-𝛾 regulated genes in addition to PD-L1. 
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Among genetic alterations included in the association analysis, only EGFR copy number status 

was significantly different between the Humoral and Cellular-like subgroups, amplified cases 

being enriched in the latter group. This might be due partly to the low sample number in the 

Humoral subgroup, but the result also suggests that the most common GBM alterations are not 

directing the invoked lymphocyte response to either cellular or humoral types. On the other hand, 

the Negative subgroup was enriched by IDH1-mutated and CDK4-MARCH9 locus-amplified 

cases. Still, the immune microenvironment in these tumors is not solely determined by the 

genetic makeup of malignant cells but also other factors, including the presence of the tumor per 

se, the whole immune system of the individual, and tumor-immune system interaction. 

Furthermore, received medication might also impact the status of the tumor microenvironment. 

The status of the immune microenvironment can also be dynamic: it originates at least partly 

from immunoediting during tumor development and is influenced by changes in the immune 

system caused e.g. by environmental factors and anticancer treatment. The relative significance 

of different factors and ways to modify the immune response should be determined in the future, 

e.g. by analysing the immune cells in tumor microenvironment and their interaction with 

malignant cells both in ex vivo and in vivo settings.    

 

The Negative subgroup was characterized by low activity of most immune system related 

clusters, but, quite surprisingly, only the proportion of granulocytes and CD4+ T cells was 

significantly lower in samples in the Negative subgroup than samples in the other two subgroups. 

On the other hand, high proportion of any cell type was not typical for this subgroup. Future 

studies are needed to evaluate the relative impact of immune cell recruitment or activation to low 

immune system response in this subpopulation of GBM cases.  

 

In conclusion, we have analyzed both immune cell compositions and immune responses present 

in the GBM tumor microenvironments using computational approaches. By combining these two 

different analyses, we have identified three GBM subgroups with different prevailing immune 

responses. Interestingly, many of the Negative group samples contain IDH1 mutation or 

MARCH9 amplification, which may cause dysregulation of the immune system in these patients. 

Future studies are needed to evaluate whether modulation of MHC I -mediated antigen 

presentation will be a beneficial therapeutic strategy against tumors in the Negative subgroup.  
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Table 1. Characteristic features that are enriched in Negative, Humoral or Cellular-like 

subgroup with different prevailing immune responses. * Activity of all the other clusters is low in 

the Negative group, ** Activity of the cluster is high only in part of the samples. 

 Negative Humoral Cellular-like 

Mutations IDH1; ATRX   

Amplifications CDK4-MARCH9 locus EGFR gain EGFR amplification 

Subtypes G-CIMP; Proneural Mesenchymal Classical 

Methylation, high HLA-A; HLA-B; HLA-C   

Cell types, high  CD4+ T cell; B cell Macrophage 

Cell types, low 

Macrophage; 

Granulocyte; CD4+ T 

cell 

CD8+ T cell  

Immune signature, 

high 

Negative regulation of 

lymphocyte response* 

Humoral response 

and lymphocytes; 

Macrophages and T 

cell response** 

Negative regulation of 

T-cell activation, PD-

L1; Antigen 

presentation and 

interferon response**; 

Gamma delta T 

cells** 

 

Figure 1. 

Immune response related gene clusters show variable expression patterns in glioblastoma. A 

Immune system related Gene ontology and KEGG pathway enrichments in identified immune 

response related gene clusters. Gene clusters were generated using the Markov Cluster 

Algorithm. Cluster sizes (number of the genes) are visualized as bar plots on the right side of the 
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heat map that visualizes enrichment p-values for each term. B Immune cluster activities vary 

between samples. Cluster activity for each immune system related gene cluster was determined 

by scaling each of the genes to range between 0-1 and then calculating the median expression of 

the majority of the genes with a positive pairwise correlation to each other. Hierarchical 

clustering with Pearson’s correlation was used to organize samples and clusters in the heat map. 

 

Figure 2. 

Immune cell type compositions are associated with cluster activities and typical genetic 

alterations in glioblastoma. A Varying immune cell compositions are observed in glioblastoma. 

Regression analysis results for five immune cell types are shown. Coefficients are negative or 

positive depending on whether the estimated cell type composition is lower or higher than in the 

GBM reference. Compositions of selected cell types were computationally estimated by applying 

linear regression with elastic net regularization. B Compositions of analyzed immune cell types 

correlate (Pearson’s correlation) with specific immune response related clusters. Hierarchical 

clustering of cell type components and clusters is based on Pearson’s correlation. C IDH1 

mutation and amplification of the CDK4-MARCH9 locus (genomic locus containing CDK4 and 

MARCH9 genes) are associated with a lower macrophage component whereas NF1 inactivation 

is associated with a higher macrophage component (Fisher’s exact test). CDK4 amplification and 

NF1 inactivation are correspondingly associated with the activity of the ‘Macrophage and T cell 

response’ cluster (Wilcoxon rank-sum test). IDH1 mutation and CDK4 amplification are also 

associated with lower CD4+ T cell component (Fisher’s exact test). Samples are grouped in 

figures based on the following genomic alterations: IDH1 mutation, DNA copy number in 

CDK4-MARCH9 locus or inactivating NF1 mutation/deletion. The colors in the bars describe the 

relative proportions of CD4+ T cells and macrophages in the samples in each group. The boxes 

visualise the activity of the cluster ‘Macrophages and T cell response’ in each sample group. * p 

< 0.05, ** p < 0.01, *** p < 0.001 D Within samples with a high macrophage component, higher 

activity of the ‘Antigen presentation and interferon response’ cluster is associated with better 

overall patient survival and lower activity of the ‘Humoral response and lymphocytes’ cluster 

tends to predict better overall patient survival in the same cohort (Log rank-test). Distributions of 

the cluster activities in the analyzed cohort are illustrated in the histograms. Thresholds used in 

the survival analysis (median for ‘Antigen presentation and interferon response’ cluster and 
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0.060 for ‘Humoral response and lymphocytes’ cluster) are marked with a red line to the 

histograms.  

 

Figure 3. 

Glioblastoma samples can be divided into three subgroups that present distinct immune 

responses. A Consensus clustering revealed three subgroups of samples which were then 

associated with genetic alterations, transcriptional class, G-CIMP status, and cluster activities. 

The Negative group (n = 54) includes all the G-CIMP positive and IDH1 mutated samples. 

CDK4 amplification, proneural subtype and higher activity of the ‘Negative regulation of 

lymphocyte response’ cluster is associated with the Negative group as well. The Humoral group 

(n = 14) is associated with higher cluster activity of the ‘Humoral response and lymphocytes’ 

and ‘Macrophages and T-cell response’ clusters. Most samples in the Humoral group are of the 

mesenchymal subtype. The Cellular-like group (n = 74) is characterized by a higher activity of 

the ‘Negative regulation of T-cell activation, PD-L1’ and ‘Gamma delta T cells’ clusters and by 

enrichment of EGFR amplified samples. CDK4-MARCH9 locus: genomic locus containing 

CDK4 and MARCH9 genes. The Wilcoxon rank-sum test was used to estimate the association 

with immune cluster activities and Fisher’s exact test for all the other association analyses.  P-

values for the differences between the subgroups are visualised next to the heat map with a 

greyscale. B Tumor samples in three subgroups have different immune cell type compositions. B 

cell and CD4+ T cell compositions are high and the CD8+ T cell composition is low in the 

Humoral group. The Cellular-like group is enriched by samples with a high macrophage 

composition. Subgroups were associated with immune cell proportions using Fisher’s exact test. 

* p < 0.05 ** p < 0.01, *** p < 0.001 

 

Figure 4.  

DNA methylation suppresses HLA gene expression in IDH1 mutated samples. A In TCGA GBM 

cohort, IDH1 mutated samples and IDH1 wild-type samples with CDK4-MARCH9 locus 

amplification (CDK4-MARCH9 amp) have lower HLA gene expression than other IDH1 wild-

type samples (Wilcoxon rank-sum test). HLA-A, HLA-B, and HLA-C can each act as a MHC-I 

subunit. B Methylation level of HLA genes is higher in IDH1 mutated samples compared to 

IDH1 wild type samples (Wilcoxon rank-sum test). Representative probes (cg17608381, 
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cg13902357, cg15397231) are shown in the figure. C Methyltransferase inhibition and resulting 

demethylation results in increased RNA expression of HLA genes in an IDH-mutant glioma cell 

line BT142mut. Methyltransferases were inhibited with 5-aza-2’-deoxycytidine (DAC). Fold 

change of expression values with standard deviation are visualized in the figure. * p < 0.05 ** p 

< 0.01, *** p < 0.001 

  



 29 

Figure 1  



 30 

Figure 2 

 
  



 31 

Figure 3 

 
  



 32 

Figure 4 

 
  



 33 

Supplementary Figure S1: Estimation of cell type proportions from gene expression data 
utilizing reference cell types and linear regression. 
 

 
 

Figure S1: Estimation of cell type proportions from gene expression data utilizing 
reference cell types and linear regression. It can be thought that cell type mixture expression 
profile (𝑦 in the equations) is constructed from so-called reference expression profiles and 
residual. In this example, these reference profiles are from cell types A and B (𝑋 in the 
equations), and those profiles are mixed in proportions of 0.30 and 0.60 (𝛽 in the equations), 
respectively. The residual is the part of the expression profile that we can’t model using the 
reference profiles. When these reference profiles are multiplied with the proportions and added 
together with the residual, we get the cell type mixture expression profile. In the deconvolution 
analysis, we know the reference cell type profiles and the cell type mixture profile. What we 
don’t know, is the proportions in which the reference profiles must be added to end up with the 
cell type mixture profile. Those proportions (i.e. regression coefficients) can be inferred using 
linear regression. 
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Supplementary Figure S2: Validation of the regression model using simulated and real 
measurement data. 
 

 
 
Figure S2: Validation of the regression model using simulated and real measurement 
data. a Validation of the regression model using simulated data with varying proportion of added 
noise and varying tumor proportion. One hundred samples were simulated using the RNA-seq 
data from four normal cell types (B cell, granulocyte, macrophage and neuron) and randomly 
chosen GBM sample. First, 20 different proportion of GBM sample was used from range [0, 1]. 
The proportions of four cell types were randomly chosen from range [0, 1] so that the 
proportions of cell types and the GBM sample added up to one for each sample. The expression 
profiles were weighted with the corresponding proportions and added together. Noise was 
added to the simulated samples (0-100% of the variance of the data). b Validation of the 
regression model with varying proportion of missing reference cell type using simulated data. 
One hundred samples were simulated with varying macrophage proportion. The proportion of 
the GBM sample was set to 0.8 and the proportion of macrophage was set to 16 different 
proportions from the range [0, 0.16]. Again, the proportions of other cell types were randomly 
chosen from the range [0, 1] so that the total proportion of all cell types and GBM sample was 
one for each sample and weighted expression profiles were added together. Noise was also 
added to these simulated samples (0-100% of the variance of the data). c Validation of the 
regression model using microarray data from mixtures of four transformed cell lines (Raji, IM-9, 
Jurkat, THP-1). The four cell lines together with a median sample were used in the regression 
analysis. (Pearson’s correlations for Jurkat, IM-9, Raji and THP-1, respectively: 0.989, 0.993, 
0.987, 0.902) 
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Supplementary Figure S3: Validation of the regression model using whole blood 
samples. 
 

 
 
Figure S3: Validation of the regression model using whole blood samples. a Principal 
component analysis of whole blood samples from dataset 1 (GSE60424) using all genes in the 
dataset. The sample with ID 53 is clearly separated from the other samples. b Genes used in 
the deconvolution analysis visualized for dataset 1. The expression pattern of sample with ID 53 
looks odd and differs extensively from the other samples. c Validation of the regression model 
using RNA-seq data from whole blood samples (dataset 1, GSE60424). The sample with ID 53 
was left out from the median sample and calculation of correlations based on quality control. 
The four other samples were used as a median sample in the regression analysis. Obtained 
Pearson’s correlations for Lymphocytes, Neutrophil and Monocyte are 0.989, 0.993, 0.984, 
0.508, respectively. Macrophage was used as reference for monocyte which most likely causes 
the lower correlation for monocyte component. d Validation of the regression model using RNA-
seq data from two whole blood samples (dataset 2, GSE64655). No median sample was used in 
the analysis due to low number of samples (Pearson’s correlation: 0.975). Observed cell type 
proportions for these two datasets were obtained from article published by Racle et al. 
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Supplementary Figure S4: The resulting coefficients for all cell types and GBM samples 
from regression analysis.  
 

 
Figure S4: The resulting coefficients for all cell types and GBM samples from regression 
analysis. Proportions of 9 cell types and brain tissue together with median GBM samples were 
computationally estimated by applying linear regression with elastic net regularization.  
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Supplementary Figure S5: Comparison of the cell type estimates from GBM gene 
expression data using our method to estimates using CIBERSORT or DNA methylation 
data. 

 

 
Figure S5: Comparison of the cell type estimates from GBM gene expression data using 
our method to estimates using CIBERSORT or DNA methylation data. a Leukocyte 
methylation score data for GBM samples was downloaded from TCGA PanCancer project from 
Synapse (syn1809223). Estimates for leukocytes from GBM gene expression were added 
together and compared to the leukocyte proportions estimated from the GBM DNA methylation 
data. Estimates from gene expression data correlated well with the DNA methylation estimates 
(Pearson’s correlation: 0.664) considering that from gene expression data not all leukocytes 
were estimated and that the DNA methylation estimates aren’t perfect either. Also, estimates 
form gene expression data are relative cell type proportions so the adding the cell types 
together is not accurately estimating the amount of the leukocytes.  b Estimates from GBM gene 
expression using our method were compared with estimates using CIBERSORT. First, the 
same reference was used as in the estimates using elastic net. Estimates correlated well 
although the CIBERSORT is not designed to use median samples as reference and it sets 
negative values to zero (Pearson’s correlation: 0.99). c Comparison of estimates from GBM 
gene expression data using elastic net and CIBERSORT. Only positive values shown 
(Pearson’s correlation: 0.994). d Pearson’s correlations for each cell type separately. 
CIBERSORT was also run without the median GBM sample as a reference. This improved the 
cell type specific correlations. In the analysis without GBM median sample as reference the 
CIBERSORT estimated the CD8+ T cell proportions to be zero in all of the samples so the 
correlation coefficient is not available. 
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Supplementary Figure S6: Statistically significant associations between estimated 
immune cell types and typical genetic alterations in GBM.  
 

 
 
Figure S6: Statistically significant associations between estimated immune cell types 
and typical genetic alterations in GBM. a EGFR neutral (n = 14) samples have lower 
estimated macrophage and CD4+ T cell component compared to samples with EGFR 
amplification (n = 63). Samples with EGFR gain (n = 60) have lower estimated CD8+ T cell 
component. b Samples with MDM2 gain (n = 11) have higher CD8+ T cell component compared 
to MDM2 neutral samples (n = 106) and samples with MDM2 amplification (n = 9). c NF1 
neutral samples (n = 116) have lower estimated granulocyte component compared to samples 
with inactivating NF1 mutation or deletion in NF1 (n = 25 d Samples with non-mutated TP53 (n 
= 92) have lower B cell and CD4+ T cell components compared to mutated samples (n = 45). * p 
< 0.05, ** p < 0.01, Fisher’s exact test. 
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Supplementary Figure S7: Association between cluster activities and GBM 
transcriptional subclassification. 
 

 
 
Figure S7: Association between cluster activities and GBM transcriptional classification. 
Association between Mesenchymal (n = 47), Classical (n = 37), Neural (n = 23) and Proneural 
(n = 35) classes, and cluster activities were tested using Wilcoxon’s rank-sum test. * p < 0.05, ** 
p < 0.01, *** p < 0.001 
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Supplementary Figure S8: Association between the estimated immune cell type 
compositions and GBM transcriptional subclassification.  
 

 
Figure S8: Association between the estimated immune cell type compositions and GBM 
transcriptional subclassification. Association between Mesenchymal (n = 47), Classical (n = 
37), Neural (n = 23) and Proneural (n = 35) classes, and estimated immune cell components 
were tested using Fisher’s exact test. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Supplementary Figure S9: Consensus matrix for three groups. 
 

 
 
Figure S9: Consensus matrix for three groups. Consensus clustering was performed for 
GBM samples using cluster activities. Pearson’s correlation was used as a similarity metric and 
clustering was done using k-means.  
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Supplementary Figure S10: Results from consensus clustering of the validation GBM 
dataset. 
 

 
 
Figure S10: Results from consensus clustering of the validation GBM dataset. Consensus 
clustering was repeated for independent RNA-seq dataset containing 59 primary GBM samples 
(GSE48865). Negative (n = 28), Humoral (n = 6) and Cellular-like (n = 25) subgroups were 
identified also from this dataset.  
  

&OXVWHU ��� 1HJDWLYH UHJXODWLRQ RI O\PSKRF\WH UHVSRQVH
&OXVWHU ��� +XPRUDO UHVSRQVH DQG O\PSKRF\WHV
&OXVWHU ��� 0DFURSKDJHV DQG 7 FHOO UHVSRQVH
&OXVWHU ��� 1HJDWLYH UHJXODWLRQ RI 7�FHOO DFWLYDWLRQ� 3'�/�
&OXVWHU ��� $QWLJHQ SUHVHQWDWLRQ DQG LQWHUIHURQ UHVSRQVH
&OXVWHU ��� *DPPD GHOWD 7 FHOOV
&OXVWHU ��� /HXNRF\WH PLJUDWLRQ
&OXVWHU ��� /HXNRF\WH GLIIHUHQWLDWLRQ DQG FKHPRWD[LV

,'+�

������������

&OXVWHU DFWLYLW\

0XWDWLRQ :LOGH W\SH 1$

,'+�

1HJDWLYH +XPRUDO &HOOXODU�OLNH



 43 

Supplementary Figure S11: Gene expression of HLA genes in different immune 
subgroups. 
 

 
 
Supplementary Figure S11: Gene expression of HLA genes in different immune 
subgroups. Expression of all HLA genes is statistically significantly lower in Negative subgroup 
compared to other two subgroups. Wilcoxon’s rank-sum test, * p < 0.05, *** p < 0.001 
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Supplementary Figure S12: Protein levels of HLA-ABC in glioma cell lines and 
patient-derived GBM cultures. 
 

 
 
Supplementary Figure S12: Protein levels of HLA-ABC in glioma cell lines and patient-
derived GBM cultures. A Protein levels of HLA-ABC and Histone 4 (loading control) were 
analysed by immunoblotting from IDH1 mutant cell line BT142 and from the following IDH1 wild-
type cell lines: U87, U3009MG, U3313MG, U3187MG, U3017MG, U3046MG, U3033MG, 
U3054MG, U3024MG, U3035MG, U3028MG and T98G; and the patient-derived GBM culture: 
TMP5G. For the experiment, cells were lysed in RIPA buffer plus Halt Phosphatase and 
Protease Inhibitor Cocktail (ThermoFisher Scientific). Equal protein amounts (40µg) were 
separated on 12% Bis-Tris acrylamide gels and transferred to nitrocellulose membrane 
(0.45μm, GE Healthcare, Chicago, IL, USA). After blocking (2% BSA in TBS 0.1% Tween-20 
(TBS-T) for 1h), membranes were probed with primary antibodies against HLA-ABC [1:1,000] 
(detects HLA-A, HLA-B, and HLA-C) and Histone 4 (loading control) [1:10,000] (Abcam, 
Cambridge, UK) O/N. Membranes were then incubated with secondary antibodies (Goat anti-
Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus DyLight 800 
conjugated [1:10,000]  and Goat anti-Rabbit IgG (H+L) DyLight 680 conjugated [1:10,000] 
(ThermoFisher Scientific)) for 1h. Odyssey CLx (LI-COR Biosciences, Lincoln, NE, USA) was 
used to visualize the signal. B HLA-ABC protein levels quantification for the cell lines shown in 
the westerns in A 


