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ABSTRACT 

Wearable monitoring devices, such as smartwatches, are used for monitoring 
personal health, fitness, health behaviors and well-being in daily life. Nowadays, 
wearable devices are popular and many consumers use them, in particular, to record 
their physical activity and sleep. Data recorded with wearable devices is an example 
of real-world data that can provide practical observations and insights on health and 
wellness, but its analyses pose challenges for research. Consumers conduct 
continuous recordings with wearable devices in non-research settings. Hence, any 
analysis of wearable real-world monitoring data must take into account the 
limitations and inaccuracies of the data, as well as sampling biases and incomplete 
representativeness of the population that arise from the uncontrolled data collection 
setting. To date, there are no well-established methods for analyzing health behaviors 
and well-being from continuous wearable monitoring data. Consequently, real-world 
health monitoring data is not commonly used for research although it could provide 
valuable observations and insights on health behaviors and well-being.  

This thesis work aims at analyzing a large-scale real-world dataset of wearable 
heart rate variability (HRV) recordings to quantify the behaviors of physical activity 
(PA) and sleep that are one of the most important health behaviors. Specifically, the 
thesis focuses on the quantification methods and temporal patterns of PA behavior, 
as well as the associations that PA, alcohol intake and other lifestyles have with sleep. 
In addition, this thesis work aims to evaluate the feasibility to use real-world wearable 
monitoring data with applicable analysis methodologies for scientific research, and 
to demonstrate the observations and data-driven hypotheses that the results provide. 

The study material was an anonymized real-world HRV monitoring dataset of 
52,273 Finnish employees, which was gathered and prepared by Firstbeat 
Technologies Oy (Jyväskylä, Finland), a Finnish company providing and developing 
HRV analytics for stress, recovery and exercise. The dataset included three-day 
continuous HRV recordings performed in free-living settings combined with self-
reports of alcohol intake, work and sleep times. The recordings were originally 
performed for a routine wellness program (Firstbeat Lifestyle Assessment) provided 
for the employees by their employers as a part of preventive occupational healthcare 
and health promotion program.  
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For the analysis of this thesis, PA behavior was quantified from the recordings 
using an HRV-based estimate of the oxygen uptake. Sleep was quantified by the 
regulation of the autonomic nervous system (ANS) using traditional HRV 
parameters and novel HRV-based indices of recovery. Both statistical and machine-
learning methods were employed in the analysis for the thesis results. 

Temporal variations in PA behavior were observed: the amount of PA was 
highest at the weekends and at the beginning of the year. The amount of PA 
quantified by the absolute oxygen consumption was higher for men than for women, 
and higher for younger than older subjects, and also higher for individuals of normal 
weight than obese. However, PA levels were more similar between the subjects when 
their physical fitness level was considered in quantifying PA. Moreover, PA behavior 
was associated with sleep. After a day including PA, the parasympathetic regulation 
of the ANS and recovery during sleep were diminished, but regular PA seemed to 
increase parasympathetic regulation of the ANS and aid recovery during sleep.  

The most important predictor for ANS regulation during sleep was, however, 
acute alcohol intake. Acute alcohol intake dose-dependently diminished the 
parasympathetic regulation of the ANS and recovery during sleep, an effect that was 
already observable after only 1–2 standardized units of alcohol. Moreover, the same 
alcohol intake, normalized by the body weight, seemed to affect the ANS regulation 
more in younger subjects than in the older ones, but was similar for both sedentary 
and physically active subjects, as well as for both men and women.  

Many of the results obtained in this thesis accord with the findings of previous 
studies, such as the higher PA level on weekends, the higher amount of absolute 
intensity PA in men, younger and normal weight subjects, and the relationship of 
PA and alcohol intake with the ANS regulation during sleep. On the other hand, the 
results of this thesis provide new observations, for example, about the interaction 
between alcohol intake and subject’s background characteristics that could not have 
been studied before due to the limited and homogenous study populations. 

In conclusion, the results of this thesis demonstrates that real-world wearable 
monitoring data can be feasible for scientific research and its results not only 
supports the findings of existing studies but also provides new observations, insights 
and data-driven hypotheses. The real-world evidence facilitates our understanding 
of aspects of health behaviors and wellness that cannot be studied in the more 
traditional, controlled research settings. These real-world insights can be further used 
for designing more personalized and targeted health interventions and as tools for 
promoting health and well-being.  
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TIIVISTELMÄ 

Puettavia mittalaitteita, kuten älykelloja, voidaan käyttää arjessa oman terveydentilan, 
fyysisen kunnon, terveyskäyttäytymisen sekä hyvinvoinnin seuraamiseen. Puettavien 
mittalaitteiden käyttö on nykyisin suosittua, ja kuluttajat mittaavat niillä yleensä 
liikuntaa ja unta. Puettavien mittalaitteiden keräämä mittausaineisto on esimerkki 
arkielämän aineistoista (real-world data), jotka voivat tarjota käytännönläheisiä 
havaintoja terveydestä ja hyvinvoinnista. Arkielämässä kerättyjen aineistojen 
hyödyntäminen tutkimustarkoituksiin on kuitenkin haastavaa, sillä kuluttajat 
käyttävät puettavia mittalaitteita vapaaehtoisesti arkielämän olosuhteissa. Siksi 
aineiston käsittelyssä on otettava huomioon aineiston keräyksen kontrolloimattomat 
tutkimusasetelmien ulkopuoliset olosuhteet, jotka aiheuttavat mittausaineistoon 
tyypillisesti epätarkkuutta ja puutteellisuutta sekä otospopulaation valikoituneisuutta. 
Puettavien mittalaitteiden tuottamille jatkuva-aikaisille aineistoille ei myöskään 
toistaiseksi ole vakiintuneita käsittelytapoja. Näiden tekijöiden vuoksi puettavien 
mittalaitteiden keräämiä aineistoja käytetään nykyisin vielä vain vähän tutkimuksissa, 
vaikka ne voivat tarjota uusia havaintoja terveyskäyttäytymisestä ja hyvinvoinnista. 

Väitöstyössä hyödynnetään puettavan sydämen sykevälivaihtelua mittaavan 
laitteen tuottamaa arkielämän suurta aineistoa määrittämään liikuntaan ja uneen 
liittyvää käyttäytymistä. Liikunta ja uni ovat tärkeitä terveyskäyttäytymisen tekijöitä, 
ja väitöstyössä tutkitaan erityisesti liikunnan määrittämisen menetelmiä, 
liikuntakäyttäytymisen ajallista vaihtelua, sekä liikunnan, alkoholin nauttimisen ja 
muiden elämäntapojen vaikutusta uneen. Lisäksi väitöstyön tavoitteena on arvioida 
puettavien mittalaitteiden tuottamien suurten arkielämän aineistojen ja niiden 
hyödyntämisen soveltuvuutta tieteellisen tutkimukseen sekä osoittaa näiden 
aineistojen tarjoamia uusia havaintoja ja näkökulmia terveydestä ja hyvinvoinnista.   

Väitöstutkimuksen aineistona käytettiin 52 273 suomalaisen työntekijän 
tunnisteettomia arkielämässä tehtyjä sydämen sykevälivaihtelun mittauksia, jotka oli 
alun perin tehty osana terveyttä edistävää ja ennaltaehkäisevää terveydenhuoltoa. 
Aineisto on kerätty Firstbeat Technologies Oy:n toimesta, joka kehittää ja tarjoaa 
sykevälivaihtelun analyysimenetelmiä liikunnan, stressin ja palautumisen arviointiin. 
Aineisto sisälsi kolmipäiväisiä jatkuva-aikaisia mittauksia sydämen sykevälivaihtelusta 
sekä itseraportointeja nautitusta alkoholin määrästä sekä työ- että nukkumisajoista.  
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Väitöstyössä liikunnan määrittämisessä hyödynnettiin sykevälivaihteluun 
perustuvaa hapenoton arviota. Unta arvioitiin autonomisen hermoston säätelyn 
kautta käyttäen perinteisiä sykevälivaihtelumuuttujia sekä uudenlaisia 
sykevälivaihteluun perustuvia palautumismuuttujia. Väitöstyön tulokset pohjautuvat 
sekä perinteisiin tilastollisiin että koneoppimisen menetelmiin. 

Liikuntakäyttäytymisessä havaittiin ajallista vaihtelua: liikunnan määrä oli korkein 
viikonloppuisin sekä alkuvuonna. Kun liikuntaa arvioitiin absoluuttisella hapenotolla, 
liikunnan määrä oli korkeampi miehillä kuin naisilla, ja nuoremmilla kuin 
vanhemmilla sekä normaalipainoisilla kuin lihavilla henkilöillä. Toisaalta kun 
liikunnan määrää arvioitiin ottaen huomioon henkilöiden kuntotaso, erot liikunnan 
määrässä henkilöiden välillä pieneni huomattavasti. Lisäksi liikuntakäyttäytymisellä 
havaittiin olevan yhteys uneen. Päivällä harrastettu liikunta näytti heikentävän 
autonomisen hermoston parasympaattista säätelyä unen aikana, mutta säännöllinen 
liikunta näytti lisäävän parasympaattista säätelyä ja palautumista unen aikana.   

Unen aikaisen autonomisen hermoston säätelyn kannalta tärkein tekijä oli 
kuitenkin päivän aikana nautittu alkoholi. Jo 1–2 alkoholiannosta heikensi 
autonomisen hermoston parasympaattista säätelyä unen aikana ja tämä säätely 
heikkeni sitä enemmän, mitä useampia alkoholiannoksia päivän aikana nautittiin. 
Painoon suhteutettu, sama alkoholimäärä näytti vaikuttavan autonomisen hermoston 
säätelyyn enemmän nuoremmilla kuin vanhemmilla henkilöillä, mutta samalla tavalla 
sekä paljon että vähän liikuntaa harrastavilla henkilöillä, ja sekä miehillä että naisilla. 

Monet väitöstyön tulokset tukevat aiempia tutkimustuloksia, kuten esimerkiksi 
havainnot suuremmasta liikunta-aktiivisuudesta viikonloppuisin, miesten, nuorten ja 
normaalipainoisten suuremmasta liikuntamäärästä absoluuttisella hapenottomäärällä 
mitattuna, sekä liikunnan ja alkoholin yhteydestä autonomisen hermoston säätelyyn 
unen aikana. Toisaalta väitöstyössä havaittiin esimerkiksi myös alkoholin nauttimisen 
ja henkilön taustatekijöiden yhteisvaikutuksia autonomisen hermoston säätelyyn, 
joita ei ole voitu aiemmin tutkia pienten tutkimuspopulaatioiden vuoksi. 

Kokonaisuudessaan väitöstyö osoittaa, että puettavien mittalaitteiden tuottamat 
arkielämän aineistot soveltuvat tieteelliseen tutkimukseen ja tulokset tukevat aiempia 
tutkimustuloksia, mutta tarjoavat myös uusia havaintoja sekä näkemyksiä. 
Tosielämän tieto voikin parantaa terveyskäyttäytymisen ja hyvinvoinnin tuntemusta, 
erityisesti niiltä osin, joihin perinteiset tutkimusasetelmat eivät sovellu. Käytännössä 
tosielämän havaintoja ja tietoa voidaan käyttää havainnollistamaan käyttäytymisen 
vaikutusta terveyteen ja hyvinvointiin, sekä tukemaan terveyskäyttäytymisen 
muutosta entistä henkilökohtaisemmin ja kohdennetummin.  
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1 INTRODUCTION 

During recent years, the market has been flooded with wearable sensors, i.e. small 
health-monitoring devices or sensors embedded into clothing (Korhonen, Pärkkä 
and van Gils, 2003; Swan, 2012; Piwek et al., 2016). Advances in technology have 
resulted in unobtrusive, non-invasive, affordable and user-friendly wearables, such 
as smartwatches and wristbands, which are feasible for long-term monitoring of 
physiological signals in free-living settings (Korhonen, Pärkkä, and van Gils, 2003; 
Majumder, Mondal and Deen, 2017). Based on the monitored signals, the wearable 
devices calculate parameters related to the users’ health, wellness and behaviours 
(Figure 1) (Piwek et al., 2016; Majumder, Mondal and Deen, 2017). The parameters 
presented by the current wearable devices are typically only some simple summary 
statistics, such as the number of steps or duration of sleep (Piwek, 2016). The simple 
parameters provided by the wearable sensors always require an interpretation that 
takes into account the individual context before any insights about the subject’s well-
being and health behaviors can be generated (Figure 1).  

 

Figure 1.  The operating principle of wearable devices for assessing health and well-being. Wearable 
devices monitor signals from which the algorithms calculate health-related parameters that 
require interpretation to have insights on the subject’s health and well-being. 
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As the wearable device market has grown, wearable devices have gained popularity 
among consumers and become increasingly common among the general public, but 
especially in healthy individuals who are interested in their health and well-being 
(Swan, 2012; Piwek et al., 2016). The increased availability of wearable consumer 
devices has also significantly expanded research in the area of wearable monitoring 
(Silfee et al., 2018). For example, a PubMed search for the keyword “wearable 
devices”, yielded 244 articles published in 2008, yet in 2018, there were 1,951 such 
articles published. 

Physical activity (PA) and sleep are the most common health behaviours and 
wellness indicators monitored by the currently available wearable consumer devices. 
PA and sleep are key health behaviours, and both physical inactivity and poor sleep 
have been associated with adverse health outcomes (Haskell, Blair and Hill, 2009; 
Porkka-Heiskanen, Zitting and Wigren, 2013). For example, chronic poor sleep 
contributes to harmful changes in biological processes that may predispose the 
sufferer to cardiovascular disease and type 2 diabetes (Luyster et al., 2012), while PA 
is associated with biomarker profiles that help prevent those diseases (Physical 
Activity Guidelines Advisory Committee, 2008). There also seems to be a clear 
interaction between PA and sleep; physically active individuals sleep better than 
physically inactive ones (Physical Activity Guidelines Advisory Committee, 2018). 
Physical inactivity and obesity tend also to form a vicious circle: physical inactivity 
triggers obesity that may lead to less activity (Pietiläinen et al., 2008). The global trend 
for the increasing prevalence of obesity and insomnia-related symptoms can also be 
observed in the Finnish adult population (Ng et al., 2014; Helldán and Helakorpi, 
2015; Pallesen et al., 2014; Ford et al., 2015; Kronholm et al., 2016). Thus, the 
promotion of good sleep and physically active lifestyles are crucial for the general 
public health (Physical Activity Guidelines Advisory Committee, 2018). 

The increased popularity of wearable monitoring data has opened up new 
possibilities for research. In the health domain, research has traditionally relied on 
controlled research studies, especially on randomized controlled trials (RCTs). These 
RCTs are good for studying causality and finding mechanisms for associations, for 
example, between health parameters and behaviours (Sherman et al., 2016; Berger et 
al., 2017). However, due to the specific and limited populations of such studies, the 
results of RCTs cannot always be generalized to the whole population. In addition, 
long-term monitoring in large-scale RCTs may not be feasible (Sherman et al., 2016). 
Thus, the knowledge gained from RCTs can be complemented by so-called real-
world evidence (RWE) (Booth and Tannock, 2014; Sherman et al., 2016). RWE 
consists of the results from the analysis of real-world data (RWD) (Sherman et al., 
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2016; Berger et al., 2017). RWD is data gathered outside traditional research studies 
and is typically from a broad population (Sherman et al., 2016; Berger et al., 2017). 
In the context of wearable monitoring, a great source for RWD can be the wearable 
monitoring data from ordinary consumers who give consent for their personally 
recorded data to be used for research and development purposes (Piwek et al., 2016). 
The RWE gained from wearable monitoring data may provide valuable observations 
and insights on the health behaviour and wellness of people in their everyday lives; 
evidence which could not be obtained from more traditional research studies 
(Sherman et al., 2016). Furthermore, RWD analysis can also help to formulate 
hypotheses about the causalities, which could be further studied and verified with 
RCTs (Sherman et al., 2016). RCT and RWE studies can be regarded as 
complementary in that they study the same phenomenon, but in different 
populations under different settings and with different data and methods (Kim, Lee 
and Kim, 2018; Maissenhaelter, Woolmore and Schlag, 2018). Table 1 summarizes 
and compares the most relevant characteristics of RCT and RWE studies. 

Table 1.  Characteristics of randomized controlled trials and real-world data studies. 
Characteristic Randomized controlled trials (RCTs) Real-world data (RWD) studies 

Population  Limited and specific 
 ”Ideal study population” 

 Large-scale and broad 
 ”Real-world study population” 

Settings  Controlled 
 Data collected over a limited time 

period 

 Uncontrolled 
 Data may be collected over 

extended time periods 
Design  Typically interventional 

 Well-designed beforehand 
 Typically observational 
 Adjusted for the available data 

Data  High quality data collected for the 
study 

 Low quality 
 Secondary use of data 

Analyses  Hypothesis-driven analyses with 
traditional statistical methods using 
small samples 

 Exploratory analyses with statistical 
and machine-learning methods using 
large samples 

Results  Good internal validity  Good external validity 
New knowledge  Causality and mechanisms in health-

related issues 
 Observations and data-driven 

hypotheses on health-related issues 
Disadvantages  The study population does not 

represent a clinical sample 
 The results are not generalizable 
 Expensive to conduct 

 The data may be poor quality 
including confounding factors 

 Poor internal validity 
 Data fishing is possible 

Advantages  High internal validity of the results 
and randomization ensures unbiased 
results for the study population 

 Generalizable results providing 
practical insights 

 Cost-effective in enabling long-term 
studies 
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Despite the great opportunities the analysis of real-world wearable monitoring data 
presents, it also poses some challenges. Firstly, continuous wearable monitoring is 
still a relatively new field of science, and the methods used to quantify health 
behaviours from the recorded data are, to say the least, under development, i.e., there 
are no universally accepted ‘gold standards’. In addition, there are more general 
concerns about RWD analysis, which also apply to wearable monitoring data. For 
example, the huge quantity of data raises the issue of “data dredging” (or “data 
fishing”), which arises from the performance of multiple analyses on the data in 
order to achieve the desired results (Smith and Ebrahim, 2002; Berger et al., 2017). 
Furthermore, the uncontrolled settings for RWD data collection may introduce bias 
in the selection of the subjects (Vandenbroucke et al., 2007), uncertainties in the 
quality of the data (Sherman et al., 2016), and the presence of confounding factors 
potentially causing distortion in the studied associations (Onghena and van der 
Noortgate, 2005). However, these concerns can be addressed, to some extent, by 
rigorous study design and statistical modelling (Berger et al., 2009). 

This thesis work is based on the results of five, scientific peer-reviewed studies 
published between 2014 and 2018. The material used in the publications is an 
anonymized, real-world dataset consisting of heart rate variability (HRV) monitoring 
data. The HRV data in free-living settings was collected as part of a routine wellness 
program (Firstbeat Lifestyle Assessment) provided by Finnish employers as part of 
a preventative occupational healthcare program. By June 2015, 52,273 Finnish 
employees had participated in the three-day HRV monitoring procedure. In addition 
to the wearable HRV monitoring data, the dataset included the subjects’ background 
characteristics, and their self-reported work and sleep times as well as alcohol intake 
per day. The five publications have all used statistical data analysis and machine 
learning on this HRV monitoring dataset in order to study health behaviours and 
physical activity, and the associations of lifestyle choices and physical activity with 
sleep. 

A review of the relevant literature on the autonomic nervous system (ANS), the 
physiological background to assessing heart rate (HR) and HRV, the wearable 
monitoring and analysis for HRV, as well as aspects of RWD and RWE are discussed 
in Chapter 2. Chapter 3 outlines the aims of the study, and Chapter 4 describes the 
study material and the methods employed. Chapter 5 presents the main results of 
the research, which are discussed in Chapter 6. Chapter 7 summarizes the results of 
the research and draws some conclusions about the physical activity and sleep 
behaviours observed in the Finnish employees. 
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2 REVIEW OF THE LITERATURE 

2.1 Autonomic nervous system and heart rate variability 

2.1.1 Autonomic nervous system 

The purpose of the autonomic nervous system (ANS) is, in collaboration with the 
endocrine system, to maintain homeostasis in the body (Furness, 2009). To achieve 
homeostasis, i.e. a steady physiological state in the body (Koizumi, 2009), the ANS 
is continuously controlling the bodily functions (Furness, 2009). The ANS consists 
of afferent and efferent nerves, which are innervated into almost all organs (Ernst, 
2017). The afferent nerves gain sensory information from the organs (Ernst, 2017) 
down to the lowest-level parts of the central nervous system, including the spinal 
cord, the brain stem and the hypothalamus (Gabella, 2012). The lowest-level parts 
of the central nervous system involuntarily control the reactions transmitted via the 
efferent nerves to the target organs (Ernst, 2017). Traditionally, the ANS is divided 
into two branches: the sympathetic (SNS) and parasympathetic (PNS) nervous 
systems (Ernst, 2017). SNS and PNS typically affect the target organs in opposite 
but complementary ways (Figure 2) (Furness, 2009; Vinik, 2012). The opposite 
effects of SNS and PNS on the target organs enable efficient adjustments for the 
requirements of the body and its environment in order to maintain homeostasis 
(Furness, 2009). 
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Figure 2.  The sympathetic and parasympathetic branches of the ANS and their effects on the target 
organs (Vinik, 2012). Licensed under Creative Commons Attribution-NonCommercial 3.0 
Unported (CC BY-NC 3.0).  

Traditionally, SNS and PNS regulation has been regarded as reciprocal; the activation 
of one branch is linked to the inhibition of the other branch (Malliani et al., 1998). 
This reciprocal behavior of SNS and PNS is observed in many physiological 
conditions (Montano et al., 2009), but the co-activation of both SNS and PNS also 
occurs in various physiological conditions, e.g. during exercise (Koizumi et al., 1982; 
Malliani and Montano, 2002; Paton et al., 2005). Thus, the interaction between SNS 
and PNS activation is complex and non-linear: PNS activation may be associated 
with either inhibited, increased or unchanged SNS activation, and vice versa (Shaffer 
and Ginsberg, 2017). In other words, the activation of SNS and PNS should be 
interpreted as a model with a two-dimensional surface, instead of as a one-
dimensional vector (Berntson, Cacioppo and Quigley, 1991). It has been suggested 
that this complex and non-symmetrical activation of the SNS and PNS provides the 
most efficient adaptation to maintain homeostasis (Koizumi et al., 1982; Paton et al., 
2005). 

A dynamic balance of the SNS and the PNS is a marker of a healthy organism 
(Shaffer, McCraty and Zerr, 2014). A healthy organism has the capacity to respond 
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and adjust to the autonomic balance according to the requirements for maintaining 
homeostasis (McCraty and Shaffer, 2015). The lack of dynamic balance is a risk 
factor for various diseases (Thayer and Sternberg, 2006; Montano et al., 2009). In 
autonomic imbalance, one ANS branch dominates the other; typically the SNS over 
the PNS (Thayer and Sternberg, 2006). Autonomic imbalance has been associated 
with hypertension and an elevated risk of cardiovascular disease, for example (Brook 
and Julius, 2000).  

2.1.2 Electrocardiogram, heart rate and heart rate variability 

The heart is one of the target organs of the ANS (Gabella, 2012). The functions of 
the heart are largely regulated by the ANS (Thayer and Sternberg, 2006; Montano et 
al., 2009). However, the regulation of the autonomic heart functions is a complex 
phenomenon including several interconnected biological systems and mechanisms 
(Shaffer, McCraty and Zerr, 2014). The heartbeat is a contraction of the heart muscle 
that originates from the spontaneously depolarized pacemaker cells in the sinoatrial 
(SA) node of the heart (e.g. Vander, Sherman and Luciano, 1990). From the 
pacemaker cells, the action potential propagates through the heart causing the heart 
muscle to contract and pump blood into vessels.  

Electrocardiography is the gold standard for measuring the electrical activity of 
the heart (e.g. Vander, Sherman and Luciano, 1990). In electrocardiography, 
electrodes are attached to the skin and the measured electrical activity of the heart is 
shown as an electrocardiogram (ECG), a graph of voltage over time. The events in 
the ECG correspond to the electrical activity of the heart (Figure 3). The P-wave in 
the ECG corresponds to the atrial depolarization, the QRS-complex corresponds to 
the ventricular depolarization and simultaneous atrial repolarization, and the T-wave 
corresponds to the ventricular repolarization. The duration of a heartbeat is typically 
derived from the time between the consecutive R-waves in the ECG (Georgiou et 
al., 2018). The time intervals between consecutive R-waves are called RR-intervals 
(Vander, Sherman and Luciano, 1990). The instantaneous heart rate (HR) is the 
number of contractions of a heart muscle in a time unit, and it can be determined 
from the duration of a heartbeat, which in ECG measurements is equivalent to the 
RR-intervals (Vander, Sherman and Luciano, 1990). 
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Figure 3.  An example of ECG signal showing a P-wave, a QRS-complex and a T-wave as well as 
an RR-interval or an inter-beat interval (Pang and Igasaki, 2018). Licensed under CC 
Attribution 4.0 International (CC BY 4.0). 

The intrinsic HR generated by the pacemaker cells in the SA node is around 100 
beats per minute (bpm) (Vander, Sherman and Luciano, 1990; Opthof, 2000). 
However, HR may vary in adults from as low as 30 bpm during rest to up to 200 
bpm during exercise, through ANS regulation (Shaffer, McCraty and Zerr, 2014). In 
general, SNS activation increases HR while PNS activation decreases it (Gabella, 
2012). Thus, the PNS is in primary control of the heart during rest, even though the 
SNS and PNS are in constant interaction (Vander, Sherman and Luciano, 1990; 
Malik et al., 1996; McCraty and Shaffer, 2015). Compared to the SNS stimulus, the 
PNS stimulus has immediate, short-term effects on HR (Shaffer, McCraty and Zerr, 
2014; Draghici and Taylor, 2016). The PNS stimulus affects HR with a delay of less 
than one second and the effect only lasts for one or two heart beats (Nunan, 
Sandercock and Brodie, 2010; Shaffer, McCraty and Zerr, 2014). The SNS stimulus 
has a delay of more than five seconds and its effects last for 5–10 seconds (Nunan, 
Sandercock and Brodie, 2010; Shaffer, McCraty and Zerr, 2014). 

As heart functions are largely under the control of the ANS, resting HR and the 
decline in HR after exercise can be used as rough estimates of the ANS regulation 
(Thayer and Sternberg, 2006; Montano et al., 2009; Shaffer, McCraty and Zerr, 2014). 
A more sophisticated estimate of the ANS regulation can be obtained with the beat-
to-beat variation in instantaneous HR or RR-intervals (Malik et al., 1996). The 
variation in the instantaneous HR or RR-intervals is known as heart rate variability 
(HRV) (Malik et al., 1996).  

Both HR and HRV are non-invasive and indirect markers of ANS regulation in 
healthy and diseased subjects (Malik et al., 1996; Thayer, Yamamoto and Brosschot, 
2010; Billman, 2011). Typically, HRV is assessed from an ECG as the variation of 
RR-intervals by detecting the QRS complexes in the ECG (Malik et al., 1996). The 
QRS complexes are detected, for example, by the fiducial point (Pan and Tompkins, 
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1985) and, using the time points of QRS complexes, the RR-intervals may be 
extracted. Both the RR-interval tachogram, which represents the RR-intervals with 
respect to time, and the RR-intervals presented as a function of the heartbeat index 
number can be used as the basis for HRV analysis (Figure 4). 

 

Figure 4.  Example of an ECG signal (A) from which the time between the consecutive R peaks are 
extracted. The interpolated RR-interval tachogram (B) and the RR-intervals as a function 
of the heartbeat index number (C) can used for the HRV analysis. (Peltola, 2012). 
Licensed under CC BY-NC 3.0.  

Although the principal effects of PNS and SNS on the HR are widely and commonly 
accepted, the exact effects and contributions of PNS and SNS on the HRV are still 
under investigation and open to debate (Billman, 2011; Billman et al., 2015). The two 
main mechanisms responsible for the HRV are baroreflex and respiration 
(Karemaker, 2017). Baroreflex contributes to HRV via PNS activation (Karemaker, 
2017). Fluctuations of HR during a respiration cycle, known as respiratory sinus 
arrhythmia (RSA), has also been linked to PNS regulation (Denver, Reed and Porges, 
2007; Karemaker, 2017). However, the PNS activity is not the only factor affecting 
RSA, as the SNS mechanisms also modulate it (Taylor et al., 2001; Karemaker, 2017). 
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In addition to PNS and SNS, the chemo- and mechano-sensory neurons located in 
the heart are part of the intra-cardiac nervous system which ultimately controls the 
pacemaker cells in the SA node (Billman, 2011; Shaffer, McCraty and Zerr, 2014; 
Campos et al., 2018). Thus, the autonomic control of the heart includes regulatory 
functions from the brain to the heart, and both HR and HRV represent the net effect 
of the autonomic control of the heart (Shaffer, McCraty and Zerr, 2014; McCraty 
and Shaffer, 2015; Campos et al., 2018). 

HR and HRV have been shown to have a non-linear and inverse relationship 
known as the cycle length dependence (Tsuji et al., 1996; Monfredi et al., 2014; 
McCraty and Shaffer, 2015). This is justified for both physiological and mathematical 
reasons (Zaza and Lombardi, 2001; Melenovsky et al., 2005; Sacha and Pluta, 2008). 
It has been proposed that the SA pacemaker cells have an intrinsic property causing 
the RR-intervals to be non-linearly dependent on the cardiac activity: the same level 
of vagal activity triggers increased prolongation of RR-intervals at longer baseline 
RR-intervals (Zaza and Lombardi, 2001; Melenovsky et al., 2005). The mathematical 
dependence between HRV and RR-intervals arises from the non-linear inverse 
relationship between the average HR and RR-intervals (Sacha and Pluta, 2008). At 
low average HRs, the fluctuations of the RR-intervals can be higher than at higher 
average HRs (Sacha, 2014). In addition, the same fluctuations in the HR have a 
relatively greater impact on the RR-intervals at low average HRs than at higher 
average HRs (Billman et al., 2015). Thus, HRV is higher at low-average HRs and 
lower when the average HR is higher (Sacha and Pluta, 2008).  

To remove the mathematical dependence between the HRV and HR, the HRV 
may be normalized with respect to the HR level (Sacha and Pluta, 2008). A simple 
HRV normalization method is to divide the RR-intervals by the average RR-interval 
(Sacha and Pluta, 2008). If the HRV is not normalized, the HR should be reported 
together with the HRV (Shaffer, McCraty and Zerr, 2014). It is especially important 
to notice the cycle length dependence when comparing the HRV between subjects 
with different average HRs, or during interventions which may alter the HR (Billman 
et al., 2015). 

2.1.3 Individual characteristics affecting heart rate and heart rate variability 

In addition to HR, age has been reported to be an important determinant of HRV 
(Tsuji et al., 1996; Umetani et al., 1998). In one study, the HR and age together were 
reported to account for up to 50% of the variance in HRV: HR accounting for up 
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to 25% and age accounting for up to 40% of the variance in the HRV (Tsuji et al., 
1996). It has been clearly shown that HRV decreases with age (Tsuji et al., 1996; 
Fagard, Pardaens and Staessen, 1999; Nunan, Sandercock and Brodie, 2010; 
Abhishekh et al., 2013). The total 24-hour HRV is reported to be up to 20% higher 
in young adults than in elderly ones (Umetani et al., 1998; Bonnemeier et al., 2003). 
The decrease in HRV with age indicates the predominance of the SNS and the 
withdrawal of the PNS in ANS regulation (Bonnemeier et al., 2003; Abhishekh et al., 
2013). With aging, the decrease in HRV is particularly noticeable during sleep as a 
diminished circadian pattern of the HRV (Bonnemeier et al., 2003). 

HRV also varies between genders (Koenig and Thayer, 2016). The resting HR is 
significantly higher in women than men (Fagard, Pardaens and Staessen, 1999; 
Bonnemeier et al., 2003; Koenig and Thayer, 2016), and women’s HRV, especially 
in long-term recordings, is lower than men’s (Koenig and Thayer, 2016). The total 
24-hour HRV has been reported to be up to 15% higher in men than in women 
(Umetani et al., 1998; Bonnemeier et al., 2003). Even though the total HRV is lower 
in women, they seem to have a higher proportion of short-term fluctuations in HR 
than men (Koenig and Thayer, 2016). It has thus been concluded that women have 
a relative dominance of PNS while men have a relative dominance of SNS in ANS 
regulation (Koenig and Thayer, 2016). These gender differences in the HRV can be 
explained both by humoral and mechanical factors (Bonnemeier et al., 2003), as well 
as hormones and differences in neural control of the heart (Koenig and Thayer, 
2016). 

Moreover, the interaction between age and gender affects the HR and HRV 
(Fagard, 2001). The HR declines with aging in women but not in men, while the 
decline in HRV with aging is steeper for men than for women (Umetani et al., 1998). 
Thus, the gender differences in the HR and HRV diminish with age (Umetani et al., 
1998; Bonnemeier et al., 2003). 

Although the HRV is clearly and consistently associated with age and gender, it 
is highly individual (Umetani et al., 1998; Bonnemeier et al., 2003; Nunan, 
Sandercock and Brodie, 2010; Koenig and Thayer, 2016). Thus, the HRV may vary 
greatly between healthy subjects, even if the measurement protocol is controlled and 
the subject group is homogenous (Nunan, Sandercock and Brodie, 2010). 
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2.1.4 Associations between clinical conditions and heart rate variability 

The clinical importance of HRV has been acknowledged since the 1960s but 
knowledge and evidence of the associations between ANS regulation, HRV and 
various diseases is continuously increasing (Malik et al., 1996; Thayer and Sternberg, 
2006; Billman et al., 2015). Broadly speaking, a decline in HRV is associated with 
various clinical conditions while an increase in HRV is associated with health (Thayer 
and Sternberg, 2006; Thayer, Yamamoto and Brosschot, 2010). This observation is 
in line with the observation that an increase in the resting HR is an independent 
marker of all-cause mortality (Zhang, Shen and Qi, 2016). As with HR, HRV is a 
feasible, non-invasive, inexpensive and easy-to-obtain clinical parameter (Buccelletti 
et al., 2009; Zhang, Shen and Qi, 2016). 

In cardiology, the first practical use of HRV was in the risk assessment of cardiac 
events after acute myocardial infarction (MI) (Malik et al., 1996). In the 1980s, 
decreased HRV after acute MI was associated with increased mortality (Kleiger et 
al., 1987). Decreased HRV after MI was later also shown to be a risk factor for both 
sudden and non-sudden cardiac deaths and other adverse outcomes, such as heart 
failures (Buccelletti et al., 2009; Huikuri and Stein, 2012). In the general population, 
decreased HRV and increased resting HR have both been independently associated 
with cardiovascular mortality and morbidity (Hillebrand et al., 2013; Zhang, Shen 
and Qi, 2016). In addition, it has been reported that attenuated HR recovery and 
lower HRV during recovery from physical exercise are significant predictors for 
overall mortality in patients with a high risk of cardiovascular events and in patients 
after acute MI (Nissinen et al., 2003; Pradhapan et al., 2014).  

Another pioneering practical use of HRV was in diabetic autonomic neuropathy 
(DAN), a complication of diabetes mellitus (Malik et al., 1996). In DAN, the HRV 
is already reduced in the early stages of the disease, and is thus considered to be the 
earliest indicator of the disease (Vinik et al., 2003; Dimitropoulos, Tahrani and 
Stevens, 2014). Tests for cardiovascular ANS regulation are recommended as a key 
part of the guidelines for diagnosing DAN (Spallone et al., 2011). Even without any 
complications of the disease, diabetic patients have been reported as having an 
increased minimum 24-hour HR and decreased HRV (Ewing et al., 1983; Kudat et 
al., 2006; Benichou et al., 2018). 

Reduced HRV has also been reported in various psychiatric disorders, such as in 
acute psychosis (Valkonen-Korhonen et al., 2003), schizophrenia (Bär et al., 2007), 
anxiety (Chalmers et al., 2014), and depressive disorders (Kemp et al., 2010; Kemp 
et al., 2014). In depression, the HRV decreases in line with the severity of the 
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depression, and in major depression an increase in the resting HR has been reported 
(Kemp et al., 2010; Kemp et al., 2014).  

2.2 Monitoring and analysis of heart rate variability 

2.2.1 Wearable monitoring of heart rate variability 

Recent technological advances have made HR and HRV measurements readily 
available for consumers in the form of wearable sensors i.e. sensors embedded into 
small items of apparel, such as watches or jewelry (Korhonen, Pärkkä, and van Gils, 
2003; Quintana, Alvares and Heathers, 2016). In fact, there is currently a wide variety 
of wearable health-monitoring devices on the market that can be used for monitoring 
various health and well-being aspects, such as sleep, PA or emotional stages (Peake, 
Kerr and Sullivan, 2018). The wearable sensor market has growth exponentially in 
the past years and is still constantly growing (Hernando et al., 2018).  

The wearable devices for HR and HRV monitoring that are currently on the 
market typically employ ECG or photoplethysmography (PPG) technologies 
(Georgiou et al., 2018; Singh et al., 2018). ECG-based technologies that employ a 
chest strap monitoring, e.g. from Polar (Polar Electro, Kempele, Finland), have been 
on the market for decades and are nowadays widely available for consumers with 
affordable price (Achten and Jeukendrup, 2003; Parak and Korhonen, 2014). The 
more recent PPG-based technology is used in some common examples of wearable 
sensors e.g., AppleWatch (Apple Inc., California, USA) and ŌURA ring (Oura, 
Oulu, Finland) (Hernando et al., 2018; Peake, Kerr and Sullivan, 2018).  

PPG is an optical method in which a light source illuminates the skin and a light 
detector measures the absorption of the light in the tissue under the skin (Allen, 
2007). The changes in the absorbed light are synchronous with the heartbeats, and 
thus, HR and HRV can be extracted from PPG measurements (Georgiou et al., 
2018). A few studies have investigated the reliability of wearables using PPG for HR 
and HRV recording (Georgiou et al., 2018; Hernando et al., 2018; Parak, 2018). The 
PPG technology seems to provide reliable HR recording in free-living settings but 
the accuracy of the measurements may decrease during physical exercise (Weiler et 
al., 2017; Parak, 2018). The current PPG technology is highly susceptible to motion 
artefacts, so reliable HRV estimates can only be obtained during rest and light 
physical exercise conditions (Allen, 2007; Weiler et al., 2017; Georgiou et al., 2018; 
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Hernando et al., 2018; Parak, 2018). Therefore, ECG-based devices remain the most 
accurate method for monitoring HR and HRV in free-living settings (Singh et al., 
2018). 

A fundamental element affecting the reliability of the HR and HRV analysis is 
the quality and accuracy of the RR-interval data (Malik et al., 1996). In ECG 
recordings, the RR-intervals are typically extracted based on detection of the QRS 
complexes (Malik et al., 1996). The jitter in the QRS complex detection can be 
minimized by using a sufficiently high sampling frequency for the measurement 
device (Malik et al., 1996). Recommendations for the minimum sampling frequency 
vary from 250 Hz to 500–1000 Hz but even lower sampling frequencies (≥100 Hz) 
with appropriate signal reconstruction methods may be adequate (Malik et al., 1996; 
Quintana, Alvares and Heathers, 2016; Kwon et al., 2018). Nowadays, the 
commercially available devices have sampling frequencies that are well over the 
minimum limits, ranging from 1–8 kHz (Quintana, Alvares and Heathers, 2016). 

2.2.2 Artefact correction in heart rate variability analysis  

Figure 5 shows a flow chart of a typical procedure for conducting HRV analysis on 
recorded ECG data. Firstly, the RR-interval data is extracted from the ECG signal 
by detecting the QRS complexes (see section 2.1.2). Ideally, the HRV analysis is 
performed on the RR-interval data that only contains normal sinus beats. Normal 
sinus beats are heartbeats triggered by depolarization of the SA node, and the 
intervals between consecutive normal sinus beats are called NN-intervals (Malik et 
al., 1996). The non-sinus beats, also known as abnormal beats or artefacts, are 
excluded from the NN-intervals (Malik et al., 1996; Peltola, 2012; Shaffer, McCraty 
and Zerr, 2014). In practice, however, the HRV analysis is typically performed on 
artefact-corrected RR-interval data where the abnormal beats have been corrected 
using signal processing techniques (Peltola, 2010). Figure 5 gives an overview of the 
steps between the raw ECG signal and the HRV analysis. This section, 2.2.2, 
describes the artefact correction of the RR-intervals while the following section, 
2.2.3, describes the calculation of the HRV parameters in different domains (Figure 
5, bottom row). 
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Figure 5.  The flow chart of HRV analysis from recorded ECG data to the HRV parameters. 

Artefacts are unavoidable for wearable ECG recordings in free-living settings, so 
they need to be taken into account in order to avoid any distortion of the HRV 
analysis (Peltola, 2012; Choi and Shin, 2018; Pang and Igasaki, 2018). In ECG, 
artefacts may originate from technical issues e.g. poorly attached electrodes or 
sudden movements of the subject, or from physiology e.g. ectopic beats (Peltola, 
2012; Choi and Shin, 2018). With the RR-intervals, the artefacts arising from the 
instrumentation are typically observed from a relatively long sequence of abnormal 
RR-intervals, while the ectopic beats are typically observed from a compensatory 
pause after an ectopic beat (Peltola, 2010). Both technical artefacts and ectopic beats 
are also observed in healthy individuals (Bikkina, Larson and Levy, 1992; Peltola, 
2010). For long-term recordings, it is not practical to carry out visual inspections and 
manual editing in the artefact correction of the RR-intervals (Karlsson et al., 2012; 
Peltola, 2012). However, automatic artefact correction has been shown to provide 
sufficiently accurate HRV analysis results, and this is the method that should be used, 
especially in long-term recordings (Karlsson et al., 2012; Peltola, 2012).  

Many of the algorithm-based artefact correction methods employ strategies of 
deletion or interpolation (Peltola, 2012). In the deletion-based methods, the 
erroneous RR-intervals are removed, while in the interpolation-based methods, the 
erroneous RR-intervals are replaced by the RR-intervals interpolated from the 
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normal RR-intervals (Salo, Huikuri and Seppänen, 2001). In the case of 
interpolation-based methods and ectopic beats, for HRV analysis it is important to 
edit both the ectopic beat and the following compensatory pause (Peltola, 2012). In 
general, interpolation methods are superior to deletion methods (Peltola, 2012). 
However, different artefact-correction methods have different effects on the 
different HRV measurement estimates, so there is no one gold-standard artefact-
correction scheme (Salo, Huikuri and Seppänen, 2001). It is good practice to report 
the relative number and duration of the artefact-corrected or -deleted RR-intervals 
in the recordings (Malik et al., 1996). For reliable HRV analysis, those parts of the 
recordings which have many erroneous RR-intervals should be excluded (Peltola, 
2012). A minimum threshold of 80% for the proportion of normal sinus beats in the 
recording is a typical level in scientific studies (Peltola, 2012).  

2.2.3 Heart rate variability analysis 

As mentioned, the HRV parameters are calculated from the NN-intervals or from 
the artefact-corrected RR-intervals (Malik et al., 1996; Shaffer, McCraty and Zerr, 
2014). The most widely used HRV parameters are calculated in the time and 
frequency domains (Malik et al., 1996; Shaffer and Ginsberg, 2017). In addition, 
some non-linear measures of HRV have been developed and used (Malik et al., 1996; 
Shaffer and Ginsberg, 2017).  

The time-domain HRV measures are based on statistical analysis of the NN-
intervals, while the frequency-domain measures are based on the power spectral 
density (PSD) estimate of the NN-intervals (Billman, 2011). In a non-linear analysis 
of HRV, the idea is to describe the non-linear dynamics of HR changes by 
measuring, for example, the complexity of the NN-interval time series with entropy 
measures (Huikuri et al., 2009).  

The most traditional HRV parameters are the time- and frequency-domain 
parameters (Malik et al., 1996). The time-domain HRV parameters are the statistical 
parameters of the NN-intervals (Malik et al., 1996; Shaffer, McCraty and Zerr, 2014). 
Typical time-domain HRV measures widely used and reported for HRV studies 
include the standard deviation of the NN-intervals (SDNN) and the root-mean 
square of successive differences in the consecutive NN-intervals (RMSSD) (Malik et 
al., 1996). Due to the simplicity of the calculations, the time-domain HRV measures 
can easily be reproduced (Billman, 2011). In addition, the simple time-domain HRV 
measures, such as SDNN, are more robust to artefacts in RR-intervals and artefact 
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correction methods than the more complex time-domain methods, such as RMSSD, 
or to the frequency-domain HRV parameters (Peltola, 2010). 

The frequency-domain HRV parameters require signal processing methods as the 
frequency power spectrum is typically estimated from the interpolated equidistant 
RR-intervals (Malik et al., 1996; Peltola, 2012). Due to the natural variation in the 
duration of heartbeats, the RR-interval data is spontaneously irregularly sampled 
(Malik, 1996; Peltola, 2012). To obtained uniformly resampled RR-intervals, the 
irregular RR-intervals can be first interpolated by using, e.g. spline interpolation 
methods, and thereafter be resampled with a uniform time intervals (Peltola, 2012). 
Once the interpolated equidistant RR-interval data is available, PSD estimates can 
be obtained using either non-parametric methods, e.g. Fast Fourier Transform, or 
parametric ones, e.g. autoregressive model, methods (Malik et al., 1996; Quintana, 
Alvares and Heathers, 2016). The advantage of the non-parametric methods are their 
simplicity and high processing speed, while the non-parametric methods produce 
smoother PSD estimates and more accurate PSD estimates with low number of 
samples than the non-parametric methods but the parametric methods require effort 
to verify the suitability of the selected model (Malik et al., 1996). However, both non-
parametric and parametric provide similar results in general and almost equivalent 
estimates for the high-frequency bands (Hayano et al., 1991; Malik et al., 1996).  

The frequency-domain HRV parameters describe the power of the PSD in 
specific frequency ranges (Malik et al., 1996). In adults, the frequency ranges of 
interest are: ultra-low frequencies (ULF) of ≤0.003 Hz, very-low frequency (VLF) of 
0.003–0.04 Hz, low frequencies (LF) of 0.04–0.15 Hz, high frequencies (HF) of 
0.15–0.4 Hz, and the total frequency range of ≤0.4 Hz (Malik et al., 1996; Quintana, 
Alvares and Heathers, 2016). In other words, the fluctuations in the RR-intervals are 
over 5 minutes for the ULF band components, 25–300 seconds for the VLF, 7–25 
seconds for the LF and less than 7 seconds for the HF components (Quintana, 
Alvares and Heathers, 2016). It is recommended to report the frequency-domain 
HRV parameters in absolute units of power (ms2) (Malik et al., 1996). Additionally, 
the power in the LF and HF components can be expressed by normalizing them 
against their total power (Malik et al., 1996; Shaffer and Ginsberg, 2017). The ratio 
between the LF and HF powers i.e. the LF/HF ratio (Heathers, 2014) is equivalent 
to the normalized LF and HF powers. LF and HF powers expressed in normalized 
units, or as an LF/HF ratio may be better for comparing the frequency range powers 
between the subjects. This is because the HRV may vary greatly between the subjects 
and due to contextual factors (Shaffer and Ginsberg, 2017).  
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Recently, a novel analysis for personalized HRV indices has also been studied 
(Uusitalo et al., 2011). The personalized HRV indices take into account the 
individual’s baseline resting HR and HRV to describe the ANS regulation (Uusitalo 
et al., 2011). They employ traditional time- and frequency-domain methods (Föhr et 
al., 2015) to compare the HR and HRV responses to stimuli against the baseline 
resting HR and HRV levels (Uusitalo et al., 2011). Based on the individual changes 
in the HR and HRV, the ANS regulation reactions can be categorized into stress, 
recovery and physical activity, for example (Föhr et al., 2015). Thus, these novel 
HRV indices provide information about ANS regulation reactions that are 
independent of the subject’s background characteristics, such as age and gender 
(Uusitalo et al., 2011). 

The HRV analysis of the RR-intervals can be done either in short, typically 5-
minute, or long, typically 24-hour, time windows (Malik et al., 1996). However, the 
length of the analysis window affects the HRV parameter values (Malik et al., 1996; 
Shaffer and Ginsberg, 2017). Thus, short-term and long-term HRV values are not 
interchangeable and cannot be easily compared (Malik et al., 1996; Shaffer and 
Ginsberg, 2017). The length of the time window determines the length of cyclic 
variations and the frequency components in the HRV that can be analyzed. The 
longer the time window, the lower the frequencies that can be analyzed (Heathers, 
2014). On the other hand, the time window also affects the level of HRV. For 
example, HRV analyzed over a long (24-hour) time window includes responses to a 
great number of stimuli while HRV analyzed over a short (5-minute) time window 
represents the response to only a limited number of stimuli (Shaffer and Ginsberg, 
2017). In other words, the HRV analysis in long (24-hour) time windows is more 
likely to violate the stationarity assumption, i.e. mechanisms responsible for specific 
HR modulations are unchanged during the recording (Malik et al., 1996; Laborde, 
Mosley and Thayer, 2017). This makes any interpretation of the frequency-domain 
HRV parameters calculated over long (24-hour) time windows particularly 
complicated (Malik et al., 1996; Laborde, Mosley and Thayer, 2017). 

The current recommendation for long (24-hour) recordings is to analyze the 
HRV in short (5-minute) non-overlapping time windows (Laborde, Mosley and 
Thayer, 2017). In a 5-minute time window, the time-domain as well as the VLF, LF 
and HF frequency components can be studied (Malik et al., 1996). Based on the 
calculated 5-minute HRV parameters, the lower frequency variations, such as 
circadian rhythms, can also be indirectly estimated (Laborde, Mosley and Thayer, 
2017). 
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2.2.4 Heart rate variability parameters and their relation to autonomic 
nervous system regulation 

HRV is a complex measure for HR fluctuations introduced by the ANS, as it is for 
other factors (Shaffer and Ginsberg, 2017). HRV reflects the ANS modulation only 
indirectly (Billman, 2011). Thus, HRV should be interpreted more as a qualitative, 
than a quantitative measure of ANS regulation (Billman, 2011). Moreover, the 
limitations of the HRV measures in distinguishing between the SNS and PNS 
branches in the ANS regulation should be noted (Billman, 2011) although different 
HRV measures have been associated with different origins of HR fluctuations (Malik 
et al., 1996). 

The SDNN measure describes the total variability of the NN-intervals in a time 
window, typically 5 minutes for a short-term interval or 24 hours for a long-term 
recording (Shaffer and Ginsberg, 2017). SDNN is thus a measure of the total HRV, 
including the variability generated by both PNS and SNS activation, as well as any 
other mechanisms that influence the heartbeat (Shaffer, McCraty and Zerr, 2014). In 
short-term recordings at rest, SDNN is primarily modulated by the RSA, while in 
long-term recordings, the circadian rhythm of HRV has a major effect on the SDNN 
(Kleiger, Stein and Bigger, 2005; Shaffer, McCraty and Zerr, 2014). In general, the 
SDNN values tend to increase with longer analysis time windows as the longer time 
windows include a wider variety of stimuli as well as the low frequency variations of 
HRV (Malik et al., 1996; Shaffer and Ginsberg, 2017).  

The RMSSD is calculated as the square root of the mean of the squared 
differences between the successive NN-intervals (Shaffer and Ginsberg, 2017). As 
evident from the definition, the RMSSD measures the beat-to-beat variation in the 
NN-intervals and corresponds to the HF parameter in the frequency domain (Malik 
et al., 1996). RMSSD is a well-established time-domain measure for the PNS-
mediated changes in the NN-intervals (Shaffer, McCraty and Zerr, 2014).  

Traditionally, the LF peak in the PSD has been taken to describe the SNS 
modulation, while the HF peak has been taken to describe the PNS modulation 
(Malliani et al., 1998; Billman, 2013). However, this simple association between LF 
and SNS has been challenged (Goldstein et al., 2011). Firstly, the SNS has been 
observed to modulate HR with frequencies ≤0.1 Hz, while the PNS modulates the 
HR at frequencies ≥0.05 Hz (McCraty and Shaffer, 2015). Some interventions that 
are thought to increase SNS activation, such as physical exercise, have been shown 
not to increase the LF component (Houle and Billman, 1999; Sandercock and 
Brodie, 2006). In addition, respiration introduces modulation of the HR in the LF 
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range, especially in the case of slow and deep breaths (Brown et al., 1993; Shaffer 
and Ginsberg, 2017). In short-term resting recordings, the LF is primarily thought 
to reflect baroreflex activity (Reyes del Paso et al., 2013; Shaffer, McCraty and Zerr, 
2014; Goldstein et al., 2011). However, SNS activation may also significantly 
modulate the LF, in both short-term and long-term recordings (Shaffer, McCraty 
and Zerr, 2014). In summary, the LF component is a complex measure of HRV. It 
is made up mostly of the PNS (≥50%), the SNS (≤25%), and substantial 
contributions from other, as yet unidentified, factors (Billman, 2013).  

The HF component has been strongly associated with PNS activation in the 
majority of studies, although this association is still a matter of debate (Malik et al., 
1996; Taylor et al., 2001; Thayer, Yamamoto and Brosschot, 2010; Billman, 2011). 
The HF range of HRV corresponds to fluctuations in the HR due to the RSA 
(Shaffer and Ginsberg, 2017). The RSA has traditionally been thought to reflect PNS 
activity, but evidence shows that SNS activity also modulates the RSA (Taylor et al., 
2001; Cohen and Taylor, 2002). Thus, it has been concluded that the HF power is 
largely due to the PNS modulation (Billman, 2013). The PNS and SNS are estimated 
to contribute around 90% and 10% to the HF, respectively (Billman, 2013).  

Consistent with the traditional interpretation of LF and HF powers, as being 
markers of SNS and PNS activation, the LF/HF ratio has been interpreted to 
represent the “sympatho-vagal balance” (Malliani et al., 1998). Along with discussion 
over how to interpret the LF and HF powers, there has also been much debate about 
how to interpret the LF/HF ratio (Billman, 2013; Heathers, 2014). From a 
mathematical perspective, it is self-evident that the LF/HF ratio may have similar 
values or changes with respect to different LF and HF values and changes (Heathers, 
2014). Because both PNS and SNS have been reported as contributing to changes 
in both the LF and HF components in a complex manner, the physiological basis 
for the LF/HF ratio cannot be determined in detail (Billman, 2013). Thus, the 
LF/HF ratio cannot be used to interpret the ANS regulation on its own (Heathers, 
2014), so it is recommended to report the LF/HF ratio together with the raw values 
of the HRV frequency components (Malik et al., 1996). 

While the LF and HF components of HRV have gained a lot of attention in the 
past, the origins for VLF and ULF have been less well studied (Shaffer, McCraty and 
Zerr, 2014). Nevertheless, the VLF and ULF bands account for 95% of the total 
power in long-term (24-hour) recordings (Malik et al., 1996). The VLF band reflects 
the long-term variations in HR and it has been proposed these originate from 
thermoregulation and hormonal factors, but recent evidence shows that VLF is 
intrinsically generated by the heart (Shaffer, McCraty and Zerr, 2014). The research 
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has suggested that the ULF band originates primarily from circadian regulation, and 
from other slow regulatory mechanisms, such as the core body temperature (Shaffer, 
McCraty and Zerr, 2014). 

The time-domain HRV measures have their counterparts in the frequency-
domain and vice versa, because of their mathematical relationships and the same 
physiological phenomena influencing them (Kleiger, Stein and Bigger, 2005). The 
highly correlated time- and frequency-domain HRV measures are, however, not one-
to-one equivalents (Kleiger, Stein and Bigger, 2005; Billman, 2011). The frequency-
domain measures provide more detailed information than the time-domain measures 
(Billman, 2011). The SDNN correlates highly with the total power in the frequency 
domain, and the total power is the frequency-domain equivalent to the time-domain 
SDNN (Bigger et al., 1992). Both the RMSSD and the HF mainly reflect the PNS 
modulation and they are highly correlated (Bigger et al., 1992; Kleiger, Stein and 
Bigger, 2005). However, the RMSSD is not affected by respiration, unlike the HF 
(Penttilä et al., 2001; Hill et al., 2009). A summary of the most common time- and 
frequency-domain HRV parameters is given in Table 2.  
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2.3 Physical activity, sleep, and other behaviors and contextual 
factors linked to heart rate variability 

In addition to personal background characteristics (Bonnemeier et al., 2003; Nunan, 
Sandercock and Brodie, 2010) and clinical conditions (Malik et al., 1996), HRV is 
also associated with various behaviors and contextual factors. These include physical 
activity (Sandercock and Brodie 2006; Nunan, Sandercock and Brodie, 2010), sleep 
(Tobaldini et al., 2013), smoking (Barutcu et al., 2005), alcohol use (Sagawa et al., 
2011; Quintana et al., 2013) and psychological stress (Föhr et al., 2015). Many of 
these factors, such as smoking, alcohol dependence and poor sleep have also been 
associated with an increased risk of cardiovascular diseases and events (Barutcu et 
al., 2005; Quintana et al., 2013; Tobaldini et al., 2013). Figure 6 summarizes the 
effects of the most important personal characteristics, behaviors, and clinical 
conditions affecting HRV. However, it should be noted that HRV has been reported 
to be highly individual (Nunan, Sandercock and Brodie, 2010). 

 

Figure 6.  A summary of the effects on the HRV of the subjects’ background characteristics, 
contextual factors, behaviors and clinical conditions.  
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2.3.1 Associations of physical activity behavior and heart rate variability 

Physical activity (PA) is defined as the bodily movement produced by skeletal 
muscles and increased energy expenditure (EE) (Caspersen, Powell and Christenson, 
1985). Physical fitness describes one’s ability to perform physical activities 
(Caspersen, Powell and Christenson, 1985). Cardiorespiratory fitness describes the 
ability to supply oxygen to working muscles via the cardiovascular and respiratory 
systems during heavy aerobic physical exercise (Howley, 2001). Cardiorespiratory 
fitness is typically assessed with maximal oxygen uptake (VO2max), which is the 
highest oxygen uptake rate that the subject achieves during heavy aerobic physical 
exercise (Howley, 2001). The HR and HRV parameters associated with all of these 
concepts are related to PA behavior, which describes the way an individual conducts 
PA and modifies their physical fitness (modified from Oxford English Dictionary 
Online, 2019).  

It has been proposed that the variety of short-term resting HRV values observed 
across studies in healthy adults is partly due to the differences in the subjects’ habitual 
physical activity or fitness levels (Nunan, Sandercock and Brodie, 2010). There is 
evidence of cross-sectional differences between fit and unfit subjects (Sandercock 
and Brodie, 2006). For example, VO2max has been identified as having a high positive 
correlation with HRV (Goldsmith et al., 1997). Moreover, a negative correlation has 
been established between HRV and the body-mass-index (BMI) (Molfino et al., 
2009; Koenig et al., 2014). Cardiorespiratory-fitness-enhancing training also 
decreases resting HR (Wilmore et al., 2001; Yamamoto et al., 2001; Borresen and 
Lambert, 2008) and submaximal HR (Wilmore et al., 2001; Borresen and Lambert, 
2008). Meta-analysis and review articles have concluded that physical exercise 
training increases HRV (Sandercock, Bromley and Brodie, 2005; Hautala, Kiviniemi 
and Tulppo, 2009). A number of cross-sectional studies with a limited number of 
subjects have reported higher short-time resting HRV and lower HR for subjects 
with higher cardiorespiratory fitness, or those who are engaged in regular physical 
activity, although these have not always been statistically significant (Melanson, 2000; 
Rennie et al., 2003; Buchheit et al., 2005; Buchheit and Gindre, 2006; Zaffalon et al., 
2018). In fact, a few longitudinal randomized controlled trials in older men with a 
follow-up time of multiple years have not shown that cardiorespiratory fitness-
enhancing training affects the HR or the HRV (Uusitalo et al., 2004; Tuomainen et 
al., 2005). This may be due to too small an increase in cardiorespiratory fitness 
(Tuomainen et al., 2005), or simply ageing, which overwhelms the effect of increased 
cardiorespiratory fitness (Uusitalo et al., 2004). Overall, the effects of training on 
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HRV are still rather inconclusive (Borresen and Lambert, 2008). This may be 
explained by the different training programs and the non-optimal HRV indices and 
analyses used in the studies (Sandercock and Brodie, 2006; Borressen and Lambert, 
2008).  

During physical exercise, HR increases linearly with the intensity of the PA but 
the increase depends on the subject’s fitness level (Sandercock and Brodie, 2006). 
The HRV shows a curvilinear decrease as PA intensity increases (Michael, Graham 
and Davis, 2017). This decrease is highest between rest and moderately-to-vigorously 
intense PA (Michael, Graham and Davis, 2017). The effect of the PA intensity seems 
to outweigh the effect of the PA duration or the mode of the HRV (Michael, Graham 
and Davis, 2017). Compared to a 30-minute moderate PA, a prolonged 90-minute 
moderate PA further increased the HR and decreased the HRV but the most drastic 
differences with the resting HR and HRV levels were already observable after only 
a 30-minute PA (Moreno et al., 2013). Moreover, different moderate-intensity 
training modalities and similar HR responses have been shown to produce relatively 
small, although statistically significant, differences in the HRV responses (Leicht, 
Sinclair and Spinks, 2008). 

2.3.2 Assessment of physical activity 

The outcome of PA is increased EE and thus, the assessment of PA is based on the 
estimated EE (Hills, Mokhtar and Byrne, 2014). The gold standard for the estimation 
of total EE in free-living settings is doubly labelled water (Schoeller and van Santen, 
1982; Hills, Mokhtar and Byrne, 2014), a technique to track the elimination of the 
administered isotopes of hydrogen and oxygen from the body using urine samples 
(Wareham and Rennie, 1998; Hills, Mokhtar and Byrne, 2014). However, this 
method cannot provide any detailed information about the EE related to PA, so 
measurement approaches based on indirect calorimetry are the reference method for 
estimating EE in laboratory and field studies (Strath et al., 2013; Hills, Mokhtar and 
Byrne, 2014). In indirect calorimetry, the total energy production of the body is 
measured (Ainslie, Reilly and Westerterp, 2003). Nowadays, indirect calorimetry 
methods typically estimate oxygen consumption by measuring the quantity of 
inhaled gases with a known oxygen concentration (Strath et al., 2013; Hills, Mokhtar 
and Byrne, 2014). For each liter of oxygen consumed, the body utilizes a certain 
amount of energy (ca. 5 kilocalories), and this can be used for estimating the EE at 
rest, during PA, and for other activities (Hills, Mokhtar and Byrne, 2014). The 
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problem with this method is that the equipment needed is bulky and complicated, 
and therefore not easy to use outside the laboratory (Ainslie, Reilly and Westerterp, 
2003). Although there are portable indirect calorimetry devices which can measure 
EE accurately, they are expensive and can only be used for a limited time (Ainslie, 
Reilly and Westerterp, 2003). 

Due to the limitations of measuring EE with indirect calorimetry, various other 
methods have been developed, from subjective questionnaires to the monitoring of 
acceleration and HR (Strath et al., 2013; Hills, Mokhtar and Byrne, 2014). Subjective 
questionnaires are particularly useful in large population-based studies (Ainslie, Reilly 
and Westerterp, 2003). In fact, a variety of subjective questionnaires are the most 
widely used method for assessing PA, but their reliability and validity may be limited 
(Shephard, 2003; Westerterp, 2009). It has been concluded that although the results 
of such questionnaires tend to agree with more objective measures for assessing 
vigorous-intensity PA levels, they are less accurate with low-intensity ones (Strath et 
al., 2013). Thus, the best way to use subjective questionnaires is for categorizing the 
subjects between sedentary and active, although they can also be used for estimating 
physical fitness (Jackson et al., 1990; Westerterp, 2009; Hills, Mokhtar and Byrne, 
2014). For example, VO2max can be assessed reliably with self-reported PA behavior 
together with personal background characteristics of age, gender and BMI (Jackson 
et al., 1990). 

Recent technological advances have popularized PA monitoring with wearable 
sensors using either accelerometers or HR monitoring (Hills, Mokhtar and Byrne, 
2014). Both accelerometers and HR monitoring can provide objective and detailed 
information about PA, such as its intensity and duration (Hills, Mokhtar and Byrne, 
2014). Accelerometers are wearable devices that detect the degree of acceleration 
caused by the PA (Hills, Mokhtar and Byrne, 2004). Acceleration is a measure of 
changes in velocity, and in PA it is proportional to the oxygen uptake (VO2) (Hills, 
Mokhtar and Byrne, 2014). However, the relationship between acceleration and VO2 
varies between the modes of PA, and the accelerometers require individual 
calibration in order to provide an accurate assessment of the PA (Brage et al., 2003; 
Strath et al., 2013; Hills, Mokhtar and Byrne, 2014). For example, various methods 
estimating VO2 from the raw acceleration data have been shown to have a high 
correlation (correlation coefficient of ≥0.75) with measured VO2 but the PA 
activities have not really been representative of daily activities in free-living settings 
(de Almeida Mendes et al., 2018).   

Using HR to assess PA is based on the well-known fact that HR increases during 
PA and there is a relationship between HR and VO2 (Sandercock and Brodie, 2006; 
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Hills, Mokhtar and Byrne, 2014). The problem with this approach is that the 
relationship between HR and VO2 is not linear during rest or low-intensity PA 
(Ainslie, Reilly and Westerterp, 2003). Moreover, it varies across individuals due to 
their background characteristics, such as gender, weight, age and physical fitness 
(Keytel et al., 2005; Hills, Mokhtar and Byrne, 2014). Individual calibration tests in 
laboratory settings can be used for estimating the relationship between an 
individual’s HR and VO2, in order to accurately estimate VO2 (Hills, Mokhtar and 
Byrne, 2014). On the other hand, the estimation of VO2 using HR and background 
characteristics has shown reasonable accuracy even without individual calibration 
(Rennie et al., 2001; Keytel et al., 2005). A neural network model for estimating VO2 
from the respiration rate, HR, the dynamics of HR and HRV, and the individual’s 
background characteristics has also been proposed (Smolander et al., 2011). The 
VO2 estimated with this method was shown to have a high correlation (correlation 
coefficient of ≥0.75) with the measured VO2 over a number of different free-living 
daily activities ranging from low- to vigorous-intensity (Smolander et al., 2011; 
Robertson et al., 2015).  

Due to the often complementary information that accelerometers and HR 
monitoring provide, it has been suggested that a combination of assessment 
techniques that can provide the most accurate results (Ainslie, Reilly and Westerterp, 
2003; Altini et al., 2013; Strath et al., 2013; Hills, Mokhtar and Byrne, 2014). Recently, 
machine-learning-based algorithms predicting VO2 from acceleration, HR and 
respiration patterns have been shown to provide high correlations (correlation 
coefficients of ≥0.87) with the measured VO2 during typical daily activities (Beltrame 
et al., 2017; Lu et al., 2018).  

Regardless of the method used to estimate VO2, VO2 levels during PA can be 
used to evaluate the intensity of the PA (Howley, 2001). PA intensity can be 
estimated in absolute or by relative terms. With absolute terms, the intensity of the PA 
is assessed by the actual VO2 or EE, while in relative terms, the intensity of the PA is 
assessed by VO2 uptake or EE relative to the subject’s fitness level (Howley, 2001). 
The volume of PA can be estimated as a product of its intensity, duration and 
frequency (Howley, 2001).  

A typical expression for PA intensity in absolute terms is metabolic equivalents 
(METs) (Howley, 2001). This means comparing the VO2 level during an event with 
the VO2 level when sitting quietly, or at rest (Hills, Mokhtar and Byrne, 2014). 
Typically, the VO2 level at rest is assumed to be 3.5 ml/kg/min but the BMI, age 
and gender of the subject affect the resting VO2 level (Byrne et al., 2005; Kozey et 
al., 2010). Thus, the MET values may be derived from background-corrected 
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baseline VO2 levels using, for example, the original Harris-Benedict formula (Harris 
and Benedict, 1918). With METs, the intensity of PA can be categorized into three 
types: moderate (3–6 METs), vigorous (≥6 METs), and moderate-to-vigorous (≥3 
METs) (Garber et al., 2011). 

In terms of relative PA intensity, the percentage of oxygen uptake reserve (% 
VO2R) can be used (Howley, 2001) and it is defined as: 

 
,    (1) 

where VO2 is the oxygen uptake, VO2rest is the oxygen uptake at rest, and VO2max is 
the maximum oxygen uptake (Howley, 2001). With % VO2R, the ranges for 
moderate, vigorous, and moderate-to-vigorous PA are 40–60% VO2R, ≥60% VO2R, 
and ≥40% VO2R, respectively (Howley, 2001; Garber et al., 2011). The relative terms 
are more reliable for the assessment of PA intensity than the absolute terms, especially, 
for older and unfit subjects (Howley, 2001; Garber et al., 2011; Piercy et al., 2018).  

Today, the recommended volume of PA in adults for substantial health benefits 
is at least 150–300 minutes per week of moderate-intensity aerobic PA or 75–150 
minutes of vigorous-intensity aerobic PA, or other equivalent combinations of 
moderate and vigorous aerobic PA (Piercy et al., 2018). In the previous guidelines, 
the recommended volume of PA to improve health and cardiorespiratory fitness in 
adults was at least 150 minutes per week of moderate-intensity PA or 75 minutes of 
vigorous-intensity PA, or other combinations of moderate and vigorous PA resulting 
in a similar total EE (Garber et al., 2011). Moreover, the recommended volume of 
PA should be accumulated from bouts of activity lasting at least 10 minutes in the 
previous guidelines but now this requirement has been relaxed (Garber et al., 2011; 
Piercy et al., 2018). A large proportion of the global adult population does not 
achieve the recommended PA volumes (Guthold et al., 2008; Colley et al., 2011; 
Piercy et al., 2018). However, PA volumes lower than the recommended levels can 
also be beneficial, as there seems to be a dose-dependent relationship between PA 
and health outcomes (Garber et al., 2011; Piercy et al., 2018). The people who are 
moving the least will benefit even from a modest increase in PA (Piercy et al., 2018). 
Moreover, being physically active seems not to be enough, as sedentary behavior 
seems to be an independent risk factor for health, and thus, nearly everyone benefits 
from moving more and sitting less throughout the day (Piercy et al., 2018; Patterson 
et al., 2018; Stamatakis et al., 2019). 

Since errors in estimating the PA’s intensity, duration and frequency directly 
affect the estimated volumes of PA, more objective measures for assessing PA are 
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recommended (Howley, 2001; Hills, Mokhtar and Byrne, 2014). Assessing a subject’s 
habitual PA requires a comprehensive set of measures and long or sufficiently 
frequent observations (Levin et al., 1999; Strath et al., 2013; Hills, Mokhtar and 
Byrne, 2014). For example, it has been reported that PA levels can vary substantially 
from day to day and from season to season (Gretebeck and Montoye, 1992; 
Uitenbroek, 1993; Levin et al., 1999; Matthews et al., 2002; Pivarnik, Reeves and 
Rafferty, 2003). There are also differences in PA volumes between workdays and 
days off (Gretebeck and Montoye, 1992; Matthews et al., 2002; Mutikainen et al., 
2014). Thus, any assessment of habitual PA should include both work and leisure 
time (Gretebeck and Montoye, 1992; Matthews et al., 2002; Jaeschke et al., 2018). At 
least one-week monitoring has been recommended for reliable objective assessment 
of habitual PA (Matthews et al., 2002; Jaeschke et al., 2018). Leisure-time PA seems 
to be the most important determinant of subject’s PA level, and especially leisure-
time PA is susceptible to seasonal changes (Shephard and Aoyagi, 2009). Both cross-
sectional and longitudinal studies show that PA volumes seem to be lower in the 
winter than in the summer months (Uitenbroek, 1993; Levin et al., 1999; Pivarnik, 
Reeves and Rafferty, 2003; Shephard and Ayogi, 2009).  

2.3.3 Sleep and heart rate variability 

The circadian rhythm is one of the most distinctive variations observed in HR and 
HRV during everyday life (Malik et al., 1996; Bonnemeier et al., 2003; Kleiger, Stein 
and Bigger, 2005). In a normal circadian rhythm, HRV is lower and HR is higher 
when awake than asleep (Bonnemeier et al., 2003). The HRV starts to increase and 
the HR to decrease during the evening hours, and the turning point is reached in the 
early morning hours (Bonnemeier et al., 2003). By late morning, the HRV and HR 
levels achieve their plateau level, and they remain there until the evening hours 
(Bonnemeier et al., 2003). The difference in the levels of HR and HRV between 
being awake and asleep arises primarily from changes in the ANS regulation 
(Tobaldini et al., 2013). During non-rapid eye movement (NREM) sleep, the PNS, 
which supports rest and restoration, is predominant (Jones, 2009). Thus, NREM 
sleep is an optimal period for assessing ANS regulation in its most relaxed state 
(Brandenberger el al., 2005). Slow-wave sleep that is the deepest stages of NREM 
sleep is regarded as the most restorative sleep, during which the predominance of 
the PNS in ANS regulation is the highest (Brandenberger el al., 2005; Jones, 2009). 
Most slow-wave sleep occurs during the first third of a subject’s sleep period, so that 
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is the optimal time for assessing the ANS regulation (Brandenberger el al., 2005; 
Colten and Altevogt, 2006; Jones, 2009). 

Even though the vagal regulation of the ANS continues throughout the sleep, 
fluctuations occur in the autonomic regulation during normal sleep, mainly in 
accordance with the sleep stage transitions (Somers et al., 1993; Trinder et al., 2001; 
Jones, 2009). Typically, sleep starts with the transition from wakefulness to NREM 
sleep (Colten and Altevogt, 2006). In NREM, the HR decreases and the HRV 
increases (Somers et al., 1993; Trinder et al., 2001; Bušek et al., 2005). During sleep, 
the periods of NREM sleep and rapid eye-movement (REM) sleep alternate, but 
there is more NREM sleep at the beginning of the sleep and more REM sleep at the 
end (Colten and Altevogt, 2006). In REM sleep, PNS regulation continues, but the 
SNS activity increases (Jones, 2009). Thus, the transition from NREM to REM sleep 
is associated with increased HR and decreased HRV (Somers et al., 1993; Trinder et 
al., 2001; Bušek et al., 2005). During REM sleep, the HR is at a similar level to when 
the subject is awake (Somers et al., 1993; Bušek et al., 2005). Although ANS 
regulation has systematic patterns over specific sleep stages, it has also been reported 
to vary between the sleep stages during the sleep (Trinder et al., 2001; Bušek et al., 
2005). For example, the sympathetic modulation is shown to be higher during REM 
sleep at the end of the sleep, rather than at the start (Scholz et al., 1997). It has been 
proposed that ANS regulation during sleep varies in relation to the preceding sleep 
stage and to the length of time, the subject has been asleep (Bušek et al., 2005). On 
the other hand, the ANS regulation during sleep has not been reported to vary 
according to time within a sleep stage, which may indicate that the time-of-night 
effects in ANS regulation arise from the changes in the sleep stage distribution in 
the course of sleep (Trinder et al., 2001). 

Because ANS regulation associates with sleep onset, the various stages of sleep, 
and pathological sleep, the HRV can be used to assess sleep (Tobaldini et al., 2013) 
and sleep behaviors of individuals i.e. how individuals typically sleep (modified from 
Oxford English Dictionary Online, 2019). For example, a systematic review of 
research studies reported that insomniacs have increased sympathetic activity both 
during sleep and in the daytime (Nano et al., 2017). Sleep is a crucial element of the 
body’s restoration and recovery process and provides psychophysiological 
unwinding after exposure to effort (Geurts and Sonnentag, 2006; Lindholm, 2013). 
Those subjects who self-reported insufficient recovery have been shown to have 
decreased HRV during the first hours of sleep compared to those subjects who self-
reported sufficient recovery (Lindholm et al., 2012). Moreover, subjective stress has 
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been associated with increased HR and decreased HRV during sleep (Föhr et al., 
2015).  

Other behaviors have been reported to affect ANS regulation during sleep, such 
as alcohol intake and PA (Hynynen et al., 2010; Romanowicz et al., 2011; Porkka-
Heiskanen, Zitting and Wigren, 2013). Their effects can be seen through the changes 
in HR and HRV (Porkka-Heiskanen, Zitting and Wigren, 2013). Acute alcohol intake 
before sleep appears to dose-dependently increase HR and decrease HRV, indicating 
the sympathetic predominance of ANS during sleep after alcohol intake (Sagawa et 
al., 2011). Moreover, alcohol-dependent subjects have been reported to show 
increased sympathetic activity during sleep than controls, and similar results have 
been obtained from awake subjects (Irwin et al., 2006; Spaak et al., 2010; Quintana 
et al., 2013). The results of these studies are consistent, but the studies have included 
only a limited number of subjects and have been performed in highly controlled 
research settings (Irwin et al., 2006; Spaak et al., 2010; Romanowicz et al., 2011; 
Sagawa et al., 2011; Quintana et al., 2013; Ralevski, Petrakis and Altemus, 2018).  

Regarding PA, decreased HR and increased HRV in 24-hour measurements has 
been associated with higher VO2max (Goldsmith et al., 1997). Thus, it can be 
hypothesized that physical fitness or exercise training can be an important 
determinant for HR and HRV during sleep. PA during the day has been shown to 
significantly alter HR and HRV during the next night’s sleep (Hynynen et al., 2010; 
Myllymäki et al., 2011; Myllymäki et al., 2012).  

2.3.4 Other health behaviors and contextual factors impacting heart rate 
variability 

HRV analysis has benefited from sustained interest in psychological and behavioral 
studies (Quintana and Heathers, 2014). For example, the effects of smoking (Barutcu 
et al., 2005) and psychological stress and recovery (Föhr et al., 2015) on HRV have 
been studied. Other health behavior-related factors, such as the consumption of 
caffeine or alcohol, also have an effect on HRV measurements, although very few 
studies report or take this into account (Nunan, Sandercock and Brodie, 2010). 

Smoking is a common health behavior associated with reduced HRV (Barutcu et 
al., 2005). HRV decreases and HR increases after acute cigarette smoking in non-
smokers (Karakaya et al., 2007). Habitual smokers have decreased HRV compared 
to non-smokers but if they give up smoking, their HRV increases and their HR 
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decreases (Yotsukura et al., 1998; Minami, Ishimitsu and Matsuoka, 1999; Barutcu et 
al., 2005). 

In stress response, various changes occur in physiological systems, such as the 
predominance of the SNS in the ANS regulation (Cullinan, 2009). Both physiological 
stress, such as exercise, as well as pathological stress, such as sepsis infection, have 
been reported to be associated with decreased HRV, although the decrease in HRV 
was greater for exercise than for sepsis (Bravi et al., 2013). The effect of 
psychological stress on HRV has been studied by simulating acute stressors, such as 
with mental arithmetic tests, and obtaining the perceived stress levels through 
questionnaires (Berntson and Cacioppo, 2007). Various studies have shown 
alterations in the ANS regulation with self-reported psychological stress (Lucini et 
al., 2005; Berntson and Cacioppo, 2007; Jarczok et al., 2013; Föhr et al., 2015). Both 
acute and chronic psychological stress have been associated with increased HR and 
decreased HRV (Lucini et al., 2005; Berntson and Cacioppo, 2007). Acute 
psychophysiological stress has also been associated with decreased PNS modulation 
and increased SNS modulation during NREM sleep, which may be a pathway for 
disturbed sleep (Hall et al., 2004). As a subcategory of psychological stress, work-
related stress and effort at work have also been shown to be associated with reduced 
HRV (Thayer, Yamamoto and Brosschot, 2010; Uusitalo et al., 2011).  

2.4 Use of real-world observational health monitoring data 

Traditionally, all good research studies focus on a specific research question with a 
carefully designed research protocol (Sherman et al., 2016). In health research, 
randomized controlled trials (RCTs) are the most reliable method for studying 
causality between a treatment and an outcome (Sibbald and Roland, 1998). To 
achieve reliable results about the causal interference, RCTs typically study a limited 
number of homogenous subjects in controlled settings (West et al., 2008; Sherman 
et al., 2016). The study subjects are randomly assigned to the treatment groups, and 
different measures are taken in RCTs to control variability and to ensure the quality 
of the collected data (Sibbald and Roland, 1998; Sherman et al., 2016). All these 
practices are intended to ensure that no confounding factors affect the results, so 
RCTs have good internal validity (West et al., 2008; Rothwell, 2005; Sherman et al., 
2016). 

However, RCTs have been criticized for their poor external validity, as the results 
of an RCT may not be generalizable to larger and more heterogeneous patient 
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populations (Rothwell 2005; Berger et al., 2009; Sherman et al., 2016). The results of 
an RCT can only be generalized to the population from which the RCT subjects are 
taken. As RCTs are typically small and highly selective, the very small proportion of 
patients who might participate in the study may differ significantly from the broader 
patient population as a whole (Rothwell, 2005; Sherman et al., 2016; Kim, Lee and 
Kim, 2018; Maissenhaelter, Woolmore and Schlag, 2018). In addition to the selection 
bias, the settings and protocol of RCTs typically differ from routine clinical practice, 
and this also affects the external validity of the RCT (Rothwell, 2005). Thus, the 
knowledge gained from RCTs is valuable, but it is incomplete, and so traditional 
research studies should be complemented with real-world evidence (RWE) gained 
by analyzing real-world data (RWD) (Booth and Tannock, 2014; Sherman et al., 
2016; Berger et al., 2017). 

2.4.1 Characteristics and challenges of real-world health data 

As with wearable devices, RWD is still a relatively new but rapidly growing research 
area; a PubMed search with the key term “real-world data” yielded 293 publications 
in 2008 but 2,855 publications for 2018. However, there is currently no globally 
accepted exact definition for RWD (Makady et al., 2017). In the health domain, 
RWD is generally considered to mean the health data gathered outside of typical 
research studies (Sherman et al., 2016; Berger et al., 2017). Figure 7 comprises the 
typical sources and characteristics of RWD as well as the concerns with, and 
advantages of, RWE. 
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Figure 7.  Typical sources and characteristics of real-world data (RWD) as well as typical concerns 
and advantages related to real-world evidence (RWE). 

RWD may originate from various sources. Some typical RWD sources include 
observational, uncontrolled or non-experimental studies (Makady et al., 2017), 
registries from routine clinical, health and wellness practices (Cox et al., 2009; Dreyer 
and Garner, 2009; Mutikainen et al., 2014), interventional studies conducted in real-
world settings with heterogeneous population (Sherman et al., 2016), and large 
practical trials (Garrison et al., 2007). Thus, RWD may have been collected originally 
for either research or non-research purposes, and the RWD studies may be 
conducted prospectively and retrospectively (Garrison et al., 2007; Cox et al., 2009; 
Sherman et al., 2016; Berger et al., 2017). Moreover, the secondary use of data is 
common in RWD analysis, which means that the RWD is often analyzed for another 
purpose than that for which it was originally collected (Berger et al., 2009). Based on 
the literature, the most common sources of RWD are electronic health records and 
registries, and the resulting RWE is particularly useful for decision making in 
healthcare (Cox et al., 2009; Berger et al., 2017; Makady et al., 2017). However, in 
addition to these data sources, RWD can now be gathered from wearable devices 
and the social media used by the consumers in their day-to-day lives, and this can be 
used to provide valuable, large-scale RWE (Sherman et al., 2016; Swift et al., 2018).  

Despite the great variety of RWD, some typical characteristics for health-related 
RWD exist (Figure 7). These include large and heterogeneous populations (Motheral 
et al., 2003; Booth and Tannock, 2014; Sherman et al., 2016), and the presence of a 
variety of confounding factors (Garrison et al., 2007; Cox et al., 2009; Dreyner and 
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Garner, 2009; Johnson et al., 2009; Sherman et al., 2016). It has been shown that 
RWD often includes some wrong or inaccurate data, and there are uncertainties 
about the data collection procedures, and other factors which affect its quality (Cox 
et al., 2009; Sherman et al., 2016). Missing data is another typical drawback with 
RWD (Garrison et al., 2007). Some data variables may be missing for some subjects, 
or some important variable may be completely missing from the data (Garrison et 
al., 2007; Johnson et al., 2009). Furthermore, RWD not originally collected for 
research purposes is typically characterized by systematic and random errors in the 
data, lack of precision in the data collection and varying degrees of accuracy in the 
data variables (Cox et al., 2009).  

Despite all these drawbacks, RWD is still a valuable source of information, 
although it is challenging to utilize it. Typically, the first challenge in using RWD 
sources is the availability and privacy of the data (Sherman et al., 2016). There are 
also concerns related to the RWD analysis, and these arise mainly from the typical 
characteristics of the RWD and the possibility of “data dredging” (Smith and 
Ebrahim, 2002; Berger et al., 2017). This “data dredging” (or “data fishing”) means 
conducting multiple analyses of the same dataset to gain a desired result (Berger et 
al., 2017). This is of particular concern with RWD studies due to their large datasets 
(Smith and Ebrahim, 2002; Berger et al., 2017). RWD also often has a selection bias 
because there is typically no randomization of the individuals who have been selected 
for, or participated in, the study (Smith and Ebrahim, 2002; Vandenbroucke et al., 
2007; Berger et al., 2017). Thus, the study population and its relevance are potential 
concerns in RWD studies (Berger et al., 2009). Moreover, uncertainties in the data 
quality (Sherman et al., 2016), and the specificity of the measures may raise concerns 
(Berger et al., 2009). In RWD studies, the studied associations between data variables 
may be distorted by confounding factors (Cox et al., 2009). The confounding factors 
are some measured or unmeasured variables associated with the data variables which 
can distort the study of any perceived associations between the data variables 
(Onghena and van der Noortgate, 2005; Cox et al., 2009). 

Currently, RWD is widely used for descriptive studies of large-scale populations 
(Berger et al., 2017). A number of recommendations for good practice when 
conducting and evaluating RWD studies have been proposed, which can enhance 
the confidence in RWE, (Motheral et al., 2003; Berger et al., 2009; Cox et al., 2009; 
Johnson et al., 2009; Berger et al., 2017). Most of the concerns related to RWE can 
be addressed with appropriate methodologies, but still the results of RWD studies 
are only reliable for establishing associations, rather than causations (Berger et al., 
2017). In other words, RWD studies can only provide hypotheses about causal 
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relationships (Berger et al., 2017), and these then need to be confirmed or disproved 
using more traditional and controlled research studies (Sherman et al., 2016). Thus, 
the real strength of RWD is that it can be used for exploratory analysis and data 
mining to generate hypotheses which can be tested with traditional research studies 
(Berger et al., 2009). Nevertheless, observational RWD studies can also be used to 
confirm the results of an RCT among a larger population, and for further exploratory 
study of a topic (Booth and Tannock, 2014). RWD studies complement RCTs by 
enabling the study of issues that would be too costly, impractical or even unethical 
to be studied with RCTs alone (Rothwell, 2005; Sherman et al., 2016; Kim, Lee and 
Kim, 2018). 

2.4.2 Methodological aspects of real-world data analysis 

The methodological aspects of RWD analysis touch on all the key issues in any 
research study, namely, the research question and the datasets used as well as the 
statistical study designs and their analysis (Berger et al., 2009). All of these aspects 
are interconnected and methodologically they should be considered as a complete 
entity (Vandenbroucke et al., 2007; Berger et al., 2009). For example, the primary 
concerns of observational RWD analysis results are related to confounding and 
selection biases (Berger et al., 2009). These issues can be addressed in the design and 
implementation of the study (Vandenbroucke et al., 2007; Berger et al., 2009) as well 
as in the statistical analysis (Johnson et al., 2009). 

The basis for an RWD study, as for any other research study, is a relevant, 
rational, specific and novel research question (Berger et al., 2009). However, the 
research question in exploratory or descriptive RWD studies is not usually 
formulated as a study hypothesis, unlike in typical RCTs (Berger et al., 2009). The 
study should be carefully designed to answer the research question in a feasible way 
(Berger et al., 2009). In RWD studies, typical study designs include cross-sectional, 
cohort and case-control designs (Vandenbroucke et al., 2007; Berger et al., 2009). 
Cross-sectional study designs, which include data from subjects at a specific time 
point, can be used for studying associations between the variables in a dataset (Berger 
et al., 2009). In addition, such studies are good for generating hypotheses about 
associations which can then be tested by further studies (Berger et al., 2009). In 
cohort studies, groups of subjects are compared for a particular outcome while the 
other variables are made as similar as possible (Berger et al., 2009). It is the same 
principle for individuals in case-control studies (Berger et al., 2009). There is another 
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popular approach, known as case-crossover or within-subject study design (Berger 
et al., 2009). This can be used for making comparisons of the variable of interest 
within the subject at different time points with respect to a specific condition (Berger 
et al., 2009). These within-subject designs are suitable for studying the acute effect 
of a condition on the variable of interest, but they typically severely limit the number 
of subjects for the study, as each subject needs to be measured for all conditions of 
interest (Berger et al., 2009).  

The RWD source must be selected or collected, preprocessed and analyzed to 
answer the research question as adequately as possible (Berger et al., 2009). In the 
selection of an RWD source for retrospective and secondary analysis, special 
attention should be paid to evaluating the relevance of the study population, the 
amount, richness and quality of the data, and the timeframe of the observations 
(Berger et al., 2009). The description of the selected dataset and its original purpose, 
as well as all the preprocessing and analysis steps should be reported in detail to 
facilitate the understanding of the applicability and possible limitations of the study 
results (Vandenbroucke et al., 2007). 

The selection bias affecting the internal validity of the study results is a concern, 
especially in any retrospective analysis of observational RWD (Vandenbroucke et al., 
2007; Berger et al., 2009). It is good practice to replicate the analysis with a different 
database and/or population (Berger et al., 2017), although this does not guarantee 
the generalizability or robustness of the results (Madigan et al., 2013). Restricting the 
study population can increase the internal validity of the study (Vandenbroucke et 
al., 2007; Cox et al., 2009). The researcher can apply inclusion and/or exclusion 
criteria to the study subjects, and this may help to ensure a homogeneous study 
population (Vandenbroucke et al., 2007; Cox et al., 2009). However, the tight 
restriction of the study population may also reduce the generalizability of the RWD 
study results (Cox et al., 2009). 

Confounding factors are another major concern in observational RWD studies 
(Berger et al., 2009). The selection and inclusion of all possible confounding factors 
requires a thorough literature review (Johnson et al., 2009). These confounding 
factors may then be accounted for in the design and implementation of the study by 
a thorough data collection (Vandenbroucke et al., 2007; Cox et al., 2009). 
Confounding factors may also be reduced through the application of well-defined 
eligibility criteria (Cox et al., 2009) and rigorous statistical approaches to the data 
analysis (Johnson et al., 2009). Rich datasets can be used to extract a variety of 
potential confounding factors (Cox et al., 2009). Because the omission of any 
confounding factor in the data analysis can cause a bias in the results, a proxy for the 
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confounding factor should be used if the true values of the confounding factors are 
missing (Johnson et al., 2009). If neither true values nor proxies are available, the 
missing confounding factors should be acknowledged and written up as a limitation 
to the study, and any assumed effects on the results should be discussed (Johnson et 
al., 2009). 

Missing data in an RWD dataset is another cause for concern (Berger et al., 2017). 
Although a well-designed and implemented study may reduce the likelihood of 
missing data, it is still a common characteristic of observational RWD 
(Vandenbroucke et al., 2007). Especially in RWD collected originally for informal 
purposes e.g. wearable monitoring, missing data is typically unavoidable as the data 
collection still requires manual input and is perfomed voluntarily without any 
ensurance for the adherence to the data collection (Swan, 2012; Sherman et al., 2016). 
It is good practice to report the reasons for any missing data, and the amount of 
missing data for each variable of interest (Vandenbroucke et al., 2007). However, 
important is also to assess the potential underlying mechanisms responsible for the 
missing data and to remember that in some cases missing data itself can also be 
informative (Helander et al., 2014; Salgado et al., 2016).  

In the data analysis, missing data points can be discarded or imputed 
(Vandenbroucke et al., 2007; Johnson et al., 2009). Discarding missing data and only 
using the “complete data” reduces the amount of data available for the analysis and 
may cause a bias in the results, especially if the missing data is not missing at random 
(Vandenbroucke et al., 2007). Alternatively, imputation methods can be used to 
account for missing data (Johnson et al., 2009). For example, missing data points can 
be replaced by a mean value, or a value predicted from regression analysis, or by any 
more sophisticated method that will preserve the variability of the data (Johnson et 
al., 2009). 

2.4.3 Exploratory data analysis and data mining for real-world data 

As stated above, RWD is often used for exploratory analysis and data mining to 
generate a data-driven hypothesis for further studies (Berger et al., 2009). 
Exploratory data analysis is a statistical approach employing a variety of techniques 
in order to find patterns in the data, with no predefined association of interest 
(Hinterberger, 2009). Data mining can be seen as “the process of discovering 
knowledge or patterns from massive amounts of data” (Han, 2009). Both data 
mining and exploratory data analysis employ a variety of techniques for data 
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visualization and statistics (Han, 2009; Hinterberger, 2009), and data mining further 
employs artificial intelligence techniques (Han, 2009). Data mining and exploratory 
data analysis can also be seen as complementary processes: exploratory analysis 
provides a basic understanding of the data, while data mining is more oriented 
towards applications in the analysis of large datasets (Han, 2009; Hinterberger, 2009). 
In addition to traditional statistical approaches, such as regression and statistical 
tests, data mining employs advanced statistical learning methods, such as random 
forests (RFs) and neural networks (Han, 2009). Given the variety of statistical 
learning methods, data mining typically aims for simple-to-construct, robust, 
accurate, and easy-to-interpret models providing qualitative information about the 
relationships of variables (Hastie, Tibshirani and Friedman, 2009). These 
requirements are best served with an ensemble of decision tree-based methods, such 
as RFs, and have become one of the most popular statistical learning methods in 
data mining (Hastie, Tibshirani and Friedman, 2009). 

In observational studies, a fundamental exploratory data analysis method is 
stratified analysis in which statistical analyses are conducted on subcategories of the 
data (Johnson et al., 2009). To stratify the data, typical variables include any 
confounding factors and covariates, which are variables having an effect on the 
outcome but are not of primary interest (Motheral et al., 2003; Johnson et al., 2009). 
Relevant descriptive statistics including simple statistical measures such as the mean, 
the median and the standard deviation are calculated for the subcategories of the 
data (Vandenbroucke et al., 2007). Stratified analysis is a good first step in RWD 
analysis as it gives an overview of the data and may provide important information 
about the covariates and their effects on the studied outcome (Johnson et al., 2009). 
Stratified analysis can also be used as a simple method for controlling confounding 
factors with minimal statistical assumptions (Greenberg and Kleinbaum, 1985). 
However, stratified analysis becomes cumbersome and inaccurate when there are 
multiple covariates and confounding factors (Greenberg and Kleinbaum, 1985; 
Johnson et al., 2009). Moreover, categorization of the variable values is not ideal for 
continuous variables as information will be lost and accuracy will be decreased by 
the categorization (Greenberg and Kleinbaum, 1985; Johnson et al., 2009).  

Multivariate regression analysis can be used for studying the association of 
interest by simultaneously adjusting all the available covariates and confounding 
factors (Johnson et al., 2009). Multivariate regression is a powerful analysis technique 
which is typically used to control or adjust any time-independent confounding 
factors (Johnson et al., 2009). There are various regression models that can be used, 
depending on the characteristics of data (Johnson et al., 2009). The most typical 
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regression model used for continuous outcomes is ordinary least squares regression 
(Johnson et al., 2009). This assumes the observations in the data to be independent, 
the association between the inputs and outcome to be linear and the outcome to be 
normally distributed (Johnson et al., 2009). Logistic regression models are typically 
used for binary outcomes, (Johnson et al., 2009). Generalized linear models can be 
used for data in which the observations are not independent (Johnson et al., 2009), 
and the Tobit regression model can be used in the case of limited dependent 
variables (Austin, Escobar and Kopec, 2000). In the case of non-normally distributed 
outcomes, data transforms, such as the Box-Cox transformation, can be employed 
(Osborne, 2010).  

In order to make any regression analysis fully transparent, the full regression 
model with all its covariates and confounders and the coefficient of determination 
(R2) should always be reported (Johnson et al., 2009). The R2 shows how well the 
model explains the data (Johnson et al., 2009). However, it should be noted that in 
the case of large datasets the R2 may be very small, even though the regression 
estimates are not biased (Johnson et al., 2009). In statistical software packages, 
regression models are built using maximum likelihood estimation, and the fulfillment 
of the regression model assumptions, including normality, linearity, homogeneity of 
variance and the absence of multi-collinearity, all of which can easily be ensured with 
the provided regression diagnostics (Johnson et al., 2009). 

If there is a non-linear association between an input and outcome variable, a 
categorization of the input variable may be an easy solution for regression analysis 
(Johnson et al., 2009). On the other hand, data mining methods, such as RFs, can be 
applied to the data to study complex and non-linear associations (Hastie, Tibshirani 
and Friedman, 2009). RF is a method that uses an ensemble of regression or 
classification trees built on bootstrapped samples of data (Hastie, Tibshirani and 
Friedman, 2009). These RFs are fast to construct, can handle mixtures of continuous 
and categorical data with missing values, tolerate predictor outliers, provide an 
internal feature selection through variable importance metrics, and have good 
accuracy in prediction (Hastie, Tibshirani and Friedman, 2009). 

The purpose of the statistical analysis is to investigate statistical inference by using 
the concept of the null hypothesis (Lin, Lucas and Shmueli, 2013). The null 
hypothesis typically presents a situation where there is no association and the 
parameter of interest is typically set to zero, and the association between the study 
variables is concluded only if the distance between the null hypothesis and the data-
based estimate is large enough (Vidakovic, 2011; Lin, Lucas and Shmueli, 2013). The 
distance measure between the data and the null hypothesis is called a p-value and in 
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statistical analysis, the level for statistical significance is typically set to be 0.05 (Lin, 
Lucas and Shmueli, 2013). The level of statistical significance sets the upper 
threshold for the p-values that are interpreted to show a statistically significant 
difference between the data and the null hypothesis (Lin, Lucas and Shmueli, 2013). 
However, the p-value is typically measured through standard deviations of the 
estimate i.e. standard errors, and the standard errors of consistent estimators 
decrease with increasing sample size (Lin, Lucas and Shmueli, 2013). Thus, seemingly 
negligible distances between the estimate and a null hypothesis become statistically 
significant (p-value <0.05) with large sample sizes (Lin, Lucas and Shmueli, 2013). 
In other words, the statistical significance or p-value is dependent on the sample size 
(Sullivan and Feinn, 2012). Consequently, the statistical interferences in RWD and 
large datasets should not be interpreted only by the p-values and the estimate sign, 
but also by the effect size (Lin, Lucas and Shmueli, 2013). The effect size describes 
the magnitude of the predictors’ estimates on the outcome (Lin, Lucas and Shmueli, 
2013), and it is independent of the sample size (Sullivan and Feinn, 2012). To 
enhance the transparency of the results of statistical interferences in large samples, 
the studies should report the estimates’ effect sizes and their confidences intervals, 
and preferably, also calculate them for various sample sizes to show that the 
statistical interference is consistent with smaller sample sizes (Lin, Lucas and 
Shmueli, 2013). Furthermore, any interpretation of the effect sizes should be 
illustrated with practical examples and marginal analysis by showing the outcome 
variable values after alternating one predictor variable and holding all the others 
constant, especially for non-linear models (Lin, Lucas and Shmueli, 2013). 

2.4.4 Present and future perspectives for real-world wearable health 
monitoring data analysis 

Currently, the importance of RWE as a complement to traditional clinical trials is 
widely recognized in healthcare decision-making (Garrison et al., 2007; Khosla et al., 
2018). Ten years ago, under the Task Force initiative, a number of researchers 
(Berger et al., 2009; Cox et al., 2009; Johnson et al., 2009) published reports providing 
guidance about good practice for the retrospective analysis of RWD. These reports 
were particularly focused on studies of drug treatment effects using secondary data 
sources. Although RWE is not yet overly used for making healthcare guidelines, 
there does seem to be an increasing trend towards the uptake of RWE in healthcare 
decision-making (Oyinlola, Campbell and Kousoulis, 2016). The use of RWE is also 
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recommended in the drug and medical device regulation practices (Khosla et al., 
2018; Swift et al., 2018).  

In addition to RWD sources from clinical practice, such as digitalized health 
records and claims, nowadays wearable sensors can also be used as a source of RWD 
(Sherman et al., 2016; Swift et al., 2018). These wearable devices include, for instance, 
chest straps, wristbands and smartwatches (Majumder, Mondal and Deen, 2017). 
Another resource is smartphone applications, which can be used for monitoring 
health parameters in free-living settings without interrupting the daily activities of 
the individuals (Majumder, Mondal and Deen, 2017). Recent technological advances 
in compact, low-power electronics have brought low-cost, unobtrusive and non-
invasive wearable health-monitoring devices onto the market that can be used for 
monitoring a wide variety of health and well-being aspects, such as sleep, PA or 
emotional stages (Majumder, Mondal and Deen, 2017; Peake, Kerr and Sullivan, 
2018). These wearable consumer devices have become increasingly common, 
especially among health-conscious individuals who are interested in their own well-
being, as they can use the wearables for self-monitoring (Swan, 2012; Piwek et al., 
2016). However, although self-monitoring may be part of a lifestyle for some people, 
the take-up and continued engagement among the wider public is still quite low and 
(Swan, 2012; Piwek et al., 2016; Marin et al., 2019). Therefore, RWD gathered from 
these devices typically shows a selection bias among the users (Piwek et al., 2016). It 
has been suggested that people who practice self-monitoring are usually younger, 
wealthier, better educated, more motivated towards a healthy lifestyle, and more 
interested in quantifying their progress than ordinary people (Helander, Wansink and 
Chieh, 2016; Piwek et al., 2016; Sperrin et al., 2016).  

Although also research interest in wearable devices has expanded during the last 
few years, there has been very little external scientific validation of their accuracy and 
efficiency, or of the algorithms they use (Piwek et al., 2016; Peake, Kerr and Sullivan, 
2018; Silfee et al., 2018). Clearly, the majority of the wearable sensors available in the 
market for consumers has not been independently validated or used in research 
(Peake, Kerr and Sullivan, 2018). For example, in PA monitoring some devices show 
reliable and valid results, but the accuracy of the devices on the market varies greatly 
and the error in the estimated PA may be up to 25% (Case et al., 2015; An et al., 
2017). In addition, a consumer’s tendency to use, and adhere to wearable devices 
also requires more studying (Sieverink, Kelders and van Gemert-Pijnen, 2017; Marin 
et al., 2019).   

Despite the number of studies employing wearable sensors has increased, the 
real-life studies with wearable sensors are typically conducted on only a limited 
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number of subjects (Silfee et al., 2018). Data mining studies using wearable sensor 
data have focused on exploring associations in the wearable sensor data recorded 
from only some tens of subjects (Sathyanarayana et al., 2016; Williams and Cook, 
2017), although wearable sensors can be used as means to collect large amounts of 
data (Peake, Kerr and Sullivan, 2018; Swift et al., 2018). So far only a few studies 
have been published employing RWD from wearable sensors used by thousands to 
tens of thousands of subjects (van Dyck et al., 2015; de Lima et al., 2017; Lee et al., 
2018).  

Additionally, there are a few studies making secondary use of RWD from the 
wearable sensors of a large number of subjects (Helander, Wansink and Chieh, 2016; 
Sperrin et al., 2016; Althoff et al., 2017). On the whole, the RWD provided for 
secondary use in academic research comes from the manufacturers of the devices 
(Helander, Wansink and Chieh, 2016; Sperrin et al., 2016; Althoff et al., 2017). The 
use of such RWD has mostly focused on descriptive and exploratory analyses 
(Helander, Wansink and Chieh, 2016; Sperrin et al., 2016; Althoff et al., 2017). These 
descriptive and exploratory analyses typically illustrate a number of variables, such 
as the demographics of the study population, the outcome measure, observed PA, 
changes in weight or sleep patterns, the most important covariates and confounding 
factors, and the associations between these (Sperrin et al., 2016; Althoff et al., 2017; 
Fagherazzi et al., 2017). These studies have already thrown up some interesting 
associations. For example, in large-scale RWD studies employing thousands of 
subjects, the increased frequency of self-weighing has been associated with decreased 
weight (Sperrin et al., 2016), and holidays are associated with weight gain (Helander, 
Wansink and Chieh, 2016). Although it is acknowledged that the individuals involved 
in self-monitoring RWD studies do not represent the general population (Sperrin et 
al., 2016), their data may still give valuable insights into good public healthcare 
practice (Helander, Wansink and Chieh, 2016). Hopefully, the recently published 
framework of best practices for analyzing large-scale wearable sensor data that also 
highlights the opportunities and insights we can gain from such data, inspires both 
the wearable sensor companies as well as researchers to take the advantage of 
wearable sensor data to improve public health (Hicks et al., 2019). 

Currently, consumer wearables typically provide only simple descriptive statistics 
from the monitored data but given the rapid development of artificial intelligence 
for the feedback systems, wearable devices are also becoming more personalized 
(Piwek et al., 2016; Sawka and Friedl, 2018). More personalized and comprehensive 
feedback can be also achieved by combining the data gathered from multiple 
wearable sensors with clinical health data (Gay and Leijdekkers, 2015; Wright et al., 
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2017). The ultimate, if rather hypothetical, aim for the usage of wearable devices is 
to provide continuous real-time assessment and prediction of the subject’s health 
status based on sophisticated algorithms and data (Sawka and Friedl, 2018). To 
achieve the full potential of wearable devices in both research and practice, the 
wearable devices and their algorithms need to be designed in multi-disciplinary teams 
including clinicians, data scientists, engineers, behavioral scientists, and interface 
designers (Patel, Asch and Volpp, 2015; Piwek et al., 2016; Wright et al., 2017; Sawka 
and Friedl, 2018). 
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3 AIMS OF THE STUDY 

The aim of this thesis work was to apply RWD analysis methodologies for a large-
scale real-world HRV dataset to quantify PA and the sleep behaviors in Finnish 
employees. The specific objectives of the thesis are: 

1) from the perspective of real-world data analysis: 
a. to apply methodologies applicable for the analysis of real-world 

health monitoring data characterized by uncontrolled real-life 
monitoring settings, unbalanced sampling, and unknown 
confounding factors (Publications I, III, IV and V) 

b. to evaluate the feasibility of a real-world health monitoring data 
analysis being able to provide results consistent with previous 
research, including traditional scientific research studies conducted 
in controlled settings with a limited number of subjects 
(Publications III, IV, V) 

c. to provide data-driven hypotheses to be further studied in 
traditional controlled research studies (Publications II, IV) 

2) from the perspective of assessing health behaviors and their associations 
with physiological functions:  

a. to quantify physical activity bouts from the estimated continuous 
VO2 based on the RR-interval recordings (Publications I, II, III, V) 

b. to demonstrate the observations for temporal (month and weekday) 
patterns of physical activity behavior (Publication I) 

c. to show the impact of PA quantification methods on the estimated 
PA levels in BMI and age groups, by gender (Publication II) 

d. to assess the association of individual lifestyles and daily activities 
with ANS regulation during sleep (Publication III) 

e. to quantify the association between acute alcohol intake as well as 
its interactions with subject’s background characteristics, especially 
age and physical fitness, and ANS regulation during sleep 
(Publication IV) 

f. to estimate the association between physical activity behavior and 
the ANS regulation during sleep (Publications III, V) 
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4 MATERIALS AND METHODS 

4.1 Description of a real-world heart rate variability monitoring 
dataset 

This thesis presents research based on the secondary use of a database, gathered 
originally by Firstbeat Technologies Oy (Jyväskylä, Finland) for their own 
operational purposes. Firstbeat Technologies Oy is a Finnish company providing 
and developing analytics for beat-to-beat RR-interval recordings to extract HR and 
HRV parameters for the subsequent analysis of stress, recovery, physical activity and 
sleep (Kettunen and Saalasti, 2005b; Firstbeat Technologies Oy, 2014). The analysis 
algorithms for the RR-interval data developed by Firstbeat Technologies Oy are 
proprietary and patented (Kettunen and Saalasti, 2005a; Kettunen and Saalasti, 
2005b). 

The data in the database originates from participants who have performed beat-
to-beat RR-interval recordings with a wearable ECG-based device (Firstbeat 
Bodyguard or Firstbeat Bodyguard 2, Firstbeat Technologies Oy, Jyväskylä, Finland) 
during their daily life, typically continuously for three days in succession (two 
workdays and one day off from work). Besides filling in a pre-test questionnaire, the 
participants are also asked to keep a journal about their work and sleep times, their 
alcohol consumption and other significant events during the recording period (e.g. 
exercising, stressful events). Primarily, the database includes recordings from 
employees who have voluntarily participated in the measurement as a part of a 
preventive health and wellness program in occupational healthcare provided by the 
employer (Firsbeat Lifestyle Assessment). The original analysis of the results of the 
RR-interval recordings was used to provide the participants with an objective 
assessment of their well-being and health behavior status. The participants are 
typically healthy, as the RR-interval recording were not to be carried out on 
individuals with, for example, chronic heart rhythm disturbances, high blood 
pressure (≥180/100 mmHg), diabetes with autonomic neuropathy, cardiac 
pacemaker or transplant, fever or other acute disease, a BMI over 40 kg/m2, and 
any medication influencing HR, HRV or PA levels. (Mutikainen et al., 2014).  



 

69 

Firstbeat Technologies Oy has gathered the data onto an anonymized, constantly 
growing database. In this study, two different datasets from two different extractions 
of the datasets at two different time points have been employed. The first dataset, 
extracted from the servers in October 2013 covered a total of 50,844 measurement 
days from 18,736 subjects. The second dataset was extracted from the servers in June 
2015, and this contained a total of 147,733 measurement days from 52,273 subjects 
since 2007.  

The principles used for the preparation and preprocessing of the datasets have 
been extensively reported earlier (Pietilä, 2014) but are briefly summarized here. The 
preprocessing of the data started with a validation of the measurement durations and 
measurement results as well as removing any duplicated measurements. It was found 
out that a considerable number of the three-day measurements were broken into 
multiple measurement segments as the wearable device stopped the recording e.g. if 
the device was unattached for long enough or if the battery ran empty. Thus, all 
measurement segments from each subject were compiled by taking into account the 
start and end times of the measurement segments and the different sampling of the 
analysis results of the beat-to-beat RR-interval recordings e.g. HR and HRV, the 
physiological state detection and the oxygen uptake. After compiling all the 
measurement segments of the subject, the measurement periods were divided into 
measurement days by taking advantage of the self-reported sleep times. A 
measurement day was set to start at the start time of the recording (for a new 
measurement) or at the time of wake-up for the day (for an ongoing measurement). 
A measurement day was set to end at the time of wake-up in the next morning (for 
an ongoing measurement) or at the end of the measurement (for the last 
measurement day). After the measurement days were extracted from the original data 
and the measurement days were checked to have no inconsistencies, a format for the 
dataset to be used in the analysis was prepared. Figure 8 shows the information 
included in the preprocessed dataset: each measurement day consists of the subject’s 
background information, analysis results of the beat-to-beat RR-interval recordings, 
their work and sleep times together with their alcohol intake as recorded in the 
participants’ electronic journals.  
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Figure 8.  The available data for each of the measurement days in the extracted dataset.  

The anonymized background characteristics include the participant’s age, gender, 
height and weight. Their body-mass-indices (BMIs) were calculated from the 
participants’ self-reported height and weight. In addition, the participants were asked 
to self-report their PA behavior by selecting the appropriate physical activity class 
(PA class) (Appendix A). The participants’ cardiorespiratory fitness i.e. the maximal 
oxygen uptake (VO2max) was calculated from their background characteristics based 
on the formulas by Jackson et al. (1990): 

 
 
 

The maximal HR (HRmax) was estimated from age as (Weisman and Zeballos, 2002): 

    (4) 

If a higher HR was detected during the recordings, this was used as maximal HR. 
Before the measurements, the participants were asked to complete a pre-
questionnaire about their health behaviors and well-being (Appendix B). The 
datasets also included the information from the participants journals, which included 
their self-reported work and sleep times, and their alcohol consumption for each 
measurement day. 
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4.2 Analysis of heart rate variability monitoring data for 
physiological state detection 

The RR-interval recordings in the database were performed with either Firstbeat 
Bodyguard or Firstbeat Bodyguard 2 device (Firstbeat Technologies Oy, Jyväskylä, 
Finland). The device is attached to the skin with two disposable electrodes: one just 
below the collarbone on the right side of the body, and the other on the rib cage on 
the left side of the body. The device detects the beat-by-beat heartbeats with a 
sampling frequency of 1000 Hz. The recorded RR-intervals have been reported to 
have a mean absolute error (MAE) of 4.5 ms (Parak and Korhonen, 2013). For the 
recorded RR-interval data, Firstbeat Technologies Oy has developed a powerful 
artefact correction algorithm for RR-intervals that employs interpolation methods 
(Saalasti, Seppänen and Kuusela, 2004). After the artefact correction, the MAE of 
the RR-intervals has been reported to have decreased to 2.3 ms (Parak and 
Korhonen, 2013). The information about the proportion of erroneous RR-intervals 
in each 10-minute segment of the recording was also saved to the dataset. 

The artefact-corrected, equidistantly resampled and band-pass (0.03–1.2 Hz) 
filtered RR-intervals are then used to extract the HR, HRV and VO2 time series data 
(Firsbeat Technologies Oy, 2014). For the dataset extraction, the mean values of HR 
and all HRV parameters were calculated for 10-minute non-overlapping signal 
segments. The RMSSD was calculated based on 5-minute RR-interval segments, and 
the frequency-domain HRV parameters of LF and HF were obtained using short-
time Fourier transform (Martinmäki et al., 2006; Firstbeat Technologies Oy, 2014). 
The respiration rate was extracted based on the rhythmic changes in the RR-interval 
time series, and the VO2 in 30-second segments was estimated based on HR data 
and the subject’s HRmax and VO2max (Saalasti, 2003; Kettunen and Saalasti, 2005a; 
Firstbeat Technologies Oy, 2005). This VO2 estimation method employing a neural 
network model has been shown to correlate strongly (correlation coefficient: ≥0.75) 
with the measured VO2 in physical activities ranging from low to vigorous in 
intensity (Smolander et al., 2011; Robertson et al., 2015).  

Firstbeat Technologies Oy has also developed an algorithm for classifying the 
subject’s physiological state of stress, recovery and physical activity based on the HR, 
HRV and VO2 parameters (Kettunen and Saalasti, 2005b; Firstbeat Technologies 
Oy, 2014). The physiological state classification algorithm is based on the differences 
in the physiological responses as shown by the HR, HRV and VO2 parameters 
(Kettunen and Saalasti, 2005b). PA is primarily assessed from the increased HR and 
VO2, while recovery and stress are assessed by obtaining the HR and HRV 
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parameters related to the SNS and PNS modulation of the ANS (Kettunen and 
Saalasti, 2005b). PA increases cardiac activity and/or metabolic rate, and these 
correspond to increased HR and/or VO2. In addition, acceleration data can be used 
to further improve the detection of PA (Kettunen and Saalasti, 2005b). Recovery is 
associated with predominant PNS regulation of the ANS seen as decreased HR and 
increased HRV, and especially HF power (Kettunen and Saalasti, 2005b). Stress is 
associated with increased SNS regulation of the ANS, which corresponds to 
increased HR and decreased HRV but no increase in VO2 (Kettunen and Saalasti, 
2005b). The PA, stress and recovery reactions are assessed by taking into account 
the individual ranges for the physiological reactions e.g. minimal and maximal HR 
(Firstbeat Technologies Oy, 2014). The indices for PA, stress and recovery are 
calculated from the relevant HR, HRV and VO2 parameters, and the presence of 
PA, stress and recovery is simply detected by using thresholds for the indices 
(Kettunen and Saalasti, 2005b). The intensity of the PA can be estimated from the 
VO2 level (Kettunen and Saalasti, 2005b). Based on the intensity, the PA may be 
categorized as either light or intense, using different thresholds (Kettunen and 
Saalasti, 2005b). The indices of stress and recovery may also be used for assessing 
the intensity of the stress and recovery reactions, respectively (Kettunen and Saalasti, 
2005b).  

The validity of this physiological state classification algorithm has been evaluated 
in different studies. The VO2 estimation based on the RR-intervals correlates 
strongly (correlation coefficient: ≥0.75) with the measured VO2 in physical activities 
of varying intensities (Smolander et al., 2011; Robertson et al., 2015). The VO2 

estimation method is regarded as suitable for field studies due to its practical utility 
and good accuracy (Smolander et al., 2011; Robertson et al., 2015). 

The cortisol levels after awakening have been associated with the quantity of 
stress and recovery reactions detected with this algorithm during sleep (Rusko et al., 
2006). These quantities can be measured in minutes or in percentage terms, so a 
higher number of recovery minutes or percentage and a lower number of stress 
minutes or percentage detected during sleep is reflected in a lower cortisol level after 
awakening (Rusko et al., 2006). Based on the physiological state classification 
algorithm in daily living settings, the quantity of recovery has been reported to be 
higher during sleep than waking while the quantity of stress is higher during waking 
than sleep (Kinnunen et al., 2006; Uusitalo et al., 2011).  

In addition, using the physiological state classification algorithm, the intensity of 
detected stress reactions and the amount of recovery during sleep in RR-interval 
recordings during daily life seem to be associated with subjective stress levels (Föhr 
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et al., 2015). A higher amount of stress classified during work and the daytime has 
been associated with self-reported occupational burnout symptoms (Teisala et al., 
2014), and a decreased quantity of recovery has been associated with higher self-
reported effort at work (Uusitalo et al., 2011). Mental strain has also been associated 
with the intensity of stress reactions in a within-subject study design (Kinnunen et 
al., 2006). 

Using this algorithm, it has also been reported that body composition, PA level 
and cardiorespiratory fitness also affect the levels of stress and recovery (Teisala et 
al., 2014). In addition, one’s subjective feeling of stress may not always accord with 
the physiological state classification of stress, and the physiological reaction may be 
similar regardless of whether the subjective experience of the stress event is negative 
or positive (Oksman, Ermes and Tikkamäki, 2016; Kaikkonen, Lindholm and Lusa, 
2017). 

4.3 Summary of the methodologies for Publications  

The use of the database described in section 4.1 for the research has been approved 
by the Ethics Committee of Tampere University Hospital (reference number 
R13160), valid for all the Publications of this thesis. Table 3 summarizes the study 
objectives, designs and methods of the Publications. The detailed description of the 
methodologies used in the Publications are given in sections 4.4 and 4.5. 
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4.4 Study designs and participants 

In this thesis, the observational dataset of HRV monitoring results was mainly used 
for cross-sectional studies (Publications I, II, III, V) but the three-day recording also 
enabled the within-subject study design to be utilized (Publication IV). Two 
anonymized datasets were used in Publications I–V. Publications I and III employed 
the dataset extracted in October 2013, which included 50,844 measurement days 
from 18,736 subjects, while Publications II, IV and V used the dataset extracted in 
June 2015 consisting of 147,733 measurement days from 52,273 subjects. In 
Publication I, only a random sample covering one third of the original dataset was 
used, but in Publications II–V all the available data was used. In fact, the analysis 
from Publication I was repeated using the whole dataset, and the results were similar, 
although this data is not shown.  

Because the data was for secondary use, the eligibility criteria were set a posteriori 
for both the data and the participants, which ensured the quality of the data and the 
subsequent analyses. Some of the eligibility criteria were the same for each 
publication, while some were specific to the research question and data analysis 
scheme. Simplified flow charts of the participants and monitoring days included in 
the analysis for Publications I–V are shown in Figure 9. 

The general eligibility criteria used in all the Publications I–V considered both the 
background characteristics of the subjects and the quality of the data. Only subjects 
who were 18–65 years old and had a BMI of 18.5–40 kg/m2 at the time of the 
measurements were considered for the analysis. With regard to data quality, the 
proportion of erroneous RR-intervals and no break longer than 30 minutes during 
the recording was accepted. In addition, any missing data in the variables of interest, 
such as sleep times or alcohol intake, were also used as exclusion criteria. 
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Figure 9.  The eligibility criteria for the participants and recordings used in the Publications.  

Any further eligibility criteria for the participants depended on the research question 
and the study design. To estimate the overall mean PA minutes per day in Publication 
II, each participant was required to have an eligible recording for at least one 
workday and for at least one day off from work. The same applied to Publication V, 
where each participant had to have at least one workday and one leisure day recorded 
so that the weekly minutes of PA could be assessed. In Publication IV, the analysis 
used a within-subject study design and thus, each of the eligible participants had to 
have at least one measurement day with no alcohol intake and at least one 
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measurement day with at least one alcohol unit marked. In Publication III, the shift 
workers were excluded from the analysis by applying an exclusion criterion for 
participants who reported working between 9 pm and 6 am. 

The requirements for the RR-interval recordings were used to ensure the quality 
of the data. As the analysis results of the RR-interval recordings were used from the 
whole measurement day, the measurement day was included in the analysis only if 
its duration was at least 16 hours (Publications I, II, III, V). In Publication IV, 
thresholds were set for the LF and HF parameters to ensure the quality of the data. 
In Publication V, the measurement days with alcohol intake were removed to control 
for the effect of alcohol intake on ANS regulation during sleep. 

4.5 Quantification of physical activity, autonomic nervous system 
regulation and self-reported behaviors 

4.5.1 Physical activity 

There are various aspects to PA (Garber et al., 2011) but this thesis focuses on 
cardiorespiratory PA and PA behavior. Intensity is one of the key elements in 
describing cardiorespiratory PA (Howley, 2001; Garber et al., 2011). For 
cardiorespiratory exercise, the intensity of the PA should be at least moderate, but 
there are several methods to estimate PA intensity (Garber et al., 2011). In this thesis, 
the PA bouts have been quantified in terms of PA intensity based on the estimated 
VO2 time series data. Furthermore, the intensity of the PA has been used to study 
the PA volume, which is expressed as the number of PA minutes. In short, the three 
different criteria for assessing the PA bouts used in this thesis are: 

1) “PA based on MET levels”: The absolute intensity of the PA was assessed by 
the MET i.e. the oxygen uptake (VO2) divided by the resting metabolic rate, 
assumed to be 3.5 ml/kg/min: MET=VO2/3.5 (ml/kg/min). For absolute 
intensity PA, the recommended threshold for moderate-to-vigorous 
intensity PA is ≥3 METs (Garber et al., 2011; Piercy et al., 2018). In the 
results of this thesis, the number of minutes during which the absolute 
intensity of the PA is moderate-to-vigorous (MVPAMET) are reported.  

2) “PA based on VO2R”: The relative intensity of the PA describes the intensity 
of PA relative to the subject’s physical fitness and it was assessed by the % 
VO2R (Howley, 2001; Garber et al., 2011). The recommended threshold for 
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moderate-to-vigorous PA is ≥40% VO2R (Howley, 2001; Garber et al., 
2011). Using this criteria, the number of minutes during which the relative 
intensity of the PA is moderate-to-vigorous (MVPAVO2R) are reported in the 
results of this thesis. 

3)  “PA based on VO2max”: The algorithm for detecting the physiological state 
from the RR-intervals, developed by Firstbeat Technologies Oy (Firstbeat 
Technologies Oy, 2014), has been employed in the quantification of PA in 
this thesis. The detection of PA was based on the intensity of PA, assessed 
relatively by the cardiorespiratory fitness measured as the VO2max of the 
subject. A VO2 level at 20–30% of VO2max was regarded as light PA, while a 
VO2 level at >30% of VO2max was regarded as physical exercise. The amount 
of time spent doing light PA (LightPAVO2max) or physical exercise (PAVO2max) 
is used in the results of the thesis. 

PA bouts with at least moderate absolute intensity and a duration of at least 10-
minutes were regarded as bouts of PA that enhance cardiorespiratory fitness, as 
recommended by Garber et al. (2011). To adapt this recommendation for continuous 
measurement, the PA bouts were defined as being at least moderate absolute intensity 
(≥3 METs) for at least 10-minutes, although allowance was made for the MET-level 
to be lower than moderate for up to 1 minute. Using this definition, the 
cardiorespiratory PA bouts were quantified. The number of minutes regarded as 
cardiorespiratory-fitness-enhancing PA bouts (MVPAMET10min) was also used as a 
measure of PA in this thesis. 

The number of minutes per week of cardiorespiratory-fitness-enhancing PA 
(weekly MVPAMET10min) was used as an objective assessment of the participants’ 
PA behavior. For each workday and day off from work, the mean MVPAMET10min 
was calculated so that the number of PA bouts exceeding the vigorous absolute 
intensity (≥6 METs) were doubled:  

 
 (5) 

The weekly MVPAMET10min was further estimated as the weighted sum of the mean 
PA minutes from workdays and from leisure days (Mutikainen et al., 2014):  

          (6) 
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Based on the weekly MVPAMET10min, the subjects were categorized into four PA 
groups: inactive (weekly MVPAMET10min of 0 minutes), low activity (weekly 
MVPAMET10min of 0–<150 min), medium activity (weekly MVPAMET10min of 
150–300 min), and high activity (weekly MVPAMET10min of >300 min).  

The MVPAMET and MVPAVO2R were used in Publication II to assess the impact 
of the PA quantification method on the estimated levels of PA. The LightPAVO2max 
and PAVO2max were used for studying the association that light daytime PA and 
physical exercise had with the next night’s sleep (Publication III). The 
MVPAMET10min was used to study temporal variations in the PA (Publication I), 
and the association that daytime cardiorespiratory-fitness-enhancing PA had with 
the next night’s sleep (Publication III). The PA groups based on the subjects’ weekly 
MVPAMET10min were used in Publication V to study the association between PA 
behavior and sleep. 

In addition to the objective PA measures, the self-reported PA class was 
employed as a subjective estimate of the subject’s PA behavior and physical fitness. 
The PA class was assessed by a questionnaire in which the participants were asked 
to self-evaluate their weekly PA by its typical intensity, duration and frequency 
(Appendix A). This PA class has 10 categories, of which categories 0–3 are inactive, 
categories 4–6 are moderately active and categories 7–10 are athletic subjects. The 
self-reported PA class was employed as a continuous variable in Publications I, III 
and IV. In Publication I the PA class was used to control for the difference in PA 
behavior and physical fitness of the subjects. In Publication III it was used to study 
the long-term effect of PA behavior and physical fitness on sleep. In Publication IV 
it was used to show the interaction of alcohol intake, PA behavior and physical 
fitness on the ANS regulation during sleep.  

4.5.2 Autonomic nervous system regulation during sleep 

The ANS regulation during sleep was assessed based on the analysis results of the 
RR-interval recordings using the traditional HR and HRV parameters as well as the 
stress and recovery reactions, detected by the physiological state classification 
algorithm (Kettunen and Saalasti, 2005b). The traditional HR and HRV parameters 
calculated during sleep were HR, RMSSD, LF, HF and LF/HF ratio. From the 
artefact corrected RR-intervals, the HR was calculated as the mean over 10-minute 
segments, and the RMSSD, first calculated using 5-minute segments, was also 
averaged for 10-minute segments. The LF, HF and LF/HF ratio are based on the 
power in the frequency spectrum estimated using short-time Fourier transform 



 

80 

(Martinmäki et al., 2006). The LF, HF and LF/HF ratio were also calculated as the 
mean for 10-minute segments. The lower the value is for the HR and the higher it is 
for the HRV, the more predominant is the PNS in ANS regulation during sleep.  

The amount of recovery reaction during sleep was assessed by using the analysis 
results for the detection of the physiological state. The proportion and the number 
of minutes with recovery reactions detected during sleep were used as a simple 
measure of recovery in the analysis, and have been used also in the previous studies 
of the field (e.g. Kinnunen et al., 2006; Rusko et al., 2006; Uusitalo et al., 2011). 
Another measure for recover was stress balance that has also been used in the 
previous studies (e.g. Teisala et al., 2014; Föhr et al., 2015). Stress balance indicates 
the proportion of stress and recovery reactions during sleep, and it is calculated as 
based on the number of minutes detected to be recovery and stress (Firstbeat 
Technologies Oy, Jyväskylä, Finland):  

 
   (7) 

 
Consequently, the stress balance can vary from -1 to 1, and values close to 1 show a 
higher proportion of recovery reactions than stress reactions during sleep. Both 
higher stress balance values and more recovery reactions detected during sleep are 
interpreted as more recovery during sleep, and thus higher PNS predominance in 
the ANS regulation during sleep.  

In addition, the intensity of the recovery reactions, called the recovery index, was 
also employed (Kettunen and Saalasti, 2005b). The recovery index describes the 
magnitude of the PNS modulation, and it is high when the individual HR is low and 
the individual HRV is high (Firstbeat Technologies Oy, 2014). Thus, a higher 
recovery index value is interpreted as higher PNS predominance in ANS regulation.  

The ANS regulation during sleep was studied in Publications III, IV and V. In 
Publication III, the amount of recovery during sleep was used as the outcome for 
studying the associations of individual lifestyles and daily activities with sleep. The 
amount of recovery during sleep was calculated as the sum of the minutes during 
which recovery reactions were detected (recovery minutes). In Publication IV, the 
association between acute alcohol intake and the ANS regulation during sleep was 
studied using the traditional HR and HRV parameters as well as the amount and 
intensity of recovery during the first three hours of sleep. The amount of recovery 
was assessed as a percentage of sleep time, i.e. the proportion of time with detected 
recovery reactions over the total sleep time (recovery percentage). In Publication IV, 
the outcomes were calculated as the hourly mean values for each of the first three 
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hours of sleep, and as the average during the first three hours. In Publication V, the 
ANS regulation during sleep was assessed using the stress balance and the intensity 
of recovery. 

4.5.3 Self-reported behaviors 

Information about the self-reported behaviors was taken from the diaries the 
participants kept during the RR-interval recordings. The work and sleep times were 
the first values to be extracted. The work times were used to distinguish between 
workdays and days off (leisure days). A workday included at least 4 hours of work, 
and a day off had 0 hours of work (Publications II, III and V). The sleep times were 
used for assessing sleeping (Publications III, IV and V), the duration of the sleep 
(Publication III), and the sleep onset time (Publication III and IV). For the analysis 
in Publication IV, the sleep onset time was set to be 30 minutes after the self-
reported sleep onset time in an attempt to ensure that the subjects really were 
sleeping during the time analyzed as sleep. 

The other major self-reported behavior in the diaries was the alcohol intake. The 
participants reported the amount of alcohol consumed during a measurement day in 
standardized units equal to 12 grams of ethanol. A typical standardized unit of 
alcohol is, for example, a bottle (33cl) of beer or cider, or one glass (12cl) of wine. 
In Publications III and IV, alcohol intake was quantified as the amount of ethanol 
per kilogram of the subject’s weight in order to standardize the alcohol intake for 
body weight. In Publication IV, the alcohol intake of the subjects was also 
categorized into low (≤0.25 g/kg), moderate (>0.25–0.75 g/kg) and high (>0.75 
g/kg) dose. 

4.6 Statistical data analysis 

All the data processing and statistical data analyses were conducted using MATLAB 
(The MathWorks Inc., Natick, MA) versions R2013b (Publication I) and R2015b 
(Publication II), and R (The R Foundation for Statistical Computing, Vienna, 
Austria) version 3.2.2 (Publications II, III, IV, V). The level of significance in 
statistical analysis was set to <0.05 in Publications I, III, IV and V and to <0.001 in 
Publication II due to the large size of the dataset. However, with all the results of 
this research, the emphasis should be put on the effect sizes, due to the issues with 
significance level in large-scale datasets, as discussed in section 2.4.3. 
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4.6.1 Statistical hypotheses testing 

Traditionally, research studies such as RCTs focus on testing a statistical hypothesis 
that has been set a priori (Berger et al., 2009). In statistical hypothesis testing, the 
statistical hypothesis is a statement about the data that is either accepted or rejected 
based on a statistical test (Vidakovic, 2011; Lin and Jiang, 2013). In statistical 
hypothesis testing, the null hypothesis (H0) and the alternative hypothesis (H1) are 
formulated (Vidakovic, 2011). The idea in statistical hypothesis testing is to use a 
statistical test to study whether or not the data supports the H0 and thus, to conclude 
whether or not the H0 should be accepted or rejected. In other words, a hypothesis 
test is applied for an appropriate test statistic in order to estimate the probability of 
obtaining equally or more extreme test statistics in the observed data under H0, 
commonly known as the p-value (Lin and Jiang, 2013). Thus, H1 is typically set as 
the statement that it is hoped can be established with the statistical hypothesis test, 
and H0 is set as the negation of H1 (Vidakovic, 2011).  

In the case of statistical hypothesis testing for two samples, the null hypothesis 
for the equality of the means in two populations, for example, would be formulated 
as H0: μx = μY and the alternative two-sided hypothesis would be formulated as H1: 
μx ≠ μY (Lin and Jiang, 2013). Depending on the situation, one-sided alternative 
hypotheses may also be used, i.e. H1: μx > μY or H1: μx < μY (Vidakovic, 2011; Lin 
and Jiang, 2013).  

If the statistical hypothesis testing is for more than two samples, the one-way 
analysis of variance (ANOVA) methodology is used, which is a generalization of the 
two-sample test of equality of the means for several populations (Vidakovic, 2011; 
Lin and Jiang, 2013). Consequently, in a one-way ANOVA, the H0: μ1 = μ2 =…= 
μn and the H1: μi ≠ μj for at least one (i,j) pair (Vidakovic, 2011). The ANOVA 
methodology can also be used to study the effect of two factors on the outcome 
measure (Vidakovic, 2011; Lin and Jiang, 2013). In a two-way ANOVA, a total of 
three pairs of H0 and H1 are tested: one for the effect of each of the two factors and 
one for the interaction of the two factors (Vidakovic, 2011). In all three pairs, the 
null hypothesis is for equality and the alternative hypothesis is for inequality 
(Vidakovic, 2011). 

In addition to studying the differences of the test statistics between the 
populations, statistical hypothesis testing may be used with a repeated-measures 
design (Vidakovic, 2011). In a repeated-measures design, the statistical hypothesis 
testing is typically performed on data originating from the same subjects under 
different conditions. Thus, a repeated-measures design controls for variability 
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between the subjects but also cause dependence between the data points (Vidakovic, 
2011). Two-sample statistical tests can be applied by employing the paired version 
of the statistical tests, and ANOVA is the generalization of the statistical hypotheses 
testing in the case of more than two conditions (Vidakovic, 2011). 

In Publication III, because the PA volumes were not normally distributed, 
statistical hypothesis testing was employed to compare the MVPAMET and 
MVPAVO2R using two-sided and non-parametric statistical tests. MVPAMET and 
MVPAVO2R were compared separately for men and women, within each age and BMI 
category, using the Wilcoxon signed rank test. This is a non-parametric paired 
statistical test for the differences of means (Vidakovic, 2011). In addition, MVPAMET 
and MVPAVO2R were compared between the age and BMI categories using the 
Kruskal-Wallis test, a statistical test designed for the comparison of medians between 
at least two samples (Vidakovic, 2011). The Kruskal-Wallis test is analogous to a 
one-way ANOVA but without the assumption of independent and normally 
distributed populations (Vidakovic, 2011). 

In Publication IV, a within-subject, two-way, repeated-measures ANOVA was 
used to study the difference in the shape of the hour-by-hour pattern of HRV 
parameters between the days with and without alcohol intake. The two-way 
ANOVA was applied separately on the three different alcohol-dose groups (low, 
moderate and high alcohol intake). 

4.6.2 Linear regression model 

A linear regression model (LR) can be used for studying the linear associations 
between the predictor variables and the response variable, and one purpose of the 
LR can be to predict the value of the response variable based on the value of the 
predictor variable (Lin and Jiang, 2013). LR can be defined as Y = βX+ε, where Y 
is the vector of the response variable, β is the vector with constant term and 
regression coefficients for the predictors (X), and ε is the vector of error terms that 
are assumed to be independent, have a mean of zero and a variance that does not 
vary with the predictors (X) (Vidakovic, 2011). In addition to simple predictor 
variables, the interaction of predictor variables can also be included in the LR 
(Vidakovic, 2011). Typically, the regression coefficients for the LR are estimated 
using the least square fit for the observed response variable and the observed 
predictors (Lin and Jiang, 2013). In other words, the regression coefficients are 
estimated so that the mean of the squared difference between the observed response 
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variable and the estimated response variable values i.e. the predictors multiplied with 
the regression coefficients, is minimized (Lin and Jiang, 2013).  

Statistical hypothesis testing can also be applied to the regression coefficients to 
determine whether they are different from zero i.e. H0: β = 0 and H1: β ≠ 0 (Lin and 
Jiang, 2013). The goodness of the regression fit for the observed predictors and the 
observed response variable can be assessed with the coefficient of determination (R2) 
(Lin and Jiang, 2013). This can be calculated as the sum of the squared differences 
between the regression model outcomes ( ) and the mean of the observed response 
variable ( ) over the sum of the squared differences between the observed response 
variable ( ) and the mean of the observed response variable (Lin and Jiang, 2013): 

    (8) 

The LR assumes that the error terms are independent and normal with zero mean 
and a constant variance (Lin and Jiang, 2013). In addition, the LR assumes that there 
is no multi-collinearity between the predictors, i.e. the predictors are not correlated 
(Lin and Jiang, 2013). These assumptions about the error terms and multi-collinearity 
should be checked after the model has been fitted.  

In Publication I, LR was used to adjust for the association between the subject’s 
background characteristics and the volume of cardiorespiratory-fitness-enhancing 
PA (MVPAMET10min). The LR was fitted between the MVPAMET10min (response 
variable) and the subject’s background characteristics of age, gender, PA class and 
BMI (predictors). Thereafter, the residuals, which are the error terms from the fitted 
LR, were added to the mean of the observed volumes of PA from which the mean 
of the residuals was subtracted. In other words, the LR model was used to remove 
the linear relationship between the predictors and the response variable.  

In Publication IV, LR was employed to study the association between alcohol 
intake and the average ANS regulation during the first three hours of sleep, by also 
taking into account the subject’s background characteristics. In addition, the LR was 
used to study the interaction between the alcohol intake and the subject’s 
demographics had on the ANS regulation. 

In Publication V, the LR was used to study the association of the BMI and weekly 
MVPAMET10min with the ANS regulation during sleep. In addition, the subject’s age 
was incorporated as a covariate. The LRs were fitted separately for men and women, 
and the stress balance and recovery index were used as response variables for the LR 
models to describe the ANS regulation. Because the assumption of the LR regarding 
the normal distribution of the error terms was not fulfilled for the recovery index 
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regression model, the Box-Cox transformation was applied on the response variable 
(Osborne, 2010). Because the stress balance values are limited between -1 and 1, the 
Tobit regression model was applied (Austin, Escobar and Kopec, 2000). The Tobit 
regression model is used, especially in economics, in the presence of censored data 
where the true response is not observed due to ceiling effects (Tobin, 1958; Austin, 
Escobar and Kopec, 2000). 

4.6.3 Random forest method 

Random forest (RF) is a tree-based machine-learning method that can be used for 
classification and regression (Hastie, Tibshirani and Friedman, 2009). For regression 
problems, the RF is a large ensemble of full-grown de-correlated regression trees 
(Hastie, Tibshirani and Friedman, 2009). The regression trees are built on a 
bootstrapped sample of the data, and as the trees are full-grown, they have relatively 
low bias (Hastie, Tibshirani and Friedman, 2009). The binary splits in the regression 
trees are generated by employing the variable producing the best split from a 
randomly selected subset of variables (Hastie, Tibshirani and Friedman, 2009). The 
random subset of variables for the splitting candidates reduces the correlation 
between the trees in the RF, and it is recommended to randomly select one third of 
the variables for each split (Hastie, Tibshirani and Friedman, 2009). In regression 
trees, the best split is defined based on the smallest mean squared error (MSE) 
(Hastie, Tibshirani and Friedman, 2009). The output of the RF is the average of the 
regression trees, which reduces the variance of the RF (Hastie, Tibshirani and 
Friedman, 2009). 

As the trees in the RF are built on bootstrapped samples, not all samples are used 
to grow all the trees and the out-of-bag (OOB) samples can be set apart (Hastie, 
Tibshirani and Friedman, 2009). The OOB samples can be used for estimating the 
goodness of the model from the OOB error by predicting the RF model outcome 
for the OOB samples by only using the trees built without the OOB samples (Hastie, 
Tibshirani and Friedman, 2009). As the OOB error represents the goodness of the 
RF’s fit, the OOB error can also be used for assessing the appropriate number of 
trees for the RF (Hastie, Tibshirani and Friedman, 2009).  

RF has become one of the most popular machine-learning methods (Hastie, 
Tibshirani and Friedman, 2009; Genuer, Poggi and Tuleau-Malot, 2010). RFs have 
low bias and variance, and they can be used for modelling complex, non-linear 
associations (Hastie, Tibshirani and Friedman, 2009). One benefit of RF is the 
metrics for the importance of the variables, which estimate the variables’ prediction 
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strength (Hastie, Tibshirani and Friedman, 2009). The variable importances may be 
calculated with the so-called permutation method, using the OOB samples (Genuer, 
Poggi and Tuleau-Malot, 2010). The accuracy of the model is assessed by comparing 
the original OOB samples with the randomly permuted values for the variables of 
the OOB samples (Hastie, Tibshirani and Friedman, 2009; Genuer, Poggi and 
Tuleau-Malot, 2010). The variable’s importance is the average decrease in accuracy 
over the trees caused by the permutation (Hastie, Tibshirani and Friedman, 2009; 
Genuer, Poggi and Tuleau-Malot, 2010). The variable importances help to identify 
the most influential predictors in the RF model and the variable importances can 
also be applied for the feature selection (Genuer, Poggi and Tuleau-Malot, 2010; 
Gregorutti, Michel and Saint-Pierre, 2017). 

It must be noted that the variable importance measures should be interpreted 
with caution when there are correlated variables in the data (Gregorutti, Michel and 
Saint-Pierre, 2017). In the case of correlated variables, the feature selection may 
benefit from the recursive feature elimination (RFE) approach (Gregorutti, Michel 
and Saint-Pierre, 2017). In RFE, the feature with the lowest variable importance is 
recursively removed from the model, and the new RF model and new values for the 
variable importances are calculated (Gregorutti, Michel and Saint-Pierre, 2017). The 
set of variables yielding the lowest prediction error in the RF may be used to 
maximize the accuracy of the RF model for prediction (Genuer, Poggi and Tuleau-
Malot, 2010). 

The variable importances, however, cannot be used for approximating how the 
predictors are associated with the outcome. For the interpretation of the RF model 
it is useful to estimate the association between the most important predictors and 
the outcome using partial dependence plots (Friedman, 2001). These plots show the 
dependence between a variable and the outcome by marginalizing the values of other 
variables (Friedman, 2001; Greenwell, 2017). In practice, partial dependence 
between a variable and an outcome can be studied by replacing the variable values 
with a constant while keeping the other variable values as they were and calculating 
the average of the model outputs (Greenwell, 2017). This procedure averages out 
the effect of other variables on the outcome, and for the partial dependence plot, 
the procedure is repeated multiple times with different constant values for the 
variable (Greenwell, 2017).  

RF modelling was used in Publication III to investigate the association of 
individual lifestyles and daily activities with the ANS regulation during sleep. In 
Publication III, the analyses were exploratory, so RF modelling was chosen as it 
requires minimal assumptions and the partial plots can show any non-linearity in the 



 

87 

associations. The RFE was used to find the most important variables and to 
minimize the prediction error of the RF model. The RFE procedure was repeated 
10 times to obtain a consensus about the set of predictors minimizing the prediction 
error. The RF model with the minimal prediction error was used to study the 
importances of the variables and the associations between the most important 
predictors and the outcome using partial dependence plots. 
 



 

88 

5 SUMMARY OF THE RESULTS 

5.1 Preprocessing of the datasets and conducting the analysis 

Two anonymized datasets extracted from the original database were preprocessed 
and prepared for the Publications I–V. The first dataset extraction in October 2013 
included 50,844 measurement days from 18,736 subjects and was used in 
Publications I and III. The second dataset extraction in June 2015 included 147,733 
measurement days from 52,273 subjects and was used in Publication II, IV and IV. 
The data preprocessing and preparation work was automated by programming. First, 
the overall preprocessing principles as described in section 4.1 were implemented 
step-by-step with programs. The programs were run on the dataset and whenever 
there was an exceptional measurement case that caused an error in the program, the 
case was inspected and the program logic was adjusted for any similar cases. After 
each programming step, the validity of the results was ensured by sanity checks and 
inspecting different random cases in detail. Altogether, the preprocessing and 
preparation of the datasets took 1–2 months of work.  

After the preprocessing and preparation of the dataset started the work to outline 
and test the methodologies for the data analysis. The measurements were collected 
in uncontrolled real-world environment over an extended period of time and thus, 
the feasibility of the different methodologies used in the literature to quantify 
behaviors e.g. PA from the MET data were assessed at first. Moreover, the 
measurements were observational and not collected specifically for any given 
research purpose. Thus, feasible and meaningful research questions for the available 
measurement data had to be thought of, as typical in secondary use of data. The 
iterative development process of the methodologies for the quantification of 
behaviors and data analysis involved experts from different fields of science, 
especially from sports and exercise medicine, occupational health as well as health 
technology.  



 

89 

5.2 Demographics of the subjects 

The subjects of the free-living HRV monitoring data used in this thesis represent a 
real-world sample of Finnish employees. A wide range of both blue- and white-collar 
workers voluntarily participated in the HRV monitoring. The participants were 
assumed to be healthy, as the RR-interval recording was not supposed to be 
performed in conditions of acute or chronic disease, as mentioned in section 4.1.  

The demographics of the subjects analyzed in the Publications are shown in Table 
4. Approximately 45% of the participants were male, and on average the participants 
were middle-aged, slightly overweight and did regular PA 2–3 times per week for a 
total duration of around 2 hours. The BMI and the PA of the subjects are in line 
with typical values reported for Finnish employees (Vartiainen et al., 2009; Helldán 
and Helakorpi, 2015; Lahti et al., 2016). 

Table 4.  The demographics of the subjects employed in the Publications’ data analyses. 
Publication Number of 

subjects 
Number of 

male subjects  
Age in years 
(Mean±SD) 

BMI in kg/m2 

(Mean±SD) 
PA class 

(Mean±SD) 
I 5,124 2,422 (47.3%) 44.0±9.9 26.1±4.0 4.9±1.9 
II 23,224 10,201 (43.9%) 44.7±9.8 26.0±4.0 4.8±1.8 
III 6,228 2,788 (44.3%) 45.6±9.6 26.4±4.1 4.8±1.9 
IV 4,098 1,811 (44.2%) 45.1±9.6 26.0±4.0 4.8±1.8 
V 16,275 6,863 (42.2%) 44.8±9.9 26.0±4.1 4.8±1.8 

SD = standard deviation 
PA class range: 0–10 

5.3 Observations of physical activity behavior 

5.3.1 Temporal patterns in physical activity behavior (Publication I) 

Figure 10 shows the mean of observed (A) and background-controlled (B) 
MVPAMET10min for weekdays and months. Because the duration of the 
measurements was limited to three days per subject and the same subjects were not 
measured for each weekday and month, the observed MVPAMET10min are 
confounded by the non-balanced sampling. In other words, differences originating 
from other factors than only weekdays and months are likely to be present in the 
observed MVPAMET10min (Figure 10 A).  

LR was employed to compensate for the effect of non-balanced sampling on the 
observed MVPAMET10min. In the LR, the observed MVPAMET10min was used as 
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the dependent variable and the background characteristics were used as independent 
variables. The LR showed that the background characteristics of age, gender, BMI 
and PA class were all statistically significant (p<0.05 for all) and accounted for a total 
of 15.9% of the variance in the observed MVPAMET10min. The LR showed the 
observed MVPAMET10min decreased with increasing age or BMI, and increased for 
male gender and increasing PA class.  

In general, when controlling for the subjects’ background characteristics, any 
variation in the estimate of MVPAMET10min between weekdays and months 
decreased (Figure 10 B). Furthermore, when adjusted for the background 
characteristics, the estimated MVPAMET10min changed more for the monthly mean 
than the weekday one. 

The overall mean of daily MVPAMET10min was 23.3 minutes but it was clearly 
higher for the weekends (28.3 minutes) than for the weekdays (21.2 minutes). 
Saturday seemed to have the highest MVPAMET10min, while Friday and Thursday 
seemed to have the lowest (Figure 10 B). Looked at monthly, the MVPAMET10min 
means were the highest for January, February and August, and lowest in June and 
September (Figure 10 B). In general, high MVPAMET10min levels were observed at 
the weekends at the beginning of the year, while low MVPAMET10min levels were 
observed on weekdays (except for Wednesday) in the autumn (September–
November).  

The number of measurements was clearly lowest (N=912) for Wednesday, but 
this can be explained by the test protocol which stipulated that the three-day 
recording period included two workdays and one day off from work, e.g. Thursday, 
Friday and Saturday, or Sunday, Monday and Tuesday (Figure 10). A similar 
explanation applies for the monthly measurements, which were clearly lowest 
(N=161) in July when the majority of Finnish workers have their summer holidays 
(Figure 10). As expected, a lower number of observations increases the confidence 
intervals (CIs) (Lin, Lucas and Shmueli, 2013). In July, the 95% CI for the mean 
MVPAMET10min was 5.6 minutes while the 95% CIs for the other monthly averages 
ranged from 1.3 to 3.0 minutes. For the mean MVPAMET10min on Wednesdays, the 
95% CI was 1.9 minutes while on the other weekdays the 95% CI was between 1.1 
and 1.6 minutes. Consequently, due to the lower number of observations, the 
estimates for the MVPAMET10min on Wednesdays and in July are likely to be less 
accurate than the estimates of the MVPAMET10min at other times.  
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Figure 10. The observed (A) and background-controlled (B) mean number of minutes of
cardiorespiratory-fitness-enhancing physical activity bouts (MVPAMET10min) for weekdays
and months. The number of observations for weekdays and months are shown in the
brackets.
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5.3.2 Impact of the physical activity quantification method on the estimated 
levels of physical activity (Publication II) 

The impact of the PA quantification method on the estimated levels of PA was 
studied by comparing the subjects’ amounts of PA fulfilling the criteria for VO2 in 
absolute terms (MVPAMET) and relative to the subject’s fitness level (MVPAVO2R). 
Figure 11 shows the mean with 95% confidence interval (CI) values for MVPAMET 
and MVPAVO2R in men and women, stratified by age and BMI.  

In men, significantly more MVPAMET than MVPAVO2R was observed in all age 
and BMI categories (P<0.001 for all, Wilcoxon signed rank test) (Figure 11). 
MVPAMET was highest for 18–30 year-old men and lowest for 51–65 year-old men. 
The difference in MVPAMET between the 18–30 and 51–65 year-old men was 
substantial: on average 43.5 minutes per day. This means that the observed 
MVPAMET for 18–30 year-old men was almost twice the observed MVPAMET for 
51–65 year-old men. In BMI groups, MVPAMET was highest for normal weight and 
lowest for obese men with a substantial difference of 25.7 minutes per day. 
MVPAVO2R was higher for 18–30 year-old men than for 51–65 year-old men, and 
also for normal-weight men over obese ones. The difference in MVPAVO2R between 
the age and BMI groups was statistically significant (P<0.001 for all, Kruskal-Wallis 
test) but small, only a few minutes per day.  

The results are much the same for women. The MVPAMET decreased substantially 
(P<0.001 for all, Kruskal-Wallis test) with increasing age and BMI (Figure 11). As 
with the men, the differences in MVPAVO2R between the age and BMI groups for 
the women were statistically significant (P<0.001 for all, Kruskal-Wallis test) but 
small, only a few minutes per day. In fact, in obese women the MVPAVO2R was higher 
than the MVPAMET (P<0.001, Wilcoxon signed rank test) (Figure 11). 

The differences between the age and BMI groups in the estimated PA using the 
absolute (MVPAMET) and relative to subject’s fitness level (MVPAVO2R) values may be 
partly explained by the difference in the subjects’ physical fitness, which was 
estimated by calculating VO2max (Jackson et al., 1990). The subjects’ VO2max was 
estimated based on their background characteristics of gender, age, PA class and 
BMI using a formula where increasing age and/or increasing BMI and/or being 
female decrease VO2max (Jackson et al., 1990). This implies that young age, low BMI, 
high PA-class and male gender are associated with higher VO2max, which 
corresponds to higher physical fitness. The higher the VO2max, the higher the VO2 
required to achieve the limit of 40% VO2R.  
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Figure 11.  The mean and 95% CI for the number of moderate-to-vigorous intensity physical activity 
quantified with criteria of absolute (MVPAMET) and relative to subject’s fitness level 
(MVPAVO2R) by age and BMI groups, separately for men and women.  
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5.4 Associations between behaviors and autonomic nervous 
system regulation during sleep 

5.4.1 Associations of individual lifestyles and daily behaviors with the 
autonomic nervous system regulation during sleep (Publication III) 

The impact of individual lifestyles and daily activities on the ANS regulation during 
sleep was assessed by the importance of the variables in the RF model shown in 
Figure 12. Alcohol intake during the day was found to be the most important 
predictor for recovery time during sleep. The second most important predictor was 
the duration of sleep, and the next most important predictors described the PA 
during the day. The subjects’ background characteristics of age and gender had 
relatively low importance for predicting the amount of recovery during sleep. In 
other words, the recovery minutes were relatively similar between the subjects, which 
indicates that the recovery minutes are analyzed by taking into account the individual 
characteristics of HRV. 

 

Figure 12.  The importance of the predictors for the number of recovery minutes during sleep. The 
importance of the predictor is expressed as the observed average increase in the mean-
squared error (MSE) over all trees in the RF model when permuting the predictor variable. 
The importances are shown for the original model including all the available predictors with 
an asterisk, and with a circle for the final model including the predictors with which the 
minimum MSE is achieved. 
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Partial dependence plots were constructed for the most important predictors (Figure 
13). For all age groups, the decrease in the recovery time with alcohol intake seemed 
to be dose-dependent: the higher the alcohol intake, the lower the number of 
recovery minutes (Figure 13 A). For an 80-kg person, one standardized unit of 
alcohol (0.15 g/kg) did not remarkably decrease the recovery time during sleep, but 
six units of alcohol (0.9 kg/g) halved the recovery time during sleep compared to a 
night without alcohol intake. As expected, the recovery time during sleep increased 
linearly with the duration of sleep as more sleep meant more time for recovery 
(Figure 13 B). On average, each hour of sleep increased the recovery time by half an 
hour.  

The partial dependencies of LightPAVO2max and PAVO2max were studied in the 
partial plots in relation to the PA class (Figure 13 C and D). In general, PA during 
the day seemed to decrease the recovery time during sleep but the subjects with high 
PA class that were engaged in regular PA and who had good physical fitness had 
clearly more recovery time during sleep than the inactive and unfit subjects. In other 
words, good physical fitness seemed to increase the recovery time during sleep but 
PA during the day seemed to challenge the recovery processes of the body and 
decrease the recovery time during sleep. Thus, physical exercise on a daily basis might 
have compromised recovery during the next night’s sleep, but the positive effect of 
PA on ANS regulation during sleep is seen after a delay in the form of increased 
physical fitness. 
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Figure 13. The partial dependence plots for recovery minutes during sleep with respect to A) alcohol
intake (drinks marked for an 80-kg person), B) sleep duration, C) minutes of physical
activity (PAVO2max), and D) minutes of light physical activity (LightPAVO2max). For alcohol
intake and sleep duration, the partial dependence is shown for all (black line) and for the
age groups of 18–30 years (red), 31–40 years (blue), 41–50 years (green) and 51–65
years (magenta) subjects. For PAVO2max and LightPAVO2max, the partial dependence is
shown for all (black line) and for physical fitness (PA class) groups. Inactive, PA class of
0–3 (red), moderately active, PA class of 4–6 (blue), and active, PA class of 7–10 (green)
subjects.
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5.4.2 Association between the acute alcohol intake and the autonomic 
nervous system regulation during sleep (Publication IV) 

To further investigate the association between alcohol intake and the ANS regulation 
observed in Publication III (section 5.4.1) a repeated-measures study design was 
applied for the subjects who were measured for at least one night with alcohol intake 
and one night without alcohol intake. The ANS regulation during sleep was assessed 
with HR, RMSSD and recovery measures, and the alcohol intake was used in the 
analysis both as a categorized variable (low, moderate and high alcohol intake) and 
as a continuous one.  

On average, low (≤0.25 g/kg), moderate (>0.25–0.75 g/kg) and high (>0.75 
g/kg) alcohol intake increased HR by 1.4, 4.0 and 8.7 bpm, respectively. The same 
categorized variables decreased RMSSD by 2.0, 5.7 and 12.9 ms, recovery percentage 
by 9.3, 24.0 and 39.2 percentage units, and recovery index by 7.1, 20.8 and 40.2, 
respectively. Figure 14 shows the mean and 99% CI for the HR, RMSSD, recovery 
percentage and recovery index during the first three hours of sleep for nights with 
and without alcohol intake. For all dose groups, differences in ANS regulation 
parameters were observed between days with and without alcohol intake (P<0.001 
for all outcomes; two-way repeated-measures ANOVA). In addition, the hourly 
parameters differed significantly from each other in all dose groups (P<0.001 for all). 
For high dose groups, the hour-by-hour patterns of all HRV parameters (P<0.001 
for all) were different for the subjects between the days with and without alcohol 
intake. This was particularly noticeable in the recovery measures: the values increased 
hour-by-hour in the case of no alcohol intake, but not in the case of high alcohol 
intake. For the moderate-dose group, the hour-by-hour patterns between days with 
and without alcohol were only different for the recovery percentage (P<0.01). For 
the low-dose group, the hour-by-hour patterns of HR (P<0.001) and recovery index 
(P=0.01) differed between days with and without alcohol.  

The interactions between the alcohol intake and the subjects’ background 
characteristics, especially age and physical fitness, on the ANS regulation during 
sleep were studied using LRs. Alcohol intake increased HR and decreased RMSSD 
significantly more in younger than in older subjects. For example, a high alcohol 
dose (0.75 g/kg) increased HR by 1.8 bpm more in a 30 year-old subject than in a 
60 year-old one. It also decreased RMSSD by 6.2 ms more for a 30-year-old than for 
a 60-year-old subject. On average, a high alcohol dose decreased RMSSD by 4.7 ms 
for a 60-year-old subject, while in a 30-year-old subject the decrease in RMSSD was 
more than twice this much (10.9 ms). Physical fitness, however, did not have a 
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statistically significant interaction with the alcohol intake in predicting the HRV
parameters. In other words, good physical fitness did not seem to protect the subject
from the adverse effects of alcohol intake on the ANS regulation.

Figure 14. The association of acute alcohol intake with A) heart rate (HR), B) root mean square of the
successive differences (RMSSD), C) recovery percentage, and D) recovery index in the
first three hours of sleep. The mean and 99% CI values for each hour are marked with
solid green circles for the low-alcohol dose group (≤0.25 g/kg), solid blue triangles for
medium-alcohol dose group (>0.25–0.75 g/kg) and solid red squares for high-alcohol dose
group (>0.75 g/kg) subjects. The corresponding unfilled markers show the mean and 99%
CI values for each hour for the subjects without alcohol intake.
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The differences observed between the days with and without alcohol intake in the 
recovery measures did have a strong partial correlation with the differences in the 
HR (for recovery percentage: r=0.7, P<0.001; for recovery index: r=0.63, P<0.001) 
and RMSSD (for recovery percentage: r=0.51, P<0.001; for recovery index: r=0.49, 
P<0.001). However, in contrast to the LRs employing traditional HRV measures, 
the differences in the recovery percentage and recovery index between the days with 
and without alcohol were independent of age. This indicates that changes in the ANS 
regulation assessed with the recovery measures are in line with the traditional HR 
and HRV measures, but they are independent of age.  

5.4.3 Association between the physical activity behavior and the autonomic 
nervous system regulation during sleep (Publication V) 

Figure 15 shows the age-adjusted mean and 99% CI values for stress balance and 
recovery index for subjects grouped by their BMI and their weekly MVPAMET10min. 
The obese subjects had the lowest stress balance and recovery index, regardless of 
their PA group (weekly MVPAMET10min). Comparisons of stress balance and 
recovery index between the PA groups were more complicated. The differences in 
the stress balance and recovery index between the PA groups were smallest for 
normal-weight subjects. In general, for overweight and obese subjects, the medium- 
and high-activity PA groups had lower stress balance and recovery index than the 
inactive group, with the exception of obese high-activity men, who had a higher 
recovery index than obese inactive men. 

In the LR models for stress balance, the medium- and high-activity PA groups 
were associated with lower stress balance in both men and women, as was increasing 
age. Furthermore, higher BMI was associated with decreased stress balance in men. 
Regarding the recovery index, increased BMI and age were associated with a 
decreased recovery index in both men and women. However, the medium- or high-
activity PA groups did not seem to have a statistically significant association with the 
recovery index.  

The amount and intensity of recovery reactions during sleep were higher for 
subjects with lower BMI, suggesting that their likely better body composition and 
physical fitness have a positive effect on recovery during sleep. On the other hand, 
the results for stress balance also showed that the subjects who fulfill the 
recommendation of 150 minutes of weekly MVPAMET10min (Garber et al., 2011) 
have less recovery during sleep than the inactive subjects. This may be explained by 
the study design: the weekly MVPAMET10min was estimated on the same days that 
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the sleep was analyzed. The subjects in higher PA groups probably had more PA on 
the measurement days than the subjects in the lower PA groups. It has been reported 
that nocturnal HR increases and HRV decreases after PA during the day (Hynynen 
et al., 2010). Thus, the subjects in the higher PA groups might have shown a 
decreased amount and intensity of recovery because the recovery was detected based 
on the HR and HRV parameters (Kettunen and Saalasti, 2005b). In the LR models 
for recovery index and stress balance, the effect size and the variance explained were 
higher for the BMI than for the PA groups. Thus, the BMI, which likely reflects the 
body’s composition and physical fitness, seemed to explain the amount and intensity 
of the recovery reactions during sleep better than the PA group that reflects the 
amount of PA during the measurement days.  
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Figure 15. The mean and 99% CI values for the age-controlled stress balance and recovery index in
men and women, stratified by BMI group (normal weight, overweight and obese) and
objectively measured weekly amount of cardiorespiratory-fitness-enhancing physical
activity (weekly MVPAMET10min). The red circles represent inactive (weekly
MVPAMET10min: 0 min), black triangles represent low-activity (weekly MVPAMET10min: >0-
<150 min), blue squares represent medium-activity (weekly MVPAMET10min: 150–300
min), and green diamonds represent high-activity (weekly MVPAMET10min: >300 min)
subjects.
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6 DISCUSSION 

6.1 Main findings 

The research presented in this thesis investigated PA and sleep behaviors using 
statistical and machine-learning methods for a unique real-world dataset 
encompassing HRV recordings and self-reports from a heterogeneous sample 
including tens of thousands of Finnish employees. To facilitate the studying of 
meaningful scientific research questions using the dataset, it was required to 
preprocess the data and to develop methodologies for assessing PA and sleep 
behaviors from the recordings. After all, it was feasible to use the dataset for the 
studies but the effort required to produce meaningful scientific results from the 
monitored data highlights the complexity involved whenever trying to generate 
insights from real-world data.  

Regarding the assessment of PA behaviors, the results of this thesis showed that 
there were substantial differences in PA behavior from day to day and from month 
to month. Moreover, the PA quantification method seemed to have a significant 
impact on the estimated PA levels. With respect to sleep, the results of this thesis 
indicate that acute alcohol intake is the most important daily behavior associated 
with the ANS regulation during sleep. Acute alcohol intake seemed to dose-
dependently reduce the recovery during sleep and increase the sympathetic 
regulation in the ANS. In fact, this effect seemed to be more pronounced in younger 
than in older subjects, which needs to be further investigated in controlled settings. 
Another important daily activity that affected the ANS regulation during sleep was 
PA behavior. The PA during the day seemed to challenge the recovery process 
during sleep, and the beneficial effect of PA on the ANS regulation during sleep was 
only observed after a delay, in the form of increased physical fitness.  

The findings of this thesis were in line with previous studies, and the large-scale 
real-world data enabled also studying new aspects of PA and sleep behaviors that 
provided some data-driven hypotheses to be further investigated in controlled 
studies. Consequently, this thesis demonstrates that research for health behaviors 
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using real-world data can be feasible and can provide valuable practical insights into 
health and well-being. 

6.1.1 Physical activity behavior 

Physical activity behavior can be assessed with various methods, and in this thesis 
the PA behavior was assessed with both self-reporting and objective measurements. 
In the data used for this study, men and women seemed to have, on average, similar 
activity levels based on their self-reported PA class that corresponded to having PA 
2–3 times per week for a total duration of around 2 hours. Thus, the self-reported 
PA of the subjects in this study was in line with Finnish employees’ self-reports in 
random sample surveys (Helldán and Helakorpi, 2015).  

For the objective measurements, PA was quantified using absolute intensity criteria 
of ≥3 METs, and using relative intensity criteria of ≥40 %VO2R. The number of PA 
minutes identified using the absolute intensity criteria in this thesis were similar for 
younger adults but clearly lower for older adults when compared to the hip-worn 
accelerometer-based moderate-to-vigorous PA results reported for a sub-sample of 
population-based study on Finnish adults (Husu et al., 2016). This difference is likely 
explained by the differences in the measurement techniques and algorithms 
employed in the studies. The moderate-to-vigorous PA results from accelerometer 
were reported based on 6-second epochs (Husu et al., 2016), while for the results of 
this thesis 1-minute intervals were employed. Thus, the accelerometer-based PA 
results also include shorter activity bouts that probably would only have a negligible 
effect on HR. 

On the other hand, the number of PA minutes identified using the relative intensity 
criteria in this thesis were similar with the number of moderate-to-vigorous PA 
minutes reported in international studies (Matthews et al., 2002; Colley et al., 2011), 
as well as for Finnish adults when using only ≥5-minute bouts from the acceleration 
data (Husu et al., 2016). When using the threshold of at least 5-minutes for the 
acceleration in the hip-worn accelerometer-based PA analysis, more likely only the 
exercise-like PA was taken into account and probably, thus the PA minutes were 
similar when to the PA observed in this study when using the relative intensity criteria. 
However, it should be noted that these two studies were completely distinct and a 
comparative study would be needed to truly understand the differences in the PA 
results between the two measurement modalities.         

The PA minutes fulfilling the absolute intensity criteria (MVPAMET and weekly 
MVPAMET10min) observed in this thesis were higher for men than for women, 
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which is in line with the previous results obtained, although not statistically 
significant, from Finnish adults (Husu et al., 2016) as well as internationally (Colley 
et al., 2011; Tucker, Welk and Beyler, 2011). On the other hand, the PA minutes 
fulfilling the relative intensity criteria (MVPAVO2R) for women were similar to, or even 
higher than, those for men. Similarly, the objectively measured PA employing absolute 
intensity criteria (MVPAMET) was significantly higher for younger than for older 
subjects, and for normal-weight subjects than for overweight or obese ones. The 
similar differences in the PA levels of younger and older subjects have also been 
reported in previous studies on Finnish adult population (Husu et al., 2016; 
Wennmann et al., 2019) as well as internationally (Colley et al., 2011; Tucker, Welk 
and Beyler, 2011). However, the differences between the age and BMI groups 
decreased remarkably when the PA was quantified using the relative intensity criteria 
(MVPAVO2R).  

The differences for PA assessed with absolute and relative intensity criteria may be 
partly explained by the fitness level of the subjects. For high-fitness individuals, 
fulfilling the relative (to the subject’s fitness) intensity criteria for the oxygen uptake 
may require more effort than fulfilling the absolute intensity criteria for the oxygen 
uptake. In other words, the high-fitness individuals have a greater VO2max and thus, 
for high-fitness individuals the VO2 required to achieve the level of 3 METs is lower 
than the VO2 required to achieve the level of 40% VO2R. On the other hand, low-
fitness individuals with a lower VO2max may exceed the limit for relative PA more 
easily than they do for the absolute PA level. In other words, for very low-fitness 
individuals the VO2 required to achieve the level of 40% VO2R may be lower than 
the VO2 required to achieve the level of 3 METs. In addition, it should be noted that 
the physical activities during which the high- and low-fitness subjects fulfill the relative 
intensity criteria are probably quite different. For example, for low-fitness 
individuals, physical activities such as a brisk walk may be enough to achieve the 
relative moderate-to-vigorous intensity (40% VO2R) level but the high-fitness 
individuals may need to have more demanding exercise, e.g. jogging, to achieve a 
similar relative PA intensity. Thus, the PA quantification methods employed for 
detecting PA behavior, even from any objective measurements, have a significant 
impact on the study results and their interpretation. The relative intensity criteria for 
PA may be the appropriate method, especially, in PA counseling as it is takes into 
account the subject’s fitness level and thus assesses PA in personalized manner. 

In the results of this thesis, PA behavior assessed objectively with the amount of 
cardiorespiratory-fitness-enhancing PA per day (MVPAMET10min) seemed to 
indicate a pattern where the amount of PA varies throughout the year, from day to 
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day and from month to month. On a day-to-day basis, the highest amounts of PA 
were observed during weekends, and the lowest amounts on Fridays. On a monthly 
basis, the amount of PA was highest at the beginning of the year and lowest during 
the autumn. High amounts of PA were observed, especially, at weekends at the 
beginning of the year.  

Also a previous population-based study on Finnish adult population employing 
wrist-worn accelerometers suggested that PA level is higher during weekends than 
during weekdays (Wennmann et al., 2019). However, previous studies have shown 
higher amounts of PA for summer than for winter month in the northern 
hemisphere (Shephard and Aoyagi, 2009). The previous studies have focused on the 
general PA level estimated with self-evaluation and pedometers (Shephard and 
Aoyagi, 2009) while for the analysis of this thesis the available HRV-based recordings 
were only for three days per subject and thus did not fulfill the requirement of at 
least one-week recording for habitual PA assessment (Matthews et al., 2002). 
Consequently, the differences in the methods used to estimate PA behavior seem to 
be a possible explanation for the conflict in the results considering the seasonal effect 
in PA levels in previous studies and this thesis.  

6.1.2 Associations between behaviors and autonomic nervous system 
regulation during sleep 

The ANS regulation during sleep was found to be affected by several factors related 
to individual lifestyles and behaviors. Acute alcohol intake was the most important 
behavior having associated with the ANS regulation during sleep, expressed by the 
traditional HRV parameters of HR and RMSSD, as well as with the novel indices for 
the amount and intensity of recovery reactions. The dose-dependent alcohol intake 
modulated ANS regulation by increasing the sympathetic modulation and decreasing 
the parasympathetic modulation, which is in line with previous studies (Romanowicz 
et al., 2011; Sagawa et al., 2011; Ralevski, Petrakis and Altemus, 2018). The changes 
in the ANS regulation for the first hours of sleep were already observable after only 
a low alcohol dose (1–2 standardized units of alcohol). The effects of alcohol intake 
on ANS regulation were similar for men and women, and for physically active and 
inactive subjects. However, age does seem to play a part as the effects of alcohol 
intake on the ANS regulation were found to be stronger in younger subjects than in 
older subjects.  

Previous studies had not analyzed the effects of acute alcohol intake on the ANS 
regulation across different subgroups of the participants (Romanowicz et al., 2011; 
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Ralevski, Petrakis and Altemus, 2018). Thus, the data-driven hypotheses about the 
interactions between alcohol intake and gender, age and physical activity behavior 
on the ANS regulation provided in this thesis should be further studied in controlled 
settings to verify these hypotheses. Any further studies should also investigate the 
effect of acute alcohol intake on the ANS by taking into account the timing of 
alcohol intake, as this data was unfortunately not available in the study material for 
this thesis. 

Another important behavior associated with ANS regulation during sleep was 
PA. The results showed that the parasympathetic regulation of the ANS during sleep 
increased with overall physical fitness, but it diminished after a day with PA, as 
previous studies have also suggested (Hynynen et al., 2010). Thus, any positive effect 
that PA has on the ANS regulation is not immediate, but will appear after a delay in 
the form of increased physical fitness. The increased physical fitness level may be 
indicated by high self-reported physical fitness, regular PA, or by the subject’s 
normal BMI. On the other hand, the disturbing effect of PA on the ANS regulation 
during sleep implied that days of rest are important for avoiding accumulated 
negative effects of PA on ANS regulation during sleep.  

Due to the clear and significant effects that an individual’s daily behaviors have 
on the ANS regulation during sleep, any studies relying on HRV measurements taken 
during sleep should also take into account, or control, the daily behaviors of the 
subjects. In practice, wearable monitoring devices could be used to inform the users 
about the effects that their daily behaviors may have on sleep, but also to show the 
long-term effects of such behaviors. 

6.1.3 Use of real-world wearable health monitoring data 

This thesis shows that use of real-world wearable health monitoring data for 
scientific research is feasible and enables studying new aspects of health behaviors. 
The results of this thesis were obtained from an observational real-world health 
monitoring dataset from a large and heterogeneous sample of Finnish employees 
who had voluntarily conducted the recordings of beat-to-beat RR-interval data in 
uncontrolled free-living settings. To ensure the quality and representativeness of the 
data, the inclusion criteria were set a posteriori for both the measurements and the 
subjects. The demographics of the subjects were similar to the demographics 
reported for Finnish employees in other studies (Vartiainen et al., 2009; Lahti et al., 
2016). Thus, the results from the analysis of the dataset can be assumed to be 
generalizable for vast majority of Finnish workers.  
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In general, the results from observational RWD should be interpreted carefully. 
Due to the large sample sizes, the associations between the studied variables are 
often found to have high statistical significance. Thus, the effect sizes of the 
associations should be emphasized when drawing conclusions from the results. In 
addition, the potential causal relationships should not be over-interpreted due to the 
observational nature of the data, and mechanisms for any potential causal 
relationships can only be hypothesized. Nevertheless, RCTs with large sample 
populations are not usually feasible and thus, observational studies showing real-
world evidence of various associations may be regarded as a valuable data source. 

In this thesis, the results obtained with the real-world health monitoring data were 
in line with previous studies, most of which were controlled research studies. For 
example, the fact that alcohol intake was dose-dependently associated with 
diminished parasympathetic regulation of the ANS during sleep confirmed the 
results of a previous controlled research study in real-world settings (Sagawa et al., 
2011). In addition, the results between the different studies described in this thesis 
are consistent with each other, even though the studies employed different study 
designs and methods for the quantification and analysis of the variables. For 
example, the associations between acute alcohol intake and the ANS regulation 
during sleep were similar in both cross-sectional and repeated-measures study 
designs, and by analyzing the novel HRV-based recovery indices as well as traditional 
HR and HRV parameters.  

The large sample of RWD also enabled the exploration of previously unstudied 
aspects of sleep recovery, which generated data-driven hypotheses for further 
studies. For example, alcohol intake seemed to affect the ANS regulation during 
sleep more for younger than for older subjects, and regular PA did not seem to 
protect the subjects from the adverse effects of alcohol intake on the ANS regulation 
during sleep. These issues have not been studied in previous controlled studies due 
to the fact that the sample populations are usually heterogeneous and small 
(Romanowicz et al., 2011; Sagawa et al., 2011; Ralevski, Petrakis and Altemus, 2018). 
Thus, these hypotheses require further study with controlled settings.  

6.2 Strengths and limitations 

Both the strengths and limitations of the research arise, primarily, from the large-
scale observational real-world dataset used in the analysis. It should be emphasized 
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that the real-world dataset used in this research is globally unique, containing as it 
does a blend of continuous 72-hour physiological measurement and self-reported 
data collected in real-life settings from a large and heterogeneous sample. Any use 
of this kind of real-world health monitoring data collected from a large number of 
subjects for scientific research is still very rare, which also puts emphasis on the 
importance of the insights into health and well-being that can be generated based on 
the results presented in this thesis.  

Giving that the analyzed dataset contained real-life recordings from a large and 
heterogeneous sample of Finnish employees makes the results of the thesis especially 
useful for the understanding of employees’ health and well-being in Finland or in the 
Nordics. The sample of the subjects in the dataset is, however, not random and the 
measurements were voluntary. Thus, Finnish workers who were not interested in 
their wellbeing or health may be slightly under-represented in the data. In addition, 
the participants all appeared to be healthy, as the test protocol stipulated that the 
measurements were not to be performed if the subject had some chronic or acute 
disease. Another possible weakness is that although both manual and non-manual 
workers are represented in the dataset, the subjects’ professions or the 
socioeconomic statuses were not recorded. 

The self-reported data used in the analysis included, for example, the sleep times, 
alcohol intake and background characteristics. When BMI is determined using self-
reported weight and height, the BMI is typically underestimated (Gorber et al., 2007). 
However, the BMI of the participants seemed to be in line with population-based 
estimates (Vartiainen et al., 2009). As in general with self-reported data, the number 
of alcohol doses, especially for high alcohol doses, may be underestimated and 
inaccurately reported. To counter this, very high reported alcohol intakes were 
excluded from the analysis. In addition, self-reported sleep times may have 
inaccuracies, and thus a 30-minute time window for falling asleep was used in these 
analyses. 

The duration of the measurements were limited to three days per subject and self-
reported data was not exhaustive due to the feasibility of the data collection. The 
measurement period was limited to three days per subject for practical reasons, such 
as the battery lifetime of the wearable device and the skin irritation the electrodes 
may cause when used for extended time periods. Limiting the recordings for three 
days may have caused inaccuracies when estimating the typical PA behavior or ANS 
regulation of the subjects. Moreover, the limited recordings may compromise the 
generalizability of the results, as the normal ‘true’ behaviors may not be captured 
with this short recording. On the other hand, significantly longer measurements, e.g. 
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three weeks, had probably decreased the subjects adherence to self-report precisely 
their daily activities including working and sleeping times as well as alcohol intake. 
In addition, longer measurements may have compromised the feasibility of the data 
analysis. Due to the limited self-reported data, habits of smoking, drinking or 
caffeine consumption as well as information about the timing of alcohol intake were 
not reported and thus, could not be addressed in the analysis. As these variables have 
been reported to affect HRV measurements, their unavailability is a limitation for 
the results of this thesis.  

The physiological measurement employed in the data collection was the three-
day beat-to-beat RR-interval recording performed in uncontrolled free-living settings 
where artefacts in the RR-interval recording are unavoidable. Thus, the recorded RR-
intervals were first run through the proprietary artefact correction algorithm that has 
shown to be powerful also in free-living settings (Saalasti, Seppänen and Kuusela, 
2004; Parak and Korhonen, 2013). Thereafter, from artefact-corrected RR-intervals 
the PA, stress and recovery parameters were extracted using also proprietary 
algorithms (Kettunen and Saalasti, 2005a; Kettunen and Saalasti 2005b). The 
analyses of PA were based on the estimated VO2 from the beat-to-beat RR-interval 
recordings and the subject’s background characteristics, so no direct measurement 
for VO2 was available. The proprietary VO2 estimation method used in this study 
has been shown to be accurate enough for field studies, although none of the 
validation studies for the method dealt with a population representative of the 
subjects in this study (Smolander et al., 2011; Robertson et al., 2015). As with the 
VO2 estimation, the detection of recovery and stress reactions and their intensity was 
based on a proprietary algorithm. Previous studies using this algorithm have shown 
that stress and recovery are associated with subjective stress, as well as with morning 
cortisol levels (Kinnunen et al, 2006; Rusko et al., 2006; Uusitalo et al., 2011; Teisala 
et al., 2014; Föhr et al., 2015). However, a stressful event detected with the 
proprietary algorithm may not agree with the subject’s personal view of the situation 
(Oksman, Ermes and Tikkamäki, 2016; Kaikkonen, Lindholm and Lusa, 2017). In 
this thesis, the ANS regulation during sleep was quantified with the traditional HR 
and HRV parameters as well as with the novel recovery parameters, and the results 
show that these recovery parameters are in accordance with the HR and HRV 
parameters. However, given that the artefacts in the wearable HRV monitoring are 
unavoidable and cannot be perfectly corrected with any artefact-correction 
algorithm, the HR and HRV parameters generated from RR-intervals recorded in 
real-life settings should be considered as practical real-life estimates instead of exact 
clinical values of HR and HRV.  
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The measurements were conducted in uncontrolled free-living settings, which 
from study design perspective inevitably means that there will be a number of 
confounding factors in the dataset. Statistical methods were used to control for any 
such confounding factors in the cross-sectional study designs, and the within-subject 
study design described in Publication IV also provided control for any unknown 
confounding factors. Statistical methods were also employed to compensate for the 
non-balanced sampling of the dataset. However, the use of statistical methods to 
compensate for the confounding factors and for the non-balanced sampling may not 
be ideal, so the results should be interpreted with caution. The results of this thesis 
could not be validated using the traditional scientific approach due to the limitations 
of the available reference data. Collecting reference data would have required 
conducting RCTs with detailed data collection and long-term physiological 
measurements on a large number of subjects, which would not have been feasible. 

6.3 Contribution to science and practice 

This thesis focused on analyses of a real-world health monitoring dataset, and 
demonstrated that the results obtained from controlled research studies also apply 
in uncontrolled, free-living settings. Furthermore, the large-scale dataset enabled the 
study of aspects of PA and sleep behaviors that could not have been studied in 
previous controlled research studies due to their small sample size. Thus, the results 
of this thesis can be seen as an example of the complementary roles that RWD and 
RCT studies have in providing further insights into health and well-being. 

Those associations found in the RWD studies that have not previously been the 
topic of clinical studies can be used to generate data-driven hypotheses for future 
RCTs. For example, the results of this thesis have generated data-driven hypotheses 
related to PA and ANS regulation during sleep. PA during the day may actually 
compromise recovery during the following night’s sleep. However, PA does have a 
beneficial effect on recovery during sleep, but only in the longer term. The benefits 
of PA can eventually be seen in the form of increased levels of physical fitness, which 
aids recovery during sleep. Regarding ANS regulation during sleep, alcohol intake 
seemed to have a stronger effect on the younger than older subjects, but a similar 
effect in male and female subjects and in sedentary and physically active subjects. 
These interactions between alcohol intake and the subject’s background 
characteristics should be further studied with RCTs on large and heterogeneous 
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samples (Romanowicz et al., 2011; Ralevski, Petrakis and Altemus, 2018). Regarding 
PA quantification, the results of this large-scale RWD study have also thrown up an 
interesting point about the way the subjects’ PA can be quantified. The results of 
this study indicate that if the PA estimation takes into account the subject’s current 
level of physical fitness, this may be a better way of motivating low-fit individuals to 
increase their PA. This data-driven hypothesis should also be confirmed in further 
research studies. 

With regard to interpreting the results of research studies in general, this thesis 
highlights the significant effect that the methods and context of the studies can have, 
and these should always be taken into account. For example, in PA research studies, 
the PA quantification method may strongly affect the estimates of the subjects’ PA 
and thus treat differently high-fitness and low-fitness individuals. Furthermore, in 
HRV research studies it is important to consider the context of the HRV 
measurement, as ANS regulation seems to be affected by the daily activities and 
behaviors.  

In practice, a feasible and relevant PA quantification method and a good 
knowledge of the temporal patterns in PA behavior can make PA counselling and 
interventions more personal, and therefore more effective. When trying to promote 
behavioral changes in PA, the most motivating PA quantification method should be 
selected. For example, the information about the varying temporal patterns of PA 
can be utilized, perhaps by trying to increase the amount and intensity of the subject’s 
PA on those days when they have naturally higher PA levels, or vice versa, by 
engaging and promoting activities with PA on the days the subjects naturally have 
low PA levels. 

In addition, this thesis has demonstrated some of the effects that lifestyles and 
daily activities can have on ANS regulation during sleep. This knowledge may be 
used to motivate individuals to be more aware of the effect their behaviors can have 
on their well-being. This is the first step towards changing one’s behavior and 
lifestyle. Regarding the effect that alcohol intake has on the ANS regulation during 
sleep, the results from the novel indices used in this RWD study agree with the HR 
and HRV parameters regarding the amount and intensity of recovery, once they have 
been normalized against the subject’s background characteristics. For example, the 
recovery indices showed decreased values after only a low alcohol intake, and this 
information could be used to inform and convince people that even a low alcohol 
intake affects sleep. In other words, the recovery indices could be used as practical 
tools for the general public to visualize and demonstrate the effects that daily 
activities and behaviors can have on their sleep.  
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As a conclusion, the results of this thesis can benefit both scientific research as 
well as practice in the field of health and well-being. The results of this thesis 
comprehensively focused on studying PA and sleep behaviors using a real-world 
HRV dataset, but this rich dataset also enables studying many further scientific 
studies. Specifically, this dataset could be utilized to provide further real-world 
evidence for health and well-being about, for example, sedentary behavior and 
occupational health. In larger perspective, this thesis illustrates how real-world 
wearable health monitoring data can be put in good use to facilitate scientific results 
and provide practical insights and hopefully, inspires wider use of real-world health 
monitoring data for research. 



 

113 

7 SUMMARY AND CONCLUSIONS 

The thesis shows the feasibility to use real-world continuous wearable health 
monitoring data for research. Data preprocessing, appropriate methodologies for 
quantifying health behaviors and well-being as well as statistical methods for the 
analysis are the key to provide valid observations from the real-world data. The 
results of this thesis, specifically, give unique observational real-world evidence about 
the physical activity behaviors and the associations of daily activities with sleep in 
Finnish employees. The amount of large-scale real-world health monitoring data is 
globally constantly increasing and its analysis opens up new possibilities for research 
as well as enables studying aspects of health behaviors and well-being that cannot be 
investigated in traditional research studies. On the contrary, real-world health data 
can also facilitates to generate valuable data-driven hypotheses to be further 
investigated in controlled research studies. For practice, the insights from the real-
world data are essential in promoting people’s health and well-being with more 
personalized and targeted health interventions and tools. 
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Abstract— Technologies for wearable health monitoring are 
becoming increasingly popular and affordable. As a res ult, 
large-scale health databases from a large number of individuals 
are becoming available. However, analysis of these databases 
requires special methodology to transform available parame-
ters into more generic ones and to manage such non-balanced 
data characteristics as biases and sampling issues. In this paper,
we introduce a methodology for studying physical activity from 
big wearable heart rate (HR) data on about 5 000 working-age 
individuals, each measured only for a few days. Physical activity 
was assessed by oxygen consumption (VO2) calculated from 
measured HR data using a neural network model. Minute-to-
minute VO2 data was used to quantify various physical activi-
ties in a measurement day, as defined according to the health 
promoting physical activity minutes of the American College of 
Sports Medicine. We set a posteriori inclusion criteria for the 
data on the subjects’ personal background parameters and the 
quality of their HR data. The effect of different subjects being 
measured in different months and weekdays was removed by 
using a linear model. The linear model sought to estimate the 
physical activity minutes based on a subject’s background pa-
rameters. The results show that big data collected in real-life 
settings and originally for non-research purposes can with ap-
propriate data management and analysis methodology provide 
unique knowledge of lifestyles and behavior.

Keywords— physical activity, oxygen consumption, heart 
rate (HR) data, Firstbeat, non-research database

I. INTRODUCTION 

Today, technologies of wearable health monitoring enable
easy and affordable large-scale acquisition of health data dur-
ing daily life. As a result, large-scale databases containing 
health data from a large number of individuals are created as 
by-products of, e.g., health promoting interventions. These 
data sets may outnumber those collected for research pur-
poses. However, their use for research purposes is not 
straightforward. For example, they may lack essential infor-
mation, their inclusion and exclusion criteria may be hastily 
defined, and they may not be automatically representative. In 
addition, legal issues related to data privacy and security 
must be properly managed. Included are also several tech-
nical challenges in processing and analyzing such data sets.

This paper aims to present a methodology for quantifying
physical activity from a big database of ambulatory beat-to-
beat heart rate (HR) data. We introduce key challenges and a
methodology for transforming the data into generic metrics 
and for managing non-balanced sampling of data with statis-
tical methods.

II. MATERIALS AND METHODS

A. Data

The data used here was provided by Firstbeat Technolo-
gies Ltd., a Finnish company providing analytics for well-
being factors such as stress, recovery, and physical activity
based on ambulatory measurement of beat-to-beat HR and 
subsequent analysis of heart rate variability (HRV). In real-
life conditions, HR data is typically collected over three days 
with a Firstbeat Bodyguard device (Firstbeat Technologies
Ltd, Jyväskylä, Finland) and analyzed by Firstbeat HEALTH 
software, producing Lifestyle Assessment results. 

Over the years, Firstbeat Technologies Ltd. has been gath-
ering Lifestyle Assessment results into an anonymized data-
base, which includes results of Finnish working-age subjects 
who have voluntarily participated in measurements as part of 
their preventive occupational health care services. In addition 
to the results, this database includes the subjects’ personal
background parameters of age, weight, height, gender, and 
physical activity class. The subjects choose a physical activ-
ity class on a scale fromzero to ten according to their amount 
and intensity of physical activity.

The methods reported in this paper were developed and 
applied for trial purposes to about 14 000 measurement days 
obtained from about 5 000 subjects who had at least two and
at most six days of measurement during 2007-2013. 

B. Transforming HR to oxygen consumption

A common challenge in wearable sensor data is that the 
monitoring devices monitor parameters that may be device-
specific (e.g., “Nikefuel” and physical activity) or that are 
only indirectly linked to the phenomenon to be studied (e.g.,
HR and physical activity). Therefore, it is necessary that the 
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data be transformed into generic metrics. For example, we 
describe the use of HR to assess physical activity in daily life 
conditions as the sole input signal.

The intensity of physical activity can be most accurately 
measured from oxygen consumption (VO2). However, a di-
rect VO2 measurement is not suitable for large-scale field 
studies because special equipment, such as respiratory gas 
analyzer, is required. [1] The use of HR is one of the most 
studied methods for indirect estimation of VO2. However, 
accurate estimation of VO2 from HR requires individual or 
at least group-level calibration [2,3]. Consequently, large-
scale studies have so far employed subjective questionnaires,
inaccurate actigraphy, or HR-based estimation of VO2 to as-
sess participants’ physical activity.

Firstbeat Technologies Ltd. has developed a novel neural 
network model which estimates VO2 from measured HR data 
without calibration [4]. The model uses personal background 
parameters (age, weight, height, gender, and physical activity 
class), HR, respiration frequency, and on/off dynamics to 
evaluate the relationship between HR and VO2. Respiration 
frequency is derived from measured HR and the high-fre-
quency component of HRV, and the purpose of the on/off dy-
namics is to describe variations in the HR-VO2 relationship. 
[5] The model produces temporal VO2, which can be pre-
sented in units of metabolic equivalents (METs) by dividing 
temporal VO2 values by 3.5. The 3.5 ml/kg/minis considered 
the VO2 level at rest, and thus MET values represent a mul-
tiplication of VO2 at rest. [6]

A study on the validity of the neural network model found 
the modelled VO2 accurate for light and heavy intensity ac-
tivities at group level and for individual values. At low inten-
sity levels, however, the model slightly underestimated VO2
at group level. Overall, the modelled VO2 accounted for 87 
% of the variability in the measured VO2 at group level and 
for 77‒97 % at individual level. In other words, the model 
was at least as accurate as the methods that use a simple HR 
calibration test. The model was thus judged accurate enough 
to determine the average VO2 in field measurements. [1]
Consequently, we applied this model here to transform HR 
into minute-to-minute (min-to-min) VO2 data without re-
course to personal calibration.

C. Transforming oxygen consumption into physical activity

Physical activity can be quantified into different catego-
ries according to its intensity and duration. For instance, the 
American College of Sports Medicine (ACSM) has defined 
health promoting physical activity as that whose intensity is 
moderate-to-vigorous, i.e., the MET level is higher than or 
equal to three continuously for at least 10 minutes [7]. These 
classifications can be used as a basis for quantifying physical 
activity.

In this paper, physical activity was quantified by calculat-
ing it in the number of minutes that followed the ACSM’s 
definition of health promoting physical activity, except that 
one 1-minute MET value was allowed to be lower than three 
in a 10-minute period. First, 1-minute MET values were cal-
culated; i.e., for each 1-minute segment of measurement, the 
average of second-by-second MET values produced by the 
neural network model was calculated. Thereafter, the physi-
cal activity minutes were calculated as a total of 10-minute 
segments in which all 1-minute MET values were higher than 
or equal to three, except for one 1-minute MET value, which 
was allowed to be less than three.

D. Application of a posteriori inclusion criteria to the data

A key challenge in using non-research data for scientific 
purposes is to introduce inclusion and exclusion criteria a
posteriori in the data. In the methodology we adopted here,
inclusion criteria were set for both personal background pa-
rameters (inclusion of subjects) and data quality (inclusion of 
data) to produce reliable results.

The anonymized data set comprised volunteers who in all 
appearances were healthy. According to the instructions of 
Firstbeat Technologies Ltd, Lifestyle Assessment should not 
be performed in the following conditions: chronic rhythm 
disturbance, cardiac pacemaker or transplant, left bundle 
branch block, severe cardiac disease, very high blood pres-
sure (≥180/100 mmHg), type 1 or 2 diabetes with autonomic 
neuropathy, hyperthyreosis or other disturbance of the thy-
roid gland leading to a resting HR of >80 bpm, severe neuro-
logical disease, fever or other acute disease, a body mass in-
dex (BMI) of >40.0 kg/m2,  and any medicationaffectingHR,
HRV, or physical activity level.Therefore, these criteria can 
be considered a priori exclusion criteria. 

In data analysis, a posteriori inclusion criteria for subject 
characteristics and measurement data are applied as seen ap-
propriate to the study goals. In this example, subjects consid-
ered for analysis were 18‒65 years old and had a BMI of 
18.5‒40 kg/m2. For the data to be a reliable sample of a sub-
ject’s daily physical activity, we set a daily measurement 
limit of a minimum of 16 hours with a measurement break no
longer than 30 minutes during waking hours. Moreover, the 
average detected artifact percentage of HR data in a daily 
measurement was set to be lower than 15, even though before 
producing results, Firstbeat analysis includes a powerful ar-
tifact correction procedure for erroneous HR data.

E. Statistical Analysis

A key challenge in statistical analysis of large non-re-
search databases is non-balanced sampling of data. For ex-
ample, we had only a few measurement days per subject, and 
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different subjects participated in measurements in different 
weekdays and months. In an optimal case, when, e.g., the 
minutes of physical activity differ in weekdays and months, 
measurements should be performed longitudinally on the 
same individuals. However, an appropriate statistical ap-
proach can help us use large-scale databases to address these 
questions. Computational modelling of data allows us to con-
trol inter-individual differences and study the effect of time 
in physical activity. 

The physical activity minutes were found to depend on the 
background parameters of age, BMI, physical activity class,
and gender. Thus to control the effect of these parameters on 
the observed physical activity minutes, a linear model was 
first constructed between the background parameters ( ) and 
the observed number of physical activity minutes ( ):  

, (1)

where is a vector of the constant term and the coefficients 
for the background parameters, and is a vector of residual 
terms. The coefficient values were estimated based on the 
data using a least-squares fit, and all the background param-
eters were found statistically significant; i.e., they had a p-
value lower than 0.05.

To calculate the number of background-controlled physi-
cal activity minutes per subject, the baseline (b) was first cal-
culated based on the observed number of physical activity 
minutes ( ) and residual terms ( ):

, (2)

where N is the total number of measurements. Thereafter, the 
residual terms ( ) were added to the baseline (b) to produce 
the background-controlled number of physical activity 
minutes ( ):

. (3)

After receiving the background-controlled minutes of 
physical activity, i.e., after removing the effect of different 
subjects taking part in measurement in different days and 
months, mean values were calculated for the background-
controlled physical activity minutes for different months and 
weekdays.

III. RESULTS

A. Fulfillment of the inclusion criteria 

The initial data set used for testing the above methods 
comprised 21 720 measurement days on 5 373 subjects. The 
total number of measurement days fulfilling the inclusion cri-
teria was 14 525, gathered from a total of 5 124 subjects (2

422 males and 2 702 females). The means and standard devi-
ations in the male and female subjects’ background parame-
ters are shown in Table 1.

Table 1 The mean and standard deviations in the background parame-
ters of male and female subjects fulfilling the inclusion criteria.

Background parameter Male Female

Age (in years) 43.5 (10.1) 44.4 (9.8)
BMI (in kg/m2) 26.7 (3.6) 25.5 (4.4)
Activity class (on scale of 0‒10) 5.0 (2.0) 4.8 (1.9)

B. Everyday physical activity

VO2 analysis was successfully applied to measured HR 
data, and min-to-min VO2 data were extracted and trans-
formed to daily physical activity characteristics,as suggested 
in the methods section. An example of HR and min-to-min 
VO2 data for a single individual is shown in Fig 1.

Fig 1 Example figures of HR as 10-minute averages (red line) and min-
to-min VO2 data (blue line) for a single individual..

The results of the physical activity minutes were calcu-
lated as a function of weekday and month. The linear model 
used for removing inter-individual differences explained 
15.9 % of the total variance in the observed physical activity
minutes. The effect of removing the inter-individual differ-
ences is shown in Fig 2, where the colors represent the num-
ber of physical activity minutes: the warmer the color, the 
greater the number of physical activity minutes. The ob-
served number of physical activity minutes without back-
ground control is shown in Fig 2 (a). Fig 2 (b) shows the dis-
tribution of the background-controlled physical activity 
minutes over weekdays and months.
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Fig. 2 Observed minutes of physical activity (figure a) and background-
controlled minutes of physical activity (figure b).

As seen in Fig 2, controlling the background parameters 
reduced the difference in physical activity minutes between
days and months. The control seemed to affect the month 
means of physical activity minutes but it seemed not to affect 
the weekday means of physical activity minutes. These re-
sults show that the approach presented in this paper can re-
duce the impact of inter-individual differences when a large 
enough sample is available.

IV. CONCLUSIONS 

In this paper, we introduced a physiological database pro-
duced with beat-by-beat HR recordings, which can be used 

to quantify physical activity. To determine the effect of 
months and weekdays on physical activity, non-balanced 
sampling of the database was compensated for by using a lin-
ear model. However, organizing a study with reference data 
on this scale is very challenging and underlines the difficulty 
of using big data for research purposes; i.e., that results may 
not be able to be validated as in a traditional scientific ap-
proach and should thus be interpreted with a pinch of salt.

Use of non-research, large-scale health databases opens up
new possibilities for research. Such databases often outnum-
ber their research-originated competitors and compared to 
randomized controlled trials may provide some benefits such 
as generalizability to real life situations. However, special 
methodology is needed to transform such databases into 
standard units and to manage issues related to inclusion/ex-
clusion criteria, representativeness, data quality, and non-bal-
anced settings. Moreover, since these databases usually pro-
vide observational data, it is important that the results be 
interpreted cautiously and without over-interpreting causal 
relations.
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ABSTRACT

KUJALA, U. M., J. PIETILÄ, T. MYLLYMÄKI, S. MUTIKAINEN, T. FÖHR, I. KORHONEN, and E. HELANDER. Physical Activity:

Absolute Intensity versus Relative-to-Fitness-Level Volumes.Med. Sci. Sports Exerc., Vol. 49, No. 3, pp. 474–481, 2017. Purpose: This study

aimed to investigate in a real-life setting how moderate- and vigorous-intensity physical activity (PA) volumes differ according to

absolute intensity recommendation and relative to individual fitness level by sex, age, and body mass index.Methods: A total of 23,224

Finnish employees (10,201 men and 13,023 women; ages 18–65 yr; body mass index = 18.5–40.0 kgImj2) participated in heart rate

recording for 2+ d. We used heart rate and its variability, respiration rate, and on/off response information from R-R interval data

calibrated by participant characteristics to objectively determine daily PA volume, as follows: daily minutes of absolute moderate

(3–G6 METs) and vigorous (Q6 METs) PA and minutes relative to individual aerobic fitness for moderate (40%–G60% of oxygen uptake

reserve) and vigorous (Q60%) PA. Results: According to absolute intensity categorization, the volume of both moderate- and vigorous-

intensity PA was higher in men compared with women (P G 0.001), in younger compared with older participants (P G 0.001), and in normal

weight compared with overweight or obese participants (P G 0.001). When the volume of PA intensity was estimated relative to individual

fitness level, the differences were much smaller. Mean daily minutes of absolute vigorous-intensity PA were higher than those of relative

intensity minutes in normal weight men ages 18–40 yr (17.7, 95% confidence interval [CI] = 16.9–18.6, vs 8.6, 95% CI = 8.0–9.1; P G 0.001),

but the reverse was the case for obese women ages 41–65 yr (0.3, 95% CI = 0.2–0.4, vs 7.8, 95% CI = 7.2–8.4; P G 0.001). Conclusion:

Compared with low-fit persons, high-fit persons more frequently reach an absolute target PA intensity, but reaching the target is more similar

for relative intensity. Key Words: EXERCISE, OBJECTIVE MONITORING, HEART RATE, FITNESS

I
ncreasing physical activity (PA) among both healthy
people and individuals with chronic disease is linked to
many health benefits (22,26,27). The current PA guide-

lines for aerobic PA (27,39) recommend at least 150 min of
moderate-intensity PA (MPA) or at least 75 min of vigorous-
intensity PA (VPA) per week, accumulated in bouts of at least
10 min in duration. This recommendation is based mostly on
observational cohort studies that most often used self-reported
questionnaire measures of leisure-time PA. Results of
accelerometer-based (1,7,36) and heart rate–based (25) ob-
jective assessments of PA indicate that only a small propor-
tion of adult populations meet the recommendation. PA bouts
shorter than 10 min, often occurring during daily life and
unplanned (38), are not included when investigating who

fulfills this PA recommendation. However, accumulating evi-
dence suggests that short bouts of moderate-to-vigorous PA
(MVPA) are associated with reduced levels of cardiometabolic
risk factors (6,12,33,38).

PA can be assessed using questionnaires or more objective
monitoring methods (34). Recent advances in accelerometer-
based PA monitoring techniques help yield good estimates of
the intensity of certain types of PA, such as walking and
running on a standard surface (37). Heart rate–based moni-
toring methods, however, are better for determining the in-
tensity of different types of real-life MVPA (34), including
bicycling and many work-related activities. Accelerometer-
based objective monitoring methods may be more reliable in
recording low to very low intensity PA compared with simple
heart rate–based devices because of artifacts resulting from
excitement and other stimuli unrelated to PA that still influ-
ence heart rate (34). The current aerobic PA recommenda-
tions are for MVPA characterized in absolute multiples of
resting metabolic rate, MET, values. However, maximal ex-
ercise capacity in low-fit individuals, in particular among
those who are older, obese, or have chronic disease, may be
lower than the recommended absolute intensity level of VPA.
Consequently, individuals who cannot reach the recommended
intensity level do not have this type of PA recorded. Physicians
and other professionals giving exercise recommendations need
to understand which types of PA are achievable by physically
inactive people with low fitness levels, the most important
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target group for PA promotion. Although variation exists in
how people feel pleasure and discomfort when they exercise at
different intensity levels, in general, pleasure is reduced when
the ventilatory or lactate threshold is surpassed (8).

The aim of this study was to compare the volumes of
objectively monitored PA determined by recommended ab-
solute intensity levels and by intensity levels relative to in-
dividual fitness by sex, age, and body mass index (BMI)
(normal weight, overweight, and obese) among 23,224
Finnish employees during everyday life. To determine the
PA volumes, we used sophisticated and validated method-
ology (25), including information on continuous heart rate
and heart rate variability recordings.

METHODS

Study design and participants. This cross-sectional
study investigated the amount of absolutely and relatively
(i.e., relative to participant"s maximal oxygen uptake [V̇O2max])
determined PA at different intensity levels (moderate, vigor-
ous, and moderate-to-vigorous combined) during workdays
and days off by sex, age, and BMI among a sample of 23,224
Finnish employees (10,201 men and 13,023 women; age
range = 18–65 yr, BMI range = 18.5–40.0 kgImj2) who par-
ticipated in real-life preventive occupational health care
provided by their employers during the years 2007–2015 in
Finland (Fig. 1). A wide nonselective range of nonmanual
and manual labor employees was included. The employees
participated in real-life continuous beat-to-beat R-R interval
recordings. The majority of participants were apparently

healthy because individuals with chronic disease and medi-
cations influencing heart rate did not participate in these
recordings. For detailed exclusion criteria for participation in
the R-R interval recordings, see Mutikainen et al. (25).

The data obtained from these R-R interval recordings
were anonymously stored in a database administered by the
software manufacturer (Firstbeat Technologies Ltd., Jyväskylä,
Finland). According to written agreements (25), Firstbeat
Technologies Ltd. extracted an anonymous data file for the
present research purposes. This study was approved by the
Ethics Committee of Tampere University Hospital (reference
no. R13160).

PA monitoring and assessment. The ambulatory
beat-to-beat R-R interval data used to calculate the intensity
and amount of PA were recorded during the course of nor-
mal everyday life, usually over 3 d (typically including two
workdays and 1 d off ), using the Firstbeat Bodyguard device
with stick-on electrodes with wires (Firstbeat Technologies
Ltd.). Monitoring data were first analyzed using Firstbeat
Analysis Server software (version 6.3, Firstbeat Technolo-
gies Ltd.). To be included, a participant had to have a mea-
surement period, including at least one workday and 1 d off
(Fig. 1). We included a workday or a day off in the analysis
if the measurement period lasted 16–30 hIdj1. Because the
measurement day was determined from waking up to wak-
ing up, recordings were allowed to exceed 24 h. The infor-
mation about the type of day was obtained from participant
diaries; a workday had to include Q4 working hours cumu-
latively, days off were without any working hours, and the
days with reported work time 90 but G4 h were excluded

FIGURE 1—Flow of participants and measurement days included in the analysis.
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from the analyses. The analyzed data consisted of success-
fully recorded (measurement error in recording R-R in-
tervals detected with an automatic artifact detection and
correction feature for irregular ectopic beats, and signal
noise G15% and G30 min recording break) workdays and
days off (Fig. 1).

Background information included age, sex, questionnaire-
reported height, weight, and PA class (9), modified from
Ross and Jackson (28). Then maximal heart rate (210j 0.65 �
age) (16) and V̇O2max (men 67.350 + 1.921 � PA class j
0.381 � age j 0.754 � BMI; women 56.363 + 1.921 � PA
class j 0.381 � age j 0.754 � BMI) (15) were estimated,
and these values were further used in the estimation of oxygen
uptake (V̇O2). If a period with a heart rate higher than the
estimate was found from the recording, the maximal heart rate
used for further calculations was corrected accordingly.
BMI (kgImj2) was calculated from the self-reported weight
and height.

The intensity in terms of V̇O2 and volume of PA was first
estimated based on the R-R interval recordings (10,17,18,30).
The method has been validated previously; the pooled re-
lationship (correlation) between the measured and the pre-
dicted V̇O2 across the different activities of daily living was
0.93, and the estimated V̇O2 explained 87% of the vari-
ability in the measured V̇O2 (32). In another validation
study, Robertson et al. (29) showed that the energy ex-
penditure estimates based on our method correlate strongly
with those based on indirect calorimetry across analysis
conditions (r = 0.85–0.98). The high validity of this method
was achieved by taking into account the R-R interval–derived
information about heart rate, respiration rate, and on/off
response (increasing or decreasing heart rate) using neural
network modeling of the data and the short-time Fourier
transform method (10,17,18,30).

Participant mean V̇O2 for each minute was calculated
from the second-by-second V̇O2 estimations. For the calcu-
lation of the volume of absolutely determined PA, the
minute-by-minute V̇O2 estimations were converted to METs
by dividing the V̇O2 values by a resting metabolic rate value
of 3.5 mLIkgj1Iminj1. On the basis of the MET values,
the volume of MPA and VPA (minIdj1) at each intensity
level was then calculated. These data are called MPAAbs

and VPAAbs later in the text. The thresholds for these
categories were MPAAbs 3–G6 METs and VPAAbs Q6 METs
(11). MVPA then refers to the sum of MPA and VPA,
respectively.

The intensity of PA was also calculated relatively, i.e., in
relation to estimated V̇O2max. The relative intensity was deter-
mined using the percentage of V̇O2 reserve (% V̇O2R). V̇O2R
is calculated by subtracting 1MET (3.5mLIkgj1Iminj1) from
the V̇O2max. The % V̇O2R is calculated by subtracting 1 MET
from the measured V̇O2, dividing by the V̇O2R, and multi-
plying by 100% (14). The amount of PA (minIdj1) at dif-
ferent intensity levels (moderate and vigorous) was then
calculated. These values are called MPARel and VPARel later
in the text. The thresholds for these categories were MPARel

40%–G60% V̇O2R and VPARel Q60% V̇O2R (11,14). Again,
MVPA refers to the sum of MPA and VPA, respectively.

As the general use of resting metabolic rate value of
3.5 mLIkgj1Iminj1 to calculate PA METs for individuals
with differing sex, age, and BMI may cause misclassification
of activities (20), we also recalculated the main results using
the original Harris–Benedict formula (13). Results in our article
and Supplemental Digital Content 1, http://links.lww.com/
MSS/A810, are based on the generally used 3.5 mLIkgj1Iminj1

for resting metabolic rate and those in the Supplemental
Digital Content 2, http://links.lww.com/MSS/A811, on
calculating the resting metabolic rates using the Harris–
Benedict formula.

Statistical analysis. Data processing and statistical
analysis were performed using MATLAB version R2015b
(The MathWorks Inc., Natick, MA) and R version 3.2.2 (The
R Foundation for Statistical Computing, Vienna, Austria).

We calculatedmean, SD, and 95% confidence intervals (CI)
for continuous variables. First, the total number of 1-min
segments in each intensity category during each measurement
day for each individual was calculated. If a participant"s
measurement period included two or more workdays (or days
off ), an average was calculated. We also calculated the mean
daily absolute and relative intensity PAminutes covering both
workdays and days off. Then we calculated the amount of
MPAAbs, MPARel, VPAAbs, and VPARel by gender and type
of day (i.e., workdays vs days off ) for different age (18–30,
31–40, 41–50, and 51–65 yr) and BMI categories (normal
weight, 18.5–G25.0 kgImj2; overweight, 25.0–G30.0 kgImj2;
and obese, 30.0–40.0 kgImj2). The absolute and relative PA
volumes at different intensity levels were compared inside
each age and BMI category using the Wilcoxon signed rank
test. Differences in the absolute and relative PA volumes
between age and BMI categories were analyzed using the
Kruskal–Wallis test.

We then calculated how the determined absolute and relative
intensity PA minutes overlapped (Figs. 2 and 3). In addition,
we calculated at the group level the proportions between
VPAAbs/VPARel in specific subgroups (Fig. 4). Because of
the complexity of the relations between the absolute and the
relative intensity minutes, the 95% CI values for the relations
were calculated using a percentile bootstrapping method. All
P values reported are two-sided, and because of the large
sample size, the significance level was set to 0.001.

RESULTS

Most of the R-R interval recordings were from values
taken over 3 d (13,052 participants); 7062, 1327, 936, and
847 participants had 2, 4, 5, and 6 measurement days, re-
spectively. Altogether, the number of analyzed days was
39,904 for workdays and 28,446 for days off (Fig. 1). The
mean T SD age of the participants was 44.7 T 9.8 yr (men =
44.4 T 9.9 yr, women = 45.0 T 9.8 yr), and the mean T SD
BMI was 26.0 T 4.0 kgImj2 (men = 26.6 T 3.5 kgImj2,
women = 25.5 T 4.4 kgImj2) (Table 1).
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Heart rates and estimated V̇O2max. Mean heart rates
did not differ substantially between age-groups or between
workdays and days off. However, the mean heart rates in-
creased with increasing BMI among both men and women
during both workdays and days off, covering time awake and
sleeping time (see Table 1 in Supplemental Digital Content 1,
Mean heart rates by age, sex, and type of day during whole
recording day, http://links.lww.com/MSS/A810). For the es-
timated mean V̇O2max values by sex, age, and BMI catego-
ries, see Table 2 in Supplemental Digital Content 1 (Mean
estimated V̇O2max values by sex, age and weight group, http://
links.lww.com/MSS/A810).

PA volumes by sex, age, and type of day. According
to absolute intensity, as expected, men had higher values for

MPA and VPA minutes compared with women (Table 2).
The mean values for the MVPAAbs minutes during workdays
were 50.5 (95% CI = 49.5–51.4) for men and 33.2 (95% CI
32.6–33.8) for women (P G 0.001); during days off, they were
63.7 (62.5–64.9) and 34.7 (34.0–35.4) (P G 0.001), respec-
tively [see Tables 3 and 4 in Supplemental Digital Content 1,
Amount of absolute and relative moderate and vigorous in-
tensity physical activity (minIdj1) by age groups during work-
days and days off among men; Amount of absolute and relative
moderate and vigorous intensity physical activity (minIdj1) by
age-groups during workdays and days off among women,
http://links.lww.com/MSS/A810]. In particular, VPA volumes
were low for women (Table 2). However, when calculated as
intensity levels relative to individual fitness, the PA volumes

FIGURE 3—Overlap (mean percent of PA minutes falling in different intensity categories) between absolute PA intensity versus PA intensity relative
to individual aerobic fitness level. For abbreviation, see Figure 2.

FIGURE 2—Illustration of the theoretical overlap between absolute PA intensity versus PA intensity relative to individual aerobic fitness level.
% V̇O2 reserve, percentage of maximal oxygen uptake reserve.
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for women were about at the same level as for men or even
higher (Table 2): mean daily minutes of MVPARel were 16.2
for men and 17.3 for women.

Men older than 30 yr had higher MVPAAbs and MVPARel

minutes during days off than during workdays, but these
differences were not as strong in women and in younger men.
PA volume in terms of absolute intensity decreased by age
among both women and men, during both workdays and days
off, but a similar strong age-related reduction of PA was not
seen when the intensity was calculated relative to individual
fitness level [Table 2, see also Tables 3 and 4 in Supplemental

Digital Content 1, Amount of absolute and relative moderate
and vigorous intensity physical activity (minIdj1) by age
groups during workdays and days off among men; Amount of
absolute and relative moderate and vigorous intensity physical
activity (minIdj1) by age groups during workdays and days off
among women, http://links.lww.com/MSS/A810]. Among the
oldest women (51–65 yr), the amount of VPARel was higher
compared with VPAAbs (P G 0.001).

The overlap of the minutes that fulfilled the criteria for
either MVPAAbs or MVPARel in different absolute and rel-
ative intensity categories is shown in Figure 3. An average

FIGURE 4—Daily VPAAbs/VPARel minute ratios among older and younger men and women by BMI categories. VPAAbs = daily minutes of absolute
vigorous-intensity (Q6 METs) PA. VPARel = daily minutes of VPA relative to individual aerobic fitness (Q60% of oxygen uptake reserve). Error bars
represent 95% CI.

TABLE 1. Number of participants by sex, age, and weight status.

Weight Status

Normal Weight Overweight Obese

Age Group n n (%)

18–30 yr
Men 940 524 (55.7) 349 (37.1) 67 (7.1)
Women 1148 873 (76.0) 199 (17.3) 76 (6.6)

31–40 yr
Men 2794 1115 (39.9) 1321 (47.3) 358 (12.8)
Women 3087 1995 (64.6) 751 (24.3) 341 (11.0)

41–50 yr
Men 3333 1048 (31.4) 1708 (51.2) 577 (17.3)
Women 4512 2318 (51.4) 1386 (30.7) 808 (17.9)

51–65 yr
Men 3134 968 (30.9) 1646 (52.5) 520 (16.6)
Women 4276 1887 (44.1) 1511 (35.3) 878 (20.5)

Total
Men 10,201 3655 (35.8) 5024 (49.3) 1522 (14.9)
Women 13,023 7073 (54.3) 3847 (29.5) 2103 (16.1)

Normal weight = BMI 18.5–G25.0 kgImj2.
Overweight = BMI 25.0–G30.0 kgImj2.
Obese = BMI 30.0–40.0 kgImj2.
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of 9.7% (95% CI = 9.5–9.9) of these minutes were vigorous
and 19.7% (95% CI = 19.4–20.0) were moderate intensity,
according to both absolute and relative criteria.

PA volumes and BMI. The amount of PA in terms of
absolute intensity decreased with increasing BMI among
both women and men. However, a similar strong BMI-
related reduction of PA was not seen when the intensity was
calculated relative to individual fitness level [Table 2, see
also Tables 5 and 6 in Supplemental Digital Content 1,
Amount of absolute and relative moderate- and vigorous-
intensity physical activity (minIdj1) by weight status during
workdays and days off among men; Amount of absolute and
relative moderate- and vigorous-intensity physical activity
(minIdj1) by weight status during workdays and days off
among women, http://links.lww.com/MSS/A810]. In men,
the volume of MPARel was significantly lower than that of
MPAAbs (P G 0.001) in each BMI category. Except for obese
men during days off, the amount of VPARel was also signif-
icantly (P G 0.001) lower than that of VPAAbs in each BMI
category among men.

Among women, the volume of MPARel was significantly
(P G 0.001) lower than that of MPAAbs in each BMI category.
However, among overweight and obese women, the amount of
VPARel was significantly (P G 0.001) higher than that of
VPAAbs. Of note, among obese women, 93% during workdays
and 95% during days off had no VPAAbs, with percentages of
41% and 54% for no VPARel, respectively.

Mean daily VPAAbs minutes were higher than VPARel

minutes in younger (18–40 yr) normal weight men (17.7,

95%CI = 16.9–18.6, vs 8.6, 95%CI = 8.0–9.1;P G 0.001). The
reverse was the case for older (41–65 yr) obese women (mean
0.3, 95% CI = 0.2–0.4, vs 7.8, 95% CI = 7.2–8.4; P G 0.001).

Figure 4 shows the relations between all VPARel/VPAAbs

minutes among younger (18–40 yr) and older (41–65 yr) men
and women split into smaller BMI categories. The number of
VPARel minutes was higher than the number of VPAAbs minutes
among older men with BMI more than 34 kgImj2, younger
women with BMI more than 28 kgImj2, and older women with
BMI more than 20 kgImj2. Concerning the overlap of the
absolute vs relative intensity minute categories (Fig. 3),
among normal weight men, there were no minutes in the
category below MPAAbs and MVPARel, but an average of
27.7% of the recorded PA minutes fell into these categories
among obese women.

When reanalyzing the main results using resting meta-
bolic rate calculated individually according to the Harris–
Benedict formula, expectedly, the resting metabolic rates
were lower than 3.5, in particular among aged, obese females
[for details see Table 1 in Supplemental Digital Content 2,
Mean estimated resting metabolic rates (V̇O2 values) by sex,
age and weight groups according to Harris–Benedict for-
mula, http://links.lww.com/MSS/A811]. In this reanalysis,
the number of absolute PA minutes was higher [please,
compare Table 2 in the Supplemental Digital Content 2
(Mean estimated resting metabolic rates (V̇O2 values) by
sex, age and weight groups according to Harris–Benedict
formula) vs. Table 2 in the manuscript, http://links.lww.
com/MSS/A811]. The overlap of the minutes that fulfilled

TABLE 2. Meana daily amount of absolute and relative MPA and VPA (minIdj1) by age groups and by weight status among men and women.

MPAAbs MPARel VPAAbs VPARel MVPAAbs MVPARel

Mean (95% CI), min

Activity volumes by age groups
Men
18–30 yr 71.3 (68.3–74.2) 9.1 (8.5–9.6) 17.9 (16.8–18.9) 7.8 (7.1–8.4) 89.1 (85.7–92.6) 16.9 (15.8–17.9)
31–40 yr 49.2 (47.9–50.4) 8.4 (8.1–8.7) 14.5 (13.9–15.1) 8.0 (7.6–8.4) 63.7 (62.1–65.3) 16.4 (15.8–17.0)
41–50 yr 41.4 (40.4–42.4) 8.9 (8.5–9.2) 12.0 (11.5–12.5) 7.7 (7.3–8.1) 53.4 (52.2–54.6) 16.5 (16.0–17.1)
51–65 yr 37.2 (36.2–38.2) 9.2 (8.9–9.5) 8.2 (7.8–8.7) 6.3 (6.0–6.7) 45.4 (44.3–46.6) 15.5 (14.9–16.1)

Women
18–30 yr 55.1 (53.3–56.8) 12.5 (11.9–13.0) 15.6 (14.7–16.4) 9.5 (8.9–10.1) 70.6 (68.4–72.8) 21.9 (21.0–22.9)
31–40 yr 34.1 (33.3–34.9) 9.5 (9.2–9.8) 8.4 (8.0–8.8) 7.0 (6.7–7.3) 42.5 (41.5–43.5) 16.5 (16.0–17.0)
41–50 yr 25.2 (24.7–25.7) 9.5 (9.3–9.8) 5.1 (4.8–5.4) 6.8 (6.5–7.0) 30.3 (29.6–31.0) 16.3 (15.9–16.7)
51–65 yr 19.8 (19.3–20.3) 10.7 (10.4–11.0) 2.0 (1.8–2.2) 6.8 (6.5–7.1) 21.8 (21.2–22.4) 17.5 (17.0–18.1)

Activity volumes by weight status
Men
Normal 51.6 (50.4–52.8) 9.2 (8.9–9.5) 16.0 (15.5–16.6) 8.8 (8.4–9.2) 67.6 (66.2–69.1) 18.0 (17.5–18.6)
Overweight 43.0 (42.1–43.8) 8.6 (8.3–8.8) 11.0 (10.6–11.4) 7.0 (6.7–7.3) 54.0 (53.0–55.0) 15.6 (15.1–16.0)
Obese 35.8 (34.3–37.3) 8.8 (8.4–9.3) 6.1 (5.5–6.6) 5.2 (4.7–5.7) 41.9 (40.2–43.6) 14.0 (13.2–14.8)

Women
Normal 35.3 (34.7–35.9) 10.4 (10.2–10.5) 9.1 (8.8–9.3) 8.2 (7.9–8.4) 44.4 (43.7–45.1) 18.5 (18.2–18.9)
Overweight 22.8 (22.2–23.4) 9.2 (9.0–9.5) 2.6 (2.4–2.7) 5.0 (4.8–5.3) 25.3 (24.7–26.0) 14.2 (13.8–14.7)
Obese 14.0 (13.4–14.6) 11.3 (10.8–11.8) 0.6 (0.4–0.7) 7.1 (6.6–7.6) 14.6 (14.0–15.2) 18.4 (17.5–19.3)

All men 45.0 (44.4–45.6) 8.9 (8.7–9.0) 12.1 (11.8–12.4) 7.4 (7.2–7.6) 57.1 (56.3–57.9) 16.2 (15.9–16.6)
All women 28.2 (27.8–28.5) 10.2 (10.0–10.3) 5.8 (5.6–5.9) 7.1 (6.9–7.2) 33.9 (33.5–34.4) 17.2 (17.0–17.5)

aMean of all monitored work days and days off.
There was a statistically significant difference between absolute and relative intensity physical activity (P G 0.001, Wilcoxon signed rank test) in all age-groups and weight status groups
and intensity categories.
Except for MPARel in men (P = 0.006), there was a statistically significant difference (P G 0.001, Kruskal–Wallis test) in all intensity categories between age-groups.
There was a statistically significant difference (P G 0.001, Kruskal–Wallis test) in all activity types between weight status groups.
MPAAbs = MPA, absolutely determined intensity: 3.0–G6.0 metabolic equivalents (METs); MPARel = MPA, relatively determined intensity: 40%–G60% oxygen uptake reserve (V̇O2R);
VPAAbs = VPA, absolutely determined intensity: Q6.0 METs; VPARel = VPA, relatively determined intensity: Q60% V̇O2R.
Normal = BMI 18.5–G25.0 kgImj2.
Overweight = BMI 25.0–G30.0 kgImj2.
Obese = BMI 30.0–40.0 kgImj2.
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the criteria for either MVPAAbs or MVPARel in different ab-
solute and relative intensity categories was lower than that in
our primary analysis [see Figure 1 in Supplemental Digital
Content 2 (Overlap between absolute PA intensity vs. PA in-
tensity relative to individual aerobic fitness level) vs. Figure 3,
http://links.lww.com/MSS/A811], and the number of VPARel

minutes persisted higher than the number of VPAAbs minutes
in particular among older women with high BMI.

DISCUSSION

Objectively measured absolute volumes of MVPA were
higher in men compared with women in this study, and
higher in younger compared with older and in normal
weight compared with obese individuals. When the MPA and
VPA volumes were categorized according to % V̇O2R, the
differences were not as stark. The mean cardiovascular strain,
when indicated with mean heart rate during all of the recording
days, was higher among individuals with higher BMI.

As many of our participants were physically fit and usu-
ally healthy employed individuals, the absolute PA volumes
were higher compared with relative volumes in many of the
studied age and body weight categories (Table 2). The
findings on the ratios between absolute versus relative PA
volumes according to age and sex reflect the previously
reported international (31) and Finnish (24) results on the
distribution of measured population fitness. It was rather
easy for high-fit individuals to reach MVPA intensity levels
according to absolute criteria compared with criteria relative
to individual fitness level, but the situation reversed among
the unfit individuals. This phenomenon was similar during
days off and workdays. Our findings are in line with data
from U.S. adults showing that VPA determined in absolute
terms using an accelerometry method is low among older,
female, and obese individuals (36).

Because we are not aware of large population studies of
overlap between absolute and relative intensity PA volumes,
we cannot compare our results with other studies. In PA
counseling, the intensity of PA should be tailored individu-
ally (11), but this recommendation is often disregarded in
practice. When trying to find effective solutions to increase
PA among physically inactive low-fit individuals, we need
to take into account the individual fitness level to focus on
behavior changes that are easy to adopt and sustain rather
than expect people to become highly motivated to adopt and
maintain effortful behaviors that include too vigorous PA. In
PA counseling, appropriate PA intensity may be guided
most easily by using simple terms describing exercise in-
tensity or using Borg Rating of Perceived Exertion scale (from
6 to 20) (3), where 12–13 indicates MPA and 14 or more
vigorous PA. Heart rate monitoring during exercise would be
a more accurate alternative to guide and control target exercise
intensity. Individuals with severe chronic disease usually need
personal advice from health care professionals and related to
medical clearance for exercise participation/rehabilitation the
intensity levels are usually given in a way proper for each

condition, such as determination of symptom-free exercise
intensities among patients with heart disease. In a previous
real-life lifestyle intervention, increasing PA was a good indi-
cator of success in improving the cardiovascular and metabolic
risk factor levels, including body weight reduction (23).

Strengths and limitations. Although we did not have
direct oxygen uptake recordings in our large real-life data,
we used a validated ambulatory method to assess the inten-
sity of PA. This method provides more accurate estimates of
the intensity of PA compared with heart rate information
only (32). The use of % V̇O2R is relatively valid also among
obese individuals (5) and patients with heart disease (4).
However, there are no specific validation studies comparing
the validity of our methodology between representative BMI
and age groups. Our recordings had good coverage of typi-
cal workdays and days off.

Our study was a cross-sectional study. Randomized con-
trolled trials are needed to confirm that PA recommended
with guidelines applying subjective intensity levels is more
feasible in the long-term compared with those using absolute
intensity levels in the important target group of low-fit for-
merly inactive overweight and obese individuals. Although
MPA relative to individual fitness level improves fitness
(35) and other cardiometabolic risk factor levels (19) among
low-fit individuals, a comprehensive understanding about
which PA intensity is most beneficial for health in the long
term is still lacking.

CONCLUSIONS

Compared with low-fit individuals, it is easier for high-fit
individuals to reach MVPA intensity levels according to
absolute criteria and easier for men compared with women,
younger people compared with older, and lean compared
with obese individuals. When the target is set as relative in-
tensity, the frequency of reaching the target is more similar in
low- and high-fit individuals. Thus, when boosting MVPA in
inactive, low-fit, and/or obese individuals, intensity guidelines
relative to individual fitness may be more feasible than using
recommended absolute intensity classifications. Because PA
counseling is suggested to be made a priority in clinical practice
(2,21), our findings should be considered when taking action in
the most important target group of low-fit individuals. Also,
our findings need to be taken into account when interpreting
the results of population studies that have used accelerometer-
based monitoring of PA volumes with absolute criteria.

This study was supported by TEKES—the Finnish Funding Agency
for Technology and Innovation (grant no. 40116/14).
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Abstract—Sleep is the most important period for recovering
from daily stress and load. Assessment of the stress recovery
during sleep is therefore, an important metric for care and
quality of life. Heart rate variability (HRV) is a non-invasive
marker of autonomic nervous system (ANS) activity, and
HRV–based methods can be used to assess physiological
recovery, characterized by parasympathetic domination of the
ANS.  HRV  is  affected  by  multiple  factors  of  which  some  are
unmodifiable (such as age and gender) but many are related to
daily lifestyle choices (e.g. alcohol consumption, physical
activity, sleeping times). The purpose of this study was to
investigate the association of these aforementioned factors on
HRV-based recovery during sleep on a large sample. Variable
importance measures yielded by random forest were used for
identifying the most relevant predictors of sleep-time recovery.
The results emphasize the disturbing effects of alcohol
consumption on sleep-time recovery. Good physical fitness is
associated to good recovery, but acute physical activity seems to
challenge or delay the recovery process for the next night.
Longer sleeping time enables more recovery minutes, but the
proportion of recovery (i.e. recovery efficiency) seems to peak
around 7.0-7.25 hours of sleep.

I. INTRODUCTION

Stress recovery is crucial in avoiding the adverse health
consequences of prolonged stress. Even though the body can
recover during waking hours, the sleep is unquestionably the
most important recovery period [1]. Recovery is a complex
phenomenon including both physiological and psychological
aspects [2]. Physiologically, recovery is manifested by vagal
dominance of the autonomic nervous system (ANS) when
stress factors that cause disturbance of body’s homeostasis
are not present. Stress, on the other hand, causes elevated
activation of the physiological systems and sympathetic
domination  of  the  ANS.  [3]  An  indicator  for  the  ANS
balance is heart rate variability (HRV). High HRV reflects
vagal dominance of the ANS, while low HRV reflects
sympathetic dominance of the ANS. [4] Thus, HRV can be
used as a method to assess physiological recovery and stress.

Even though HRV is widely accepted as a non-invasive
measure  for  the  ANS activity,  it  is  affected  also  by  several
other  factors  [4].  HRV  is  associated  with  a  person’s
background characteristics, such as age and gender. Men
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have higher HRV than women but the difference in HRV
between genders decreases with age. In general, HRV
decreases with age and the decrease is more pronounced in
nocturnal HRV. [5] The circadian pattern of HRV shows
HRV is higher during sleep than awake due to dominance of
parasympathetic over sympathetic activity, but for example,
psychophysiological stress can diminish HRV during sleep
[6]. Moreover, better aerobic fitness has been associated
with increased HRV [7], whereas alcohol intake decreases
HRV acutely [4].

The purpose of this study was to examine how daily
lifestyle choices and personal background characteristics are
associated with recovery during next night sleep. This paper
presents the methodology used for quantifying daily
activities and sleep and the use of these quantified variables
in the random forest (RF) analysis. A key result of this paper
is, therefore, the estimation of the importance and effect of
the daily activities and personal background characteristics
on recovery during sleep.

II. METHODS

A. Data
The data used in this study were provided by Firstbeat

Technologies Ltd (Jyväskylä, Finland, www.firstbeat.fi), a
Finnish company providing analytics for well-being factors
such as stress, recovery, and physical activity based on
ambulatory measurement of beat-to-beat heart rate and
subsequent analysis of HRV. The anonymized database
included measurement results of Finnish working-age
subjects who had voluntarily participated in measurements
as part of their preventive occupational health care services.
Use of the database for research purposes has been approved
by the Ethics Committee of Tampere University Hospital.

The HRV data were typically collected over three days in
real-life conditions. During the measurement, the subjects
were asked to keep a diary of their working and sleeping
times  as  well  as  the  amount  of  alcohol  consumed.  As
background information, the subjects provided gender, age,
weight, height, and also described their physical activity.
Based on the amount and intensity of their physical activity,
a physical activity class varying from 0 (very inactive) to 10
(high-level athlete) was determined.

Posterior inclusion criteria were applied. The subjects’
age was limited to 18 65 years and body-mass index (BMI)
to 18.5 40 kg/m2.  Because shift-work has been reported to
affect HRV during sleep [8] the subjects who had been
working between 9 pm and 6 am were removed from the
analysis. Only those measurement days having less than
15% of corrected HRV data artefact and lasting longer than
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16 hours were analyzed. Moreover, the measurement days
had to include the diary entries about the sleeping period and
the possible consumption of alcohol. The days were grouped
into workdays and days off according to the duration of
working period.  For workdays there had to be at least four
hours of work, while no working was allowed for days off.

Altogether, the subset of the database which fulfilled our
inclusion criteria included 12,023 measurement days. This
comprised 7,044 workdays and 4,979 days off from 6,288
subjects (2,788 men (44.3 %), age 45.6±9.6 years, BMI
26.4±4.1 kg/m2, physical activity class 4.8±1.9)).

B. HRV analysis
The physiological states such as level of physical

activity, stress and recovery were determined using an
algorithm relating HRV to these factors [9]. For temporal
estimation of subject’s oxygen consumption (VO2) we used
a novel neural network model which took into account the
momentary HR level, HRV-derived respiration rate and
on/off-response information as well as to age-based maximal
heart rate and maximal oxygen consumption (VO2max)
estimated from the collected background parameters [10].

In the physiological state classification algorithm, the
degree of cardiac activity, assessed with HRV and HR
parameters, was compared to concurrent physical metabolic
requirements, assessed with estimated VO2. During physical
activity, both physical metabolic requirements and cardiac
activity were increased. The intensity of physical activity
was used to separate physical activity into light physical
activity and physical exercise. [9] In this paper, 20-30% of
personal VO2max was considered as light physical activity
and over 30% of VO2max as physical exercise.

Furthermore, stress state was determined as sympathetic
dominance of the ANS with individually increased HR and
decreased HRV without physical metabolic requirements.
During recovery, parasympathetic activity dominates the
ANS manifested by individually low HR level and high
HRV. Thus, the analysis program took into account the
individual  basic  resting  HR  and  HRV  values  in  the
determination of the physiological states. [9]

C. Predictors of recovery during sleep
As the predictors for recovery we used a set of

parameters describing the subjects’ personal characteristics
and daily factors. Personal characteristics were age, gender,
BMI and self-reported physical activity class. Daily factors
were the daily physical activities, the time of going to sleep
relative to midnight, the sleep duration, weekday and month
of the measurement day, and alcohol consumed.

To assess subjects’ physical activity, the total number of
minutes for light physical activity and physical exercise, as
previously described, were calculated. Moreover, continuous
physical activity periods likely to improve the subjects’
aerobic fitness were considered using different criterion. The
subjects were classified to those who had an aerobic fitness
enhancing physical activity period during the day and those
who did not. The aerobic fitness enhancing physical activity
period was defined to be a physical activity period lasting
continuously at least 10 minutes at 3 METs [11].

The amount of ethanol (grams) per kg was estimated by
taking number of alcohol portions reported by the subject,
multiplied by 12 and divided by the subject’s weight. The
amount of ethanol per kilogram is referred to as “alcohol” in
this paper. The predictors are summarized in Table 1.

D. Random forest analysis of predictors
RF is a statistical learning technique which uses a large

number of decision trees to predict the outcome from the
input variables. RFs have been widely used for prediction
and classification tasks due to their good performance and
their ability to assess the importance of predictors. We chose
to use RFs to identify the most important predictors because
they require only minimal parametric assumptions about the
relationships between the input and output variables and the
distribution of the error [12].

The RF analysis started by generating bootstrapped
samples of the data. Bootstrapped samples had the same size
as the original data but they were generated from only about
two thirds of the data. Thereafter, for each sample a tree was
grown based on recursive binary splits on the sample. In the
RF trees the binary splits were generated by finding the best
binary split among a randomly chosen subset of variables. In
prediction, the predicted value was obtained by averaging
the predictions of all trees. [13]

 The  RF’s  goodness  of  fit  can  be  estimated  using  the
out-of-bag (OOB) samples  i.e.  the  samples  which  were  not
used in generating the bootstrapped samples of the original
data.  The  OOB  prediction  error  for  the  RF  is  estimated  by
using the OOB samples as inputs and calculating the mean
squared error (MSE) between the RF generated outputs and
the  actual  outputs  of  the  OOB  samples.  The  OOB  samples
are also used for calculating the predictor importance of the
variables. The predictor importance for a variable is
estimated by permuting the variable and keeping other
variables fixed and calculating the increase in MSE
compared to the original (without permutation).  [13]

In  this  study,  the  RF  was  implemented  in  R  using
package randomForest. The quantified daily lifestyle choices
were used as input variables and the recovery minutes during
sleep was used as an output variable. RF including 1,000
trees was found appropriate for this study. MSE was applied
as splitting criterion. The minimum leaf size for the trees
was set to be five and the number of predictors randomly
chosen  for  each  split  was  set  to  be  one  third  of  the  total
number of predictors as recommended [11].

TABLE I.  PREDICTORS OF RECOVERY DURING SLEEP

Variable categories Variable description (Variable name)
Background
characteristics

Age, Gender, Body-mass index (BMI), Self-
reported physical activity class (ActivityClass)

Physical Activity Minutes of physical exercise (PAmins), Minutes
of light physical activity (LightPAmins),
Measurement day includes or does not include
fitness enhancing physical activity (IsPAPeriod)

Time Weekday, Month, Measurement is or is not a
workday (IsWorkday)

Sleep Duration of sleep (SleepDuration), Time of
going to bed relative to midnight (BedTime)

Alcohol Amount of ethanol in grams consumed during
the measurement day per body mass (Alcohol)



Figure 1. The importance of predictors for complete (black asterix)
and compact model (red dots).

Figure 2. The partial dependence plot of alcohol for all (black line)
and for age groups of 18-30 yrs (red), 31-40 yrs (blue), 41-50 yrs

(green) and 51-65 yrs (magenta).

Figure 3. The partial dependence plot of sleep time for all (black line)
and for age groups of 18-30 yrs (red), 31-40 yrs (blue), 41-50 yrs

(green) and 51-65 yrs (magenta).

RFs can be used for prediction even if the predictors are
correlated, but some caution is needed when assessing the
importance of predictors [14]. In order to cope with
correlated predictors, we adapted a recursive feature
elimination algorithm to repeatedly train new RF and
remove less informative features. At first, all predictors were
used  to  train  a  RF,  the  importance  of  predictors  was
evaluated and the predictor with the lowest importance was
removed. Thereafter, a new RF was trained using the
remaining predictors. Removing of predictors and training of
RFs was continued until there was only one predictor left.
For the compact model we used the set of predictors which
yielded in the lowest OOB prediction error. This procedure
was repeated 10 times in order to obtain a consensus.

III. RESULTS AND DISCUSSION

The importance of predictors for complete and compact
models  is  shown  in  Figure  1.  Only  gender  and  day  type
(workday or day off) were removed as unnecessary features
and the increase in MSE within other variable remains rather
similar to the complete model. Alcohol was clearly the
strongest predictor of recovery time followed by sleep
duration and physical activity.

The direction how predictors affect cannot be seen from
the variable importance plot (Fig. 1). Partial dependence
plots depict the dependence between the response and a
target  feature  by  marginalizing  over  the  values  of  all  other
features. The nonlinearities in the partial dependence plots
revealed interesting details in the dependence between the
response and target variables.

Fig. 2 shows the partial dependence plot of alcohol. The
decrease in recovery minutes appears dose-dependent and
according to our experiments, the effect seems to follow
similar trend between the different age groups. The results
indicate that one or two portions of alcohol depending on the
subject’s weight do not reduce the recovery minutes during
next night sleep. This finding is in line with earlier studies
reporting dose-dependent disturbing effects of alcohol on
sleep structure [15] and on nocturnal ANS activity [16].

Fig. 3 shows the partial dependence plot of sleep
duration. Apparently, as sleep duration increases also the
number of recovery minutes increases. However, the curve
is slightly steeper with short than long sleep duration, and
interestingly the recovery minutes suddenly increase at
around 7 to 7.25 hours. This means that the proportion of
recovery from the total sleep time (i.e. “efficiency of
recovery”) peaks with sleep durations around 7 hours.
Approximately 7 hours of sleep has previously been
associated with lowest mortality rates [17] and short and
long sleep durations with poorer self-reported health [18]. In
general, 7-9 hours of sleep is recommended for adults’ good
sleep hygiene [19]. One highly possible explanation for our
finding is that those sleeping about 7 hours are the ones who
have the most regular sleeping schedules resulting in the
most efficient recovery during sleep.

Fig. 4 shows the partial dependence plot for physical
exercise in different physical activity classes (sedentary (0-
3), moderately active (4-6), athletes (7-10)). The results
show that exercise minutes per day are negatively associated
with the recovery minutes during next night sleep. However,

the difference between the activity classes is clear; the
persons with higher physical fitness have better recovery
during the night’s sleep. Thus, it seems that being in good
aerobic fitness increases recovery minutes, but an acute
physical exercise challenges the recovery process and for
days with exercise the recovery minutes are actually
decreased during the next night sleep. Hence, positive effect
of physical exercise is seen with a delay and occurs through
the increased aerobic fitness.

Fig. 5 shows the partial dependence plot on light
physical activity. A few minutes of light physical activity
seems to increase the recovery minutes during the next night
sleep but higher minutes of even light physical activity are
associated with lower recovery time during next night sleep.



Figure 4. The partial dependence plot of physical exercise minutes for
all (black line) and for sedentary (red), moderately active (blue) and

athletic (green) subjects.

Figure 5. The partial dependence plot of light physical activity
minutes for all (black line) and for sedentary (red), moderately active

(blue) and athletic (green) subjects.

The results of the present study suggest that, even in the
long run, being physically active is highly beneficial for
health. In addition it increases the resources of the ANS but
it is also important to take into consideration stress put upon
the body by exercising and have days off from exercise.

The RF analysis showed interesting, non-linear effects of
alcohol consumption, sleep time and physical activity on
recovery minutes during sleep. As limitations of this study,
the alcohol consumption was self-reported and timings of
alcohol intake or physical activity were not considered in the
analysis. The times of alcohol intake are not available in the
data but the effect of timing of exercise could be examined
separately by including only the persons who had exercised.

IV. CONCLUSION

In this paper we used RFs to examine which personal
characteristics and daily lifestyle choices would be the most
relevant for predicting recovery during next night’s sleep
calculated  by  assessing  ANS  balance  from  HRV.  This  was
an exploratory study, with a limited list of predictors, but
with a large and heterogeneous population of Finnish
working-age adults containing unique self-reported data and
physiological information obtained from HRV.

We found that alcohol was the strongest predictor for
recovery and remarkably and dose-dependently decreased
recovery minutes during the next night sleep. Alcohol was
self-reported and the time of consumption was not known.
Nevertheless, the study indicates that habitual drinking
disturbs the nocturnal recovery process and is an extremely
important lifestyle factor to take into consideration.

Better aerobic fitness was associated with increased
number of recovery minutes, but acute physical activity
during the day was, however, found to challenge the
recovery process and even decrease recovery minutes during
the next night sleep. Longer sleeping time enables more
recovery minutes, but sleep duration around 7 hours was
found to be the most efficient in terms of recovery, i.e. it
contained the highest proportion of recovery minutes from
the overall sleep duration.
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Abstract
Background: Sleep is fundamental for good health, and poor sleep has been associated with negative health outcomes. Alcohol
consumption is a universal health behavior associated with poor sleep. In controlled laboratory studies, alcohol intake has been
shown to alter physiology and disturb sleep homeostasis and architecture. The association between acute alcohol intake and
physiological changes has not yet been studied in noncontrolled real-world settings.
Objective: The aim of this study was to assess the effects of alcohol intake on the autonomic nervous system (ANS) during
sleep in a large noncontrolled sample of Finnish employees.
Methods: From a larger cohort, this study included 4098 subjects (55.81%, 2287/4098 females; mean age 45.1 years) who had
continuous beat-to-beat R-R interval recordings of good quality for at least 1 day with and for at least 1 day without alcohol
intake. The participants underwent continuous beat-to-beat R-R interval recording during their normal everyday life and self-reported
their alcohol intake as doses for each day. Heart rate (HR), HR variability (HRV), and HRV-derived indices of physiological
state from the first 3 hours of sleep were used as outcomes. Within-subject analyses were conducted in a repeated measures
manner by studying the differences in the outcomes between each participant’s days with and without alcohol intake. For repeated
measures two-way analysis of variance, the participants were divided into three groups: low (≤0.25 g/kg), moderate (>0.25-0.75
g/kg), and high (>0.75 g/kg) intake of pure alcohol. Moreover, linear models studied the differences in outcomes with respect to
the amount of alcohol intake and the participant’s background parameters (age; gender; body mass index, BMI; physical activity,
PA; and baseline sleep HR).
Results: Alcohol intake was dose-dependently associated with increased sympathetic regulation, decreased parasympathetic
regulation, and insufficient recovery. In addition to moderate and high alcohol doses, the intraindividual effects of alcohol intake
on the ANS regulation were observed also with low alcohol intake (all P<.001). For example, HRV-derived physiological recovery
state decreased on average by 9.3, 24.0, and 39.2 percentage units with low, moderate, and high alcohol intake, respectively. The
effects of alcohol in suppressing recovery were similar for both genders and for physically active and sedentary subjects but
stronger among young than older subjects and for participants with lower baseline sleep HR than with higher baseline sleep HR.
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Conclusions: Alcohol intake disturbs cardiovascular relaxation during sleep in a dose-dependent manner in both genders.
Regular PA or young age do not protect from these effects of alcohol. In health promotion, wearable HR monitoring and HRV-based
analysis of recovery might be used to demonstrate the effects of alcohol on sleep on an individual level.

(JMIR Ment Health 2018;5(1):e23)   doi:10.2196/mental.9519
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Introduction
Background
Sleep is a crucial period of physiological restoration, and it is
the optimal state to assess the tonic component or the most
relaxed state of the autonomic nervous system (ANS) in real-life
conditions [1]. Poor sleep attenuates relaxation in the ANS [2],
impairs regenerative physiological processes, causes metabolic
disturbances, and has been associated with negative health
outcomes [3]. Alcohol intake disturbs recovery, sleep
homeostasis, and sleep architecture in several ways [4]. Alcohol
affects negatively on stress-related cardiovascular adaptation
in the ANS and hypothalamus-pituitary-adrenal axis [5]. Still,
alcohol is used to relieve stress [6] or as sleep medicine [4].
Increased alcohol consumption is associated with long working
hours, poor social support, and low job control [7].

Heart rate variability (HRV) is a widely used marker of cardiac
autonomic regulation reflecting fluctuations in R-R intervals in
short or extended time recordings [8] and is modulated by
respiration, central vasoregulatory centers, peripheral baroreflex
loops, and genetic factors [9]. HRV decreases with age, although
differently in men and women [8]. In addition, suppressed HRV
has been shown to predict occurrence of different diseases and
conditions such as diabetic neuropathy or left ventricular
dysfunction after acute myocardial infarction [10]. Traditionally,
the HRV analysis is performed in time or frequency domains
[10] but also novel analysis methods exist [11]. A widely used
time domain measure of HRV is the root mean square of the
successive differences (RMSSD) between adjacent R-R
intervals, which mainly reflects the parasympathetic input of
cardiac regulation [10]. In the frequency domain analysis, the
high frequency (HF) band of HRV is considered to indicate
parasympathetic regulation [10], whereas the low frequency
(LF) band reflects both parasympathetic and sympathetic
regulation [10,12]. The ratio between LF power and HF power
(LF/HF ratio) has been suggested to reflect the balance between
the two branches of the ANS, but this suggestion has not
received a consensus [10,12]. Recently, a standardized reporting
system in HRV-related behavioral studies was proposed [13].

In addition to the cardiac autonomic regulation, HRV analysis
may also provide useful information on sleep [14], the sleeping
brain [15], and stress-related insufficient recovery [16], even
though autonomic regulation during sleep is complex and varies
during different sleep stages [14]. During slow wave sleep
(so-called deep sleep), the parasympathetic regulation has been
reported to be dominating and the sympathetic regulation to be
attenuated, whereas the opposite is true for rapid eye movement
sleep [14]. The sufficient amount of slow wave sleep has been
associated with good physical and mental recovery [1].

Unconscious stress may be detected in physiological recordings
made during cardiovascular stress recovery [17], and HRV may
usefully reflect the adaptive resources of the ANS [18].
However, the limitations and pitfalls of HRV analysis as well
as the physiological nature of HRV have to be taken into account
in all interpretations.

Prior Work
The effect of acute alcohol intake on the ANS using heart rate
(HR) and HRV parameters has been shown in the previous
studies. In laboratory settings, high acute alcohol consumption
(0.7 g/kg-1.0 g/kg) was associated with decreased HRV and
increased HR in awake subjects [19]. The effect was also
observed with lower doses (two drinks, not reported in g/kg
units) [20]. In one laboratory study, both HRV and
polysomnography were monitored after alcohol consumption
[21]. The young healthy male subjects (n=10) were given no (0
g/kg, control), low (0.5 g/kg of ethanol), or high (1.0 g/kg) dose
of alcohol. A dose-related effect of alcohol on HR and HRV
during sleep was found, and the highest HR and lowest HRV
were observed for high dose.

However, the effect of acute alcohol intake on the ANS during
sleep has not been studied in noncontrolled free-living conditions
or with large samples. Most published studies considering the
effects of acute alcohol intake on HRV have involved only
males, been rather small in number of participants, and included
no comparison between genders or objective measurements of
physical activity (PA) and recordings during sleep [9]. Thus,
studies employing larger number of participants with both
genders and considering the background parameters of the
subjects such as age, body mass index (BMI) and PA, are
needed.

Goal of This Study
The widespread use of wearable and connected consumer
devices enables unobtrusive collection of massive amounts of
data from large number of individuals during their daily life.
These health-related datasets gathered under normal day-to-day
circumstances outside of traditional clinical trials represent so
called real-world data [22]. This real-world data collected in
uncontrolled settings and outside of clinical trials may be
exploited in research to complement the knowledge gained from
the traditional clinical trials [23]. The multitude and variety of
individuals and information included in real-world datasets
allow studying aspects that cannot be studied to that extent in
traditional clinical trials [23]. The real-world data has also the
prospect to assess the generalizability of the findings from
traditional clinical trials with specific populations and
circumstances to broader populations and circumstances [22].
On the other hand, the associations found in real-world data can
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serve as hypotheses for further clinical trials [22]. To gain valid
results from the real-world data, the data characteristics such
as the sample bias, missing data, confounding, uncertainties and
provenance of the data, must, however, be taken into account
in the analysis [24].

Alcohol consumption is a universal health behavior associated
with poor sleep [4], but to the authors’ knowledge, there is not
yet any study employing real-world data [9]. This study analyzes
the effects of alcohol intake on the ANS during sleep in a large
free-living population. An observational real-world dataset of
continuous beat-to-beat R-R interval recordings and self-reported
sleep times and alcohol consumption collected from over 40,000
subjects during their normal everyday life was employed for
studying retrospectively the effect of acute alcohol intake on
sleep. The intraindividual differences in the HRV during sleep
associated with acute alcohol intake were studied from 4098
participants of various ages, BMI ranges, and PA levels in whom
data with and without alcohol consumption during previous day
was available. The purpose of the study was to assess the
generalizability of the previous findings to broader population
and to study associations between the characteristics of the
subjects and the effects of acute alcohol intake on the HR and
HRV parameters during sleep.

Methods
Data Collection
The original data sample contained 111,025 measurement days
from 42,086 Finnish employees representing a wide range of
blue- and white-collar workers in varying size companies.
Employees had voluntarily participated in a preventive
occupational health care program with the aim of improving
their health habits and stress management. The program included
a continuous beat-to-beat R-R interval recording for a few days
during the participant’s normal life. The R-R interval recordings
were performed using Bodyguard (Firstbeat Technologies Ltd,
Jyväskylä, Finland) wearable device that was attached on the
chest with two electrodes. HRV indices, stress, recovery, and
PA were computed with Firstbeat Analysis Server (Firstbeat
Technologies Ltd) from the recorded R-R interval data, and
together with other physiological measurements, they were used
as health promotion tools at employees’ workplaces. Employees
were instructed not to participate in recordings if they had any
disease stages or medications possibly affecting R-R intervals,
for example, chronic heart rhythm disturbance, very high blood
pressure (≥180/100 mm Hg), type 1 or 2 diabetes with
autonomic neuropathy, severe neurological disease (eg,
advanced multiple sclerosis or Parkinson disease), fever or other
acute disease, or BMI >40 kg/m2[25].

All the R-R interval recordings performed on the employees
were analyzed and stored anonymously to a registry
administered by Firstbeat Technologies Ltd. Each service
provider conducting recordings for participants signed an
agreement allowing Firstbeat Technologies Ltd to store the
anonymized data and to use it for development and research

purposes. The employers were responsible to inform their
employees about the data usage. Following the agreements, a
dataset was extracted from the registry for this study. The use
of the dataset for research purposes was approved by the ethics
committee of Tampere University Hospital (Reference No
R13160).

Data Extraction
The dataset extracted from the registry to this study included
the R-R interval recordings performed with the Bodyguard
device (Firstbeat Ltd, Jyväskylä, Finland). The sampling
frequency of the device is 1000 Hz for the R-R interval
recording [26], and its mean absolute error for R-R intervals
has been reported to be 4.45 ms [27]. An artifact correction was
performed for the R-R intervals with Firstbeat Analysis Server
[28], after which the mean absolute error of R-R intervals has
been reported to be 2.27 ms [27]. For this study, the
artifact-corrected beat-to-beat R-R intervals were analyzed for
a 3-hour period starting 30 min after the self-reported onset of
bedtime that is the most likely period for slow wave sleep.

From the artifact-corrected beat-to-beat R-R intervals, the
average of HR in 10-min nonoverlapping windows and RMSSD
with 5-min windows were calculated [10]. The frequency bands
of HRV were assessed applying short-time Fourier transform
on the artifact-corrected beat-to-beat R-R interval data. In
addition to the traditional HRV measures, personalized
HRV-derived indices of recovery were calculated with Firstbeat
Analysis Server. The software detects the periods of recovery
and thereafter estimates the magnitude of these recovery
reactions based on a person’s range of physiological reactions
(eg, minimal and maximal HR) and time series variables related
to parasympathetic and sympathetic modulation (eg, HR, HF
power, LF power, and HRV-derived respiration rate) [29].
During recovery reactions, parasympathetic regulation
predominates in the ANS [29]. The momentary absolute level
of recovery reactions is estimated with parameters describing
the magnitude of parasympathetic modulation, and it is high
when HR is individually low and parasympathetic HRV is
individually high [30].

For this study, the exclusion criteria were unknown or very high
reported alcohol consumption (>12 portions of alcohol) during
the recording day, unknown or very short self-reported sleeping
time, and poor quality of HRV recordings (Figure 1). If a subject
reported more than one sleep periods per day, only the longest
sleep period was analyzed. Only subjects having a day with at
least one portion of alcohol and a day with no alcohol intake
were analyzed. The final analysis included 12,411 HRV
recording days from 4098 individuals.

As background information, age, gender, and self-reported
weight, height, and PA class modified from Ross and Jackson
[31] were available. Participants were asked to note their alcohol
intake as portions (1 portion=12 g of ethanol) for each
measurement day preceding sleep. The exact timing of alcohol
intake and smoking history were not available.
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Figure 1. The selection of study population for the analyses.

Statistical Analyses
HR, RMSSD, LF/HF ratio, time considered as recovery
(recovery percentage), and average of the momentary absolute
levels of recovery reactions (recovery index) from a 3-hour
period starting 30 min after the self-reported bedtime onset were
considered as the outcome variables. Only the first 3 hours of
sleep were analyzed, as most of the slow wave sleep typically
occurs during the first hours of sleep [1]. During slow wave
sleep, the parasympathetic regulation is dominating, and
sufficient amount of slow wave sleep has been associated with
both good physical and mental recovery [1].

All analyses were conducted in a within-subject
repeated-measures manner by comparing the participants’
outcome variables between days with and without alcohol intake.
The within-subject design was used, as it allows studying the
intraindividual effects of acute alcohol intake and controls for
possible unknown confounders.

For the within-subject repeated-measures two-way analysis of
variance (ANOVA), the participants’ hourly averages of
outcome variables were calculated for days with and without
alcohol intake, and the participants were categorized into low
(≤0.25 g/kg), moderate (>0.25-0.75 g/kg), and high (>0.75 g/kg)
dose groups according to their alcohol intake during the day.
Note that the groups also include the participant’s reference
with no alcohol, and the participants may have data in one, two,

or all three dose groups. If a participant had more than 1 day
with low, moderate, or high or with no alcohol intake, the
outcome variables were averaged over those days. A
repeated-measures two-way ANOVA was performed separately
for each dose group to evaluate the difference and the shape of
the hour-by-hour pattern in the outcome variables between the
days with and without alcohol intake.

In the second analysis, the linear regression model was fitted
for the difference in the average of the 3-hour HR and HRV
parameters between the participant’s days with and without
alcohol intake. First, the 3-hour averages of the outcome
variables were calculated for each measurement day. Thereafter,
the difference in the participant’s averages between the days
with and without alcohol intake was calculated. If the participant
had more than one measurement day without alcohol intake,
the average of the measurement days’ 3-hour outcome variable
averages was employed. A dataset including the measurement
day with the highest amount of reported alcohol intake from
each participant was extracted, and a linear regression was fitted
to the data using the difference in the outcome variables between
the days with and without alcohol intake as a dependent variable.
In addition to alcohol intake, all information available about the
subjects was employed as independent variables in the regression
models. The independent variables were continuous variables
of alcohol dose (g/kg), age, PA class, BMI, and the 3-hour
average of HR (bpm) during a night after a day without alcohol
intake (baseline sleep HR) and gender as a categorical variable.
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Age, BMI, and the baseline sleep HR were subtracted to baseline
levels of 18 years, 18.5 kg/m2, and 38 bpm, respectively. In
addition, a linear regression with interactions between alcohol
doses and other predictors was fitted.

All statistical analyses were conducted using R (The R
Foundation for Statistical Computing) version 3.2.2. The level
of significance in all analyses was set at <0.05. However, with
data of this size, it is more important to focus on effect sizes
than P values [32].

Results
Characteristics of the Study Population
From a larger cohort, this study included 4098 subjects who
had continuous beat-to-beat R-R interval recordings of good
quality with for at least 1 day with and for at least 1 day without
alcohol intake. There was a significant proportion of female
subjects in this study (Table 1). On average, the subjects were
middle-aged, slightly overweight, and had regular PA 2 to 3
times per week, and the total weekly training amount being
approximately 1 hour.

Neither PA class nor BMI differed significantly between the
dose groups (P>.05, Table 2). High alcohol intake was more
common among males (P<.001) and young subjects (P<.001).
Average daily alcohol intake in the low, moderate, and high
groups was 0.17, 0.45, and 1.1 g/kg, respectively, with the
corresponding average number of reported alcohol portions
being 1.1, 2.9, and 7.0 drinks.

Repeated-Measures Analysis of Variance Analyses
The means and 99% CIs for HR, the LF/HF ratio, RMSSD, the
recovery percentage, and recovery index calculated from
intraindividual HRV recordings during the first 3 hours of sleep
in low, moderate, and high dose groups were calculated (Figures

2 and 3). Low HR and LF/HF ratio reflect increased
parasympathetic regulation, and low RMSSD indicates increased
sympathetic regulation in the ANS.

High alcohol intake had the greatest effect on the outcome
variables. On average, HR was increased by 1.4 bpm with low,
4.0 bpm with moderate, and 8.7 bpm with high alcohol intake.
The LF/HF ratio was increased by 0.1 with low, 0.3 with
moderate, and 0.5 with high alcohol intake. RMSSD was
decreased by 2.0 ms with low, 5.7 ms with moderate, and 12.9
ms with high alcohol intake. The recovery percentage was
decreased by 9.3 percentage units with low, 24.0 percentage
units with moderate, and 39.2 percentage units with high alcohol
intake. The recovery index was decreased by 7.1 with low, 20.8
with moderate, and 40.2 with high alcohol intake.

For each dose group, the within-subject repeated-measures
two-way ANOVA showed significant differences in all outcome
variables (all P<.001) between the days with and without alcohol
intake. In addition, the hourly HRV parameters differed
significantly from each other (all P<.001). In high dose group
comparisons, the interactions between the hour of sleep and
alcohol intake were statistically significant for all outcome
parameters (all P<.001), indicating that the hour-by-hour pattern
in the HRV parameters during sleep was different for subjects
between the days with high and no alcohol intake. For days with
high alcohol intake, the average LF/HF ratio increased
hour-by-hour during sleep, whereas the average LF/HF ratio
increased from the first to the second hour of sleep but decreased
from the second to the third hour of sleep for days with no
alcohol intake. For days without alcohol intake, the recovery
percentage and recovery index increased as the sleep progressed,
but this did not occur after high alcohol intake. In moderate
dose group comparisons, the interactions between hour and
alcohol intake were statistically significant for the LF/HF ratio
(P=.002) and recovery percentage (P=.01).

Table 1. Characteristics of the study population.

Females (N=2287), mean (SD; range)Males (N=1811), mean (SD; range)All (N=4098), mean (SD; range)Demographic characteristic

44.9 (9.8; 19-65)45.2 (9.4; 19-65)45.1 (9.6; 19-65)Age (years)

4.8 (1.8; 0-10)4.9 (1.7; 0-10)4.8 (1.8; 0-10)Physical activity classa

25.4 (4.3; 18.5-39.9)26.7 (3.5; 18.9-39.5)26.0 (4.0; 18.5-39.9)Body mass index (kg/m2)

aPhysical activity class range: 0 (physically inactive) to 10 (physically very active).

Table 2. Characteristics of low, moderate, and high dose groups during the heart rate variability (HRV) recordings.

P valueHigh >0.75 g/kg (n=716)Moderate >0.25-0.75 g/kg (n=2194)Low ≤0.25 g/kg (n=1752)Demographic characteristic

<.001a380 (53.1)1010 (46.03)671 (38.29)Number of male subjects, n (%)

<.001b42.3 (10.7)46.3 (9.3)45.6 (9.0)Age in years, mean (SD)

.59b4.6 (1.9)4.9 (1.7)4.9 (1.6)Physical activity class, mean (SD)

.10b25.8 (3.7)26.0 (3.8)25.9 (4.2)Body-mass index in kg/m2, mean (SD)

.31b78.1 (14.1)77.9 (14.3)77.5 (16.2)Weight in kg, mean (SD)

aChi-square test.
bOne-way analysis of variance (ANOVA) adjusted for gender.
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Figure 2. The effect of alcohol intake during the three first hour of sleep on a) heart rate, b) low frequency/high frequency (LF/HF) ratio, and c) root
mean square of the successive differences (RMSSD). The marks green ●=low dose (≤0.25 g/kg), blue ▲=medium dose (>0.25-0.75 g/kg), and red
■=high dose (>0.75 g/kg) denote the averages, and corresponding white symbols denote the measures for the same persons without alcohol. Due to the
size of the data and clarity of the figure, 99% CIs are shown, and the lines between hours are only shown for alcohol dose groups.

This shows that the hour-by-hour pattern was different between
the days with moderate and no alcohol intake only for the LF/HF
ratio and recovery percentage. In low dose comparisons, the
hour-by-hour pattern in the LF/HF ratio (P=.51), RMSSD
(P=.06), and recovery percentage (P=.08) during sleep was
similar between the days with low and no alcohol intake. The
HR (P<.001) and recovery index (P=.01) variables had a

statistically significant interaction between the hour and alcohol
intake, ie, their hour-by-hour pattern during sleep differed
between the days with low and no alcohol intake. Visual
inspection (Figures 2 and 3) showed that after low alcohol
intake, the levels of outcome variables during the third hour
approach their reference levels.
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Figure 3. The effect of alcohol intake during the three first hour of sleep on a) recovery percentage, and b) recovery index. The marks green ●=low
dose (≤0.25 g/kg), blue ▲=medium dose (>0.25-0.75 g/kg), and red ■=high dose (>0.75 g/kg) denote the averages, and corresponding white symbols
denote the measures for the same persons without alcohol. Due to the size of the data and clarity of the figure, 99% CIs are shown, and the lines between
hours are only shown for alcohol dose groups.

Linear Models
In linear model analysis, alcohol intake significantly affected
the outcome variables (Tables 3 and 4). The results show that
HR was increased with acute alcohol intake. For example,
alcohol intake of 0.75 g/kg increased HR for subjects on average
by 6.8 bpm compared with their nights without alcohol intake
(Table 3). Alcohol intake increased the HR significantly more
among young than older subjects: alcohol intake of 0.75 g/kg
increased HR on average by 1.8 bpm more for a 30-year old
person than for a 60-year old person (Table 4). In addition,
alcohol intake increased HR significantly more among subjects
with lower than higher baseline sleep HR: alcohol intake of 0.75
g/kg and an increase of 10 bpm in baseline HR decreased the
difference in HR by 3.4 bpm, on average (Table 4). The increase
in HR with alcohol intake was similar for subjects despite their
gender, PA level, or BMI (Table 4).

Alcohol intake increased the LF/HF ratio, and this effect was
slightly stronger among males and subjects with higher PA level
(Table 4). However, the coefficients of determination for the
LF/HF ration linear regression models were low (Tables 3 and
4), indicating that the input variables employed in the models
did not explain the variation in the LF/HF ratio well. RMSSD
was decreased by alcohol intake at all ages, but the effect was
stronger in younger than older subjects (Table 4). On average,
RMSSD was decreased with high alcohol intake (0.75 g/kg) by
10.9 ms for a 30-year old subject but only by 4.7 ms for a
60-year old subject (Table 4). In addition, alcohol intake
decreased RMSSD more for subjects with lower baseline HR
(Table 4).

Recovery percentage decreased significantly by increased
alcohol intake (Tables 3 and 4). An 80-kg person drinking five
portions of alcohol (0.75 g/kg) has on average 45 min less
recovery (25.25 percentage units) during the first 3 hours of
sleep than without alcohol (Table 3). The recovery percentage
was decreased significantly more by alcohol intake for subjects
with lower baseline HR than with higher baseline HR (Table
4). The decrease in recovery percentage with alcohol was similar
regarding the other background parameters of the subjects (Table
4). In addition, the recovery index was attenuated with alcohol
intake (Tables 3 and 4). Alcohol intake attenuated the recovery
index slightly more in subjects with higher BMI than with lower
BMI (Table 4). The other background parameters did not have
a significant interaction with alcohol intake (Table 4).

When the effects for alcohol and background characteristics
were controlled, the difference in recovery percentage was
strongly correlated with the difference in HR (Pearson partial
correlation coefficient and the coefficient of determination:
r=−.70, R2=.486, P<.001) and in RMSSD (r=.51, R2=.262,
P<.001) but only moderately correlated with the change in
LF/HF ratio (r=−.27, R2=.071, P<.001). Similarly, the difference
in the recovery index was strongly correlated with the difference
in HR (r=−.63, R2=.388, P<.001) and in RMSSD (r=.49,
R2=.236, P<.001) but only moderately correlated with the change
in LF/HF ratio (r=−.27, R2=.074, P<.001). The partial correlation
between the difference in the recovery percentage and the
recovery index was moderate (r=.48, R2=.229, P<.001).

JMIR Ment Health 2018 | vol. 5 | iss. 1 | e23 | p.7http://mental.jmir.org/2018/1/e23/
(page number not for citation purposes)

Pietilä et alJMIR MENTAL HEALTH

XSL•FO
RenderX



Table 3. The linear regression models without interaction components for the average of heart rate (HR), low frequency/high frequency (LF/HF) ratio,
root mean square of the successive differences (RMSSD), recovery percentage, and recovery index during the first 3 hours of sleep. BMI: body mass
index.

Recovery indexRecovery percentageRMSSDLF/HF ratioHROutcome

−28.27 (3.70)a−56.09 (3.25)a−15.32 (0.98)a0.715 (0.115)a10.87 (0.66)aIntercept, estimate (SE)

−36.63 (1.65)a−33.67 (1.45)a−12.24 (0.44)a0.425 (0.051)a8.49 (0.29)aAlcohol (g/kg), estimate (SE)

1.81 (0.35)a1.62 (0.31)a0.37 (0.09)a−0.019 (0.011)−0.48 (0.06)aPhysical activity class, estimate (SE)

−0.08 (0.06)−0.06 (0.05)0.14 (0.02)a−0.001 (0.002)a−0.03 (0.01)bAge (0=18 years), estimate (SE)

−0.89 (0.15)a−0.81 (0.14)a−0.26 (0.04)a0.002 (0.005)0.22 (0.03)aBMI (0=18.5 kg/m2), estimate (SE)

5.24 (1.21)a7.22 (1.06)a2.09 (0.32)a0.014 (0.037)−1.70 (0.21)aGender (0=female, 1=male), estimate (SE)

0.86 (0.07)a1.67 (0.06)a0.41 (0.02)a−0.021 (0.002)a−0.33 (0.01)aBaseline sleep HR (0=38 bpm), estimate (SE)

0.1350.2300.2450.0390.267Adjusted coefficient of determination for the model

aP<.001.
bP<.01.

Table 4. The linear regression models with interaction components for the average of heart rate (HR), low frequency/high frequency (LF/HF) ratio,
root mean square of the successive differences (RMSSD), recovery percentage, and recovery index during the first 3 hours of sleep.

Recovery indexRecovery percentageRMSSDLF/HF ratioHROutcome

−26.73 (5.86)a−49.34 (5.13)a−10.55 (1.55)a0.724 (0.182)a7.61 (1.04)aIntercept, estimate (SE)

−38.48 (8.78)a−46.05 (7.69)a−20.68 (2.32)a0.386 (0.272)14.47 (1.56)aAlcohol (g/kg), estimate (SE)

2.57 (0.59)a2.29 (0.51)a0.51 (0.15)a−0.051 (0.018)b−0.33 (0.10)bPhysical activity class, estimate (SE)

−0.05 (0.10)0.07 (0.09)−0.008 (0.03)0.004 (0.003)0.03 (0.02)Age (0=18 years), estimate (SE)

−0.42 (0.25)−0.60 (0.22)b−0.18 (0.07)b0.005 (0.008)0.19 (0.04)aBMI (0=18.5 kg/m2), estimate (SE)

2.95 (2.00)6.47 (1.75)a2.04 (0.53)a−0.010 (0.062)−1.38 (0.35)aGender (0=female, 1=male), estimate (SE)

0.71 (0.11)a1.25 (0.10)a0.31 (0.03)a−0.019 (0.004)a−0.28 (0.02)aBaseline sleep HR (0=38 bpm), estimate (SE)

−1.59 (0.95)−1.47 (0.83)−0.32 (0.25)0.065 (0.029)c−0.27 (0.17)Alcohol x physical activity class, estimate (SE)

0.27 (0.16)−0.04 (0.14)0.26 (0.04)a−0.009 (0.005)−0.12 (0.03)aAlcohol x age

−1.05 (0.45)c−0.39 (0.39)−0.15 (0.12)−0.009 (0.014)0.08 (0.08)Alcohol x BMI, estimate (SE)

4.87 (3.37)1.35 (2.95)−0.13 (0.89)0.251 (0.104)c−0.56 (0.60)Alcohol x gender, estimate (SE)

0.30 (0.17)0.83 (0.15)a0.18 (0.05)a−0.005 (0.005)−0.08 (0.03)cAlcohol x baseline sleep HR, estimate (SE)

0.1370.2360.2550.0420.271Adjusted coefficient of determination for the model

aP<.001.
bP<.01.
cP<.05.

Discussion
Principal Findings
Impact of alcohol on autonomic nervous system control during
sleep has been earlier demonstrated in controlled conditions
with relatively small samples. This study demonstrated that this
effect is also clearly seen in noncontrolled conditions with
wearable HR monitoring and HRV analysis. In the large
heterogeneous, noncontrolled, and free-living study population,
alcohol intake caused a dose-dependent effect in cardiac
autonomic regulation during the first 3 hours of self-reported

sleep time. Intraindividually, HR remained elevated,
parasympathetic recovery was delayed, and sympathetic
dominance was prolonged after alcohol intake compared with
recordings with no alcohol. The effects in cardiac autonomic
regulation were observed already with low doses of alcohol.

These findings accord with previous studies reporting
dose-related effects of alcohol on parasympathetic indices of
HRV during sleep in laboratory conditions [21]. Increased HR
partly explains the attenuated HRV indices during sleep
following alcohol intake [33], and prolonged elevation in the
LF/HF ratio supports the role of sympathetic regulation in
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alcohol-related delayed HRV recovery [34]. Even a moderate
amount of alcohol was shown to attenuate recovery in the ANS
in this study. This accords with the results of a previous study
where two drinks caused significantly decreased RMSSD and
increased HR and LF/HF ratio, and one drink altered RMSSD
but not HR or LF/HF ratio [20]. In this study, HR and the LF/HF
ratio were affected also in the low dose (≤0.25 g/kg) group
where about 90% of the measurement days involved one drink
and the rest two drinks.

The strength of this study was the large study population
representing a sample of Finnish employees with the whole
span of working age, different BMI categories and PA levels,
and both genders. With the large free-living sample, this study
provided real-world evidence and enabled further studying the
effects of personal background parameters on the effects of
alcohol intake on the ANS. The main limitations of the study
were not knowing the exact alcohol doses and the exact times
of alcohol consumption and sleep. The higher alcohol intakes
may have been underestimated. In addition, the alcohol drinking
habits of the participants were not known.

Most previous studies considering the effects of alcohol on the
ANS have used male subjects only, and differences between
the sexes have not been examined [9]. With a significant
proportion of female participants, this study showed alcohol
mainly affecting the ANS similar among men and women,
although the LF/HF ratio showed sympathetic dominance being
slightly stronger in men than in women after alcohol intake.
The large age range of the participants allowed studying the
interaction effect of age and alcohol intake on the ANS. The
effect of alcohol intake on the change in HR and RMSSD was
stronger in young subjects than in older subjects, but the effect
of alcohol on the LF/HF ratio, the recovery percentage, or the
recovery index was not age-dependent.

Our findings on the modifiable disease risk factors are in
agreement with previous data on that physical inactivity and
high BMI reduce HRV [35] and show that consumption of
alcohol reduces HRV in all the PA and BMI categories. In fact,
this study showed that regular PA does not attenuate the effects
of alcohol intake on the ANS. The changes in HR and RMSSD
because of alcohol intake were similar for physically active and
sedentary participants in this study. The physically active
participants actually displayed in LF/HF ratio even stronger
intraindividual sympathetic dominance because of alcohol intake
than the sedentary subjects did. Consequently, being physically
active does not seem to protect from the negative effects of
alcohol intake on the ANS during sleep. This aspect is important

to consider given that the alcohol consumption is common also
among physically active individuals, and there may even be a
dose-response relationship between alcohol consumption and
level of PA [36]. Even though exercise is beneficial for general
health among alcohol users [37], alcohol has been reported to
negatively affect HRV recovery after exercise [38]. Thus,
clinically important is to note that the risk of exercise-related
cardiac events might be raised by prolonged sympathetic tone
during recovery. PA on the current day of alcohol intake, a
factor that might affect HRV parameters [9], was not estimated,
although it would be possible with our material. However, the
effect of alcohol on the amount of recovery during sleep has
been reported to strongly overwhelm the effect of other daily
activities, including PA [39].

Poor sleep associates with negative health behaviors, ill health,
and decreased work ability [40,41]. This study might offer some
new tools for health promotion in occupational and primary
health care to show practically, on individual and personal level,
based on wearable HRV monitoring, the negative effects of
alcohol on sleep. Demonstration of the insufficient recovery
after using alcohol may be very important for individuals who
consume alcohol repeatedly day after day and may suffer from
accumulated consequences of insufficient recovery. The
personalized indices of recovery, recovery percentage, and
recovery index were found to accord with the RMSSD and HR.
Importantly, the recovery percentage was found to be
independent of age, and the recovery index had only a slight
interaction effect between alcohol intake and BMI. These
personalized recovery parameters can be used as a tool of health
promotion in occupational health care to better manage
interindividual differences in HRV and to visualize the
associations between alcohol consumption and sleep.

Conclusions
The study demonstrates, with big uncontrolled data from
unobtrusive wearable monitoring, that alcohol intake results in
suppression of parasympathetic regulation of the ANS in a
dose-response manner. Being physically active and young
appears to provide no protection from alcohol-induced
suppression of parasympathetic regulation, a finding that needs
to be considered given the literature evidence that increased PA
associates with higher alcohol usage among nonalcoholics.
Personalized HRV measures such as recovery percentage may
be more practical in occupational health settings to demonstrate
the effect of alcohol on sleep than, eg, RMSSD, which is
strongly age-dependent.
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Abstract

Background: Physical inactivity, overweight, and work-related stress are major concerns today. Psychological stress
causes physiological responses such as reduced heart rate variability (HRV), owing to attenuated parasympathetic
and/or increased sympathetic activity in cardiac autonomic control. This study’s purpose was to investigate the
relationships between physical activity (PA), body mass index (BMI), and HRV-based stress and recovery on workdays,
among Finnish employees.

Methods: The participants in this cross-sectional study were 16 275 individuals (6863 men and 9412 women; age
18–65 years; BMI 18.5–40.0 kg/m2). Assessments of stress, recovery and PA were based on HRV data from beat-to-beat
R-R interval recording (mainly over 3 days). The validated HRV-derived variables took into account the dynamics and
individuality of HRV. Stress percentage (the proportion of stress reactions, workday and working hours), and stress
balance (ratio between recovery and stress reactions, sleep) describe the amount of physiological stress and recovery,
respectively. Variables describing the intensity (i.e. magnitude of recognized reactions) of physiological stress and
recovery were stress index (workday) and recovery index (sleep), respectively. Moderate to vigorous PA was measured
and participants divided into the following groups, based on calculated weekly PA: inactive (0 min), low (0 < 150 min),
medium (150–300 min), and high (>300 min). BMI was calculated from self-reported weight and height. Linear models
were employed in the main analyses.

Results: High PA was associated with lower stress percentages (during workdays and working hours) and stress
balance. Higher BMI was associated with higher stress index, and lower stress balance and recovery index. These
results were similar for men and women (P < 0.001 for all).

Conclusion: Independent of age and sex, high PA was associated with a lower amount of stress on workdays.
Additionally, lower BMI was associated with better recovery during sleep, expressed by a greater amount and
magnitude of recovery reactions, which suggests that PA in the long term resulting in improved fitness has a
positive effect on recovery, even though high PA may disturb recovery during the following night. Obviously,
several factors outside of the study could also affect HRV-based stress.
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Background
Physical activity (PA) is known to have positive effects
on health [1, 2]. Routine PA reduces stress and enhances
psychological wellbeing, which is particularly important
for the prevention and management of cardiovascular
disease, among other chronic diseases [3]. Regular PA is
known to reduce the risk of many adverse health out-
comes. Some PA is better than none; however, for most
health outcomes, additional benefits are achieved if the
amount of PA increases through higher intensity, greater
frequency, and/or longer duration. According to the
2008 Physical Activity Guidelines for Americans, most
health benefits occur with at least 150 total minutes of
moderate intensity or at least 75 min of vigorous inten-
sity aerobic PA per week. However, additional benefits
occur with more PA [4, 5]. In addition to the beneficial
effects of PA on physical health, these guidelines are also
relevant for mental health [6]. Although leisure-time PA
has increased among Finnish adults [7], physical inactiv-
ity is a major problem and risk for health, in all coun-
tries. Furthermore, physical inactivity is associated with
being overweight [8] and the current rate of overweight
adults worldwide has been described as an epidemic or
even a pandemic. This situation is a major public health
risk because being overweight is associated with diseases
including coronary heart disease, stroke, diabetes and
cancer [9].
Together with physical inactivity and overweight, stress

at work is a major public health risk. It may even lead to
cardiovascular disease [10] without complete recovery
[11]. Stress has been shown to reduce participation in
leisure-time PA [12, 13]. Furthermore, workplace stress
may predict a future increased risk of insufficient PA [14].
Normal weight is associated with good self-reported sub-
jective health [15], including low stress levels [16, 17]. Evi-
dence suggests that psychosocial stress is associated with
the development of adiposity [18]. However, according to
previous studies, the association between subjective stress
and body composition is inconsistent, with evidence both
supporting [16, 19] and refuting [20, 21] the idea that
stress is associated with adiposity. A recent systematic re-
view reported that the associations of psychosocial factors
at work with weight-related outcomes were weak and
somewhat inconsistent [22].
Psychological stress causes sympathetic responses in

the autonomic nervous system (ANS), such as reduced
heart rate variability (HRV) [23]. HRV refers to the vari-
ation in intervals between heartbeats and reflects cardiac
autonomic modulation. Physiological stress can be de-
fined as an increased body activation level, when sympa-
thetic activity dominates the ANS and parasympathetic
activation is low. Stress is associated with reduced HRV,
owing to attenuated parasympathetic and/or increased
sympathetic activity in cardiac autonomic control. Recovery

refers to a reduced body activation level, when parasympa-
thetic activation dominates the ANS over sympathetic
activity [24–26]. HRV analysis can be used as a comple-
mentary tool to assess general health [27]. HRV analysis
during sleep has the potential to explore the sleeping brain,
with possible implications for mental health [28]. Previous
HRV-studies have mainly used traditional time-domain
and frequency-domain measures of HRV, such as root
mean square of successive R-R intervals (RMSSD) and the
ratio of low frequency power to high frequency power (LF/
HF ratio). The traditional measures of HRV represent the
average level of the autonomic activity over a period of the
time. Cardiac autonomic activity is very dynamic and varies
during the day depending on stress, recovery and PA.
Therefore, the usability of the traditional measures of HRV
is limited in real-life conditions. Additionally, these mea-
sures are very individual which further limits their usability
in stress assessment and clinical work. However, it is also
possible to provide applied heart rate (HR) and HRV-
derived stress and recovery variables that take into account
the dynamic changes in autonomic activity and individual-
ity of HRV including information that is difficult to obtain
from traditional measures of HRV.
The majority of previous studies on the association of

PA with stress have used subjective assessment methods
or traditional measures of HRV in the assessment of
stress. The previous studies support the association of
PA with increased HRV [29, 30]. However, accurate and
objective methods are needed to reliably assess PA, as
well as to assess HRV-based stress and recovery in real-
life. By utilizing a method that acknowledges the dynam-
ics and individuality in HRV in real-life, the aim of this
study was to investigate the extent to which PA and
BMI are associated with HRV-based indicators of stress
and recovery on workdays. The study was conducted
among 16 275 Finnish employees who had participated
in beat-to-beat R-R interval recording as a part of lifestyle
counseling between 2007 and 2015. More specifically, ac-
counting for age and sex, we investigated the prevalence
of stress and recovery according to the participants’ ob-
jectively measured PA level and self-reported body mass
index (BMI). Uniqueness of the present study is in the in-
dividual and dynamic method used in the assessment of
physiological stress and recovery.

Methods
Study design and participants
This cross-sectional study investigated the amount and in-
tensity of objective HRV-based stress and recovery on
workdays in a real-life sample of 16 275 Finnish em-
ployees (6863 men and 9412 women; age 18–65 years;
BMI 18.5–40.0 kg/m2). The participants nonselectively
represent a cross-section of typical Finnish employees in-
cluding both manual and non-manual labour employees.
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The majority of the participants were apparently healthy
without chronic diseases. The exclusion criteria for
participation in the R-R interval recordings included se-
vere cardiac disease, very high blood pressure (≥180/
100 mmHg), type 1 or 2 diabetes with autonomic neur-
opathy, severe neurological disease, fever or other acute
disease, and BMI >40 kg/m2. These exclusion criteria rep-
resented by the analysis software manufacturer are pre-
sented in detail previously [31]. The characteristics of the
participants are presented in Table 1.

Data collection
The novel methodology used to determine the partici-
pants’ stress, recovery and level of weekly PA, was based
on HRV data from beat-to-beat R-R interval recordings.
These recordings were voluntarily performed on em-
ployees as a part of the preventive occupational health
care programs provided by their employers between
2007 and 2015. The clinical purpose of these measure-
ments is presented comprehensively in a previous paper
by Mutikainen et al. [31]. The data recordings used in
the previous study were gathered between 2007 and
2013, with a study population size of 9554. These data
were used in the present study, supplemented with re-
cordings from 2014 to 2015. The study had a further in-
clusion criterion of a minimum of 4.5 h beat-to-beat R-R
interval recording during sleep after a workday. Another
inclusion criterion was the availability of R-R interval
data, including at least one workday (≥4 h of work) and
one day off, with a measurement period of 16–30 h/day
(from wake-up to wake-up). Participants who had con-
sumed alcohol on the monitoring days were excluded.
Information about workdays, working hours, days off
and sleep periods was obtained from diaries that the par-
ticipants were requested to keep during the measure-
ment period. The analyzed data consisted of successfully
recorded (measurement error <15 % and <30-min re-
cording break) days. The flow of the participants in-
cluded in the analysis is presented in Fig. 1.

HRV-based assessment of PA, stress and recovery
Ambulatory beat-to-beat R-R interval data were used to
determine the amount and intensity of PA, stress and re-
covery. Using the Firstbeat Bodyguard device (Firstbeat
Technologies Ltd., Jyväskylä, Finland), real-life R-R

interval data were recorded, usually over 3 days (typic-
ally two workdays and one day off ) and analyzed using
Firstbeat Analysis Server software (version 6.3, Firstbeat
Technologies Ltd.), which included a powerful artifact
detection and correction feature for irregular ectopic
beats and signal noise. The software calculates HRV in-
dices second-by-second using the short-time Fourier
transform method, and calculates HR- and HRV-derived
variables of respiration rate, oxygen consumption, on-off
kinetics (increasing or decreasing HR), and parameters
describing excess post-exercise oxygen consumption
using neural networks. Thereafter, the software divides
the measurement data into coherent data segments and
categorizes these segments into different physiological
states, such as PA of different intensities, stress and re-
covery [32–34], by taking into account individual char-
acteristics (e.g. individual levels and scales of HR and
HRV, and the individual relationships between HRV and
autonomic control) [35]. The categorization of the data
is described in Additional file 1: Table S1. More informa-
tion about this analysis method is available in a paper by
Firstbeat Technologies Ltd. [36].

Detection of stress and recovery variables
After data categorization, the HRV-based variables de-
scribing the amount and intensity of stress and recovery
on workdays were detected. Stress percentages (i.e. pro-
portions of stress reactions, during the day and during
working hours) and stress balance (ratios between recov-
ery and stress reactions during sleep) describe the amount
of stress and recovery, respectively. The variables describ-
ing the intensity (i.e. magnitude of recognized reactions)
of stress and recovery were stress index (during the day)
and recovery index (during sleep), respectively. These vari-
ables and their calculations are presented in Additional file
1: Table S1. The correlation coefficient between two con-
secutive workdays varied from 0.74 to 0.88 for the trad-
itional HRV variables, from 0.64 to 0.93 for HRV-derived
variables of stress, and from 0.42 to 0.49 for HRV-derived
variables of recovery during sleep.

Calculation of weekly PA
Background information about age, sex, self-reported
height and weight, and self-reported PA class [37] modi-
fied from Ross and Jackson [38], was collected in

Table 1 Characteristics of the participants

Variable All (n = 16275) Men (n = 6863) Women (n = 9412)

Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max

Age 44.8 ± 9.9 18.0 65.0 44.5 ± 9.9 18.0 65.0 45.0 ± 9.9 18.0 65.0

Body mass index (kg/m2) 26.0 ± 4.1 18.5 40.0 26.6 ± 3.5 18.6 40.0 25.5 ± 4.4 18.5 40.0

Self- reported activity class 0–10 4.8 ± 1.8 0.0 10.0 4.9 ± 1.9 0.0 10.0 4.8 ± 1.8 0.0 10.0

Physical activity (mins/week) 186 ± 227 0 2629 246 ± 258 0 2629 142 ± 189 0 1865
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conjunction with R-R interval recordings using question-
naires. Background information was used to estimate
maximal HR [39] and maximal VO2 [40] which were
then used in the estimation of VO2. The maximal HR
used for further calculations was corrected accordingly if
a period with HR higher than the estimated maximal
was found from the recording. From the second-by-
second VO2 estimations, each participant’s mean VO2

for each minute of the measurement day was calculated.
The minute-by-minute VO2 estimations were then con-
verted to multiples of the resting metabolic rate (MET)
by dividing the VO2 values by 3.5. The total number of
1-min segments within the following thresholds: moder-
ate PA 3 to <6 METs and vigorous PA ≥6 METs, during
each measurement day (including days off ), were calcu-
lated. Continuous bouts of PA lasting for ≥10 min were
included in the estimation of weekly PA. These continu-
ous bouts of PA were calculated separately for workdays
and days off, and, if the measurement period included
two or more workdays or days off, an average was cal-
culated. The activity minutes score for each day (mod-
erate PA minutes + vigorous PA minutes × 2) was
calculated. Thereafter, the amount of PA was extrapo-
lated using the following formula: PA minutes per
week = (5 × mean workday activity score) + (2 × mean
day-off activity score). These calculations have been
previously described in more detail [31]. Based on the
weekly PA minutes, the participants were divided into
the following PA groups: inactive (0 min), low (0 <
150 min), medium (150–300 min) and high (>300 min).

Assessment of body composition
BMI was calculated from the self-reported weight and
height (kg/m2). The participants were then divided
into the following groups: normal weight (18.5 to
<25 kg/m2), overweight (25 to <30 kg/m2) and obese
(30–40 kg/m2).

Analysis
Data processing and statistical analysis were performed
using R 3.2.2 version (R Foundation for Statistical Com-
puting). P-values were two-sided and a p-value of <0.05
was considered statistically significant. Because of the
size of the data, 99 % confidence intervals (CIs) were de-
termined (Fig. 2) instead of conventional 95 % CIs.
The main outcome variables of the study were stress

percentage and stress index, calculated for the whole
day, stress percentage calculated for working hours, and
stress balance and recovery index calculated for sleep.
These variables were derived from the beat-to-beat R-R
interval recordings on workdays. For a more detailed de-
scription of the variables see Additional file 1: Table S1.
In addition, HR and traditional HRV parameters, includ-
ing RMSSD and the LF/HF ratio, were calculated from
the beat-to-beat R-R interval recordings on workdays.
These variables were calculated separately for waking
hours and sleep, and RMSSD was calculated using a 5-
min window. If the measurement period of a subject in-
cluded two or more workdays, an average was calculated
and the mean values of the outcome variables were used
in the analysis.

Fig. 1 Flow of the participants and measurement days included in the analysis (BMI, body mass index)
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For the descriptive statistics, the means and standard
deviations of the outcome variables were calculated sep-
arately for men and women, and stratified based on PA,
BMI and age. Differences in the outcome variables be-
tween PA, BMI and age groups were tested using the
Kruskal-Wallis test. The results are shown in Additional
file 2: Tables S2-S4. To show the effects of BMI and PA
group on the HRV-based stress and recovery variables,
the age-controlled mean values and 99 % CIs for the
HRV-based stress and recovery variables, by BMI and
PA group, are presented in Fig. 2.

Linear models were employed to study the effects of
PA group, BMI and age on HRV-based stress and recov-
ery variables. In the models, age and BMI were incorpo-
rated as continuous predictor variables and objectively
measured PA group was incorporated as a categorical
predictor variable. The models were generated separately
for men and women. The reference value for age was set
to 18 years and for BMI to 18.5 kg/m2. A simple linear
least squares regression model (procedure lm in R) was
applied to predict the stress percentage during the day.
As confirmed by visual inspection, the assumption of

Fig. 2 Stress and recovery by physical activity and body mass index groups with age-controlled mean values and 99 % CIs for output variables.
Physical activity groups: inactive (0 min/week), red ●; low (0 < 150 min/week), black ▲; medium (150–300 min/week), blue ■; high (>300 min/
week), green ♦
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linear regression considering the normal distribution of
the residuals was not fulfilled for stress percentage dur-
ing working hours, stress index and recovery index.
Thus, a Box-Cox transformation was applied on these
dependent variables [41]. The Box-Cox coefficient was
determined by maximizing the log-likelihood function
and was rounded to two decimal places before transform-
ation. Tobit regression model (procedure vglm using itera-
tively reweighted least squares in R) was applied for
modeling stress balance with a fixed lower and upper limit
of −1 and 1, respectively. The interactions of the predic-
tors were not included in the final regression models be-
cause the coefficient of determination for the interaction
models was only a few percentage points greater than for
the simple models.

Results
The total number of workdays included in the analysis
was 28 314, with measurements obtained from 16 275
participants (men 6863; women 9412). The participants’
characteristics are shown in Table 1. The participants’
mean age was 44.8 years (44.5 years for men; 45.0 years
for women) and the mean BMI was 26.0 kg/m2 (26.6 kg/
m2 for men; 25.5 kg/m2 for women). The participants’
mean self-reported activity class was 4.8 (4.9 for men;
4.8 for women) indicating that, on average, the partici-
pants were involved in PA 2–3 times per week and their
total weekly PA was about 2 h. The mean weekly mi-
nutes of objective monitoring-based PA was 186 (246 for
men; 142 for women). The mean weekly minutes of PA
in the group of low PA was 78 for men and 74 for
women, in the group of medium PA 222 for men and
215 for women, and in the group of high PA 545 for
men and 496 for women. The number of participants in
the PA, BMI, and age groups is presented in Additional
file 3: Table S5.
Differences in outcome variables between PA groups

(Additional file 2: Table S2) were statistically significant
except for LF/HF ratio during waking hours and sleep,
stress balance in men, and HR and stress balance in
women. For both men and women, the high PA group
had the highest RMSSD (during waking hours and dur-
ing sleep) and recovery index, and the lowest stress per-
centage (during the day and during working hours) and
stress index.
Differences in outcome variables between BMI groups

were statistically significant for both men and women
(Additional file 2: Table S2). Normal-weight individuals
had the highest RMSSD (both during waking hours and
during sleep), stress balance and recovery index, the
lowest stress percentage during the day and the lowest
stress index. Stress percentage during working hours
was lowest in obese individuals.

In both sexes, differences in outcome variables were
statistically significant between age groups, except for
HR during sleep in women (Additional file 2: Table S3).
The youngest age group (18–30 years) had the highest
RMSSD (both during waking hours and during sleep),
stress balance and recovery index, and the lowest stress
index. Stress percentages during the day were lowest in
the youngest age group in women, and in the oldest age
group (51–65 years) in men. Stress percentages during
working hours were lowest in the oldest age group in
both sexes.
Figure 2 shows the effect of PA and BMI group on the

stress and recovery variables with the effect of age con-
trolled. The high PA group had the lowest mean stress
percentage during the day and during working hours in
all three BMI groups, after adjustment for age (Fig. 2).
Mean stress index values increased as the BMI group
changed from normal weight to overweight and over-
weight to obese, regardless of the PA group. In addition,
regardless of the PA group, obese individuals had the
lowest stress balance and recovery index.
The linear model results are shown in Table 2. Medium

(P < 0.05) and high (P < 0.001) PA groups, lower BMI (P <
0.001), and older age (P < 0.001) were associated with
lower stress percentages during the day. Medium (P <
0.05) and high (P < 0.001) PA level, higher BMI (P <
0.001), and older age (P < 0.001) were associated with
lower stress percentages during working hours. Stress per-
centage results during the day and during working hours
were similar for men and women. Higher BMI (P < 0.001)
and older age (P < 0.001) were associated with higher
stress index, both in men and in women. In addition,
medium (P < 0.01) and high (P < 0.01) PA were associated
with lower stress index in women.
Medium (P < 0.01) and high (P < 0.001) PA, and higher

BMI (P < 0.001) were associated with lower stress bal-
ance, both in men and in women. Moreover, older age
was associated with lower stress balance in men (P <
0.001). Higher BMI and older age were associated with
lower recovery index, in men and in women (P < 0.001).
BMI explained the highest proportion of variance in
stress balance (2.2 % for men and 3.1 % for women)
compared with PA and age.

Discussion
The purpose of this study was to investigate the amount
and intensity of objective HRV-based stress and recovery
on workdays. The sample group comprised 16 275
Finnish employees, who had participated in beat-to-beat
R-R interval recording as a part of lifestyle counseling in
the course of their everyday lives between 2007 and
2015. More specifically, the relationships between PA,
BMI, and HRV-based stress and recovery were investi-
gated. For both sexes, a high level of PA and lower BMI
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Table 2 Results of the linear models

Men Women

Parameter
Estimate

95 % Cl Lower Upper P value Variance
explained (%)

Parameter
Estimate

95 % Cl Lower Upper P value Variance
explained (%)

Stress (%), 24 h a 2.356h 1.476 h

Intercept 52.3153 50.7730 53.8575 <0.001 50.0658 48.9790 51.1527 <0.001

Age (18 years = 0) −0.1263 −0.1600 −0.0926 <0.001 0.780i −0.0869 −0.1151 −0.0587 <0.001 0.387 i

BMI (18.5 kg/m2 = 0) 0.1541 0.0580 0.2502 0.002 0.144 i 0.0909 0.0264 0.1553 0.006 0.081 i

Physical activity level (inactive = 0) 1.586 i 1.050 i

Low physical activity class 0.3235 −0.6903 1.3372 0.53 −0.8892 −1.5471 −0.2313 0.008

Medium physical activity class −1.1405 −2.2144 −0.0667 0.04 −1.9539 −2.7608 −1.1470 <0.001

High physical activity class −3.9695 −5.0062 −2.9328 <0.001 −4.3772 −5.2620 −3.4923 <0.001

Stress (%), working hours b 4.152 h 1.721 h

Intercept 807.3480 777.0476 837.6483 <0.001 677.8091 656.0738 699.5443 <0.001

Age (18 years = 0) −4.8729 −5.5355 −4.2103 <0.001 2.942 i −2.66482 −3.22838 −2.10127 <0.001 0.905 i

BMI (18.5 kg/m2 = 0) −4.6640 −6.5515 −2.7766 <0.001 0.341 i −4.54067 −5.82984 −3.25149 <0.001 0.504 i

Physical activity level (inactive = 0) 1.590 i 0.584 i

Low physical activity class −5.5094 −25.4261 14.4073 0.59 −3.40975 −16.5664 9.746938 0.61

Medium physical activity class −24.7847 −45.8819 −3.6874 0.021 −17.9339 −34.0695 −1.79829 0.030

High physical activity class −85.2896 −105.6576 −64.9215 <0.001 −61.7878 −79.4833 −44.0923 <0.001

Stress index, 24 h c 27.113 h 27.448 h

Intercept 1.2406 1.2403 1.2409 <0.001 1.2414 1.2412 1.2417 <0.001

Age (18 years = 0) 0.0001 0.0001 0.0001 <0.001 21.992 i 0.0001 0.0001 0.0001 <0.001 19.655 i

BMI (18.5 kg/m2 = 0) 0.0002 0.0001 0.0002 <0.001 3.819 i 0.0001 0.0001 0.0001 <0.001 3.031 i

Physical activity level (inactive = 0) 0.115 i 0.145 i

Low physical activity class 0.0002 0.0000 0.0004 0.024 −0.0001 −0.0003 0.0000 0.031

Medium physical activity class 0.0000 −0.0002 0.0002 0.91 −0.0002 −0.0004 −0.0001 0.002

High physical activity class 0.0001 −0.0001 0.0003 0.47 −0.0003 −0.0004 −0.0001 0.002

Stress balance, sleep e 3.669 h 3.244 h

Intercept1 0.9975 0.9287 1.0663 <0.001 0.6166 0.5672 0.6661 <0.001

Intercept2 −0.5292 −0.5503 −0.5082 <0.001 −0.5537 −0.5705 −0.5368 <0.001

Age (18 years = 0) −0.0066 −0.0081 −0.0052 <0.001 1.153 i −0.0007 −0.0019 0.0006 0.31 0.006 i

BMI (18.5 kg/m2 = 0) −0.0273 −0.0315 −0.0231 <0.001 2.179 i −0.0253 −0.0282 −0.0224 <0.001 3.080 i

Physical activity level (inactive = 0) 0.445 i 0.233 i

Low physical activity class −0.0715 −0.1162 −0.0269 0.002 −0.0126 −0.0423 0.0172 0.41
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Table 2 Results of the linear models (Continued)

Medium physical activity class −0.0799 −0.1272 −0.0326 <0.001 −0.0572 −0.0937 −0.0207 0.002

High physical activity class −0.1327 −0.1784 −0.0870 <0.001 −0.0822 −0.1222 −0.0421 <0.001

Recovery index, sleep f 9.685 h 3.297 h

Intercept 592375.4298 573358.1497 611392.7100 <0.001 457913.8301 444648.7930 471178.8673 <0.001

Age (18 years = 0) −5092.7330 −5508.5947 −4676.8712 <0.001 7.753 i −2100.7061 −2444.6430 −1756.7692 <0.001 1.501 i

BMI (18.5 kg/m2 = 0) −4825.0722 −6009.6783 −3640.4662 <0.001 0.921 i −4038.5841 −4825.3668 −3251.8014 <0.001 1.065 i

Physical activity level (inactive = 0) 0.154 i 0.026 i

Low physical activity class −19214.5686 −31714.7934 −6714.3437 0.003 1051.0555 −6978.4656 9080.5766 0.80

Medium physical activity class −6153.1124 −19394.2693 7088.0445 0.36 −4452.2347 −14299.7786 5395.3093 0.38

High physical activity class −9653.5430 −22437.0465 3129.9606 0.14 −5732.9247 −16532.4796 5066.6302 0.30

BMI body mass index
a Linear regression
b Box-Cox linear regression using transformation coefficient of 1.62
c Box-Cox linear regression using transformation coefficient of −0.79
e Tobit regression
f Box-Cox linear regression using transformation coefficient of 3.18
h The proportion of variance explained by the whole model
i The proportion of variance explained by the predictor variable. Calculated as the difference between the proportion of variance explained by the whole model and the proportion of variance explained by a model
including all the predictor variables, except for the predictor in question
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were associated with lower amounts of stress on work-
days. Additionally, the results showed that both high PA
and higher BMI were associated with a lower amount of
recovery during sleep. Additional PA (above the gener-
ally recommended aerobic PA level of over 150 min of
moderate PA per week), was associated with the add-
itional health benefits of a low amount of HRV-based
stress on workdays and during working hours. Lower
BMI was associated with better recovery during sleep,
expressed by a greater amount and magnitude of recov-
ery reactions (i.e. quality of recovery). This suggests that
PA in the long term resulting in improved physical fit-
ness has a positive effect on recovery, even though high
PA may disturb recovery during the following night. The
results of the present study showing an association of
BMI and objectively measured PA with HRV-based
stress during the workday are in line with previous
studies.
The finding of the present study on the association of

high PA with low HRV-based stress on workdays is in
line with previous studies. Both moderate and vigorous
PA are found to be associated with higher HRV [29].
Additionally, PA has been found to have positive effects
on subjective stress. For instance, Birdee et al. [42] found
that, among a large group of employees, physically active
employees reported less difficulty coping with stress,
more happiness and a higher rate of competency than
inactive employees. Our previous study used the same
measurement method to assess stress as in the present
study, and found higher PA and physical fitness were as-
sociated with lower stress among men [43]. However, to
our knowledge, this study is unique in its focus on the
additional health benefits from PA exceeding the recom-
mended level, in the context of stress. The results
showed that PA level affects stress percentage more than
BMI, especially in women, and the decrease in the
amount of stress following a change from inactivity to
high PA appears to be impossible to achieve by weight
loss alone. When stress percentage was calculated with-
out the time spent on PA, the association between
higher PA with lower stress percentage remained (data
not shown).
The present findings of an association between lower

BMI and lower amount of stress on workdays, and an
association of higher BMI with lower amount of stress
during working hours, are also in line with previous
studies. Furthermore, an additional analysis (data not
shown) showed that having a higher BMI was associated
with a higher amount of PA during working hours. Pre-
viously, HRV profiles were found to be relatively poor
among obese individuals [44] and improved after weight
loss [45]. Previous studies also suggest that individuals
with lower socioeconomic status are more likely to be
obese and more likely to be in physically active

employment than their counterparts with higher socio-
economic status [46, 47]. So, time spent in PA leads to
less time for other physiological body states, such as
stress, during working hours. Another possible explan-
ation for these findings is that among obese individuals,
the physiological state of the body is detected as PA in-
stead of stress, as HR increases and HRV decreases eas-
ily. Therefore, caution is required when interpreting the
results. Previously, the association of BMI with stress
has been studied using mainly subjective methods. For
instance, Nyberg et al. [16] found both obesity and being
underweight to be associated with high levels of work-
related stress [16], independent of sex. Additionally, em-
ployees of normal weight report the lowest prevalence of
emotional exhaustion and chronic psychological com-
plaints compared with underweight, overweight and
obese individuals [17]. In general, the evidence is weak
and inconsistent for associations of psychosocial factors
at work with weight-related outcomes [22]. However,
based on previous [43–45] and present results, the asso-
ciation of obesity with HRV and HRV-based stress seems
to be consistent.
The group of high active, consisting largely of young

and normal-weight individuals, had the best quality of
recovery during sleep when age and weight were not
taken into account. The linear models revealed that BMI
and age explained greater proportion of variance in the
quality of recovery than the level of PA. Further, the lin-
ear models showed that the non-significant association
of high PA with lower quality of recovery during sleep
was negative. Additionally, high PA was significantly as-
sociated with lower amount of recovery during sleep.
This finding may be explained by the estimation of PA
level occurring on the same days that stress and recovery
during sleep were determined. We did not take into ac-
count the timing of PA in the analysis of the present
study. The findings of Myllymäki et al. [48] suggest that
vigorous late-night exercise may have effects on cardiac
autonomic control of heart during the first sleeping
hours. They found higher nocturnal HR after the exer-
cise day compared to the control day but no differences
between the days in nocturnal HRV. Additionally, previ-
ous literature suggests that PA during working hours
and leisure-time may show different effects on cardiac
autonomic regulation. High PA during working hours
has been found to be associated with poor cardiovascu-
lar health, including reduced HRV [49]. Recovery of
HRV is also dependent on training background, and
type, intensity and duration of exercise [50]. The lower
the physical fitness and the higher the intensity of exer-
cise, the slower the recovery of HRV after exercise [51].
Hynynen et al. [52] reported that even an exercise that
was perceived as light and easy may have prolonged ef-
fects on nocturnal HRV during the following night. Our
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previous study with a smaller study population used a
subjective method to assess PA; using laboratory condi-
tions to assess physical fitness, our previous results
showed that physical fitness was associated with better
recovery during sleep, even though PA was not [43]. In
line with this Pietilä et al. [53] found good physical fit-
ness to be associated with good recovery, even though
PA was found to disturb the recovery of the following
night. It appears that PA on the same day may disturb
nighttime recovery, but in the long term, PA and good
fitness enhance recovery during sleep. This is supported
by our additional analysis (data not shown), which showed
higher recovery in a day without PA compared with a day
with PA, among high-PA individuals. Further, the present
finding of an association of lower BMI with a higher
amount and better quality of recovery supports the idea
that good fitness enhances recovery during sleep. How-
ever, the effect of the timing of PA on HRV-based recovery
during following night should be studied further.
The present findings suggest that, although older indi-

viduals are not stressed as often, their stress reactions
are stronger and recovery is weaker than their younger
counterparts. Weaker recovery among older individuals
was expected, as it is known that aging reduces HRV
[24]. Compared with PA and BMI, age was most strongly
associated with the amount of stress during working
hours, and intensity of stress and recovery reactions.
These results suggest that recovery of older individuals
is weakened. However, the findings of Soares-Miranda et
al. [30] showing both cross-sectional and longitudinal
association of PA with more favorable HRV among older
adults emphasizes the importance of PA among older in-
dividuals. These findings should be considered for
instance in policymaking when planning to lengthen
working careers.
The results were similar between men and women.

The variances explained by the linear models were
mostly slightly higher for men. The men in this study
had a slightly higher amount of stress than women dur-
ing the whole workday and during working hours. Men
also had a higher intensity of stress reactions and a
lower amount and quality of recovery during sleep com-
pared with women. This finding is in line with previous
evidence that men have stronger physiological responses
to psychological stress than women, including greater
cardiovascular activation [18].
This study has strengths and weaknesses. While the

measurement method may have had a significant impact
on the measured PA levels, a strength of this study is
that the weekly PA amount was calculated based on the
objective measurement of PA periods lasting over
10 min. The validated ambulatory beat-to-beat R-R
interval-based method [31, 54] used to assess the
amount and intensity of PA has been shown to provide

more accurate estimates of the intensity of PA than HR
information [54, 55]. Even though the participants were
informed to continue with normal daily living under the
wellness assessment, individuals may have a tendency to
be more active than usual during this type of short-time
assessment. At least 5 consecutive days of pedometer
monitoring has been suggested to achieve reliable and
valid 1-year PA estimates [56]. However, another study
suggests that three days would be sufficient to achieve
valid results [57]. The existing literature indicates a need
for valid, accurate and reliable measures of PA for asses-
sing current and changing PA levels and the relation-
ships between PA and health outcomes [58].
We used a novel HRV-based method to assess the

amount and intensity of stress and recovery. HRV has
been suggested as a feasible stress assessment method
[59–61], and the stability of 24-h recording is high [24].
In our study, the sustainability of the HRV and HRV-
based measures of stress and recovery between 2 con-
secutive days was quantified, and all the correlations
were found to be statistically significant. The method
used in the present study has been validated against neu-
roendocrine responses to stress, and the indicators of
stress and recovery during sleep have been found to be
associated with free salivary cortisol response after awak-
ening [62]. Additionally, the method has been utilized in
previous studies [43, 63–65] and the findings of these
studies further support the validity and reliability of this
HRV-based method. For instance, previous studies have
found an association of higher HRV-based stress and
lower recovery with higher perceived stress [63, 64]. Al-
though traditional HRV measures are required to assess
quality and clinical correlates of the recordings, these
new ways of presenting findings improve the usability of
HRV recordings in health promotion. Traditional HRV
measures are not included in the main study analyses.
However, the descriptive statistics show the similarity
between the traditional HRV measures and the HRV-
based stress and recovery variables. HRV-based methods
that take individual characteristics and dynamic changes
in cardiac autonomic activity into account and provide
easily understandable variables of stress and recovery
can be informative and suitable measures for field and
clinical conditions. Individual written feedback together
with verbal feedback and discussion of the HRV record-
ing results would be optimal (an example of the feed-
back the participants received is shown in Additional file
4: Figure S1). It should be noted here that the method
we used did not distinguish eustress from distress. How-
ever, division into these two types of stress may be im-
practical because of similar physiological responses to
both stress forms.
The major strength of the present study is the very

large sample, which included both non-manual and
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manual labor employees. The study sample was not a
random sample from the Finnish population, but a real-
life sample of Finnish employees who voluntary per-
formed beat-to-beat R-R interval recording as a part of
the preventive occupational health care programs pro-
vided by their employers. Even though the participants
of the present study may represent a group of employees
who are more interested about their health than the
average person, their BMI profiles were similar to ordin-
ary working-aged Finnish people [66], except for the in-
dividuals with BMI over 40 were excluded from the
present study. Thus, the findings of this study are
generalizable to ordinary Finnish employees. Nonethe-
less, it is a weakness of the present study that as it was a
real-life/data-mining type study, we did not have detailed
individual information about the participants, including
the information about the profession or socioeconomic
status of the participants. Additionally, the fact that the
information about weight and height (needed for BMI
calculation) was based on self-reports may have yielded
an underestimation of BMI in the study sample [67].
Most of the participants were apparently healthy; how-
ever, the inclusion of individuals with chronic diseases
and/or on medications may have had an effect on HRV.
However, our large sample size should have compen-
sated for these inclusions, leading to statistically signifi-
cant results. The use of real-life data was a strength of
the study; however, daytime stress is affected by many
confounding factors [24], very few of which were con-
trolled for in our analysis. Participants who had con-
sumed alcohol on the monitoring days were excluded
from the analyses of the present study. Unfortunately,
we did not have information for example about partici-
pants’ smoking or caffeine consumption. Clearly, outside
factors appear to have affected HRV-based stress be-
cause the explanation ratios of the linear models were
rather small. In summary, the large real-life study sample
of the present study can be considered as either a
strength or a weakness depending on the perspective.
For instance, in future it would be interesting to study
the association of socioeconomic status with HRV-based
stress and recovery by taking into account the effect of
the level of PA.
This study used novel, validated [43, 62–64] HRV-

based technology to assess stress, recovery and PA in
real-life. The results suggest that high PA and lower
BMI are associated with a lower amount of stress on
workdays independently of age and sex. Additionally, the
results suggest that having a lower BMI is associated
with lower intensity of stress reactions on workdays, and
a higher amount and better quality of recovery during
sleep. This, together with existing evidence, suggests that
long-term PA, resulting in improved physical fitness, has
a positive effect on recovery, even though high PA was

associated with a lower amount of recovery on the fol-
lowing night. In summary, the present results support
the beneficial effects of PA on health. However, owing to
the cross-sectional study design, it is not possible to
draw conclusions about the direction of the associations.
Previous literature suggests that the association may be
reciprocal; that is, inactivity may cause stress or stress
may be a factor that leads to inactivity. Overall, most of
the literature finds that the experience of stress impairs
efforts to be physically active [68], even though PA is
beneficial in stress management [65]. More research on
the causal relations between PA and HRV-based stress
and recovery is needed. Randomized controlled trials in-
vestigating the effect of increasing different types of PA
and timing of PA are warranted.

Conclusions
The results provide important information about the as-
sociations of objectively measured PA and body weight
with objectively measured physiological stress in Finnish
employees. This information could be used in future
policymaking and focused upon by employers. Although
the beneficial effects of PA on health are well docu-
mented, these results may be beneficial by, for example,
increasing employer willingness to invest greater re-
sources in increasing the PA of employees.
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