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A B S T R A C T

Background: Studies have shown that osteoporosis and atherosclerosis are comorbid conditions sharing common
risk factors and pathophysiological mechanisms. Understanding these is crucial in order to develop shared
methods for risk stratification, prevention, diagnosis and treatment. The aim of this study was to apply a system-
level bioinformatics approach to lipidome-wide data in order to pinpoint the lipidomic architecture jointly as-
sociated with surrogate markers of these complex comorbid diseases.
Subjects and methods: The study was based on the Cardiovascular Risk in Young Finns Study cohort from the
2007 follow-up (n = 1494, aged 30–45 years, women: 57%). Liquid chromatography-tandem mass spectrometry
(LC-MS/MS) was used to analyse the serum lipidome, involving 437 molecular lipid species. The subclinical
osteoporotic markers included indices of bone mineral density and content, measured using peripheral quan-
titative computer tomography from the distal and shaft sites of both the tibia and the radius. The subclinical
atherosclerotic markers included carotid and bulbus intima media thickness measured with high-resolution
ultrasound. Weighted co-expression network analysis was performed to identify networks of densely inter-
connected lipid species (i.e. lipid modules) associated with subclinical markers of both osteoporosis and
atherosclerosis. The levels of lipid species (lipid profiles) of each of the lipid modules were summarized by the
first principal component termed as module eigenlipid. Then, Pearson's correlation (r) was calculated between
the module eigenlipids and the markers. Lipid modules that were significantly and jointly correlated with
subclinical markers of both osteoporosis and atherosclerosis were considered to be related to the comorbidities.
The hypothesis that the eigenlipids and profiles of the constituent lipid species in the modules have joint effects
on the markers was tested with multivariate analysis of variance (MANOVA).
Results: Among twelve studied molecular lipid modules, we identified one module with 105 lipid species sig-
nificantly and jointly associated with both subclinical markers of both osteoporosis (r = 0.24, p-
value = 2 × 10−20) and atherosclerosis (r = 0.16, p-value = 2 × 10−10). The majority of the lipid species in
this module belonged to the glycerolipid (n = 60), glycerophospholipid (n = 13) and sphingolipid (n = 29)
classes. The module was also enriched with ceramides (n = 20), confirming their significance in cardiovascular
outcomes and suggesting their joint role in the comorbidities. The top three of the 37 statistically significant
(adjusted p-value < 0.05) lipid species jointly associated with subclinical markers of both osteoporosis and
atherosclerosis within the module were all triacylglycerols (TAGs) – TAG(18:0/18:0/18:1) with an adjusted p-
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value of 8.6 × 10−8, TAG(18:0/18:1/18:1) with an adjusted p-value of 3.7 × 10−6, and TAG(16:0/18:0/18:1)
with an adjusted p-value of 8.5 × 10−6.
Conclusion: This study identified a novel lipid module associated with both surrogate markers of both subclinical
osteoporosis and subclinical atherosclerosis. Alterations in the metabolism of the identified lipid module and,
more specifically, the TAG related molecular lipids within the module may provide potential new biomarkers for
testing the comorbidities, opening avenues for the emergence of dual-purpose prevention measures.

1. Introduction

Cardiovascular diseases and osteoporosis are both widely prevalent
disorders, inducing serious morbidities, bone fractures and death [1–4].
Evidence indicates that there is a similar pathophysiological mechanism
underlying both diseases [5]. Several association studies have linked
bone measures with atherosclerosis-related measures, such as echo-
genic calcified atherosclerotic plaques, pulse wave velocity and cor-
onary artery calcification [3,6–8]. Using human atherosclerotic plaque
transcriptomics and confocal microscopic analysis, we have shown that
advanced atherosclerotic lesions express a variety of markers related
with osteoclastogenesis, osteoblastogenesis and calcification and that
they involve osteoclast-like cells [9]. Furthermore, genetic poly-
morphism of apolipoprotein E, a key regulator of serum lipid levels [10]
and atherosclerosis [11], has also been shown to be associated with
bone structural traits [12]. Various studies have also revealed a positive
biological effect of statin, a cholesterol-lowering drug used for the
prevention of cardiovascular diseases, to be effective on bone density
[13,14]. However, there are also studies that reveal no significant as-
sociation between the bone and vascular markers [15–17]. Although,
they share the same biomarkers and risk factors – for example, oes-
trogen deficiency, vitamin D abnormalities, dyslipidaemia, smoking,
physical inactivity, intake of dietary calcium, dietary saturated fat,
oxidative stress and genetic factors [18–21] – the nature and the me-
chanism involved remains elusive.

Lipidomics offers a tool to investigate the systemic lipid profiles
produced in the body's cells, tissues and organs, as well as their inter-
actions with other molecular and cellular components [22]. An altered
lipidome has been shown to be associated with several clinical condi-
tions [23,24]. Understanding these alterations can provide useful in-
sight into the development process of the diseases. A study investigating
the shared underlining mechanism of atherosclerosis and osteoporosis
comorbidity by utilizing lipidomics data is lacking. Therefore, the ob-
jective of the present study was to perform a system-level analysis of
lipidomics data to identify networks of lipid species associated jointly
with subclinical markers of both osteoporosis and atherosclerosis.

The lipidomics data in this study involved 437 molecular lipids
generated with liquid chromatography-tandem mass spectrometry (LC-
MS/MS) technique from the serum of 1494 participants. Traditional
individual molecule-wise statistical methods are limited in their ability
to provide a holistic system-level picture. We, therefore, performed a
signed weighted lipid co-expression network analysis to identify net-
works of lipid species (modules) jointly associated with subclinical
markers of both osteoporosis and atherosclerosis [25].

2. Material and methods

2.1. Study subjects

The Cardiovascular Risk in Young Finns Study (YFS) is a prospective
multi-centre follow-up study investigating cardiovascular risk factors
from childhood to adulthood [26]. The study was initiated in 1980 with
3596 children and adolescents aged 3–18 years. The participants were
randomly selected from the areas of five university hospitals in Finland
(Turku, Tampere, Helsinki, Kuopio and Oulu) and have been followed
for nearly 40 years. The present study is based on 1494 participants
aged 30–45 from the 2007 follow-up, with four atherosclerotic and six

osteoporotic markers, as summarized in Table 2.

2.2. Measurement of surrogate markers of subclinical atherosclerosis

Carotid and bulbus intima-media thickness (IMT) were used as
surrogate markers of subclinical atherosclerosis. An ultrasound imaging
device with a high-resolution system (Sequoia 512, Acuson) including
13.0 MHz linear array transducers was used for IMT measurement by
trained sonographers following a standardized protocol. The image was
focused on the posterior (far) wall, and images were recorded from the
angle showing the greatest distance between the lumen–intima inter-
face and the media–adventitia interface. A scan including the beginning
of the carotid bifurcation and the common carotid artery was recorded
and stored in digital format on optical discs for subsequent off-line
analysis. All scans were analysed by one reader blinded to the partici-
pants' details. The best-quality end-diastolic frame was selected. Several
measurements of the common carotid far wall were taken approxi-
mately 10 mm proximally to derive the maximal carotid IMT. To assess
the reproducibility of the IMT measurements, we re-examined 60 par-
ticipants 3 months after the initial visit (2.5% random sample). The
between-visit coefficient of variation of IMT measurements was 6.4%.
To assess the reproducibility of the IMT image analysis, 113 scans were
re-analysed by a second observer, and the coefficient of variation was
5.2%. The mean and maximum carotid and bulbus IMT was used in the
study.

2.3. Measurement of surrogate markers of subclinical osteoporosis

Two trained researchers in each study centre performed the per-
ipheral quantitative computed tomography (pQCT) bone measurements
from both the distal and the diaphysis sites of the radius and tibia. The
same pQCT device was used in all five centres (XCT 2000R, Stratec,
Medizintechnik, Pforzheim, Germany). The tomographic slices were
taken from the shaft (a cortical-rich bone site) and the distal part (a
trabecular-rich bone site) of the weight-bearing tibia (30% and 5% from
the distal endplate of the tibia, respectively) and of the nonweight-
bearing radius (30% and 4% from the distal endplate of the radius,
respectively) according to our standard procedures [27]. For the shaft
regions, the analysed bone traits were total area (ToA, mm2), cortical
area (CoA, mm2), and cortical density (CoD, mg/cm3). For the distal
parts of the radius and tibia, the measured bone traits were ToA (mm2),
CoA (mm2) and trabecular density (TrD, mg/cm3). The range of in vivo
precision of the used pQCT-measured traits ranged from 0.5% (CoD of
the radial shaft) to 4.4% (CoA of the distal radius). Mineral content was
calculated as 0.2 × (area/100) × density. The measured indices are
demonstrated in Table 2.

2.4. Health and life style data

The physical activity index was calculated as metabolic equivalents
(METs) by combining information on the frequency, intensity and
duration of physical activity including leisure-time physical activity and
commuting to the workplace (MET h/wk). One MET corresponds to the
energy consumption of one kilocalorie per kilogram of weight per hour
at rest [28]. Alcohol consumption was measured by asking participants
to report their alcohol consumption during the previous week. One unit
is equivalent to 14 g of alcohol [29].
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2.5. Lipidome-wide analysis

Lipidome quantification for the stored serum samples was per-
formed at Zora Biosciences Oy (Espoo, Finland). Lipid extraction was
based on a previously described method [30]. In brief, 10 μl of 10 mM
2,6-di-tert-butyl-4-methylphenol (BHT) in methanol was added to 10 μl
of the sample, followed by 20 μl of internal standards (Avanti Polar
Lipids Inc., Alabaster, AL) and 300 μl of chloroform:methanol (2:1, v:v)
(Sigma-Aldrich GmbH, Steinheim, Germany). The samples were mixed
and sonicated in a water bath for 10 min, followed by a 40-min in-
cubation and centrifugation (15 min at 5700 ×g). The upper phase was
transferred and evaporated under nitrogen. Extracted lipids were re-
suspended in 100 μl of water-saturated butanol and sonicated in a water
bath for 5 min. Then, 100 μl of methanol was added to the samples
before the extracts were centrifuged for 5 min at 3500 ×g, and finally
the supernatants were transferred to the analysis plate for mass spec-
trometric (MS) analysis. The MS analyses have also been described in
detail previously [31]. The analyses were performed on a hybrid triple
quadrupole/linear ion trap mass spectrometer (QTRAP 5500, AB Sciex,
Concord, Canada) equipped with ultra-high-performance liquid chro-
matography (UHPLC) (Nexera-X2, Shimadzu, Kyoto, Japan).

Chromatographic separation of the lipidomic screening platform was
performed on an Acquity BEH C18, 2.1 × 50 mm id. 1.7 μm column
(Waters Corporation, Milford, MA, USA). The data were collected using
a scheduled multiple reaction monitoring algorithm and processed
using Analyst and MultiQuant 3.0 software (AB Sciex). The heights of
the peaks obtained from the MS analysis were normalized with the
internal standard of the lipid classes.

2.6. Biostatistical analysis

The lipid profiles were loge transformed to correct for skewness. We
used signed weighted co-expression network analysis implemented in R
statistical software [25] to identify groups of densely interconnected
lipid species, hereafter referred to as lipid modules. The analysis pipe-
line is illustrated in Fig. 1. Pearson's correlation coefficients (r) were
calculated for all pairwise comparisons of lipid species across all par-
ticipants. The correlation matrix was transformed to an adjacency
matrix by raising it to the power of 5, chosen based on scale-free to-
pology criteria (Fig. S1). The power transformation reduces noise by
supressing low correlations and emphasizing stronger correlations be-
tween lipid species. The power term is chosen in a manner that leads to

Fig. 1. Weighted co-expression network analysis pi-
peline. 1) Lipidomics data generated with liquid
chromatography-tandem mass spectrometry tech-
nique (LC-MS/MS). 2) Levels of lipid species. 3)
Correlation matrix based on the pairwise correlation
(Pearson) of the lipid species. 4) Hierarchical clus-
tering of the dissimilarity matrix generated from the
correlation matrix. 5) Identification of lipid species
modules based on clustering. 6) Summarization of
the levels of constituent lipid species in the modules
by calculating their first principal component called
as eigenlipid. 7) Correlation between eigenlipids (as
representative of modules) and markers of sub-
clinical osteoporosis and atherosclerosis. 8)
Examination of the correlation between module
membership and the lipid significance of lipid spe-
cies in the selected modules as a quality check of the
modules.
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a scale-free network topology because most of the biological networks
are expected to be approximately scale-free. The resulting adjacency
matrix was used to generate a Topological Overlap Matrix (TOM). The
TOM is a pairwise similarity matrix of the lipid species that considers
topological similarity among lipid species. For example, a high TOM
implies that a pair of lipid species shares several neighbour lipid species
with similar levels. The TOM was transformed into a dissimilarity
matrix. Average linkage hierarchical clustering of the dissimilarity
matrix was performed to generate a hierarchical clustering tree of lipid
species. Lipid modules that are weighted networks of lipid species were
identified with a dynamic tree-cutting algorithm. The lipid profiles in
each module were summarized by the module eigenlipid (ME), which is
defined as the first principal component of the modules' lipid profiles.
Association analysis was performed by calculating Pearson's correlation
coefficients (r) between the modules and the studied markers. Multi-
variate analyses of variance (MANOVA) were conducted for significant
modules and their constituent member lipid species in order to test the
hypothesis that the eigenlipid and profiles of the constituent lipid
species in the modules have joint effects on markers of both subclinical
osteoporosis and subclinical atherosclerosis. All the multivariate ana-
lyses were adjusted for age and sex. All statistical analyses and data
processing were performed using the statistical package R version 3.4.3
[32].

3. Results

3.1. Study population characteristics

The characteristics of the study population are shown in Table 1.
The disease incidences are based on self-reports [27]. The measured
markers of subclinical osteoporosis and atherosclerosis are shown in
Table 2.

3.2. Association between surrogate markers of subclinical osteoporosis and
atherosclerosis

The surrogate markers of subclinical osteoporosis had a weak but
significant (p-value < 0.01) positive correlation with those of sub-
clinical atherosclerosis (Fig. 2).

3.3. Identification of lipid modules

An adjacency matrix was generated from the correlation matrix of
the molecular lipid species using a soft-thresholding power of five with
the WGCNA R package. The threshold was chosen based on a network
topology analysis. The network resembled a scale-free graph, with
r2 > 0.80, when the correlation matrix was raised to the power of five
(Fig. S1). The hierarchical clustering of the TOM dissimilarity matrix
defined 12 modules, containing 6–105 highly correlated lipid species
(Fig. S2). The lipid modules were named according to colour for
downstream analysis, as shown in Fig. 3.

3.4. Module trait relationships and identification of the most significant
modules

Pearson's correlation between the module eigenlipids (MEs) and the
studied markers was calculated. Three modules (turquoise, pink and
yellow) were found to be significantly associated with several of both
the osteoporotic and the atherosclerotic markers (Fig. 3). The turquoise
module was significantly associated with the carotid-IMT-related vari-
ables imtav (r = 0.16, p-value = 2 × 10−10) and imtmax (r = 0.16, p-
value = 1 × 10−9). The same module was also significantly associated
with all of the pQCT bone measurements, the closest association being
with DTToMC (r = 0.24, p-value = 2 × 10−20). The pink and yellow
modules were significantly associated with both bulbus IMT variables
bbav (pink: r = 0.10, p-value = 7 × 10−5, yellow: r = 0.11, p-

value = 1 × 10−5) and bbmax (pink: r = 0.10, p-value = 8 × 10−5,
yellow: r = 0.12, p-value = 7 × 10−6). The same modules were also
significantly associated with five of the six pQCT-based subclinical os-
teoporosis indices. The exact lipid content of the most significant tur-
quoise module is listed in Table S1 and explained under Section 3.6.

3.5. Lipid significance (LS) and module membership (MM)

LS is defined as the correlation between the module's member lipids
and the study marker. MM is defined as the correlation between the
eigenlipid and the other member lipids. An ideal module is the one
where LS and MM are highly correlated suggesting that the lipids that
are highly correlated with the biological marker of interest are also the
important member of the analysed module [25]. Among the three sig-
nificant modules (Fig. 4), the joint turquoise module has a highly sig-
nificant correlation between LS and MM with respect to both subclinical
atherosclerotic (imtav; r = 0.66, p-value = 1.9 × 10−14) and sub-
clinical osteoporotic (DTToMC; r = 0.64, p-value = 2 × 10−13) mar-
kers (Fig. 3). The yellow module has a highly significant correlation
between LS and MM only with respect to the subclinical atherosclerotic
marker (bbmax; r = 0.49, p-value = .00013), whereas the pink module
has no significant correlation between LS and MMwith respect to any of
the studied markers (data not shown).

3.6. Lipid species distribution in the joint turquoise module for subclinical
osteoporotic and atherosclerosis markers

There were 105 lipid species in the joint turquoise module for
subclinical markers of osteoporosis and atherosclerosis. The majority of
the lipid species belonged to the classes of glycerolipid, glyceropho-
spholipid and sphingolipid (Fig. 5A). The glycerolipid class included 19
diacylglycerol and 41 triacylglycerol (TAG) lipid species (Fig. 5B). The
glycerophospholipid class had seven phosphatidylcholine lipid species,
and the sphingolipid class was enriched with 20 ceramide species
(Fig. 5B).

Table 1
Population characteristics of the Cardiovascular Risk in Young Finns Study
cohort. Data are expressed as mean ± SD or percentages.

Men Women

Number of subjects 646 (43%) 848 (57%)
Age, years 38 ± 5 38 ± 5
Body mass index, kg/m2 26.5 ± 3.9 25.1 ± 4.7
Total cholesterol (mmol/l) 5.2 ± 0.9 4.9 ± 0.8
LDL cholesterol (mmol/l) 3.3 ± 0.8 3.0 ± 0.7
HDL cholesterol (mmol/l) 1.2 ± 0.3 1.5 ± 0.3
Triglycerides (mmol/l) 1.6 ± 0.9 1.2 ± 0.6
Serum glucose (mmol/l) 5.5 ± 0.6 5.2 ± 0.7
Insulin (IU/l) 9.9 ± 26.3 8.3 ± 8.6
C-reactive protein (mg/l) 1.6 ± 4.7 2.0 ± 3.5
Systolic blood pressure (mmHg) 125.2 13.1 116 ± 13.4
Diastolic blood pressure (mmHg) 78.3 ± 10.9 72.8 ± 10.7
Alcohol consumption, units/day 1.4 ± 1.9 0.6 ± 0.7
Physical activity index (MET h/wk) 20.4 ± 22.2 19.4 ± 20.1
Daily smoking, % 129/641 (20%) 121/843 (14%)
Daily calcium intake (mg) 1371 ± 602 1190 ± 483
Daily vitamin D intake (μg) 8.4 ± 4.5 7.3 ± 3.5
Family risk factor for Coronary Heart

Disease (%)
107/646 (16.6%) 140/847 (16.5%)

Participants with osteoporosis (%) 3/641 (0.5%) 8/845 (1%)
Participants with epilepsy (%) 5/624 (0.8%) 7/835 (0.8%)
Participants with Crohn's disease (%) 5/625 (0.8%) 9/836 (1.1%)
Participants with Anorexia (%) 0 8/836 (1%)
Usage of corticosteroids at least once a

month (%)
13/624 (2.1%) 54/837 (6.5%)
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3.7. Multivariate analysis of the turquoise module and its constituent lipid
species with subclinical markers of osteoporosis and atherosclerosis

In multivariate analysis of variance (adjusted with age and sex),
average carotid intima media thickness (imtav) for subclinical athero-
sclerosis and total mineral content in the distal tibia (DTToMC) for
subclinical osteoporosis were chosen as outcomes because they ob-
tained the maximum correlation and the minimum p-value in a mod-
ule–trait relationship analysis (Fig. 3). There was a statistically sig-
nificant joint association between the turquoise eigenlipid and the

markers of subclinical osteoporosis and atherosclerosis, F(2,
1489) = 12.50, p-value = 4.1 × 10−6, Pillais' Trace = 0.01. The
turquoise eigenlipid had a statistically significant positive association
with both markers (p-value with imtav: 2.7 × 10−6 and p-value with
DTToMC: 0.03) in separate regression analyses.

Multivariate analysis of all the member lipid species in the turquoise
module with imtav and DTToMC as outcomes, identified 37 lipid species
that were jointly associated with the markers, with a Bonferroni-ad-
justed p-value of< 0.05 (Table S1). The three most significant joint
biomarkers of both osteoporosis and atherosclerosis were TAG (18:0/
18:0/18:1), TAG (18:0/18:1/18:1) and TAG (16:0/18:0/18:1), with
adjusted p-values of 8.6 × 10−8, 3.7 × 10−6, and 8.5 × 10−6, re-
spectively.

In separate regression analyses of each member lipid species and
imtav, 36 out of the 37 lipid species were found to be positively asso-
ciated, with a Bonferroni-adjusted p-value of< 0.05 (Table S2).
Similarly, regression analyses of each lipid species with DTToMC were
also performed. All the 37 lipid species that were found to be jointly
associated with markers of subclinical osteoporosis and atherosclerosis
were positively associated with DTToMC; 16 of these were nominally
significant (p-value < 0.05), but none of the lipid species reached a
Bonferroni-adjusted p-value of 0.05 (Table S3).

4. Discussion

To the best of our knowledge, this is the first lipidome-wide system-
level association study investigating the joint lipid architecture of sur-
rogate markers of both subclinical osteoporosis and subclinical ather-
osclerosis. We performed lipidomics analysis to identify modules of
lipid species that are significantly and jointly associated with the
markers' of both of the studied comorbidities. We identified a shared
module that is significantly associated with subclinical markers of both
osteoporosis (pQCT bone measurements) and atherosclerosis

Table 2
Surrogate markers of both subclinical osteoporosis and subclinical athero-
sclerosis with their descriptive statistics among the study participants, ex-
pressed as mean ± SD.

Description (unit) Abbreviations Mean (± SD)

Subclinical atherosclerosis
Carotid intima-media thickness (average, mm) imtav 0.6 ± 0.1
Carotid intima-media thickness (maximum,

mm)
imtmax 0.7 ± 0.2

Bulbus intima-media thickness (average, mm) bbav 0.8 ± 0.1
Bulbus intima-media thickness (maximum,

mm)
bbmax 0.8 ± 0.1

Subclinical osteoporosis
Total mineral density of the distal radius's

trabecular bone (mg/cm3)
DRTrD 224.4 ± 36.1

Total mineral density of the distal tibia's
trabecular bone (mg/cm3)

DTTrD 240.3 ± 34.1

Total mineral content of the distal radius (mg) DRToMC 243.6 ± 64.2
Total mineral content in the radial shaft's

cortical bone (mg)
RSCoMC 214.2 ± 44.9

Total mineral content in the distal tibia (mg) DTToMC 602.1 ± 126.9
Total mineral content in the tibia shaft's

cortical bone (mg)
TSCoMC 646.4 ± 110.5

Fig. 2. Pearson's correlation coefficients (r) between surrogate markers of subclinical osteoporosis and atherosclerosis. All correlations are statistically significant (p-
value < 0.01). The abbreviations in this figure are explained in Table 2.
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(ultrasound carotid IMT).
Whether osteoporosis and atherosclerosis are independent condi-

tions that only share common risk factors, such as aging, or also con-
stitute comorbid conditions with a similar pathophysiological me-
chanism is an active field of research [19,33]. Several studies have
shown an association between decreased bone mass density and in-
creased carotid IMT in different study groups [34–36]. Other studies

have suggested an association between osteoporosis and cardiovascular
mortality [37–40]. Similarly, one study suggested that defects in bone
mineralization and arterial calcification have a similar pathogenesis
[41].

In contrast to most of the published findings, we identified weak,
but statistically significant positive correlations between surrogate
markers of these two diseases. The positive correlations might be due to

Fig. 3. Module–surrogate marker relationships. The rows correspond to the different modules and their eigenlipids (ME). The columns correspond to the measured
subclinical osteoporotic and atherosclerotic markers of the study. The values in the cells represent Pearson's correlation coefficients (r), with the associated p-values
in parentheses. The modules are named according to colour and the correlation coefficients have a colour-coding shown in the colour legend (between −1 and +1)
on the right side of the figure. The abbreviations for the subclinical osteoporotic and atherosclerotic markers in the column names are explained in Table 2. (For
interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
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the relatively younger age of the study participants who have not yet
developed the clinical manifestations of the diseases. Thus, the positive
associations might arise from the shared biological mechanisms be-
tween bone and vascular tissue during their normal growth and de-
velopment. Similar results have been published elsewhere [42]. We
speculate that the dynamics of the lipid molecules that are associated
with both bone-related and vascular markers change during adverse
conditions leading to the comorbidity. Knowledge of the lipid mole-
cules that are associated with the surrogate markers of both the diseases
is crucial for identifying alterations in molecular dynamics that take
place during the disease. This will not only confirm whether or not the
diseases are comorbid but can also potentially improve the risk strati-
fication, prevention, diagnosis and treatment of the diseases.

The majority of the lipid species in the most significant joint module
belonged to the glycerolipid, glycerophospholipid and sphingolipid
classes. Within glycerophospholipids, one of the phosphatidylcholine
lipid species, namely lysophosphatidylcholine (LPC), is a pro-in-
flammatory lipid that is generated by various pathological activities
and is a major component of oxidized low-density lipoprotein (LDL)
[43]. Oxidized LDL is known to be a potential factor for the co-occur-
rence of vascular calcification with the loss of bone mass [44]. Studies
have shown that oxidized LDL promotes atherosclerosis via a chemo-
tactic and proliferative mechanism on monocytes by stimulating their
adhesion into the endothelial cells and by initiating the formation of
foam cells [45]. Oxidized-LDL has also been shown to proliferate and
stimulate the migration of smooth muscle cells into the tunica media,
which stimulates the production of collagen, thus contributing the fi-
brous lining in the atherosclerosis plaque [46]. Studies have also sug-
gested that oxidized LDL inhibits osteoblastic differentiation and bone
formation and promotes osteoblast cell death [47,48]. A recent study
suggested that there is a causal effect of LDL cholesterol on bone mass
density [49]. However, clinical findings related to oxidized LDL in the
context of cardiovascular diseases have been controversial [50–52].

The identified joint module includes high-risk cardiovascular cer-
amides among 20 other ceramides, which confirms their previously
shown association with cardiovascular outcomes [53,54] and suggests
their potential role in subclinical osteoporosis as well. Ceramides are
responsible for the activation of NF-κB (nuclear factor kappa-light-
chain-enhancer of activated B cells) that causes the apoptosis of bone
cells [55]. A study has demonstrated an association between ceramides
and trabecular bone density in mice [56]. In addition, sphingomyelins
have been found to be decreased in the bone tissue of mice with os-
teoporosis [57]. Ceramides also promote lipoprotein infiltration into
the vessel wall by acting as a key signalling molecule [58].

An earlier study has shown a significantly increased level of cho-
lesterol ester in the arterial wall of atherosclerotic lesions [59]. An
elevated level of triglycerides is known to be an important biomarker in
the development of cardiovascular disease [60]. Lipoproteins that carry
triglycerides in the blood stream accumulate in the artery wall intima
and are taken up by macrophages to form foam cells that contribute to

the build-up of plaque along the walls of artery [61]. The triglyceride
metabolism in bone tissue has been shown to diminish in subjects with
osteoporosis, when compared with the healthy controls [62]. Further-
more, a study with middle-aged women in Japan revealed that patients
with hypertriglyceridemia had reduced bone resorption and were at
risk of fractures [63]. Furthermore, among the 37 joint lipid species
identified herein by multivariate analysis of variance as being sig-
nificantly associated with both osteoporosis and atherosclerosis, the top
three were triglycerides namely TAG(18:0/18:0/18:1), TAG(18:0/18:1/
18:1) and TAG(16:0/18:0/18:1). A previous study has shown an asso-
ciation between TAG(18:0/18:1/18:1) and cardiovascular disease [64].
Furthermore, TAG(16:0/18:0/18:1) has been linked to a faster pro-
gression of type 2 diabetes [65] which is a risk factor for both cardio-
vascular disease [66] and bone fractures [67].

This study is limited to the subclinical phase of atherosclerosis and
osteoporosis, as it is based on a relatively young cohort population with
very few diagnosed cases of cardiovascular disease and osteoporosis.
Therefore, further research on lipidome-wide associations with clinical
comorbidities in a case–control setting is crucial. Furthermore, as all of
the participants of this study are of Caucasian origin, studies with po-
pulations of different ethnicities are needed.

5. Summary and conclusion

Several earlier studies have shown that osteoporosis and athero-
sclerosis are comorbid conditions, emphasizing that these conditions
should be investigated in detail to identify common risk factors and
joint molecular mechanisms and to develop common methods for risk
stratification, prevention, diagnosis and treatment. In the present study,
we identified a lipidome module, with its specific molecular lipids, that
was significantly associated with surrogate markers of the subclinical
phase of both osteoporosis and atherosclerosis. Alteration in the me-
tabolism of the identified lipid species might contribute to the comorbid
conditions and yield new possibilities for their dual-based prevention
methods.
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