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ABSTRACT 

Currently, magnetic resonance imaging (MRI) plays an important role in the 
diagnostic process and monitoring of the disease course in multiple sclerosis (MS). 
However, routinely used conventional MRI (T1- and T2-weighted sequences) is not 
specific to underlying MS pathology, and correlations between radiological findings 
and clinical measures are only modest. Potent therapies for MS, such as natalizumab 
(NTZ), have been associated with progressive multifocal leukoencephalopathy 
(PML). PML is a severe demyelinating disease caused by the reactivation of 
neurotropic JC virus (JCV). Due to the risk of PML, the serological assessment of 
antibodies against JCV is performed before starting NTZ. 

The main goal of this four-year follow-up study was to determine changes in the 
brain using nonconventional MRI techniques, such as volumetric measurements and 
diffusion tensor imaging (DTI), in clinically isolated syndrome (CIS) and MS. 
Whether volumetric and DTI-derived metrics could play prognostic roles in the 
prediction of the conversion of CIS to MS and whether these nonconventional 
measures correlate with disability progression expressed by an increase in the 
expanded disability status scale score in MS were also evaluated. In the third part of 
this thesis, the seroprevalence of the anti-JCV antibodies and temporal changes in 
JCV serostatus in a Finnish cohort of patients with CIS and MS were evaluated. The 
effect of demographic factors and MS therapies on JCV status was also determined. 

In the first and second part of this study, the higher baseline volumes of focal 
brain lesions related to MS pathology were associated with the conversion of CIS to 
MS. In contrast, whole brain atrophy and volumes of focal lesions were not clearly 
correlated with disability progression over four years in MS. With regard to DTI, 
diffusivity changes in the brain were stronger in CIS and MS when compared to 
healthy controls. Moreover, the worsening of DTI metrics was primarily observed 
in the CIS group that converted to MS. However, a clear correlation between 
baseline DTI metrics and the conversion to MS was not found. In MS, a tendency 
for a correlation between the DTI metric in the corpus callosum (CC) and disability 
progression was observed. 

 The results suggest a potential role for DTI in monitoring disease activity in 
CIS and MS. Volumetric measurements seem to be helpful in evaluating disease 
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progression in CIS but not in MS. However, further studies with larger populations 
and longer follow-up times are required to confirm these results. 

 The third part of the thesis showed a high seroprevalence of anti-JCV 
antibodies (57%) in a cohort of CIS and MS patients. Moreover, marked temporal 
fluctuations in JCV serostatus were observed over four years. Demographics, such 
as higher age and male gender, were associated with anti-JCV antibody seropositivity. 
These observations are consistent with the reports from multinational studies and 
confirm high JCV seroprevalence in Finnish MS patients. Moreover, temporal 
changes in JCV serostatus should be considered in clinical practice. 
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TIIVISTELMÄ 

Magneettikuvausta (MK) käytetään nykyään yleisesti multippeliskleroosin (MS) 
diagnostiikassa ja taudin seurannassa. Konventionaalinen MK (T1 ja T2 painotteiset 
sekvenssit) ei kuitenkaan ole spesifinen MS-taudin patologian suhteen. Lisäksi 
radiologiset löydökset korreloivat vain kohtalaisesti kliinisen kokonaistoimintakyvyn 
kanssa. 

Tehokkaat MS-taudin lääkehoidot, kuten natalitsumabi (NTZ), lisäävät 
progressiivisen multifokaalisen leukoenkefalopatian (PML) riskiä. PML on vakava 
demyelinoiva keskushermoston sairaus, jonka aiheuttaa neurotrooppisen JC-
viruksen reaktivaatio. PML:n riskin vuoksi MS-potilailta tutkitaan JC-virusvasta-
aineet ennen NTZ:n lääkehoidon aloitusta. 

Väitöskirjatutkimuksen päätavoitteena oli tutkia uusien MK:een perustuvien 
kuvantamismenetelmien, volumetrian ja diffuusiotensorikuvauksen (DTI) avulla 
aivoparenkyymissä tapahtuvia muutoksia MS-potilailla ja kliinisesti eriytyneessä 
oireyhtymässä (KEO) neljän vuoden seurantatutkimuksessa. Tavoitteena oli selvittää 
voidaanko volumetrialla tai DTI-muutosten arvioinnilla ennustaa progressiota 
KEO:sta MS-tautiin. MS-potilailla selvitettiin myös korreloivatko havaitut 
muutokset toimintakyvyn huononemiseen expanded disability status scale-asteikon 
avulla mitattuna. Kolmannessa osatyössä tutkittiin JC-virusvasta-aineiden 
seroprevalenssia suomalaisessa MS-potilasaineistossa sekä selvitettiin JC-virusvasta-
aineiden stabiliteettia neljän vuoden seurannassa. Myös MS-taudin 
immunomoduloivan hoidon ja muiden kliinisten tekijöiden vaikutusta JC-viruksen 
esiintymiseen selvitettiin.  

Tuloksien mukaan suurempi MS-plakkien tilavuus lähtötilanteessa on yhteydessä 
progressioon KEO:sta MS-tautiin. Sen sijaan MS-potilailla aivoatrofia tai plakkien 
volyymi eivät selkeästi korreloineet kokonaistoimintakyvyn huononemiseen neljän 
vuoden seurannassa. DTI:n avulla havaitut aivoparenkyymin muutokset olivat 
merkittävämmät KEO- ja MS- potilailla kuin terveillä verrokeilla. Lisäksi havaittiin, 
että DTI-arvojen huononeminen seurannassa oli yleisempää sellaisessa KEO-
ryhmässä, joka eteni MS-tautiin. Lähtötilanteen DTI-muutokset eivät kuitenkaan 
ennustaneet konversiota. MS-potilailla corpus callosumin DTI-arvojen ja 
kokonaistoimintakyvyn huononemisen välillä oli heikko yhteys.  
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Kuvantamistulokset viittaavat siihen, että DTI:lla on potentiaalia taudin 
aktivisuuden monitoroinnissa sekä KEO:ssa että MS-taudissa. Volumetriassa 
havaitut muutokset olivat yhteydessä taudin progressiossa vain KEO:ssa. Tulosten 
varmentaminen edellyttää kuitenkin suurempaa potilasaineistoa ja pidempää 
seuranta-aikaa. 

JC-virusvasta-aineiden merkitystä selvittävässä tutkimuksessa havaittiin korkea 
JC-virusvasta-aineiden seroprevalenssi sekä KEO- että MS-potilailla (57%). 
Seurannassa oli huomattavaa vasta-aineiden vaihtelua. Korkeampi ikä ja 
miessukupuoli olivat yhteydessä JC-virusvasta-ainepositiivisuuteen. Yhteenvetona 
todetaan, että JC-viruksen seroprevalenssi suomalaisilla MS potilailla on korkea 
kuten muissakin maissa. JC-virusvasta-ainestatuksen vaihtelu on syytä huomioida 
kliinisessä toiminnassa. 
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1 INTRODUCTION 

Multiple sclerosis (MS) is an inflammatory degenerative disease of the central 
nervous system (CNS) that affects young adults, leading to marked disability and 
cognitive impairment (Thompson et al., 2018). MS prevalence is high in northern 
countries, including Finland (Browne et al., 2014; Sumelahti et al., 2001). The 
pathogenesis of MS is not fully understood, but the autoimmune response of the T 
and B cells against antigens in the CNS is thought to be responsible for tissue damage 
(Kasper & Shoemaker, 2010; Schirmer et al., 2014). Histopathologically, MS is 
characterized by demyelination, axonal loss, and gliosis (Lassmann, 2018). 
Neurodegeneration observed in MS leads to brain atrophy, which appears early in 
disease (Uher et al., 2014) and progresses faster in MS than in healthy populations 
(Bermel & Bakshi, 2006). 

The first clinical episode suggestive of inflammatory demyelination is called 
clinically isolated syndrome (CIS) (Miller, D. et al., 2005). The most common clinical 
phenotype of MS is relapsing-remitting MS (RRMS), which is characterized by 
episodes of relapses followed by recovery (Lublin, 2014). RRMS progresses to 
secondary-progressive MS (SPMS) in approximately 30-60% of cases within 
approximately 20 years after MS onset (Tutuncu et al., 2013). SPMS is characterized 
by gradual progression of disability with or without superimposed relapses (Lublin 
et al., 2014). MS patients with progressive onset of disease are categorized as primary-
progressive MS (PPMS), and these individuals represent a minority of MS patients 
(Miller, D. H. & Leary, 2007). 

Conventional magnetic resonance imaging (MRI), including T1- and T2-weighted 
sequences with and without gadolinium (Gd) contrast, is a main paraclinical tool 
used for diagnosing MS, monitoring disease course and treatment effect (Wattjes, 
Rovira et al., 2015). Diffusion tensor imaging (DTI) is a nonconventional MRI 
sequence in which image contrast depends on differences in water diffusion in 
different brain regions (Enzinger et al., 2015). Several DTI studies have revealed 
changes in brain regions that appear normal on conventional MRI in the so-called 
normal-appearing grey (NAGM) and white matter (NAWM) (Bozzali et al., 2002; 
Preziosa et al., 2011). In addition, brain atrophy measurements play promising roles 
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in disease monitoring, as brain volume loss is associated with clinical progression in 
MS (Jacobsen et al., 2014; Kalincik et al., 2012). As the extent of brain abnormalities 
observed on conventional MRI correlates only moderately with clinical measures in 
MS (Barkhof, 1999), there is still a need to search for imaging biomarkers that more 
specifically reflect disease-related pathology and correlate more accurately with 
clinical status.   

Immunomodulatory MS therapies, such as natalizumab (NTZ), fingolimod, and 
dimethyl fumarate, are associated with severe adverse effects, such as progressive 
multifocal leukoencephalopathy (PML) (Berger et al., 2018; Linda et al., 2009; 
Rosenkranz et al., 2015). PML is caused by the reactivation of JC virus (JCV) and 
the subsequent lytic infection of the brain (Major et al., 2018). The quantification of 
antibodies against JCV was included in PML risk stratification for patients receiving 
NTZ (Plavina et al., 2014). Therefore, information on the JCV antibody status and 
the temporal stability of such antibodies is of great importance in MS patients. 
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2 REVIEW OF THE LITERATURE 

2.1 Overview of MS 

2.1.1 Epidemiology and risk factors 
 

MS is an immune-mediated inflammatory demyelinating disease (Baecher-Allan et 
al., 2018; Lassmann, 2018) that typically affects young adults between the ages of 20 
– 30 years (Kobelt et al., 2017; Noseworthy et al., 2000). The overall prevalence rate 
of MS in Europe is high, occurring in approximately 83/100,000 individuals 
(Kingwell et al., 2013; Pugliatti et al., 2006). Both the prevalence and incidence of 
MS have increased during recent decades, especially among women (Koch-
Henriksen & Sorensen, 2010; Trojano et al., 2012). The prevalence of MS in Finland 
is high and increasing, with incidents ranging between 108 – 280/100,000 individuals 
(Sumelahti et al., 2000; Sumelahti et al., 2001; Sumelahti et al., 2003) and with marked 
differences between regions (Pirttisalo et al., 2019). 

The aetiology of MS is unknown (Reich et al., 2018). Nonetheless, genetic and 
environmental factors play important roles in the development of MS (Ebers, 2008). 
Among genetic risk factors, first-degree relatives affected by MS (Nielsen, N. M. et 
al., 2005), female gender, Scandinavian and Caucasian ethnic origin (Kahana, 2000) 
have been linked to a higher risk of MS. The environmental risk factors for MS are 
as follows: higher geographical latitude, lower vitamin D levels probably related to 
decreased sunlight exposure, Epstein-Barr virus (EBV) infection in childhood, 
obesity and smoking (Olsson et al., 2017). Early exposure to environmental risk 
factors (before the age of 15) is crucial to the development of MS. Migration from 
the area with a high risk of MS to an area with a lower risk of MS early in life has 
been related to a reduction in the risk of MS development, indicating the relevant 
role of environmental factors in MS development (Ramagopalan et al., 2010). 
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2.1.2 Pathology of MS 
 

The pathologic features of MS are demyelination and inflammatory infiltrates 
consisting of monocytes, microglial, T and B cells (Kuhlmann et al., 2017). 
Demyelinating inflammatory processes occur in the white and grey matter 
(Lassmann, 2018) and begin around small veins, which distinguishes MS from other 
demyelinating conditions, such as neuromyelitis optica (NMO) or PML (Bauer et al., 
2015; Misu et al., 2013). Focal demyelinating lesions called plaques can be divided 
into two main groups, acute active and chronic. Acute active plaques are 
characterized by diffuse infiltration of macrophages and lymphocytes, and such 
plaques are frequently present in early stages of MS (Frischer et al., 2009). 
Inflammation at early stages of MS is responsible for blood-brain barrier damage 
(Gaitan et al., 2011; Hochmeister et al., 2006). Chronic lesions are predominantly 
observed in progressive MS and consist of a hypocellular demyelinated core 
surrounded by a rim of activated iron-rich microglia and macrophages (Frischer et 
al., 2015; Popescu, B. F. et al., 2013; Prineas et al., 2001). Axonal degeneration 
observed in the plaques is strongly associated with inflammation, and axonal density 
is profoundly decreased in chronic lesions (Frischer et al., 2015). Cortical 
demyelination appears early in the disease course (Lucchinetti et al., 2011) and 
increases in progressive MS (Choi et al., 2012; Magliozzi et al., 2007). Diffuse and 
perivascular meningeal inflammation seems to be responsible for cortical pathology 
in MS (Howell et al., 2011; Lucchinetti et al., 2011). 

   Diffuse abnormalities beyond demyelinating plaques in the NAWM and 
NAGM are also observed in MS. These anomalies represent inflammatory 
infiltration, oedema, microglia activation, axonal injury, and astrogliosis (Kutzelnigg 
et al., 2005). These changes are partially caused by focal lesions through Wallerian 
degeneration (Dziedzic et al., 2010), meningeal inflammation (Haider et al., 2016), 
and diffuse inflammatory processes (Lassmann, 2013). 

Diffuse and focal pathology results in whole brain atrophy with grey matter 
atrophy progressing faster than white matter atrophy (Chard et al., 2004; Fisher et 
al., 2008). Both cortical atrophy and deep grey matter atrophy have been observed 
since the early stages of MS (Bergsland et al., 2012; Henry, R. G. et al., 2008; Tiberio 
et al., 2005), and these conditions are more prominent in progressive MS than in 
RRMS (Calabrese et al., 2013). 
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2.1.3 Diagnostic criteria of MS   
 

MS diagnosis is based today on the clinical and MRI evidence of disease 
dissemination in space (DIS) and time (DIT) (Filippi et al., 2016; Polman et al., 2005; 
Polman et al., 2011; Thompson et al., 2018). Paraclinical tool, such as MRI has gained 
much attention in recent years as it allows the visualization of clinically silent lesions 
(Harris et al., 1991) that may confirm DIS and DIT and the early diagnosis of MS, 
even during the first clinical presentation (Brownlee et al., 2015; Polman et al., 2011). 
Diagnostic criteria for relapsing MS and their evolution through the ages are 
presented in Table 1. These criteria should be applied in the clinical context in 
patients with typical CIS and other diseases mimicking MS should be carefully 
excluded (Filippi et al., 2016).  

The newest criteria for MS published in 2018 strengthen the role of MRI in the 
diagnosis of MS (Thompson et al., 2018). The main changes proposed in this revision 
are as follows: in patients presented with CIS with DIS, the presence of oligoclonal 
bands in the CSF may confirm DIT and thus the diagnosis of MS. Moreover, 
symptomatic lesions observed on MRI can confirm both DIS and DIT. Additionally, 
cortical lesions that are not clearly observed on conventional MRI can be used to 
demonstrate DIS, thereby possibly reinforcing the role of nonconventional MRI 
techniques, such as double inversion recovery (DIR) and phase-sensitive inversion 
recovery (PSIR), which are able to visualize cortical lesions (Favaretto et al., 2015; 
Filippi et al., 2010). 

Radiologically isolated syndrome (RIS) is defined as incidental brain lesions 
consisting of demyelination observed on MRI in individuals without symptoms 
suggestive of MS (Okuda et al., 2009). In one study, MS developed in 30% of RIS 
within 5 years (D. T. Okuda et al., 2014). The radiological risk factors for the 
conversion of RIS to MS include Gd-enhancing lesions and spinal cord lesions 
(Lebrun et al., 2009; Okuda et al., 2011). 
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2.1.4 Clinical course and methods of quantifying disability in MS 
 

The clinical course of MS is classified as RRMS and progressive MS. In 85% of 
patients, MS begins as CIS, which refers to a first clinical episode suggestive of 
inflammatory demyelination in the CNS (Confavreux & Vukusic, 2006; Scalfari et 
al., 2010). Typically, CIS presents with optic neuritis, brainstem or spinal cord 
symptoms that can be caused by a single lesion or lesions in more than one site in 
the CNS (Miller, D. H. et al., 2012). 

The most common clinical phenotype of MS (85%) is RRMS (Confavreux & 
Vukusic, 2006). This condition is characterized by clinical exacerbations that last at 
least 24 hours with complete or partial recovery between relapses (Lublin et al., 
2014). In approximately 65% of cases, RRMS is followed by a progressive phase in 
which continuous clinical worsening occurs with or without superimposing relapses 
(Compston & Coles, 2008; Lublin, 2014). Such a transition occurs gradually and 
begins at approximately 45 years (Soldan et al., 2015; Tutuncu et al., 2013), with a 
median time from MS onset to a progressive phase of approximately 19 years (Amato 
& Ponziani, 2000; Vukusic & Confavreux, 2003). The early conversion to SPMS has 
been associated with older age at MS onset and longer disease duration (Vukusic & 
Confavreux, 2003). 

The least common clinical phenotype of MS is PPMS (15%). This phenotype is 
characterized by disability progression from the onset without preceding the 
relapsing-remitting stage (Miller, D. H. & Leary, 2007). In PPMS, spinal 
manifestation is common, disease onset is usually later, and the progression of 
irreversible disability is faster than that in RRMS (Confavreux & Vukusic, 2006; Rice 
et al., 2013). There are no reliable blood, cerebral spinal fluid (CSF), or imaging 
biomarkers distinguishing MS phenotypes (Lublin et al., 2014; Rice et al., 2013). 

A widely used clinical scale to assess disability caused by MS and its progression 
is the Expanded Disability Status Scale (EDSS), which ranges from 0 (normal) to 10 
(death due to MS) (Kurtzke, 1983). EDSS scores below 4.0 refer to patients who are 
fully ambulatory and EDSS scores of 4.0 or above refer to patients with impairment 
to ambulation. An EDSS score of 6 means intermittent or constant assistance 
required to walk 100 metres. The disease progression index is defined as EDSS 
divided by the disease duration. The Multiple Sclerosis Functional Composite 
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(MSFC) is a global measure that assesses walking speed using a timed 25-foot walk, 
arm and hand dexterity using a nine-hole peg test (9-HPT), and cognition function 
using the Paced Auditory Serial Additions Test (PASAT) (Cutter et al., 1999). The 
Multiple Sclerosis Severity Score (MSSS) relates the single EDSS score to the 
distribution of disability in patients with similar disease durations (Roxburgh et al., 
2005). 

2.1.5 Active MS and immunomodulatory treatment 
 

From a clinical and pathological point of view, MS is classified into relapsing and 
progressive phenotypes, which represent predominant inflammatory and 
degenerative phases, respectively. These phenotypes can be further divided into 
active and nonactive subtypes (Lublin et al., 2014). 

The goal of immunomodulatory treatment in MS is the absence of disease activity 
defined clinically and by MRI (Comi et al., 2017). Clinical activity is demonstrated by 
relapses and disability progression, while MRI activity is expressed by Gd-enhancing 
lesions and new or enlarging T2 lesions (Giovannoni et al., 2017; Lublin et al., 2014; 
McNamara et al., 2017). There is no cure for MS, but therapy should be started early 
(Landfeldt et al., 2018), as immunomodulatory treatment has been shown to delay 
the conversion of CIS to MS (Comi et al., 2012; Jacobs et al., 2000; Kappos, 
Traboulsee et al., 2006; Miller, A. E. et al., 2014) and disease progression in MS 
(Trojano et al., 2009). 

In the early 1990s, interferon (IFN) beta was the first drug approved for the 
treatment of MS (Jacobs et al., 1996). During the last 20 years, a large number of 
new immunomodulatory drugs have been introduced into MS treatment (Cohen et 
al., 2012; Comi et al., 2001; H. P. Hartung et al., 2002; Kappos et al., 2010; O'Connor 
et al., 2011; Polman et al., 2006). Current standard therapies approved in Finland for 
the treatment of RRMS are presented in Table 2. 

The concepts related to treatment strategy in MS depend mainly on disease 
activity. Initial treatment with highly potential drugs (alemtuzumab, NTZ, cladribine) 
aims to minimize as much as possible inflammation-related neurodegeneration, 
preferably already at early stages of MS (Cree et al., 2019; Giovannoni, 2018). 
However, the highly potential drugs expose patients to drug-related risks and serious 
adverse effects, such as PML. Another, and more common approach, recommends 
the initiation of treatment with safe, moderately effective drugs (IFN, glatiramer 
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acetate, teriflunomide, dimethyl fumarate) and escalation to more potential 
treatments, when necessary (Comi et al., 2017). 
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2.2 Magnetic resonance imaging in MS 

2.2.1 Conventional MRI 

2.2.1.1 MRI findings in MS 
 

Conventional MRI, including T1-weighted images with and without Gd, T2-
weighted images including fluid attenuated inversion recovery (FLAIR) sequence, is 
a sensitive paraclinical tool for the detection of brain and spinal cord lesions 
suggestive of MS. However, MRI findings are not specific to MS (Absinta et al., 
2012). Typical MS lesions are hyperintense on T2-weighted images, ovoid in shape 
and orientated around a central vein (known as “central vein” sign seen on 
susceptibility weighted imaging SWI). MS lesions are typically located juxtacortically, 
infratentorially, and periventricularly, including the corpus callosum (Solomon et al., 
2015; Thompson et al., 2018). T2 lesions are pathologically nonspecific and represent 
acute inflammation, oedema, gliosis and axonal loss (Filippi et al., 2019; Markovic-
Plese & McFarland, 2001). The majority of new T2 lesions decrease in size within a 
few months after their development due to the resorption of oedema and subsequent 
degeneration and repair processes (Rovira et al., 2013). 

On non-contrast T1-weighted images, the majority of focal white matter MS 
lesions are isointense to white matter. A subgroup of T1 lesions (14%-41%) is 
hypointense compared to white matter, i.e., black holes. Approximately 20%-60% 
of newly formed black holes persist as hypointense on follow-up scans, and these 
anomalies represent lesions with significant demyelination and axonal loss (Bitsch et 
al., 2001; Sahraian et al., 2010; Walderveen et al., 1998). Gd-enhancing lesions on 
postcontrast T1-weighted images, i.e., acute lesions predominantly encountered at 
early stages of MS, indicate the disruption of the blood-brain barrier and active 
inflammation (Grossman et al., 1986; Hochmeister et al., 2006; Saade et al., 2018). 
In progressive MS, the hypointense rim observed in some focal lesions on 3T and 
7T susceptibility images depicts chronic lesions with ongoing inflammatory activity, 
i.e., chronic active lesions (Absinta et al., 2016; Absinta et al., 2018; Kilsdonk et al., 
2014). Leptomeningeal enhancement observed on postcontrast FLAIR images in 3T 
and 7T MRI (Harrison et al., 2017; Zivadinov et al., 2017) represents meningeal 
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inflammation and seems to be associated with the formation of cortical lesions and 
cortical atrophy in progressive MS (Absinta et al., 2015; Makshakov et al., 2017; 
Zurawski et al., 2017). 

The brain atrophy rate, which indicates neurodegeneration and irreversible 
damage of brain tissue, is higher in patients with MS than in healthy controls, with 
0.5-1.3% per year and 0.2-0.5% per year, respectively (Fjell et al., 2009; Vagberg et 
al., 2013). Brain atrophy already occurs in CIS (Dalton et al., 2002) and early RRMS 
(De Stefano et al., 2010; Fisher et al., 2008; Zivadinov et al., 2001). Moreover, grey 
matter atrophy, particularly in the thalamus, is more pronounced than white matter 
atrophy at the early stages of disease (Henry, R. G., Shieh, Okuda, Evangelista, 
Gorno-Tempini, & Pelletier, 2008b). There is no evident difference in the 
progression of brain atrophy between MS subtypes (De Stefano et al., 2010); 
however, the greater severity of brain (Lin, X. & Blumhardt, 2001; Pagani et al., 2005; 
Tedeschi et al., 2005) and spinal cord atrophy (Lin, X., Tench, Turner, Blumhardt, 
& Constantinescu, 2003) has been observed in SPMS than in RRMS. Brain atrophy 
is unspecific to underlying pathology, as this effect results from demyelination and 
axonal loss within plaques and normal-appearing brain tissue (NABT) (Chard et al., 
2003; Kalkers, Vrenken, Uitdehaag, Polman, & Barkhof, 2002; Siffrin, Vogt, 
Radbruch, Nitsch, & Zipp, 2010). The underlying cause of deep grey matter atrophy 
seems to differ between MS phenotypes. Recent studies have shown that deep grey 
matter atrophy results from white matter lesions in RRMS, while in progressive MS 
mainly results from local microstructural damage (Pontillo et al., 2019). 

There is no clear imaging distinction regarding brain MRI characteristics between 
patients with relapsing and progressive MS (Lublin et al., 2014); patients with RRMS 
and SPMS may share similar brain MRI characteristics with regard to cerebral T2 
lesion volume and atrophy (Tauhid et al., 2014). Recently, it was shown that T2-
weighted images without use of Gd-enhanced T1 sequences are sensitive enough to 
detect radiological activity in routine MRI follow-up in patients with MS (Eichinger 
et al., 2019). It is important as Gd retention in the dentate nucleus and globus pallidus 
has been observed and it was related to multiple administration of Gd-based contrast 
agents (Forslin et al., 2019). 
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2.2.1.2 MRI as a prognostic tool in MS 
 

In MS, the correlations between clinical course and characteristics derived from 
conventional MRI are less evident than those in CIS. However, measures from 
conventional MRI obtained early in the clinical course of MS can add valuable 
prognostic information on clinical status (Rahn et al., 2019; Tintore et al., 2015). 

In CIS, there is evidence that T2 lesion volume and lesion number, early increase 
in T2 lesion volume (Fisniku et al., 2008; Kuhle et al., 2015; Swanton et al., 2010; 
Tintore et al., 2015), infratentorial T2 lesions (Giorgio et al., 2013; Tintore et al., 
2010) and non-enhancing T1 lesions (Mitjana et al., 2014) are associated with a higher 
risk of conversion from CIS to MS. Moreover, the number of T2 lesions and 
infratentorial focal lesions have been linked to long-term disability as measured by 
EDSS (Fisniku et al., 2008; Minneboo et al., 2004). A high rate of increase in T2 
lesion volume has also been associated with future progression from CIS to SPMS 
(Fisniku et al., 2008). 

In CIS, a higher degree of global brain atrophy after the first clinical presentation 
(Dalton et al., 2012; Filippo et al., 2010; Perez-Miralles et al., 2013), atrophy of the 
superior gyrus, thalamus, cerebellum (Calabrese, Rinaldi, Mattisi et al., 2011), and 
callosal atrophy (Kalincik et al., 2012; Odenthal et al., 2017) have been associated 
with early conversion to MS. 

In MS, increased volume of brain T2 lesions (Barkhof, 2002; Mesaros et al., 2008; 
Mostert et al., 2010) and higher activity of new T2 lesion formation (Bermel et al., 
2013) are only modestly correlated with disability progression. Additionally, lesion 
location is important in predicting disability progression, as supratentorial and 
periventricular brain lesions are associated with the increased accumulation of 
disability (Altermatt et al., 2018; Kincses et al., 2011; Vellinga et al., 2009). T1 brain 
lesion volume correlates better with clinical disability (expressed by EDSS) than T2 
lesions (Caramanos et al., 2012; Giorgio et al., 2014; Lukas et al., 2013). The number 
of Gd-enhancing T1 lesions correlates only modestly with clinical disability 
accumulation (Kappos et al., 1999). 

With regard to brain atrophy, volume loss of deep grey matter is mainly 
responsible for disability progression in MS (A. Eshaghi et al., 2018; Fisher et al., 
2008; Roosendaal et al., 2011; Stefano et al., 2010). Higher amounts of whole brain 
atrophy (Khaleeli et al., 2008; Radue et al., 2015), grey matter atrophy (Filippi et al., 
2013; Jacobsen et al., 2014) and cervical spinal cord atrophy (Lukas et al., 2015) were 
variably correlated with long-term physical disability progression in MS (RRMS and 
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PPMS). Moreover, cognitive impairment was associated with cortical atrophy in MS 
(Calabrese, Poretto et al., 2012). 

 The simultaneous use of multiple MRI markers derived from different MRI 
techniques (composite MRI Scores) improved the correlation between radiological 
findings and EDSS in MS (Poonawalla et al., 2010). In CIS, the risk stratification of 
the conversion of CIS to MS is improved when both MRI (MRI criteria for MS, 
number of T1 lesions) and clinical biomarkers (age at onset, presence of oligoclonal 
bands) are taken into consideration (Martinelli et al., 2017). 

2.2.1.3 MRI in the assessment of treatment response in MS 
 

MRI is more sensitive in the detection of disease activity than clinical evaluation, as 
the magnitude of MRI lesions is higher than clinical activity assessed by the number 
of relapses, i.e., clinically silent MRI lesions (Harris et al., 1991; Isaac et al., 1988). 
The MRI outcome measures used in the assessment of disease activity can be divided 
into markers of inflammation (Gd-enhancing T1 lesions, new or enlarging T2 
lesions, i.e., active lesions) and markers of degeneration (brain atrophy and evolution 
of “black hole” T1 lesions). 

Gd-enhancing T1 and active T2 lesions occurring after treatment initiation have 
been widely used in clinical trials to monitor the efficacy of immunomodulatory 
treatment in MS. MRI brain lesion load in treated MS patients was associated with 
future occurrence of relapses, and to a lesser extent, with worsening of disability at 
the group level (Sormani et al., 2009; Sormani et al., 2010). In RRMS patients on 
IFN therapy, Gd-enhancing lesions and new T2 lesions have been related to short-
term and long-term disability progression (Bermel et al., 2013; Prosperini et al., 2009; 
Rio et al., 2009). Additionally, a decreased rate of conversion of Gd-enhancing T1 
lesions to black holes was observed in IFN- and NTZ-treated patients (Bagnato et 
al., 2005; Dalton et al., 2004; Nagtegaal et al., 2014; Zivadinov et al., 2007), indicating 
a positive effect of treatment on MS-related neurodegeneration. 

Reduced progression of whole brain and deep grey matter atrophy in MS patients 
receiving immunomodulatory treatment was observed in some clinical trials (Comi 
et al., 2013; Filippi et al., 2014; Miller, D. H. et al., 2007; Rudick et al., 1999). 
However, atrophy measurements in individual patients are not yet recommended 
mainly due to the inconsistent results of previous studies and the effect of 
confounding factors on brain atrophy (Azevedo & Pelletier, 2016; Stefano et al., 
2014; Wattjes et al., 2015). 
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The value of pre-treatment MRI in the prediction of subsequent treatment 
response is limited in MS (Leocani et al., 2016). There is some evidence from 
previous studies in IFN-treated RRMS suggesting that higher T2 lesion load and the 
presence of Gd-enhancing lesions before treatment initiation (Barkhof et al., 2003; 
Kappos, Polman et al., 2006; Romeo et al., 2013; Tomassini et al., 2006) along with 
clinical measures such as older age, longer disease duration (Villoslada et al., 2004), 
higher pre-treatment relapse rate (Waubant et al., 2003) and higher baseline EDSS 
(Rio et al., 2006) are related to poorer response to MS therapy. 

2.2.1.4 MRI and pharmacovigilance in MS 

 

Radiological pharmacovigilance in MS includes the detection of paradoxical 
reactions, such as tumefactive  demyelination (i.e., tumour-like lesions) occurring in 
patients treated with fingolimod (Visser et al., 2012), comorbidities (vascular, 
neoplastic) (Capkun et al., 2015; P. Tettey et al., 2014) and opportunistic infections 
(e.g., varicella zoster in patients treated with fingolimod (Kappos et al., 2014). PML, 
another opportunistic infection related to immunomodulatory treatment, has been 
observed in MS patients receiving NTZ (Linda et al., 2009), dimethyl fumarate 
(Linker & Haghikia, 2016) and fingolimod (Berger et al., 2018; Khatri, 2016). As the 
early detection of PML in the presymptomatic stage improves survival (Dong-Si et 
al., 2014; Dong-Si et al., 2015; Hoepner et al., 2017), regular MRI monitoring of 
patients receiving immunomodulatory and immunosuppressive drugs is of great 
importance. The frequency of screening MRI in NTZ-treated patients is based on 
clinical and serological risk stratification and varies from every 3-4 months in patients 
with high risk to every 1 year in patients with low risk (Wattjes et al., 2015). 

2.2.2 Nonconventional MRI 

2.2.2.1 Diffusion weighted and diffusion tensor imaging 
 

Nonconventional MRI is represented by several quantitative MRI techniques, such 
as magnetization transfer imaging (MTI) and DTI. These imaging techniques reveal 



 

30 
 

abnormalities in the brain regions that appear normal on conventional MRI. 
Moreover, imaging characteristics derived from nonconventional MRI provide more 
specific correlation with underlying histopathology than findings revealed by 
conventional MRI (Enzinger et al., 2015). 

Diffusion weighted imaging (DWI) is commonly used in clinical practice to 
demonstrate abnormal restriction of water diffusion in clinical conditions, such as 
cerebral ischaemia, cerebral abscess and neoplasms (Drake-Perez et al., 2018). In 
DWI, there is an assumption that water diffusivity is similar in every direction, i.e., 
isotropic. A degree of reduced diffusion in biological tissue is averaged to a single 
value called the apparent diffusion coefficient (ADC) (Alexander et al., 2007). 

In contrast to DWI, DTI characterizes water diffusion in three-dimensional (3D) 
space. DTI allows measurements of the magnitude (as in DWI) and directionality of 
water diffusion (Mukherjee et al., 2008). 

Brain white matter is highly anisotropic tissue due to axonal fibres. To describe 
the diffusivity of water molecules in 3D anisotropic tissue, the mathematical concept 
of tensor is used (Bihan et al., 2001). Tensor describes directionality (eigenvectors) 
and magnitude (described by eigenvalues) of diffusivities in three principal 
orthogonal axes (eigenvectors 1, 2, and 3). The largest eigenvector reflects the main 
direction of diffusivity and is called longitudinal or axial diffusivity (AD). The 
average of the two medium and minor eigenvectors that are perpendicular to axial 
diffusivity is called radial diffusivity (RD). The average value of all three principal 
eigenvalues is called mean diffusivity (MD) and describes the magnitude of water 
diffusivity in a voxel or anatomical region. Another measure calculated from 
eigenvalues is fractional anisotropy (FA), which reflects the degree of directionality 
along the axonal fibres. The values of FA vary between 0 and 1, indicating completely 
isotropic diffusion as in the CSF and completely anisotropic diffusion as in axonal 
fibres, respectively (Pierpaoli et al., 1996). 

2.2.2.2 Methods for the quantitative analysis of DTI 
 

Commonly used methods for brain DTI analysis are region of interest (ROI), voxel-
wise, histogram, and tractography-based approaches. 

ROI analysis is based on the manual delineation of the area in the brain structure 
of interest, usually on the non-diffusion-weighted b0 or FA maps, and then 
automatically transferred to the diffusion maps. The ROI can be geometrical in 
shape, e.g., circle, or can be defined according to the shape of the analysed structure, 
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i.e., freehand ROI with the latter method being less susceptible to partial volume 
effects (Snook et al., 2005). The ROI-based method is sensitive to small changes of 
parameters in the selected region and is suitable for investigating diffusivity indices 
in well-defined anatomical structures, such as the internal capsule (IC) and the CC 
(Snook et al., 2007). This approach is operator-dependent and thus susceptible to 
variability of intra- and inter-observer measurements (Ozturk et al., 2008). The 
highest agreement for repeatability measurements was observed in the CC and IC 
and lowest for corona radiata and centrum semiovale (Brander et al., 2010). 

In contrast, histogram analysis is a fully automated method that allows extraction 
of DTI indices from the whole brain or separately for the whole white and grey 
matter. In this method, regional differences in diffusion are not obtained. Moreover, 
histogram variables are sensitive to partial volume effects related to brain atrophy 
(Heidi Johansen-Berg & Timothy E.J. Behrens, 2009). 

The voxel-based method (VBM) allows regionally specific analysis of diffusivity 
in the whole brain in a fully automated way (Snook et al., 2007). This approach 
includes the registration of all diffusion maps for one subject onto a common 
normalized skeleton, followed by voxel-by-voxel comparisons between the studied 
groups (Ashburner & Friston, 2000). The limitations of VBM are related to the 
accuracy of alignment during registration and the number of smoothing images, 
which may cause post-processing calculation errors (Ridgway et al., 2008). The newer 
voxel-based method, Tract-Based Spatial Statistics (TBSS), partially overcomes these 
problems by using nonlinear registration (Smith et al., 2006). 

Tractography allows the tracking of white matter fibres according to the 
dominant diffusion tensor of each voxels (Chung et al., 2011; Mukherjee et al., 2008). 

2.2.2.3 Applications of DTI in clinical setting: correlations with histopathology and 
clinical observations 

 

FA and MD are modulated by demyelination and axonal loss, as shown in studies 
that correlate MRI findings with histopathology (Mottershead et al., 2003; Schmierer, 
Wheeler-Kingshott et al., 2007). However, none of these parameters allow clear 
discrimination between axonal and myelin damage (Song et al., 2003; Tyszka et al., 
2006). In mouse experimental models, increased RD has been consistently related to 
demyelination (Song et al., 2002; Song et al., 2005; Sun et al., 2006). Decreased AD 
has usually been associated with axonopathy (Song et al., 2003; Sun et al., 2006), but 
this correlation has not been clear in every study (Kronlage et al., 2017; Song et al., 
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2002; Xie et al., 2010). Mathematical modelling revealed that a low signal-to-noise 
ratio, the presence of crossing fibres in brain tissue, and anisotropy caused by 
pathology may confound radiological-pathological correlations and lead to the 
misinterpretation of the results (Wheeler-Kingshott & Cercignani, 2009; Wheeler-
Kingshott et al., 2012). 

Increased MD and decreased FA have been typically observed in focal MS lesions 
(Bammer et al., 2000; Filippi et al., 2000), NAWM (Cercignani et al., 2001; Filippi et 
al., 2001; Guo et al., 2001), cortical and deep NAGM (Oreja-Guevara et al., 2005) in 
the brain tissue of patients with MS. The formulation of new different types of focal 
lesions is preceded by diffusivity abnormalities (Fox et al., 2011; Naismith et al., 
2010; Werring et al., 2000). Diffusivity changes are already observed in CIS and 
become more evident in patients with MS (Braley et al., 2012; Preziosa et al., 2011; 
Roosendaal et al., 2009). DTI differentiates MS at early stages from healthy subjects 
(Henry, R. G. et al., 2009; Rashid et al., 2008; Raz et al., 2010a); however, such 
discrimination was not always obvious (Pulizzi et al., 2007). 

DTI has been widely used in studies investigating correlations between diffusivity 
metrics and clinical aspects in various neurological disorders, such as amyotrophic 
lateral sclerosis, Parkinson’s disease, Alzheimer’s dementia, epilepsy, and traumatic 
brain injury (Tae et al., 2018). In MS, correlations between DTI metrics from the 
NABT and clinical manifestations, such as cognitive (Bodini et al., 2013; Llufriu et 
al., 2012; Schoonheim et al., 2015) and physical (Lin et al., 2007; Pokryszko-Dragan 
et al., 2018; Tortorella et al., 2014)  impairment, have been observed. In CIS, 
diffusivity abnormalities were associated with disease severity and activity in some 
studies (Bester et al., 2008; Caramia et al., 2002; Pagani et al., 2005) but not in others 
(Gallo et al., 2005; Raz et al., 2010b; Rovaris et al., 2008; Vishwas et al., 2013). 
Changes in DTI metrics have also been related to immunomodulatory therapies (Fox 
et al., 2011; Zivadinov, Hagemeier et al., 2018; Zivadinov, Bergsland et al., 2018) and 
rehabilitation (Ibrahim et al., 2011) in MS patients, indicating the potential role of 
DTI in monitoring treatment effects. Additionally, more severe abnormalities of 
diffusivity markers were observed in MS when compared to acute disseminated 
encephalomyelitis and NMO (Kim et al., 2017; Tillema et al., 2012), indicating the 
potential of DTI in the diagnostic process. 
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2.2.3 Future perspectives of MRI in MS 

2.2.3.1 MRI in the diagnosis and differential diagnosis of MS 

Cortical demyelinating lesions can be detected by MRI in CIS and MS using DIR 
(Calabrese et al., 2007; Filippi et al., 2010) and PSIR (Favaretto et al., 2015) 
sequences. Since cortical lesions are not observed in other diseases resembling MS, 
such as NMO (Calabrese, Oh et al., 2012) and migraine (Absinta et al., 2012), their 
detection may be helpful in differential diagnosis. Moreover, a high proportion of 
white matter lesions with a central vein known as central vein sign identified on SWI 
at 3T and 7T is characteristic of MS and may differentiate MS from other imaging 
mimickers of MS, such as brain microangiopathy (Mistry et al., 2016), inflammatory 
vasculopathies (Maggi et al., 2018), Susac syndrome (Wuerfel et al., 2012), and 
migraine (Solomon et al., 2015). Therefore, cortical lesions and central vein sign may 
be useful in the diagnostic work-up of MS. 

Cortical lesions have also been associated with a higher rate of conversion of CIS 
to MS (Filippi et al., 2018; Preziosa et al., 2018), faster progression of physical 
disability (Calabrese et al., 2012) and increased cognitive impairment (Calabrese, 
Rinaldi, Grossi et al., 2011; Muhlert et al., 2015; Nelson et al., 2011), making these 
anomalies useful in the assessment of the clinical course of MS. 

The detection of cortical lesions and central vein sign has not yet been widely 
implemented in clinical practice due to a lack of standardized MRI protocol and 
unified criteria (Filippi et al., 2016; Sati et al., 2016). 

2.2.3.2 MRI in disease monitoring 

Advanced MRI techniques, such as positron emission tomography (PET)-MRI and 
MTI, are more specific to underlying MS-related pathophysiology than conventional 
MRI. These techniques may play a potential role in monitoring disease course and 
treatment outcome. 

Increased microglial activation detected by PET-MRI has been observed in CIS 
and MS (Airas et al., 2017) and was related to the conversion of CIS to MS (Giannetti 
et al., 2015) and higher disability in MS (Rissanen et al., 2018). 

The quantification of myelin content using MTI can be a marker of demyelination 
and remyelination (Schmierer, Tozer et al., 2007), and deteriorated MTI-derived 
parameters have been associated with cognitive impairment in long-term follow-up 
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studies (Deloire et al., 2011; Filippi et al., 2013). MTI-derived metrics indicating 
remyelination rate have been also proposed as an outcome measure in clinical trials 
(van den Elskamp et al., 2010). 

 

2.2.3.3 MRI techniques in monitoring treatment effects 

The development of more potent drugs in MS has caused the evolution of treatment 
goals in MS therapies and emphasized the role of MRI in treatment monitoring. No 
evidence of disease activity (NEDA) composite has been proposed as a new 
therapeutic goal in MS trials (Havrdova et al., 2009; Kappos et al., 2017). According 
to NEDA, evaluation of the treatment effect is based on a combined assessment of 
clinical activity (relapses, increased disability expresses by EDSS change) and 
radiological activity (new and/or enlarging T2 lesions or enhancing lesions) 
(Giovannoni et al., 2011). Brain atrophy measurement, which expresses 
neurodegeneration, has been recently added into NEDA as a new tool in monitoring 
treatment effects (Kappos et al., 2016). 

2.3 JC virus 

2.3.1 Epidemiology and biology of JCV 

JCV is a human polyomavirus that was isolated for the first time in 1971 (Padgett et 
al., 1971). Approximately 50 -70% of immunocompetent adults are asymptomatically 
infected with JCV as detected by serum IgG antibodies against virus (Egli et al., 2009; 
Knowles et al., 2003; Stolt et al., 2003; Verbeeck et al., 2008). Primary infection with 
JCV occurs early in childhood (Kean et al., 2009; Stolt et al., 2003), and the rate of 
JCV seroprevalence increases with ageing (Antonsson et al., 2010; Kean et al., 2009; 
Knowles et al., 2003). JCV is an aetiologic factor of PML and the lytic brain infection 
of oligodendrocytes in immunocompromised individuals (Ferenczy et al., 2012). 
Moreover, the JCV infection of neurons is responsible for cerebellar granule cell 
neuropathy (Henry, C. et al., 2015). 

JCV is transmitted from the environment into the blood through the respiratory 
and digestive tract. After primary infection, the virus persists in the kidneys (Degener 
et al., 1997; Randhawa et al., 2005), lymphoid tissue including bone marrow (Houff 
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et al., 1988; Tornatore et al., 1992), and the brain (Tan et al., 2010), resulting in latent 
infection. Virus crosses the blood-brain barrier as a free virus or inside B cells (Diotti 
et al., 2013). Rearrangements in the noncoding control region of the viral genome, 
which are believed to occur in lymphoid cells and bone marrow, are responsible for 
the transformation of latent virus into a neurovirulent form (Marzocchetti et al., 
2008). It was suggested that recombination between JCV and EBV may be 
responsible for such a transition (Wortman et al., 2016). 

2.3.2 JCV and PML 

In cases of impaired immunosurveillance, neurovirulent JCV may reactivate and 
cross the blood-brain barrier, causing PML (Khalili et al., 2007). PML was initially 
observed in patients with primary immunodeficiency (Day-Williams et al., 2015; 
Zerbe et al., 2016) and in patients with AIDS (Eng et al., 2006). In AIDS, impaired 
T lymphocyte-mediated immunity (suppression of CD4 , CD8 ) may be 
responsible for the development of PML in patients infected with JCV (Engsig et 
al., 2009; Misbah, 2017). 

The second large group of patients predisposed to PML are those under 
monoclonal antibody therapy, including NTZ (Major, 2010). It was suggested that 
NTZ activates the migration of JCV-infected CD34  and pre-B cells (Frohman et 
al., 2014) from the bone marrow to the blood, contributing to PML pathogenesis 
(Zohren et al., 2008). Natalizumab can also upregulate transcription factor SpiB, 
which may lead to increased JCV replication (Meira et al., 2016). 

2.3.3 Diagnosis of PML and the management of patients at risk of PML 

Diagnostic criteria for PML include clinical symptoms and MRI findings suggestive 
of PML, and the detection of JCV DNA in CSF by polymerase chain reaction (PCR) 
or brain biopsy (Berger et al., 2013). Clinical manifestations consistent with PML are 
cognitive impairment, motor deficits, speech problems, and visual defects (Berger, 
2011). MRI may show brain lesions in the presymptomatic stage of PML (Langer-
Gould et al., 2005; Linda et al., 2009). Typical radiological features in NTZ-
associated PML include lesions that are hyperintense on T2-weighted images and 
DWI, hypointense on T1-weighted images with subcortical distribution involving U-
fibres (Hodel et al., 2016; Yousry et al., 2012). Histopathologically, brain lesions in 
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PML demonstrate demyelination, bizarre astrocytes, and enlarged nuclei of 
oligodendrocytes (Berger, Aksamit et al., 2013). 

The factors increasing the risk of PML in NTZ-treated patients are duration of 
NTZ treatment longer than two years, seropositivity for anti-JCV antibodies, and 
immunosuppressive therapy preceding NTZ treatment (Major et al., 2018). For 
patients having all three factors, the risk of PML is approximately 11/1000, while in 
patients without any risk factors, the risk is as low as 0.1/1000 (Bloomgren et al., 
2012). For comparison, in patients treated with rituximab, the risk of PML is lower 
occurring approximately 1/30,000 individuals, depending on the treated disease 
(Amend et al., 2010; Zaheer & Berger, 2012) with case reports published in patients 
receiving alemtuzumab (Gerevini et al., 2019; Isidoro et al., 2014; Keene et al., 2011), 
infliximab (Sammut et al., 2016), dimethyl fumarate (Baharnoori et al., 2016), and 
fingolimod (Gyang et al., 2016). 

Anti-JCV antibody screening indices are measured in the serum or plasma with a 
second-generation ELISA known as STRATIFY JCV TM DxSelect TM (Lee et al., 
2013). Higher values of anti-JCV screening indices are associated with a higher risk 
of PML (Lee et al., 2013; Trampe et al., 2012). NTZ-treated patients with no prior 
immunosuppression in which the anti-JCV antibody screening index is greater than 
1.5 have a higher risk of PML when compared to patients with a lower anti-JCV 
antibody index (Plavina et al., 2014). There are limitations of JCV serology, such as 
false-negative results of anti-JCV antibody measurements (Berger, Houff et al., 2013; 
Major et al., 2013) and changes in serostatus over time (i.e., seroconversion to JCV 
positivity and seroreversion to JCV negativity) (Cambron et al., 2017; Outteryck et 
al., 2013; Trampe et al., 2012),  which complicates the interpretation of JCV status. 

Recently, L-selectin (Basnyat et al., 2015; Schwab, Schneider-Hohendorf, 
Pignolet, Spadaro et al., 2016) and lipid-specific IgM bands (Villar et al., 2015) have 
been investigated and proposed as new serological biomarkers that may identify 
patients with a higher risk of NTZ-associated PML. 
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3 AIMS OF THE STUDY 

The general aim of this study was to define the role of conventional MRI and DTI 
techniques in the prediction of clinical course and disease severity in patients with 
CIS and MS. Additionally, we aimed to establish the seroprevalence of JCV in 
Finnish patients with MS. The specific aims were as follows: 

 
1. To determine whether DTI and brain volume measures could play 

prognostic roles in predicting the conversion of CIS to MS (Study I). 
 
2. To determine whether DTI and brain volume measures could play 

prognostic roles in the prediction of disability progression in patients 
with MS (Study II). 

 
3. To assess the anti-JCV antibody seroprevalence and the temporal 

change of the JCV seroprevalence in patients with MS and evaluate 
whether demographic factors and MS therapies have effect on the anti-
JCV antibody status (Study III). 
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4 SUBJECTS AND METHODS 

4.1 CIS and MS: a clinicoradiological follow-up (Studies I and II) 
 

Twenty patients with CIS (Study I), 46 patients with MS (Study II), and 10 age-
matched healthy controls (Studies I and II) were included in the four-year follow-up 
study at the Tampere University Hospital between December 2006 and September 
2012. The clinical characteristics of the subjects in Studies I and II are displayed in 
Table 3. The diagnosis of MS was based on the 2005 McDonald criteria (Polman et 
al., 2005). CIS was defined as a first clinical episode suggestive of inflammatory 
demyelinating disease with no paraclinical evidence of dissemination in time (Miller, 
D. H. et al., 2012). The Lublin and Reingold criteria were used to evaluate the clinical 
course of MS (Lublin & Reingold, 1996; Lublin, 2014). 

All CIS and MS patients were examined by the same neurologist yearly over the 
whole follow-up period (five clinical examinations all together) (Studies I and II). In 
CIS patients, DTI was performed at baseline, at one year, at two years, and at the 
end of the follow-up (four MRI examinations all together), and MRI volumetry was 
performed at baseline, at two years, and at the end of the follow-up  (Study I). In MS 
patients, DTI was performed at baseline and at one year of the follow-up, and MRI 
volumetry at baseline (Study II). The same healthy control group was included in the 
cross-sectional analysis at baseline in both studies (Studies I and II). 

The assessment of conversion of CIS to definite MS over the follow-up was based 
on clinical or radiological evidence of DIT or DIS (Study I). Clinical disability was 
evaluated by the EDSS (Kurtzke, 1983) (Study I and II). Progression of disability 
over the four-year follow-up was defined as an EDSS score increase ≥ 1.0 when the 
baseline EDSS was < 6.0 or an increase of EDSS ≥ 0.5 when the baseline EDSS ≥ 
6 (Wingerchuk et al., 1997) (Study II). 
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4.2 CIS and MS: a JCV study (Study III) 
 

In total, 503 patients with MS and CIS were included in the study. Patients from a 
cross-sectional study (n=406) were examined clinically (between January 2012 and 
February 2013) in four MS centres in Tampere (140 patients), Helsinki (114 patients), 
Seinäjoki (98 patients), and Turku (54 patients). Ninety-seven patients examined in 
the Tampere University Hospital were included in the four-year longitudinal study 
(between December 2006 and September 2012). The diagnosis of MS was based on 
the 2005 McDonald criteria and on the 2010 McDonald criteria (Polman et al., 2005; 
Polman et al., 2011). CIS was defined as a first clinical episode suggestive of 
inflammatory demyelinating disease with no paraclinical evidence of dissemination 
in time. The clinical characteristics of subjects from Study III are displayed in Table 
3. In the longitudinal assessment, four serological measurements were performed 
yearly over the whole follow-up period. 

Overall, 12/67 (18%) CIS patients from Study I and 42/67 (63%) MS patients 
(30 RRMS, 12 SPMS) from Study II were also included in the longitudinal analysis 
of Study III (67 patients in longitudinal analysis). 

Studies I-III were approved by the Ethics Committee of Tampere University 
(ethical codes of the studies are R05157 and R11116), and all subjects provided 
written informed consent. 
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Table 3.  Clinical characteristics of patients and controls at baseline and follow-up 
  Patients   Controls 
STUDY I (CIS patients)       
No. of subjects 20   10 
Gender (M/F)a 2/18   5/5 
Age (years)b 35.3 (21.8 - 52.5) 40 (26 - 61) 
Time from first symptoms (years) 4.7 (0.5 - 8.8) NA 
Positive IgG statusa 7 (35%) NA 
Positive oligoclonal band statusa 15 (75%) NA 
Onset symptomsa     NA 
   Optic neuritis 14 (70%)   
   Brainstem 2 (10%)   
   Spinal cord 3 (15%)   
   Brainstem and spinal cord 1 (5%)   
Conversion to MS over follow-upa 11 (55%) NA 
No. of relapses over follow-up (0 / 1)a 14/6   NA 
EDSS at baselinec 0 (0 - 1) NA 
EDSS at the end of follow-upc 0 (0 - 1.5) NA 
        
STUDY II (MS patients)       
No. of subjects 46   10 
Gender (M/F)a 15 / 31   5/5 
Age (years)b 39.6 (18 - 61) 40 (26 - 61) 
Clinical phenotype RRMS / SPMSa 33 / 13   NA 
Disease duration (years)c 4.2 (0 - 31.2) NA 
No. of relapses 3 years before baseline (0 / 1-2 / 3-5)a 15 / 24 / 7   NA 
No. of relapses over follow-up (0 / 1-2 / 3-6)a 24 / 12 / 10   NA 
EDSS at baselinec 2 (0 - 7) NA 
EDSS at the end of follow-upc 2 (0 - 8) NA 
Treatment at baselinea  18 (39%) NA 
Duration of treatment (months)c 18.5 (1 - 122) NA 
        
STUDY III (JCV)       
Cross-sectional study       
No. of patients 406   _- 
Clinical phenotype CIS / RRMS / SPMS / PPMSa 9 / 350 / 39 / 8   _- 
Gender (M/F)a 101 / 305   _- 
Age (years)b 40.9 (19.3 - 71.7) _- 
MS duration (years)c 6.9 (0 - 34.2) _- 
EDSSc 2 (0 - 7) _- 
No. of relapses 2 years before baseline (0 / 1 / 2-5)a   235 / 101 / 70   _- 
Prior and current natalizumab therapya 92 (23%) _- 
Duration of natalizumab therapy (months)c 25.5 (1 - 69) _- 
Prior and current immunomodulator therapya 348 (86%) _- 
Prior and current immunosuppressant tharapya 35 (9%) _- 
Longitudinal study       
No. of patients 67   _- 
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a Number of subjects; b Mean (range); c Median (range); NA not applicable; EDSS expanded disability status scale; 
CIS clinically isolated syndrome, RRMS relapsing-remitting MS; SPMS secondary progressive MS; PPMS primary 
progressive MS; In Study III (longitudinal analysis), serological changes over the whole follow-up were obtained for 
67 patients. 

4.3 Magnetic resonance imaging (Studies I and II) 

4.3.1  MRI protocol 

Whole brain imaging was performed on a 1.5 T magnetic resonance scanner 
(Magnetom Avanto SQ, Siemens Medical Solutions, Erlangen, Germany). The MRI 
acquisition protocol was as follows: T1-weighted header followed by an axial 3D T1-
weighted magnetisation prepared rapid gradient echo (MPRAGE), 3D T2-weighted 
turbo spin-echo, FLAIR, T1-weighted spin echo with magnetisation transfer 
contrasts, multi-directional diffusion-weighted echo planar imaging, and Gd-
enhanced T1-weighted MPRAGE. Gadolinium dose was based on body weight. The 
DTI protocol consisted of a single-shot spin-echo-based echo-planar diffusion-
weighted imaging with 3 averages, and 12 gradient encoding directions, with b values 
of 0 and 1000 s/mm2. 

For T1 MPRAGE, the imaging parameters were as follows: repetition time (TR) 
= 1160 ms; echo time (TE) = 4.2 ms; inversion time (TI) = 600 ms; slice thickness 
= 0.9 mm; interslice gap = 0 mm; matrix 256*256, in-plane resolution 0.45*0.45 mm. 
For FLAIR, the following parameters were used: TR = 8500 ms; TE = 100 ms; TI 
= 2500 ms; slice thickness = 5 mm; interslice gap = 0 mm; matrix 256*256; in-plane 
resolution 0.45*0.45 mm. Scanning parameters for T2-weighted sequence: TR = 750 
ms; TE = 115 ms; slice thickness = 3 mm; in-plane resolution = 0.9*0.9 mm. DTI 
was performed with the following scanning parameters: TR = 3500 ms; TE = 96 ms; 

Clinical phenotype CIS / RRMS / SPMS / PPMSa 12 / 29 / 12 / 14   _- 
Gender (M/F)a 22 / 45   _- 
Age (years)b 41.9 (18 - 67) _- 
MS duration (years)c 4.4 (0 - 31.2) _- 
EDSS at baselinec 2 (0 - 7) _- 
No. of relapses 2 years before baseline (0 / 1 / 2-5)a   16 / 21 / 16    _- 
Prior and current natalizumab therapya 0   _- 
Duration of natalizumab therapy (months)c NA   _- 
Prior and current immunomodulator therapya 22 (33%) _- 
Prior and current immunosuppressant therapya 3 (4%) _- 
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slice thickness = 5 mm; interslice gap = 1.5 mm; matrix = 128*128 mm; in-plane 
resolution = 1.8*1.8 mm. 

 

4.3.2 Volumetric analysis 

Segmentation and volumetric measurements were performed using semiautomated 
Anatomatic software operating in a PC Windows environment (Heinonen et al., 
1998). In brief, segmented region was defined at every slice containing ROI using 
appropriate threshold coefficient. Volumes of segmented images were presented 
automatically as voxels. Conversion to volumes was done by multiplying the results 
by voxel dimensions in the original MR images. The total brain volume of 
hypointense T1 and hyperintense FLAIR lesions from the grey and white matter was 
assessed. T1 lesions were defined as lesions with an intensity lower than that of 
NAWM, and both T1 Gd-enhancing and non-enhancing lesions were included 
(Filippi et al., 2011). T2 images were used to increase the confidence in lesion 
identification especially in the infratentorial brain. Relative brain atrophy was 
determined by brain parenchymal fraction (BPF), which was defined as the ratio of 
brain parenchymal volume to the total volume within the brain surface contour on 
the T1 images (Rudick et al., 1999). 

4.3.3 DTI postprocessing  

The DTI data were analysed with commercial Neuro 3D software (Siemens 
Healthcare, PA, USA) on an offline workstation. Multidirectional diffusion data were 
assessed visually for distortions and artefacts. Circular ROIs (Study I) and freehand 
ROIs (Study II) were manually placed on MD, FA, and non-diffusion-weighted b0 

maps. The ROIs were placed at the following anatomical regions: the cerebral 
peduncle, corona radiata posterior and anterior, centrum semiovale, thalamus, head 
of the caudate nucleus bilaterally (Study I), genu and splenium of the CC, IC (study 
I and II), and corpus of the CC bilaterally (Study II). For cases in which 
demyelinating plaque was defined in pre-defined ROI, the ROI was shifted to the 
closest area surrounding the pre-defined ROI. FA, MD (Study I and II), RD, and 
AD indices (Study II) were included in the DTI analysis. 
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4.4 Assessment of anti-JCV antibodies (Study III) 

A confirmatory second-generation ELISA (STRATIFY JCV TM DxSelect) was used 
to test the sera for anti-JCV antibodies at the Unilabs, Denmark. An anti-JCV 
screening index value of less than 0.2 was considered anti-JCV antibody negative, 
whereas a screening index value greater than 0.4 was considered anti-JCV antibody 
positive. The samples with a screening index between 0.2 and 0.4 were evaluated 
with a confirmation test and results greater than 45% were classified as anti-JCV 
antibody positive (Lee et al., 2013). 

4.5 Statistical analysis (Studies I – III) 
 

Statistical analyses were performed using SPSS Statistics version 20.0 and 22.0 for 
Windows. Baseline comparisons for radiological (Studies I and II), serological (Study 
III) and clinical parameters (Studies I – III) between two unpaired groups were 
performed using t tests for normally distributed data and the Mann-Whitney U test 
for skewed distributed data. A baseline comparison for anti-JCV antibody 
seropositivity in different age groups was calculated using one-way ANOVA (Study 
III). Comparisons between groups for categorical variables such as gender and 
disease types were calculated using the chi-square test (Studies I – III). Spearman’s 
correlation coefficient was used to analyse the associations between clinical and MRI 
variables, and p-value  0.05 was considered statistically significant (Study II). The 
Wilcoxon test was used for paired DTI (Study II) and anti-JCV screening indices 
(Study III) comparisons. Associations between baseline MRI markers and 
conversion to MS over four years were analysed using Cox regression analysis (Study 
I). Logistic regression models with multiple covariates were used to estimate 
associations between DTI metrics, volumetric measures, and disability progression 
over four years (Study II). Logistic regression adjusted for age and sex was used to 
assess associations between several clinical factors, including MS treatment and JCV 
seroprevalence (Study III). P-value  0.05 was considered statistically significant 
(Studies I – III). In Study II, the Bonferroni-corrected p-value for six comparisons 
was also calculated in the analysis concerning DTI. 
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5 RESULTS 

5.1 MRI in CIS and MS (Studies I and II) 

5.1.1 Clinical activity of the study populations 
 

In Study I, 11 out of 20 (55%) CIS patients converted to MS over approximately 
four years. DIT and DIS were confirmed clinically (i.e., second relapse) in four 
patients and radiologically (i.e., new or enlarging T2 lesions) in seven patients. 

In Study II, 22 out of 46 (48%) MS patients presented an increase in EDSS scores 
over the four-year follow-up, confirming the progression of disability (median 3.0 
(range 0 – 7) at baseline and 6.0 (1 – 8) at 4 years). Over the follow-up period, relapses 
were observed in 22 out of 46 (48%) MS patients (in 12 out of 24 (50%) whose 
EDSS was stable and in 10 out of 22 (45%) MS patients whose EDSS increased over 
the follow-up period. 
 

5.1.2 Predictive value of brain volumetry in the assessment of disease 
activity in CIS and MS 

 

In Study I, T1 and FLAIR brain lesion volumes were assessed at baseline, at two 
years, and at four years of follow-up (Table 4). The higher T1 and FLAIR lesion 
volumes at baseline were associated with the conversion of CIS to MS over four 
years (for T1 lesion volume hazard ratio 1.99, p=0.021 and for FLAIR lesion volume 
hazard ratio 1.24, p=0.015). The changes of volumetric values over the follow-up 
were unspecific. 
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In Study II, the volume of demyelinated plaques on T1-weighted and FLAIR images 
and BPF were analysed at baseline in MS patients (Table 5). Only the FLAIR lesion 
volume was significantly higher (p=0.03) in a group of MS patients with disability 
progression (i.e., progression group) when compared to the stable group. Regression 
analysis did not reveal a clear association between baseline volumetric measurements 
and EDSS increase over four years (Table 5). 
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5.1.3 DTI findings in CIS and MS: cross-sectional and longitudinal analysis  
 

In the CIS group (Study I) that converted to MS, baseline MD was significantly 
higher than that in controls in the right IC (0.71  0.03 vs 0.68  0.01, respectively, 
p 0.05/3), left corona radiata anterior (0.69  0.04 vs 0.65  0.002, p 0.05/3), and 
right centrum semiovale (0.71  0.05 vs 0.67  0.03, p 0.05/3). Additionally, in the 
converted CIS group, baseline FA was lower than that in the controls in the right 
cerebral peduncle (0.76  0.05 vs 0.82  0.03, respectively, p 0.05/3) and the left 
caudate nucleus (0.18  0.04 vs 0.24  0.03, p 0.05/3). 

In the stable CIS group, baseline MD was higher than that in the controls in the 
right (0.73  0.03 vs 0.68  0.01, p 0.05/3) and left IC (0.73  0.05 vs 0.67  0.02, 
p 0.05/3), right corona radiata anterior (0.69  0.05 vs 0.64  0.02, p 0.05/3), and 
right centrum semiovale (0.71  0.03 vs 0.67  0.03, p 0.05/3). Moreover, FA was 
lower in the right cerebral peduncle (0.74  0.03 vs 0.82  0.03, p 0.05/3). There 
were no significant differences regarding baseline DTI between the converting and 
stable CIS groups. 

In Study I, annual rates of changes in regional DTI values were determined in 
converted CIS patients and in stable CIS patients (Table 6). In the converting group, 
a significant decrease in FA was observed in 3/9 brain regions (the corona radiata 
anterior and posterior, thalamus) and a significant increase in MD in 4/9 brain 
regions (the corona radiata anterior and posterior, centrum semiovale, splenium of 
the CC). In the stable CIS group, an increase in FA was observed only in the cerebral 
peduncle and an increase in MD was observed in the centrum semiovale.
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Table 6.  Percent of annual FA and MD change with relation to baseline in nonconverting and converting 
group of CIS patients over follow-up calculated from estimates of the group-wise linear mixed-
effect model 

   FA MD 

Brain region Side Nonconverting Converting Nonconverting Converting 

Cerebral peduncle R 1.84%* 1.19 % -1.15 % -0.40 % 

  L 1.18 % -0.36 % -0.61 % -0.42 % 

Internal capsule  R 0.55 % -1.12 % -0.19 % 0.63 % 

  L -0.10 % -0.11 % -0.35 % 0.86 % 

Corona radiata anterior  R -1.32 % -3.88%** -0.31 % 1.81%*** 

  L -1.42 % -1.23 % -0.05 % 1.13%* 

Corona radiata posterior R -1.92 % -3.09%** -0.21 % 1.09%* 

  L -0.34 % -2.07%** 0.13 % 1.27%** 

Centrum semiovale  R -0.25 % -2.68 % 0.76 % 1.79%** 

  L 0.62 % -0.28 % 1.37%* 1.95%** 

Corpus callosum. genu  NA -0.35 % -0.48 % 0.19 % 0.78 % 

Corpus callosum. splenium NA -0.01 % -0.12 % 0.26 % 1.53%* 

Thalamus  R 0.21 % -1.44 % -0.39 % 0.67 % 

  L -0.39 % -3.20%** -0.12 % 0.54 % 

Caudate nucleus  R 0.36 % -2.11 % 0.14 % 0.88 % 

  L -2.68 % -1.71 % -0.07 % 0.49 % 

FA fractional anisotropy; MD mean diffusivity (10-3 mm2/s); R right hemisphere, L left hemisphere; p values for 
time from separate linear mixed-effect models for non-converting and converting groups; * p<0.05; ** p<0.01; *** 
p<0.001.  Reprinted with permission from Kolasa et al., 2015. 
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In Study II, the differences in baseline DTI values between all MS patients and 
healthy controls were assessed and the strongest differences were observed in the 
CC for FA, MD, and RD indices (Figure 1). 

 

Figure 1. DTI metrics in MS patients and healthy controls at baseline. A DTI analysis was 
performed for 46 MS patients and 10 healthy controls. Values are expressed as the median   
range. Statistical analysis was carried out by Mann-Whitney U test; p˂0.05,  p˂0.01, 

p˂0.001, ns not significant. CCG genu of the corpus callosum, CCBR right body of the corpus 
callosum, CCBL left body of the corpus callosum, CCS splenium of the corpus callosum, ICR 
internal capsule right, ICL internal capsule left; DTI diffusion tensor imaging. Reprinted with 
permission from Kolasa et al., 2019. 

Longitudinal changes in DTI over a one-year follow-up were studied in MS 
patients (Study II). During the follow-up, FA significantly (p<0.05) increased in 4/6 
ROIs, and RD decreased in 4/6 ROIs (CC genu, body, and the CC splenium). AD 
showed a significant increase in 3/6 ROIs (the CC genu, CC body) (Table 7). The 
results remained significant except for RD in the CC genu and AD in the left CC 
body after the Bonferroni corrections (p<0.008). In the IC, the changes were non-
significant (Table 7). We did not observe significant differences with regard to one-
year DTI change between the disability progression and stable MS groups. 
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5.1.4 Predictive value of DTI in the assessment of disease activity in CIS 
and MS 

The were no clear associations between baseline DTI indices and conversion of CIS 
to MS over a four-year period (Study I). In MS patients (Study II), a lower baseline 
FA and higher RD in the CC genu, right CC body, and the CC splenium were 
associated with disability progression measured by EDSS increase over four years 
(p 0.05) in the logistic regression analysis containing age and time from onset 
symptoms as covariates. Moreover, a higher baseline MD in the right CC body and 
higher MD and AD in the CC splenium were associated with disability progression 
(Table 8). The results did not remain significant after the Bonferroni’s correction for 
multiple comparisons (p 0.008). 
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In the logistic regression analysis containing baseline EDSS and number of 
relapses, associations between disability progression and DTI metrics remained 
significant for CC body and CC splenium. The majority of these associations 
disappeared after Bonferroni’s correction (p 0.008). 

Covariates, such as medication, disease duration, and sex, had no effect on 
disability progression in the regression analysis. The association between disability 
progression and DTI disappeared in the CC genu, and statistical power was slightly 
decreased in the other CC areas in the models of regression analysis containing 
FLAIR lesion volume and BPF. The T1 lesion volume had no effect in any 
regression model. 

Longitudinal changes over 1 year after baseline were not associated with disability 
progression over four years in MS patients (Study II).  

We observed moderate and strong (r 0.4) correlations between volumetric 
measurements and DTI indices at baseline (Study II). The strongest correlations 
were observed in the CC genu between the T1 brain lesion volume and FA (p= 
0.001, r= -0.48), MD (p<0.001, r= 0.52), RD (p<0.001, r= 0.52) and between FLAIR 
lesion volume and FA (p<0.001, r= -0.6), MD (p<0.001, r= 0.54), and RD (p<0.001, 
r= 0.6). Regarding brain atrophy, the strongest correlations were found between BPF 
and RD (p=0.002, r= -0.46) in the right CC body, RD (p=0.007, r= -0.41) in the left 
CC body, MD (p=0.004, r= -0.44), AD (p= 0.001, r= -0.49) in the right IC, and MD 
(p<0.001, r= -0.53), AD (p=0.002, r= -0.47) in the left IC. 
 

5.2 JCV serology in MS (Study III) 
 

In Study III, the seroprevalence of anti-JCV antibody in the cohort of 406 MS 
patients was 57.4% (95% CI 52.6-62.2). The anti-JCV antibody seropositivity was 
higher in males (67%) than in females (54%) (p=0.02) and tended to increase with 
ageing (ANOVA, p=0.08). The use of different MS treatments did not influence anti 
JCV-serostatus; however, in patients treated with ongoing NTZ treatment 
(n=72/406), the screening-index values were lower than those in patients without 
such therapy (median 0.3 (range 0.1-3.12) vs 0.64 (0.1-3.12), p=0.01), respectively). 

Longitudinal changes over approximately 4.5 years in anti-JCV antibody 
serostatus and screening index values were assessed in 67 patients. Seroconversion 
from anti-JCV antibody seronegativity to seropositivity was observed in 4/19 (21%, 
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approximately 4.7% per year) patients, and seroreversion from anti JCV antibody 
seropositivity to seronegativity was observed in 4/48 (8.3%, approximately 1.8% per 
year) patients. Stable seronegativity over the whole follow-up was observed in 15/19 
(79%) patients, and stable seropositivity was observed in 44/48 (91.7%) patients. 
Moreover, marked interindividual variation in the magnitude of screening-index 
values was observed over the follow-up period. 
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6 DISCUSSION 

6.1 MRI in MS (Studies I and II) 

Conventional MRI (i.e., T1-weighted images with and without Gd contrast and T2-
weighted images) is a well-established tool in the diagnostic process and monitoring 
of disease course in patients with CIS and MS (Reich et al., 2018; Wattjes, Steenwijk 
et al., 2015). This result is mainly related to the sensitivity (and to a lesser degree to 
specificity) of conventional MRI for detecting white-matter focal lesions (Geraldes 
et al., 2018) and to long experience with this imaging technique (McDonald et al., 
2001; Thompson et al., 2018). However, only modest correlations have been 
observed between clinical measures and findings derived from conventional MRI, 
which is known as clinicoradiological paradox (Filippi et al., 2002). To fill this gap, 
several novel MRI techniques and postprocessing methods have been investigated 
within the last decade, such as volumetric measures of brain atrophy and focal lesions 
and DTI (Enzinger et al., 2015; Louapre et al., 2017). The use of nonconventional 
MRI techniques is not widely incorporated into clinical practice, mainly due to the 
conflicting results of previous studies, the lack of the well-established specificity of 
measurements and difficulties with reproducibility and interpretation of the results 
in real-life situations (Wattjes et al., 2015). 

In this context, the main focus of this thesis was to investigate whether brain 
volumetric measurements and DTI-derived indices from the NABT can predict 
clinical activity and the severity of disease in CIS and MS patients. 

6.1.1 MRI and conversion of CIS to MS (Study I) 
 

In Study I, we observed significant differences in diffusivity in the NAWM between 
CIS and healthy controls at baseline. Moreover, we demonstrated that the worsening 
of DTI parameters over four years is more prominent in CIS patients progressing to 
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MS than in individuals in the stable CIS group. However, the only baseline parameter 
that correlated with the conversion of CIS to MS was brain T1 and FLAIR lesion 
load but not diffusivity parameters.  

Several previous longitudinal studies have investigated the association between 
conventional MRI markers and the conversion of CIS to MS. The importance of 
T2-FLAIR lesions in the assessment of MS risk in CIS patients observed in the 
present study was also confirmed by the results of large four-year (Gaetani et al., 
2017; Kuhle et al., 2015) and seven-year (Tintore et al., 2015) follow-up studies that 
demonstrated a strong correlation between the number of brain T2 lesions on 
baseline MRIs and the development of MS. In contrast, multivariate analysis 
performed by Paolillo et al. did not revealed any value of measurements of brain T1 
or T2 lesion volumes in the prediction of the conversion of CIS to MS, most likely 
due to short follow-up (18 months) (Paolillo et al., 2004). 

CIS populations are heterogeneous in terms of different extents of brain MRI 
abnormalities at symptom onset (Odenthal & Coulthard, 2015). Additionally, some 
patients, especially those with normal brain MRIs, may not develop MS over the 
study period or even during the patient’s lifetime (Brodsky et al., 2008; Fisniku et al., 
2008; Tintore et al., 2006). Moreover, the location of demyelinating plaques is 
important in the context of conversion to MS. Patients with infratentorial lesions 
(Tintore et al., 2010) and lesions within large supratentorial white-matter tracts 
(Giorgio et al., 2013) have a higher risk of developing MS. Additionally, MRI-visible 
lesion load in CIS patients with monofocal rather than multifocal symptoms is a 
predictor for the conversion to MS (Nielsen, J. M. et al., 2009) emphasizing the 
importance of clinical symptomatology features in the development of MS. 

Relatively high volumes of T1 lesions (as well as T2 lesions) were observed in our 
cohort of CIS patients (Kalincik et al., 2012). As non-enhancing T1 lesions (black 
holes) depict severe structural damage in brain tissue, this may partially explain the 
correlation between T1 plaques and the conversion to MS observed herein. 
Consistent with our observations, non-enhancing T1 lesions were associated with 
conversion to MS; however, this correlation was not independent of T2 lesions in 
one study (Mitjana et al., 2014). We have not observed Gd-enhancing lesions in our 
CIS population, but this kind of lesions has also been associated with MS risk in 
previous studies (Nielsen, J. M. et al., 2009; Rovira et al., 2009). Importantly, the 
duration of lesion enhancement ranges typically between four and eight weeks, 
which may hypothetically influence the incidence of Gd-enhancing lesions observed 
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in previous studies (Filippi et al., 1997). Moreover, higher doses of contrast agent, 
longer delay between contrast injection and scanning as well as higher magnetic field 
strength are associated with increased detection of active MS lesions (Poloni et al., 
2011). 

The identification of new or enlarging T2 lesions over the follow-up period is of 
great importance in CIS and MS. Possible errors in the detection of T2 lesions related 
to interobserver variability on serial MRI examinations (Altay et al., 2013) might be 
minimized using image subtraction methods and automated quantification of the 
lesions (Battaglini et al., 2014). Moreover, a standardized protocol (adequate 
repositioning and the same MRI system) on serial scanning is also important 
(Vrenken et al., 2013; Wattjes et al., 2006; Wattjes et al., 2015). 

Taken together, based on the results of this and previous studies, we can conclude 
that T2 lesions and, to a lesser degree, T1 lesions (Mitjana et al., 2014) are associated 
with MS risk in CIS patients (Martinelli et al., 2017). 

 
In Study I, we performed a longitudinal analysis with four DTI examinations over 

the four-year follow-up in patients with CIS. Our results suggest that ROI-based 
DTI analysis can detect changes in water diffusivity in CIS when compared to 
healthy subjects. This difference was observed for both MD and FA metrics in 
several brain regions. Previous results are inconsistent, and one main reason for this 
discrepancy could be the different methods of DTI data analysis (ROI, histogram, 
TBSS, tractography) (Urger et al., 2013). Studies using histogram analysis (Yu et al., 
2008), tractography (Pagani et al., 2005), and TBSS (Preziosa et al., 2011) have found 
differences in MD in NABT between CIS and healthy subjects. One study using 
TBSS found lower FA in the NAWM of CIS than in healthy controls (Raz et al., 
2010a). In contrast, a ROI-based study, including younger and slightly more disabled 
patients than ours, did not show differences between CIS and healthy subjects at 
baseline (Caramia et al., 2002). Additionally, the histogram-based approach failed to 
show differences in DTI metrics between CIS and healthy subjects (Pulizzi et al., 
2007). 

We observed that worsening of diffusivity metrics in CIS converting to MS 
occurs in a higher number of ROIs than in stable CIS. However, clear correlations 
between DTI metrics and conversion to MS were not revealed. A few longitudinal 
studies have investigated the role of DTI in the prediction of MS development in 
CIS. The observation periods in these studies were up to approximately three years, 
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and the number of DTI examinations was between 1 and 2 (Caramia et al., 2002; 
Gallo et al., 2005; Raz et al., 2010b; Rovaris et al., 2008), with one study including 
four DTI examinations, as in our study (Bester et al., 2008). 

The one-year follow-up study of Gallo et al. in CIS patients with a relatively high 
focal brain lesion load revealed diffusivity abnormalities in the NAWM detected by 
histogram-based DTI. Similar to our observations, such diffusivity changes have not 
been associated with progression to MS (Gallo et al., 2005). The same results were 
also observed in the paediatric population of CIS (Vishwas et al., 2013). In contrast, 
a three-year follow-up study by Bester et al. using ROI methodology revealed a 
correlation between decreased FA in the CC splenium and the development of MS 
in patients with optic neuritis (Bester et al., 2008). Since the rate of conversion from 
CIS to MS increases with longer observation times (Brex et al., 2002), different 
follow-up durations across the studies may explain the inconsistent results. 
Additionally, different clinical characteristics of the study population may influence 
the results since younger age and different types of clinical symptoms at CIS onset 
contribute to the risk of MS (Gaetani et al., 2017; Spelman et al., 2017; Tintore et al., 
2015). 

The identification of CIS patients with a high risk of developing of MS is 
important, as the initialization of immunomodulatory therapy has been shown to 
reduce the rate of conversion to MS (Beck et al., 2002; Comi et al., 2001; Comi et al., 
2009; Kappos et al., 2009; Spelman et al., 2017). Therefore, disease activity expressed 
by dynamic changes in diffusivity indices together with measurements of brain lesion 
volume may play a role in the detection of patients with active ongoing processes 
related to MS pathology. 

Although our results suggest diffusivity abnormalities in CIS, a firm conclusion 
on the value of DTI use in individual patients in clinical practice cannot be made. 
The limitation of Study I is the small number of CIS patients and the variable time 
between study entry and the initial symptoms. The same image protocol and the MRI 
scanner over the whole follow-up is a strength of our study; however, a higher 
number of gradient encoding directions in DTI (i.e., high-angular-resolution 
diffusion imaging) could improve the characterization of water diffusion in brain 
tissue (Jones, 2004; Mukherjee et al., 2008). DTI-derived biomarkers need to be 
optimally reproducible and reliable for incorporation into clinical practice. Inter-
scanner variability related to magnetic field strength, gradient strength and even 
different software versions can affect the results obtained in DTI studies and thus 
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reproducibility (Bisdas et al., 2008; Pagani et al., 2005; Takao et al., 2012). Differences 
in DTI measurements related to inter- and intra-site variability can be at least partially 
minimized by using several postprocessing statistical models (Mirzaalian et al., 2015; 
Pagani et al., 2010; Venkatraman et al., 2015). 

6.1.2 MRI and disability progression in MS (Study II) 
 

In Study II, whole brain atrophy at baseline did not clearly predict disability 
progression over the four years. However, brain atrophy modified correlations 
between DTI indices and disability progression, indicating its influence on disability 
accumulation in our study population. Brain atrophy is a well-established marker of 
neurodegeneration in MS. Previously, greater whole brain atrophy and localized 
atrophy in specific brain regions have been correlated with disability worsening in 
cross-sectional and longitudinal studies (D. H. Miller et al., 2018; Ghione et al., 2018; 
Hanninen et al., 2019; Horakova et al., 2009; Jacobsen et al., 2014; Popescu, V. et al., 
2013; Steenwijk et al., 2016; Zivadinov et al., 2013). Confounding factors, such as 
image contrast and resolution, pseudoatrophy related to cessation of oedema due to 
MS treatment, age and comorbidities must be taken into account when analysing 
brain atrophy, as these factors influence brain atrophy measurements (Khoury & 
Bakshi, 2010; Stefano et al., 2014). Moreover, the software used in brain atrophy 
analysis differs with regard to reproducibility and repeatability (Storelli et al., 2018).   

Concerning the prognostic value of brain lesion volume, we did not observe a 
clear association between T1/T2 plaque volume and disability progression in our 
MS study cohort. Our results confirm previous observations indicating no (Gumberz 
et al., 2016; Jacobsen et al., 2014) or moderate correlation (Gauthier et al., 2007; 
Minneboo et al., 2008) between clinical parameters and T2 brain lesion load in MS, 
with better correlation observed in long-term studies (Fisniku et al., 2008; Popescu, 
V. et al., 2013). The majority of previous studies revealed a significant correlation 
between higher levels of T1 “black holes” in the brain and worse EDSS values 
(Caramanos et al., 2012; Giorgio et al., 2014; Lukas et al., 2013; Minneboo et al., 
2009; Thaler et al., 2015), which can be explained by the close association of T1 
lesions to profound, irreversible tissue damage in MS (Kutzelnigg & Lassmann, 
2014). 
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The lack of a clear association between volumetric measurements (whole brain 
volume, T1/T2 brain lesion volumes) and clinical worsening in our study could be 
partially explained by the small study group and the fairly gross nature of total EDSS. 
Another possible explanation might be that disability accumulation in MS is not only 
related to brain pathology but also to spinal cord atrophy, as observed in previous 
cross-sectional and longitudinal studies (Daams et al., 2015; Lukas et al., 2015; Rocca 
et al., 2011; Valsasina et al., 2015). 

 
Another observation from Study II suggests that diffusion abnormalities detected 

by DTI in the NAWM can distinguish MS from healthy controls. Diffusivity 
alterations in the NAWM of the CC and pyramidal tract of MS patients have also 
been previously observed (Banaszek et al., 2015; Lin et al., 2007; Ozturk et al., 2010; 
Pokryszko-Dragan et al., 2018; Roosendaal et al., 2009; Sigal et al., 2012; Wilson et 
al., 2003), and such differences were more pronounced in SPMS than in RRMS and 
CIS (Andersen et al., 2018; Braley et al., 2012; Preziosa et al., 2011). In our study 
cohort, the same trend was demonstrated as patients with SPMS had significantly 
worse diffusivity parameters in the body of the CC when compared to RRMS (data 
not shown). The diffusivity differences between our real-life MS cohort and healthy 
subjects were strong (even after Bonferroni’s correction for multiple comparisons), 
especially for FA, MD, and RD metrics in the CC. Based on this result, we can 
speculate that demyelination in the CC represented here by increased RD (Song et 
al., 2003) is still occurring in our MS group. This finding may indicate the need for 
continuing immunomodulatory MS treatment, which is targeted at the cessation of 
inflammatory demyelination and degeneration. 

We observed a tendency for an association between baseline DTI parameters in 
the CC and EDSS score increase over four years. Our results confirm previous 
observations from cross-sectional studies that reported correlations between EDSS 
and diffusivity metrics in the supratentorial NAWM, including CC (Barone et al., 
2018; Ciccarelli et al., 2001; Giorgio et al., 2010; Harrison et al., 2013; Sigal et al., 
2012). In contrast, no such correlation was demonstrated in some other studies (Fink 
et al., 2010; Llufriu et al., 2012). Another two longitudinal studies with baseline DTI 
performed in early RRMS (Kern et al., 2011) and PPMS (Bodini et al., 2013) also 
revealed that splenial FA and RD metrics are associated with worsening of motor 
dysfunction measured by EDSS and 9-HPT. We did not observe any association 
between EDSS and DTI metrics in the pyramidal tract represented here by the 
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internal capsule, which is consistent with some tractography-based DTI studies (Lin 
et al., 2007; Tortorella et al., 2014) but not with other studies (Giorgio et al., 2010; 
Tovar-Moll et al., 2015; Wilson et al., 2003). The weak correlation between EDSS 
and DTI in the CC and the inconsistent results of previous studies can be at least 
partially explained by the global nature of EDSS. Indeed, regional (corticospinal 
tract, CC, cerebellar peduncle) diffusivity abnormalities in the NAWM have been 
previously intercorrelated with specific clinical features, such as walking ability and 
fine hand motor skills (Klineova et al., 2016; Ozturk et al., 2010; Pokryszko-Dragan 
et al., 2018). 

In Study II, we performed DTI analysis twice, at baseline and at one year of the 
follow-up. To our knowledge, there are few studies with longitudinal DTI 
measurements aiming to determine the predictive value of DTI in the assessment of 
disability progression in MS. Similar to our results, a longitudinal study by Samann 
et al. (Samann et al., 2012), including 55 MS patients with DTI histogram analysis 
performed at study entry and after one year, revealed that baseline ADC predicts 
clinical deterioration (measured by EDSS and MSFC). Consistent with our results, 
these authors also observed significant annual changes in ADC. Contrary to our 
predictions, we observed an increase rather than a decrease in FA and AD and a 
decrease rather than an increase in RD in the CC over one year. The counterintuitive 
direction of diffusivity changes in our study may be explained by only two 
measurements performed with a one-year interval, which does not allow us to 
observe sustained changes in DTI metrics. Moreover, the confounding effect of 
immunomodulatory treatment may influence temporal changes in diffusivity, as 
suggested by others (Ontaneda et al., 2017). 

Taken together, these results and the results of previous studies (Cassol et al., 
2004; Harrison et al., 2011) suggest that DTI is sensitive to temporal changes in 
water diffusivity and may serve as a tool in monitoring disease activity in MS. 
Moreover, DTI can distinguish patients with MS from healthy subjects on a group-
level, suggesting the specificity of DTI to MS-related pathology. Diffusivity metrics 
may also play a role as a predictor of disability accumulation; however, validation of 
the measurements is needed. In contrast, volumetric measurements were not 
predictive of disability progression over four years. 
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6.2 JCV seroprevalence in MS (Study III) 
 

We evaluated for the first time a seroprevalence of anti-JCV antibodies and anti-JCV 
screening indices in a large Finnish cohort of patients with MS and CIS. In our study 
population, overall anti-JCV antibody seropositivity was observed in 57% of 
patients. To date, there is only one study analysing anti-JCV antibodies in a Finnish 
population that included 150 pregnant women (Stolt et al., 2003). Consistent with 
our results, these authors found a high seroprevalence of anti-JCV antibodies, which 
increases with age. In contrast to our observations, no cases of anti-JCV antibody 
seroconversion or seroreversion were observed over the five-year follow-up. 

The anti-JCV seroprevalence reported by us is also consistent with the results of 
a recent systematic review that reported a prevalence of positivity for anti-JCV 
antibodies in MS ranging between 40% and 69%; however, the values varied 
geographically (Paz et al., 2018). Consistent with previous results, male gender 
(Correia et al., 2017; Olsson et al., 2013; Trampe et al., 2012) and higher age 
(Dominguez-Mozo et al., 2017; Olsson et al., 2013; Salmen et al., 2016) were also 
related to higher seroprevalence. 

Our longitudinal analysis revealed conversion from anti-JCV antibody 
seronegativity to seropositivity of approximately 4.7% per year, which is rather small 
compared with previous studies in multinational MS groups. Previous studies using 
the second-generation ELISA STRATIFY test have reported seroconversion rates 
ranging between 6% per year and 29% per year (Delbue et al., 2015; Plavina et al., 
2014; Raffel et al., 2015; Schwab, Schneider-Hohendorf, Pignolet, Breuer et al., 2016; 
Vennegoor et al., 2016). We reported reversion from anti-JCV antibody 
seropositivity to seronegativity over the follow-up period at approximately 1.8% per 
year, which was also observed in previous studies (Hegen et al., 2017; Raffel et al., 
2015; Schwab et al., 2016). The variable temporal change in JCV status observed in 
previous studies could be explained by the duration of follow-up since a longer 
observation period increases the likelihood of seroconversion (Schwab et al., 2018). 
Moreover, MS treatment may influence serostatus, as observed by some investigators 
(Outteryck et al., 2013; Raffel et al., 2015) but not by other researchers (Hegen et al., 
2018; Trampe et al., 2012). Genetical variability of study individuals may also 
influence JCV serostatus, as major histocompatibility complex (MHC) genes are 
responsible for the different production of anti-JCV antibodies (Dominguez-Mozo 
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et al., 2017; Sundqvist et al., 2014). Interestingly, we observed marked interindividual 
variations in the magnitude of screening indices even in patients who remained anti-
JCV antibody seropositive over the whole follow-up period. Similar observations 
were also made in a recent study with MS patients receiving disease-modifying 
treatment and without such therapy (Hegen et al., 2018). 

In the cross-sectional study, we observed decreased levels of the anti-JCV 
antibody screening index in patients on NTZ therapy with no impact on anti-JCV 
seroprevalence. With regard to other MS therapies, we have not revealed any impact 
on anti-JCV seroprevalence, which is consistent with previous results from large 
multinational studies (Bozic et al., 2014; Olsson et al., 2013). The initialization of 
NTZ treatment was previously related to a decrease in screening indices, which 
confirmed our results and suggests some immunosuppressive effect of NTZ 
(Warnke et al., 2013). In contrast to these results, recent cross-sectional (Trampe et 
al., 2012; van Kempen et al., 2017) and longitudinal (Hegen et al., 2018) studies have 
not observed any relationship between NTZ and JCV status. Interestingly, an 
increase in anti-JCV antibody index levels in NTZ-treated patients has also been 
reported in previous studies (Raffel et al., 2015; Schwab et al., 2016), which could be 
partially explained by the effect of age (Raffel et al., 2015). Since we did not have any 
patients receiving NTZ therapy in our longitudinal cohort, we cannot assess the 
actual impact of this medication on JCV seroprevalence or index levels. Samples 
before and after treatment initialization would allow a more reliable assessment of 
NTZ-related fluctuations in the levels of anti-JCV antibody screening indices. 

Based on our results, we confirmed the high prevalence of antibodies against JCV 
in a Finnish cohort of MS patients. Moreover, JCV serostatus expressed by anti-JCV 
positivity or negativity and levels of anti-JCV antibody screening indices undergo 
marked fluctuations over time, confirming the need for repeated measurements to 
stratify the risk of NTZ-related PML. Our observations have clinical implications, 
as increasing anti-JCV antibody screening indices over time have been related to a 
higher risk of NTZ-related PML (Plavina et al., 2014). Therefore, this information is 
important because it influences treatment planning in patients with MS (Finnish 
Neurological Society, 2019). 
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7 SUMMARY AND CONCLUSIONS 

Based on the results of this thesis, the following conclusions may be drawn: 
 

1. Increased volumes of T1 and FLAIR brain lesions are linked to the 
conversion of CIS to MS, confirming the predictive role of volumetric 
measures in the assessment of the clinical course of disease in CIS. 

2. Diffusivity abnormalities in the NABT detected by ROI-based DTI analysis 
were observed in a group of patients with CIS and MS when compared to 
healthy controls. 

3. DTI abnormalities in the NABT are not clearly associated with the 
conversion of CIS to MS. However, in CIS progressing to MS, worsening of 
DTI indices was observed in a higher number of ROIs than in nonconverting 
CIS patients. These results suggest diffusivity changes primarily in CIS 
patients developing MS; however, the influence of these changes on disease 
progression could not be confirmed. 

4. Baseline diffusivity abnormalities in the normal-appearing CC were found 
among MS patients with disability progression when compared to stable MS. 
Moreover, temporal changes of DTI metrics were revealed in the CC in the 
whole MS group. These results indicate the potential of DTI in disease 
monitoring and prediction of disability progression. However, further serial 
DTI studies in a larger group of patients and with more frequent scanning 
are needed to confirm the stability and reproducibility of DTI measurements. 
Brain lesion volume and brain atrophy were not clearly associated with 
disability progression over four years in this MS cohort. 

5. The seroprevalence of anti-JCV antibodies in a Finnish cohort of patients 
with CIS and MS is high. Older age and male sex but not immunomodulatory 
therapies are associated with anti-JCV antibody seropositivity. Temporal 
changes in anti-JCV serostatus occur. 
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The potential of diffusion tensor imaging (DTI) indices and volumes of focal lesions on conventional magnetic
resonance imaging to predict conversion to multiple sclerosis (MS) was analyzed in subjects with clinically iso-
lated syndrome (CIS) over 4 years. Twenty patients with CIS and 10 healthy controls were included in the study.
The data showed an association between the volumes of T1 and fluid-attenuated inversion recovery (FLAIR) le-
sions and conversion to MS (T1: P=.02; FLAIR: P=.02). The worsening of DTI indices (mean diffusivity and frac-
tional anisotropy) was primarily seen in patients progressing to MS, but clear-cut association with conversion
could not be detected.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the majority of patients, multiple sclerosis (MS) presents as a
subacute, monophasic neurological episode suggestive of demyelin-
ation, i.e., clinically isolated syndrome (CIS) [1]. Currently, the diag-
nosis of MS is based on the revised McDonald criteria that emphasize
the role of magnetic resonance imaging (MRI), which allows the
diagnosis of MS at the time of the first demyelinating event [2].
According to the current evidence, the burden of lesions on the MRI
scans as well as the presence of oligoclonal bands in the cerebro-
spinal fluid contributes to the risk of conversion to clinically definite
MS [1]. Follow-up studies on CIS patients have demonstrated that
clinically definite MS develops in 55% to 80% of patients with an
abnormal initial MRI [3]. However, only a modest correlation has
been found between the volume of plaques and clinical disability
[4]. This may be explained by inability of conventional MRI (cMRI)
to detect occult histopathological abnormalities in the normal-
appearing white and gray matter (NAWM and NAGM) [4]. Noncon-
ventional techniques, including diffusion tensor imaging (DTI), can

detect the alterations outside the lesions visible on cMRI [4]. DTI is
a quantitative MRI technique that measures water diffusion diffe-
rences in the living tissues. Of DTI-derived metrics, mean diffusivity
(MD) describes the magnitude of water diffusion in particular tissue,
whereas fractional anisotropy (FA) represents the directionality of
diffusion and reflects alignment of the tissue [5]. These parameters
may indirectly reflect the state of axonal and myelin integrity [6,7].
Radial and axial diffusivities are thought to represent myelin content
and axonal integrity, respectively, and appear to be more specific
markers of the pathological substrate than mean diffusivity [8].

In cross-sectional studies, increased MD and reduced FA values
within both demyelinated plaques and normal-appearing brain tis-
sue (NABT) have typically been detected in patients with CIS and
MS [9–12]. The short-term follow-up studies (1–3 years) performed
on CIS patients have reported DTI changes concerning NAGM [13]
and NAWM [14,15], but other authors have not been able to confirm
these results [16]. Thus, there is still need of investigation for reliable
surrogate markers for conversion of CIS to MS. In this study, we
aimed to assess the potential of DTI and volumetric MRI measure-
ments in the prediction of conversion of CIS to definite MS. The
identification of CIS patients with an aggressive disease course is
extremely important when considering whether to begin immuno-
modulatory treatment and when selecting the appropriate drug.
Early treatment has been demonstrated to modify the course of the
disease favorably in CIS [17].
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2. Materials and methods

2.1. Patients

Demographic and clinical data are shown in Table 1. Twenty patients
with CIS (18 females, 2males) attending theMS Outpatient Clinic of the
Tampere University Hospital were consecutively enrolled into this 4-
year follow-up study (between December 2006 and September 2012).
All subjects provided informed written consent. The study was ap-
proved by the local ethics committee.

CIS was defined as a first episode suggestive of inflammatory demy-
elinating disease with no paraclinical evidence of dissemination in time
[1]. Diagnosis of MSwas based on the revisedMcDonald criteria and in-
cluded MRI and clinical evidence of dissemination in time and space
[18]. The control group consisted of 10 age-matched healthy subjects
(5 females, 5 males) that were included in the cross-sectional DTI ana-
lysis at baseline. The age of subjects and the time between first symp-
toms and baseline examination in patients that converted to MS over
the follow-up (converting group) and those subjects that remained
CIS (nonconverting group) were not significantly different (PN .05).
The inclusion criteria were diagnosis of CIS and no steroid treatment
for at least 8 weeks before clinical and radiological assessment. The
exclusion criteria included contraindication to MRI and other
neuroimmunological, vascular, or metabolic diseases. Patients
underwent annual neurological examination at baseline (n=20 pa-
tients), 1 year (n=20), 2 years (n=19), 3 years (n=18), and 4 years
(n=16) after the baseline visit followed by radiological examination
on the same day except for the third year when MRI assessment was
not performed. The same neurologist examined the patients over the
whole observation period (M.R).

2.2. MR image acquisition

The following full-brain coverage sequences were obtained during
imaging session by using a 1.5-T MR scanner (Magnetom Avanto SQ;
Siemens Medical Solutions, Erlangen, Germany): T1-weighted header
followed by an axial three dimensional (3D) T1-weighted

magnetization prepared rapid gradient echo (MPRAGE), 3D T2-
weighted turbo spin-echo, fluid-attenuated inversion recovery
(FLAIR), T1-weighted spin echo with magnetization transfer contrasts,
multidirectional diffusion-weighted echo planar imaging, and gadoli-
nium enhanced T1-weighted MPRAGE. The DTI protocol consisted of a
single-shot spin-echo-based echo planar diffusion-weighted imaging
with 3 averages and 12 gradient encoding directions, with b values of
0 and 1000 s/mm2. The imaging parameters are presented in Table 2.

2.3. MR imaging postprocessing

The DTI data were analyzed with commercial Neuro 3D software
(Siemens Healthcare, Malvern, PA, USA) on an offline workstation. The
FA andMDvalues at baseline and yearly up to 4-year visit for all patients
and at baseline for controls were measured by a physicist with long ex-
perience with brain DTI measurements (U.H.). Multidirectional diffu-
sion data were assessed visually for the presence of distortions and
artifacts. Therewere no significant eddy current distortions due to diffu-
sion gradients. Circular regions of interest (ROIs) were manually placed
on MD, FA, and nondiffusion b0 maps. The same anatomic areas had al-
ways equal-sized ROIs over both hemispheres and over all patients at
every time point. The ROIs were positioned symmetrically (except for
the corpus callosum) at the following anatomical locations: the cerebral
peduncle, posterior limb of the internal capsule, posterior corona
radiata posterior and anterior, centrum semiovale, genu and splenium
of the corpus callosum, thalamus, and head of the caudate nucleus.
The ROIs were centered in the structure of interest in themost homoge-
neous area, avoiding border areas to exclude partial volume effect. For
cases in which demyelinated plaque was identified in predefined ROI,
the ROI was shifted to the closest area surrounding the predefined
ROI. As the centrum semiovale is a large anatomical area, the ROIs
were outlined symmetrically on the first slice above the dorsal part of
the trunk of the corpus callosum. The ROI in the corona radiata region
was contoured at the level of body of the corpus callosum (Fig. 1). As re-
gional brain asymmetry in DTI measurements was previously observed
[19], we analyzed both hemispheres separately.

In patients with CIS, the total brain volume of T1 hypointense and
FLAIRhyperintense lesions fromboth gray andwhitematterwas assessed
blindly using the semiautomatic segmentation software Anatomatic 2.23
[20] by the same reader (M.K.) at baseline, 2 years, and 4 years.

To assess the intraobserver repeatability of the DTI measurements,
the coefficients of variation (CV%s) were calculated for baseline DTI
values in controls. The same observer (U.H.) repeated the measure-
ments with a time interval of 3 months. In all ROIs, the CV% for MD
was lower than 2.5%, and that for FA was lower than 5.3% except for
the FA in the left centrum semiovale (11.5%).

2.4. Statistical analysis

Statistical analysis was performed using PASW Statistics for
Windows Version 20 (SPSS Inc., Chicago, IL, USA). Comparisons
between the subgroups for demographic data were performed by t test
(normally distributed data) and Mann–Whitney test (non-normal

Table 1
Demographic and clinical data

Nonconvertinga

n=9
Convertingb

n=11
Controls
n=10

Sex (female/male)c 8/1 10/1 5/5
Mean age at baseline, years (range) 37 (26–52) 34 (22–51) 40 (26–61)
Positive oligoclonal bands statusc 4 11 NA
Positive IgG index statusc,d 2 5 NA
Time since first symptoms to
baseline [years, mean (range)]

2.1 (0.7–8.8) 2.7 (0.5–7.8) NA

Time since first symptoms to diagnosis
of MS [years, mean (range)]

NA 4.7 (1.5–8.8) NA

EDSS [median (range)] NA
Baseline 0 (0–1) 0 (0–1)
1 year 0 (0–1) 0 (0–1)
2 years 0 (0–1) 0 (0–1)
3 years 0 (0–1.5) 0 (0–1)
4 years 0 (0–1.5) 0 (0–1)

Number of relapses over follow-up NA
0 9 5
1 0 6

Onset symptomsc NA
Optic neuritis 7 7
Brainstem 0 2
Spinal cord 1 2
Brainstem and spinal cord
symptoms simultaneously

1 0

NA, not applicable.
a Nonconverting: patients with CIS that did not convert to MS over follow-up.
b Converting: patients with CIS that converted to MS over follow-up.
c Number of patients.
d IgG index status considered as positive when value N0.7.

Table 2
Imaging parameters

Axial T1WI Axial FLAIR Axial DTI

Slice thickness (mm) 0.9 5 5
Interslice gap (mm) 0 0 1.5
Field of view (mm) 230*230 230*230 230*230
Matrix 256*256 256*256 128*128
Echo time (ms) 4,2 100 96
Repetition time (ms) 1160 8500 3500
Inversion time (ms) 600 2500

T1WI T1-weighted imaging; FLAIR fluid attenuated inversion recovery; DTI diffusion
tensor imaging.
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data). A P value b .05 was considered significant. In addition, the diffe-
rences between patients and controls in DTI measurements at baseline
were evaluated using the Mann–Whitney test followed by Bonferroni
correction for three different comparisons. A Mann–Whitney test was
run to determine the differences in volumetric measurements at base-
line. Cox regression analysis was conducted to assess the associations
between baseline MRI markers (FA, MD, and T1 and FLAIR lesion load)
and the development of MS over 4 years. A linear mixed-effect model
with T1, FLAIR, or one of the DTI parameters as a dependent variable
was fitted using the function lme in R (Software environment for
statistical computing and graphics, version 2.13.0, The R Foundation for
Statistical Computing). The distribution of T1 and FLAIR values was
considerably skewed, and therefore, logarithm transformation was
used. Before this, a few zero values in some of the T1 and FLAIR volume-
tric measurements had to be transformed to “one.” The binary variable
for the conversion of the group, time from onset of symptoms to start
of the study, and age (both continuous) were used as independent
variables together with the time points (years) from the repeated mea-
surements (years 0, 1, 2, and 4 for DTI and years 0, 2, and 4 for T1 and
FLAIR). Possible group-by-time interaction was also assessed using an
interaction variable. Random intercept was used together with indepen-
dent random errors. The model estimates were used for calculation of
the annual rate of change for all dependent variables, separately for the
converting and nonconverting groups.

3. Results

3.1. Clinical and demographic data

The mean follow-up was 3.8 years (range 1.2–4.6). The main
demographic and clinical characteristics are summarized in Table 1.

At baseline, five patients presentedMRI changes suggesting dissemina-
tion in space, and there were no gadolinium-enhancing lesions. Over
the follow-up period, 11 (55%) patients (1 man and 10 women) pre-
sented either clinical (4 patients) or radiological (7 patients) evidence
of dissemination in time or space, thus confirming diagnosis of MS. In
our cohort, the mean time from baseline to MS diagnosis was 2 years
(range 0.9–4.4). In two patients from the nonconverting group EDSS
(Expanded Disability Status Scale) increased from 0 to 1 and from 1 to
1.5, respectively. In four patients from the converting group, EDSS wor-
sened from 0 to 1. Over the follow-up period, four patients discontinued
the study because theywere notwilling to continue. AfterMS diagnosis,
two patients were treated with interferon β-1b and one patient with
glatiramer acetate, whereas the other patients who had only mild
symptoms preferred to stay under surveillance.

3.2. Baseline values of DTI and lesion volumes in CIS groups and controls

Comparisons betweenbaselineDTI indices in different brain regions in
the CIS groups and controls revealed significantly higher MD values in
three out of nine regions in the converting group. These regions included
the right internal capsule, left corona radiata anterior, and right centrum
semiovale. It is noteworthy that, in comparison with controls, the
nonconverting patients also had higher MD values in three out of nine
regions, i.e., the right and left internal capsule, right corona radiata anterior,
and right centrum semiovale.

Regarding FA indices, a comparison between the converting group
and controls indicated lower values in the right cerebral peduncle and
left caudate nucleus in converting patients. The nonconverting group
had lower FA values in the right cerebral peduncle than controls. No sig-
nificant differences were found for any DTI measurements between the
converting and stable CIS groups (Supplementary Table 1).

Fig. 1. ROI placement on the color-coded FA axial maps. (A) Cerebral peduncle (1, 2) (the size of ROIs 4 pixels); (B) posterior limb of the internal capsule (1, 2) (6 pixels); (C) posterior
corona radiata anterior (1, 3) and posterior (2, 4) (6 pixels) and genu (5) (4 pixels) and splenium (6) (6 pixels) of the corpus callosum; (D) anterior part of the centrum semiovale (1, 2)
(9 pixels); (E) thalamus (1, 2) (8 pixels); (F) head of the caudate nucleus (1, 2) (4 pixels). Pixel size 1.8*1.8 mm2.
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Comparisons between baseline lesion volumes in the CIS groups
revealed significantly higher T1 and FLAIR lesion load in the converting
group (Table 3).

3.3. Changes of DTI indices and lesion volumes over the follow-up period

To assess changes over the follow-up period, the model estimates
from linear mixedmodels were calculated and used for counting the an-
nual rates of change (% per year) in both CIS groups. A significant annual
increase of MD in four out of nine brain regions was found in the
converting group (the left and right corona radiata anterior and posteri-
or, left and right centrum semiovale, splenium of the corpus callosum),
but such a changewas found in only one region (left centrum semiovale)
in nonconverting subjects. With respect to FA, the converting group
displayed a significant annual decrease in three out of nine regions
(the left corona radiata anterior, left and right corona radiata posterior,
left thalamus), whereas the nonconverting group displayed an increase
of FA in only one region (right cerebral peduncle) (Supplementary
Table 2). Comparisons of the respective annual rate of change of DTI
between the CIS groups revealed a significant difference in only the MD
of the corona radiata anterior, which had an elevated value at the end
of the follow-up in the converting group and no change in the
nonconverting group (P=.009) (Supplementary Tables 3 and 4). With
respect to volumetric measurements, the T1 lesion volume significantly
increased at a rate of 7.9% per year only in the converting group
(Pb .01). The annual changes in FLAIR measurements over the follow-up
period were not significant in any group of patients. The T1 and FLAIR
brain lesion volume was not significantly different between the
nonconverting and converting group in the longitudinal analysis (Table 3).

3.4. Associations between MRI values and the development of MS

The higher T1 and FLAIR lesion load at baseline was associated with
the conversion to MS over 4 years (for T1-weighted hazard ratio 1.99,
P=.021; for FLAIR hazard ratio 1.24, P=.015). These associations
remained after adjustment for age and time from onset symptoms to
baseline. No significant associations were found between baseline DTI
values and conversion to MS, although DTI alterations were already
present at baseline, and they tended to progress more rapidly in those
patients who converted to definite MS.

4. Discussion

In this study addressing the potential of DTI and plaque volume as-
sessment to predict conversion from CIS to MS, we present the 4-year
follow-up data of annual imaging measurements and the neurological
evaluation of patients with CIS.

It appeared that, compared with controls, DTI abnormalities were
already present in patients with CIS, which confirm the results from se-
veral studies [10,11]. On the other hand, contrasting data have been re-
ported by Pulizzi et al. [21]. In our study, the DTI measurements at
baseline did not differ between converting and nonconverting patients,
and none of the baselineDTI indices in theNABTwere predictive of con-
version of CIS to definite MS. This observation is consistent with earlier

studies in pediatric and adult CIS populations with mean observation
times of up to 2.4 years [11,22]. In addition, studies usingmagnetization
transfer MRI and spectroscopy MRI [23,24] did not find a predictive
value for these nonconventional techniques. Interestingly, an ROI-
based DTI study by Bester et al. revealed that significant worsening of
FA in the splenium of the corpus callosum is observed in patients with
optic neuritis developing MS [15].

In our study, patients progressing to definite MS had higher FLAIR
and T1 brain lesion volume at baseline, thus confirming the potential
of cMRI in the prediction of MS. Similar results have been reported in
previous short-term [25,26] and long-term studies [27,28]. On the con-
trary, Gallo et al. did not find any predictive value of volumetric MRI
estimation over a 1-year follow-up [11].

Our results suggest that focal changes detected by cMRI, but not dif-
fuse abnormalities of NABT, studied on DTI are potentially associated
with progression to definite MS. Moreover, the burden of pathology in
our two CIS subgroups detected by single DTI at baseline was similar,
suggesting that this methodology may not be optimal in distinguishing
the patients with different clinical outcomes. The radiological–patho-
logical postmortem study suggests that MD strongly depends on the
changes in the extracellular space, whereas FA appears to reflect axonal
density [6]. Based on our data, we assume that water diffusion abnor-
malities in NABT at early stages ofMS indicate both diffuse inflammatory
demyelination and edema expressed by increased MD as well as dege-
nerative changes represented by reduced FA.

Regarding the rate of progression, our data indicate that, in compar-
ison to stable CIS subjects, the CIS patients developing MS displayed
more rapid deterioration of DTI abnormalities in NAWM (the corona
radiata, centrum semiovale, splenium of the corpus callosum) and
NAGM regions (the thalamus). Previously, cMRI-visible lesions in the
sameNAWMregionswere found to be predictive of clinical impairment
in CIS [29,30]. Moreover, in cross-sectional studies in MS patients using
the DTI approach, corresponding sites were affected by microscopic al-
terations [31–34]. In one follow-up study in CIS patients, the increase
of MD in NAWM became visible after 1 year when approximately 85%
of patients developed MS [14]. It is likely that the 4-year follow-up in
our study, as well as the different clinical characteristics of studied po-
pulations, enabled us to observe these brain-region-specific DTI changes
in CIS, especially in those patients that progressed to definiteMS. Another
study in patients with optic neuritis revealed a decrease of FA in both the
splenium and genu of the corpus callosum over approximately 3 years
[15].We found that onlyMD in the spleniumof corpus callosum increases
in converting patients over 4 years. As myelin content is believed to have
at leastmoderate impact onMDmeasures [6], our observationsmight in-
dicate that the process of inflammatory demyelination might play a po-
tential role in the pathology of the normal-appearing corpus callosum in
CIS. On the other hand, Tract-Based Spatial Statistics (TBSS) and
histogram-based studies in CIS and RRMS patients have not revealed
any DTI changes over 2 years of observation [16,35,36], which is in con-
trast to our data.

With regard to NAGM, the abnormalities represented by the de-
creased FA in the caudate nucleus at baseline and temporal deteriora-
tion of FA in the thalamus were only observed in the converting
group. Atrophic changes in the thalamus, hypothalamus, and striatum

Table 3
T1 and FLAIR lesion load (ml) in nonconverting and converting groups of patients over the follow-up period [median (percentiles)]

Baseline Year 2 Year 4 P value nonconverting vs. converting

Nonconverting
n=9

Converting
n=11

Nonconverting
n=9

Converting
n=10

Nonconverting
n=6

Converting
n=10

T1 lesion load 13 (0–186) 506 (125–1329)a 41 (2–41) 603 (123–1967) 45 (3–274) 613 (84–2011) .4
FLAIR lesion load 499 (3–1006) 1879 (379–8555)b 979 (134–1301) 3240 (1259–6271) 323 (39–921) 1658 (626–3914) .146

P value for group-by-time interaction term from linear mixed-effect model.
a Comparison between T1 lesion load in nonconverting vs. T1 lesion load in converting group at baseline, P=.012, Mann–Whitney test.
b Comparison between FLAIR lesion load in nonconverting vs. FLAIR lesion load in converting group at baseline, P=.017, Mann–Whitney test.
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have been previously observed in CIS patients [37], and progression of
overall gray matter atrophy has been associated with conversion to
MS [38]. Earlier histogram-based DTI analysis in CIS patients indicated
significant increases of MD in NAGM over a 3-year period, although it
was not correlated with clinical activity [13]. We suggest that a combi-
nation of gliosis (which lowers both MD and FA) and loss of axons
(which reduces FA and increases MD) may result in the pattern ob-
served by us in the NAGM (reduced FA and unchanged MD). In earlier
studies on patients with MS, elevated FA values were found in the thal-
amus and caudate nucleus [39,40]. The differences between CIS and MS
may be explained by younger age of subjects with CIS and age-related
increase of alterations of DTI parameters in the deep NAGM in healthy
adults [41]. The annual FA increase in the cerebral peduncle in
nonconverting patients reported by us may reflect an unsteady balance
between the pathological and subsequent reparative processes in the
fiber tract that occur in the initial stages of MS [36].

Methodological differences between DTI-analysis methods, such as
the ROI, histogram, and newer TBSS, may explain some of the inconsis-
tent results from studies performed until now. The ROI analysis used by
us can miss significant abnormalities in regions that are not selected.
The regional differences in reproducibility of DTI measurements,
which are relatively low for the centrum semiovale and corona radiata
[42], should also be taken into account. As reproducibility for DTI mea-
surements in ROIs was at an acceptable level in our study center [19],
the results reported by us seem to indicate that water diffusion abnor-
malities vary regionally. In addition to the technical aspects, the accu-
mulation of subtle water diffusion alterations in NABT that reach a
certain critical threshold may exceed the time of follow-up, resulting
in the lack of predictive value for DTI.

To summarize, our 4-year study suggests that abnormalities in the
NABT detected by repeated DTI are already observed in CIS patients.
There appears to be a higher rate of changes in DTI parameters in pa-
tients who develop definite MS than in patients who maintain CIS
over time. Moreover, only macroscopic brain lesion load and not diffuse
“occult” damage detected by DTI appears to be associated with an
increased risk of conversion to definite MS.
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Abstract
-

that appears unaffected in conventional magnetic resonance imaging. We aimed to 

brain in an assessment of disability progression in patients with a relapsing-onset 

brain lesion volume and atrophy measurements were done at baseline for MS pa-

progression over 4 years were studied by multivariate logistic regression analysis.
Results

-
p

p
to predict clinical worsening over 4 years. Clear-cut association with disability pro-
gression was not detected for baseline volumetric measurements.
Conclusion -
ditional information for individual disability progression over 4 years in MS with the 

-
-

nostic potential.
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central nervous system are responsible for neurological disability. 

lacks sensitivity to the microstructural diffuse damage in the normal-

-

underlying pathological processes only nonspecifically. Confounding 

-
structural abnormalities in the brain that appears unaffected on con-

-

-

have been reported in cross-sectional studies using different meth-

-

-
surements of diffusivity aiming to evaluate the prognostic value of 

1 year was associated with clinical impairment in primary-progres-

sectional and 4-year longitudinal study aims to assess white matter 

diffusion change and its stability in the relapsing-onset MS cohort 
considering the variable rate of disease progression.

|

The study was approved by the local ethics committee in the 
-

formed written consent.

|

-

-

-
jects were recruited from the hospital staff or their relatives with no 
history of neurological or psychiatric illness.

-

baseline. Progression of disability during the follow-up was defined 

|

baseline.
-

amination. The patients and controls underwent a whole-brain 

-
sition and protocol were as follows: T1-weighted header followed 

-
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a single-shot spin-echo-based echo-planar diffusion-weighted imag-

2. The imaging parameters are presented 
in Table 1.

|

Multidirectional diffusion data were assessed visually for the pres-
ence of distortions and artifacts. There were no significant eddy cur-
rent distortions due to the diffusion gradients. Six freehand regions 

2

the same way at both time points on axial images of the color-coded 
-

0

guidance from conventional T2 images to exclude focal lesions from 

-

-

a ratio of brain parenchymal volume to the total volume within the 

|

Means and standard deviations were given for normally distributed 
variables and medians and ranges for skewed distributed data. For 

independent sample t tests for normally distributed continuous vari-
U tests for skewed distributed continuous 

variables. Spearman's rank correlations were determined for correla-

logistic regression models were created. The presence or absence 
of disability progression was used as a dependent variable in all 

-

p
The Bonferroni-corrected p p

analysis was performed using SPSS Statistics for Windows version 

|

|

-

healthy subjects from control group; three subjects had one to two 

-
jects presented clinical signs of demyelinating disease.

p

p
in the disability progression group compared to the stable disabil-

p r

strongest correlations were found in the CC genu between the T1 
p r p

r p r -
p r p r

Slice thickness 0.9

0 0

230 × 230 230 × 230 230 × 230

Matrix 128 × 128

4.2 100

Repetition time 

Note
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p r p r

p r p r

p

p

|
disability progression

p
-

nium were associated with disability progression. The results did not 
remain significant after the Bonferroni corrections. There were no 

disability progression over the follow-up. The age and symptom time 

-

-

-

|

The prognostic assessment of clinical disability accumulation by 

additional challenges concern the individual and heterogenous dis-

-

-

2 2 2
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-
ence between healthy controls and MS patients in our study may 

-
peting pathological processes at different progression stages in MS. 

-
generation of the axons passing through remote macroscopic brain 

Progression group p-Valuea

24 22

Female:male 14:8

0.3

0.1

Baseline 0.2

<0.001

0

0 1.00

0.9

b 0.2

 
b

0.3

T1 brain lesion load at baseline cm3

c
0.1

3

c
0.03

c
0.2

Note
a U t -

p b c

n
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The main observation in our study is the tendency for baseline 

4 years with the most consistent and stable correlation observed in 

is associated with disability progression even after correcting for 
focal lesion volume. This result corroborates observations in a pre-

-

inflammatory activity and axonal degeneration are responsible for 

-

n

n = 46

p-ValueaMedian Min Max Median Min Max Median Min Max

Corpus callosum genu

0.48 0.88 0.81 0.48 0.93 0.03 0.14 <0.001

0.80 1.31 0.82 0.20 0.891

1.84 1.40 2.23 0.10 0.43 0.006

0.34 0.84 0.32 0.12 0.14 0.009

Corpus callosum body right

0.30 0.32 0.89 0.30 <0.001

0.83 1.08 0.81 1.11 0.01 0.24

1.84 1.13 0.12 0.003

0.20 0.92 0.44 0.20 0.11 <0.001

Corpus callosum body left

0.29 0.88 0.10 0.31 0.001

0.82 1.39 0.83 1.11 0.01 0.24

2.08 1.08 2.00 0.12 0.027

0.23 1.14 0.20 <0.001

Corpus callosum splenium

0.94 0.82 0.94 0.02 0.20 0.004

1.28 1.11 0.21

1.23 2.13 1.42 0.04 0.30

0.28 0.11 0.09 0.14 0.003

0.83 0.00 0.304

0.83 0.01 0.10

1.33 1.80 0.00 0.14

0.24 0.23 0.00 0.18

0.80 0.49 0.83 0.01 0.32 0.814

0.84 0.01 0.092

1.48 1.83 0.03

0.01

Note
 mm2  mm2

 mm2

ap p
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analysis revealed a correlation between whole-brain diffusivity al-
terations and disability progression expressed by the MS Functional 

of our observation is strengthened by the fact that axonal degener-

was observed in the CC splenium of our study cohort might be re-
lated to thin axons that are densest in the splenium and their pref-

the partial volume effect from cerebrospinal fluid may influence the 

-

n = 24 Progression group n = 22

p-Valuea Odds ratioMedian Min Max Median Min Max

Corpus callosum genu

0.81 0.88 0.48 0.88 0.04 0.00 0.00

0.80 1.21 0.83 1.31 1.00 1.10

1.02 0.98

0.28 0.80 0.84 0.04 1.00 1.09

Corpus callosum body right

0.40 0.30 0.01 0.00 0.00 0.24

0.80 1.08 0.04 1.08 1.00

1.39 1.18 1.84 0.98 1.01

0.20 0.30 0.92 0.01 1.02 1.12

Corpus callosum body left

0.38 0.29 0.82 0.02 0.00

0.81 1.32 0.84 1.39 0.12 1.03 0.99 1.08

1.19 2.08 1.42 2.04 0.99 1.02

0.23 0.93 0.30 1.14 0.04 1.04 1.00 1.08

Corpus callosum splenium

0.82 0.89 0.94 0.04 0.00 0.00

1.28 0.01 1.13 1.03 1.23

1.23 1.80 2.13 0.01 1.08 1.02 1.14

0.11 0.02 1.01 1.14

0.83 0.89 1.01 0.89 1.14

0.14 1.13 1.33

1.33 1.49 1.34 0.98 1.12

0.29 0.24 1.02 0.90

0.80 0.80 0.49 1.03 0.94 1.13

0.80 1.12 1.32

1.42 1.48 1.30 1.00

0.31 0.48 0.99 0.90 1.09

Note  mm2  mm2

 mm2

ap
p
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rather than method-based variability or crossing fibers within a 

-

-

we cannot clearly assess pathophysiological processes involved in 
-

-

-
sessed by a histogram-based whole-brain analysis did not correlate 

by the MS Functional Composite Scale has been found in primary-

and different clinical scales used in disability evaluation in MS.

is a sensitive tool in monitoring diffuse abnormalities responsible for 
-

an MS cohort with variable clinical characteristics such as ours which 

-
nomodulatory treatment effects because the attenuation of inflam-
matory demyelination is the main target of current MS therapies. 
This statement is supported by the results of the study by Fox et 

-

-

-

MS group were already observed. This result indicates that diffu-

-

Our results corroborate the observed lack of clear-cut asso-

lesion volume and BPF showed some effect and modified the cor-

the focal brain lesion load and brain atrophy may have additional 
impact on disability accumulation in relapsing-onset MS. The lack 
of significant correlation here may be limited by a small number 

-
ity progression were variable. Other limitations in our inferences 

where there is a need to evaluate subtle changes in motor func-
tions during a short observation period.

dynamic change over time is different with respect to anatomical 

CC may be associated with disability accumulation in relapsing-onset 
MS and suggest the crucial role of the CC in monitoring disease pro-

-

-
bination of diffusion measures with other findings from conventional 

pathological damage in MS.
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Background – The risk of progressive multifocal leukoencephalopathy
(PML) caused by the JC virus (JCV) is increased in patients with
multiple sclerosis receiving biological therapies. Objectives – To
determine the seroprevalence of anti-JCV antibodies in Finnish
patients with multiple sclerosis (MS) and clinically isolated syndrome
and to assess the clinical risk factors for JCV seropositivity.
Methods – The JCV seroprevalence was analyzed in 503 patients using
a second-generation two-step ELISA. Sixty-seven patients underwent
longitudinal serological evaluation over 4.5 years. Results – The
overall seroprevalence of JCV was 57.4%. The seropositivity was
higher in men than in women, tended to increase with age, and was
not affected by different immunomodulatory therapies. However, in
patients with ongoing natalizumab treatment (n = 72), the anti-JCV
antibody screening index was lower than in patients without such
therapy [median 0.3 (range 0.1–3.1) vs 0.6 (0.1–3.1), respectively,
P = 0.01]. Over 4.5 years, 4/19 (21%) initially seronegative patients
converted to seropositivity, whereas 4/48 (8.3%) initially seropositive
patients reverted to seronegativity. Fluctuations in serostatus were
observed in 3/67 patients. Conclusion – The study confirmed a high
anti-JCV antibody prevalence in patients with MS and its association
with age and male gender but not with disease-modifying therapies.
Our data suggest that therapy with natalizumab may cause a decrease
in anti-JCV antibody levels, suggesting an immunosuppressive effect
of natalizumab without an impact on JCV seroprevalence. The results
of studies performed until now confirm the predictive value of anti-
JCV antibody measurement in the assessment of PML risk; however,
changes in serostatus need to be considered.
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Introduction

The John Cunningham virus (JCV) is an etiologic
agent of progressive multifocal leukoencephalopa-
thy (PML), an opportunistic infection of the
brain that develops in immunocompromised sub-
jects (1). The increasing use of biological thera-
pies for the treatment of multiple sclerosis (MS)
and other diseases such as rheumatic diseases,
psoriasis, Crohn’s disease, and non-Hodgkin’s
lymphoma has drawn attention to the significance
of JCV due to its association with PML (2). The
primary exposure to JCV occurs in early child-
hood, and the anti-JCV seroprevalence increases
with age (3, 4). Approximately 50–60% of the

adult population is infected, as determined by the
presence of anti-JCV IgG (5, 6). After the spread-
ing HIV epidemic in the 1980s, the incidence of
PML increased up to 1-3/1000/year (7). The risk
of PML in natalizumab-treated patients with MS
depends on positive JCV serostatus, prior
immunosuppressant use, and duration of natal-
izumab therapy reaching value of 11/1000 (8). In
this study, we evaluated for the first time the
prevalence of anti-JCV antibodies in a cohort of
Finnish patients with MS and assessed whether
demographic factors and MS therapies have an
effect on the anti-JCV antibody status. The rate
of JCV seroconversion and seroreversion over the
4.5-year follow-up period was also analyzed.
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Materials and methods

In this prospective study, sera and clinical and
demographic data were collected from 503
patients including 474 patients with MS and 29
with clinically isolated syndrome (CIS). The
patients were enrolled consecutively from four
Finnish MS centers (Tampere, 140 patients; Hel-
sinki, 114 patients; Sein€ajoki, 98 patients; and
Turku, 54 patients) between January 2012 and
February 2013. To assess longitudinal changes in
anti-JCV antibody levels, a subset of samples
from 97 patients with CIS (n = 20) and MS
(n = 77) was collected annually over approxi-
mately 4.5 years (between December 2006 and
September 2012). These samples, as well as clini-
cal and demographic data, were collected at the
Tampere University Hospital as part of a
prospective 5-year study aimed at identifying can-
didate biomarkers for MS. CIS was defined as
the first episode suggestive of inflammatory
demyelinating disease with no paraclinical evi-
dence of dissemination over time (9). The diagno-
sis of MS was based on the 2005 McDonald
criteria (10) for the patients included in the longi-
tudinal study and on the 2010 McDonald criteria
(11) for the patients included in the cross-sec-
tional analysis. Before JCV antibody testing, all
samples were stored at �80°C and analyzed at
Unilabs, Denmark. A confirmatory second-gener-
ation ELISA (STRATIFY JCVTM DxSelect,
Focus Diagnostics, Cypress, CA, USA) was used
for testing the sera for anti-JCV antibodies (12).
In brief, the assay consisted of a screening
enzyme-linked immunosorbent assay (ELISA)
and a supplemental confirmation test. A screen-
ing index value of <0.2 was considered anti-JCV
antibody negative, whereas a screening index
value >0.4 was considered anti-JCV antibody
positive. The samples with a screening index
between 0.2 and 0.4 were evaluated with a confir-
mation test in which results greater that 45%
were classified as anti-JCV antibody positive (13).
The screening index values between 0.2 and 0.4
were also included in the calculations of median
and range. This study was approved by the local
ethics committee, and all patients provided writ-
ten informed consent.

The valid percent with 95% confidence inter-
vals (CI) was used to assess JCV seroprevalence.
Chi-square or Fisher’s exact tests for categorical
data and t-tests or Wilcoxon’s rank test for con-
tinuous data were used to analyze the associa-
tions among the demographic factors, MS
treatment, and JCV seroprevalence. Logistic
regression was used for the multivariate analysis,

and the odds ratio and 95%CI were calculated.
A P value <0.05 was considered statistically
significant.

Results

The primary demographic and clinical character-
istics are summarized in Table 1.

Cross-sectional study

Overall, the seroprevalence of anti-JCV antibodies
in the cohort of 406 was 57.4% (95%CI 52.6–
62.2). In JCV seronegative patients, the median
value of the anti-JCV antibody screening index
was 0.19 (range 0.1–0.39), while in seropositive
patients, it was 1.64 (range 0.26–3.12). The rate of
seropositivity was higher in men than in women
(67% vs 54%) (P = 0.02) and tended to increase
with age (Fig. 1). A longer duration of MS and
the time from the initial symptoms were linked
with a higher seroprevalence. However, after
adjusting for age and gender, the associations
between JCV seroprevalence, disease duration,
and time from the onset of symptoms appeared

Table 1 Patient clinical and demographic characteristics

Cross-sectional
study

Longitudinal
study

Number of patients 406 67
Mean age, years (SD) 40.9 (10.4) 41.9 (12)
Sex (males/females, n) 101/305 22/45
MS subtypes, n

CIS 9 12
RRMS 350 29
SPMS 39 12
PPMS 8 14

Time from first symptoms, years* 9.7 (0–40.9) 10.6 (0.5–42)
MS duration, years* 6.9 (0–34.2) 4.4 (0–31.2)
EDSS* 2 (0–7) 2 (0–7)
Relapses 2 years preceding study, n

0 235 16
1 101 21
2–5 70 16

Prior and current natalizumab
therapy, n

92 0

Duration of natalizumab therapy
(prior and current), months*

25.5 (1–69) –

Prior and current
immunomodulator therapy, n1

348 22

Prior and current
immunosuppressant therapy, n

352 33

CIS, clinically isolated syndrome; RRMS, relapsing–remitting multiple sclerosis;
SPMS, secondary progressive multiple sclerosis; PPMS, primary progressive multi-
ple sclerosis; EDSS, expanded disability status scale.
*Median (range), n number of patients.
1Interferons, immunoglobulins i.v., or glatiramer acetate.
2Mitoxantrone, azathioprine, or fingolimod.
3Mitoxantrone.
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non-significant (Table 2). Interestingly, the num-
ber of relapses in the 2 years preceding the study
was associated with the anti-JCV seroprevalence
(P = 0.009). After adjusting for age and gender,
this association still remained significant
(P = 0.016) (Table 2). The majority of patients
(72.2%) were treated with MS drugs at the study
entry. No association was observed between JCV
positivity and other demographic parameters,
such as the MS subtype or EDSS score.

Furthermore, the prevalence was similar regard-
less of prior and ongoing MS treatment, including
immunomodulators, natalizumab, immunosup-
pressants, and corticosteroids (Table 2). It is note-
worthy that the screening index value of the 72
patients with ongoing natalizumab therapy (me-
dian time of treatment 31 months, range 1–69)
was lower than in the 334 patients without current
natalizumab use (median screening index 0.3
(range 0.1–3.12) vs 0.64 (0.1–3.12), respectively,
P = 0.01) (Fig. 2). In contrast, there was no dif-
ference in anti-JCV antibody prevalence by cur-
rent treatment with natalizumab (logistic
regression adjusted for age and sex, P = 0.2).

Longitudinal study

This study included 97 patients. For 67 of the
patients, test results were obtained both at base-
line and at the end of the observation period,
thus allowing the assessment of serological
changes over the entire follow-up. The reasons
for the incomplete data for 30 patients (CIS
n = 8 and MS n = 22) were as follows: 24
patients declined to continue participation in the
study, and in six patients, the quality of the sam-
ples was suboptimal. At baseline, 19/67 patients

Figure 1. Anti-JCV antibody seropositivity according to age
group (ANOVA, P = 0.08).

Table 2 Anti-JCV antibody seroprevalence in subgroups; cross-sectional study

JCV-positive JCV-negative P-value**

Mean age, years (SD) 42.1 (10.2) 39.4 (10.6) 0.011

MS types, n (%)
CIS 7 (77.8) 2 (22.2) 0.22

RRMS 198 (56.6) 152 (43.4)
SPMS 21 (53.8) 18 (46.2)
PPMS 7 (87.5) 1 (12.5)

Time from first symptoms, years* 10.7 (0–40.9) 8.7 (0.4–35.8) 0.033/0.54

MS duration, years* 7.6 (0–34.2) 5.3 (0–32.5) 0.023/0.54

EDSS* 2 (0–7) 2 (0–7) –
Relapses 2 yrs preceding study, n (%)

0 136 (57.9) 99 (42.1) 0.0164

1 67 (66.3) 34 (33.7)
2–5 30 (42.9) 40 (57.1)

Prior and current natalizumab therapy, n (%)
No 181 (57.6) 133 (42.4) 0.74

Yes 52 (56.5) 40 (43.5)
Duration of natalizumab therapy (prior and current), months* 23 (1–64) 32.5 (2–69) 0.43

Prior and current immunomodulators (i.v. immunoglobulins, interferon, glatiramer acetate), n (%)
No 36 (62.1) 22 (37.9) 0.64

Yes 197 (56.6) 151 (43.4)
Prior and current immunosuppressant therapy (mitoxantrone, azathioprine, fingolimod), n (%)

No 215 (58) 156 (42) 0.44

Yes 18 (51.4) 17 (48.6)
Prior steroid therapy, n (%)

No 66 (60) 44 (40) 0.54

Yes 167 (56.4) 129 (43.6)

1P value of the unpaired t-test; 2P value of the chi-square test; 3P value of the 2-sided Mann–Whitney U-test; 4P value of the logistic regression adjusted for age and sex;
*Median (range); **P values in bold are accepted as significant; n number of patients.
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were JCV seronegative, four of whom became
anti-JCV antibody positive (21%), and the
remaining 15 patients maintained seronegativity
(79%) over 4.5 years (SD 0.3). Among the
patients who were JCV seropositive at baseline
(48/67 subjects), four subjects (8.3%) reverted to
an anti-JCV antibody-negative status and 44
remained seropositive (91.7%) over 4.4 years (SD
0.3). In the patients who converted to seropositiv-
ity, there was an evident increase in the screening
index values between the baseline [median 0.18
(range 0.16–0.34)] and the final analysis [1.7 (0.6–
2.8)], although statistical significance was not
reached, most likely because of the small number
of patients (P = 0.1). In the four patients who
reverted to JCV seronegativity, the screening
indices preceding such change were near the posi-
tive cut-off values of the assay [mean 0.4, range
0.3–0.49]. Only one patient with a low screening
index (0.16) after seroreversion showed high anti-
body levels [mean 2.9, range 2.6–3.1] before the
change. In the patients who maintained JCV
seropositivity during the 4.5 years, the anti-JCV
antibody screening indices were stable in spite of
marked interindividual variation in the magnitude
of indices (at 1st measurement: median 2.4 (range
0.4–2.8), 2nd: 2 .3 (0.1–3.1), 3rd: 2.4 (0.3–2.9),
4th: 2.4 (0.1–3), and 5th: 2.5 (0.4–3.2)).

As we performed serological measurements
annually over the follow-up period, we could
evaluate the intermittent changes in the anti-JCV
antibody status. During the follow-up period,
intermittent conversion to seronegativity at one
time point was observed in 3 of the 67 patients
(4.5%); in two of them, the screening indices fluc-
tuated around the positive cut-off point of the
assay [mean 0.47 (range 0.11–0.7)], while the third
patient showed marked variation [median 2
(range 0.13–2.53)].

During the follow-up period, three patients
received natalizumab (the duration of the treat-
ment was 11, 16, and 18 months). These patients
were anti-JCV antibody positive for the entire
follow-up period. In addition, three patients
received mitoxantrone; one of them converted to
JCV seropositivity, another one was persistently
seronegative, and the remaining patient serore-
verted to JCV negativity.

Discussion

The purpose of this study was to assess the
prevalence and stability of anti-JCV antibodies in
a Finnish cohort including patients with MS and
CIS.

The overall anti-JCV antibody seroprevalence
was 57%, which is consistent with previous
reports from multinational populations of
patients with MS (5, 14). Moreover, our cross-
sectional results confirm earlier observations that
both male gender and a higher age are associated
with more frequent JCV positivity (5, 15–18).
Notably, a longer duration of MS and time from
the onset of symptoms were not related to a
higher JCV seroprevalence in the multivariate
analysis. The increasing seroprevalence of JCV
over time confirms the moderate temporal stabil-
ity of the anti-JCV antibody status. Unlike the
polyomavirus BK, which already has a high sero-
prevalence in children and is stable over time, the
JCV infection rate increases throughout life,
reaching its highest levels in the aging population
(6, 17, 19).

Interestingly, the patients with ongoing natal-
izumab therapy had lower anti-JCV antibody
levels than the patients without such therapy.
However, no difference was found in the magni-
tude of the JCV seropositivity. The lack of an
association between anti-JCV antibody prevalence
and MS treatment has been previously reported
in other studies (5, 16, 20). In contrast, Outteryck
et al. showed that the duration of natalizumab
exposure is a risk factor for JCV seropositivity
that might be related to the asymptomatic reacti-
vation of JCV in natalizumab-treated patients
(21). The lower levels of anti-JCV antibodies in
our natalizumab-treated patients are in line with
the results reported by Warnke et al. where the
initiation of natalizumab was associated with a
decrease in anti-JCV and antivaricella-zoster anti-
body levels (22). Moreover, natalizumab treat-
ment leads to decrease in serum IgM and IgG
levels in patients with MS as reported by Selter
et al. (23). These results suggest the immunosup-
pressive effect of natalizumab, but the mechanism

Figure 2. Anti-JCV antibody screening index levels according
to current natalizumab use (horizontal line, median; box,
interquartile range; horizontal bars, range; 2-sided Mann–
Whitney U-test, P = 0.01).
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of such an effect is not fully understood. It has
been proposed that natalizumab impairs the hom-
ing of B cells to their niches, which might lead to
a loss of pro-survival stimuli relevant to the per-
sistence and quality of the antibody response to
recall antigens (22). The other investigators sug-
gested that natalizumab inhibits a4b1-integrin
preferentially on B cells (24) and increases the
levels of circulating lymphocytes, preferentially of
immature pre-B cells (25). Moreover, natalizumab
treatment was associated with decreased levels of
plasmacytoid dendritic cells, which display an
activated phenotype (26). The recent study by
Plavina et al. emphasized the importance of JCV
antibody screening index measurements in
patients with MS. Higher anti-JCV antibody
levels in the serum/plasma of MS patients with
no prior immunosuppressant use have been asso-
ciated with an increased PML risk compared with
patients with lower screening index values (27).

Our results indicating the link between the
number of relapses and JCV seroprevalence may
not be explained simply by the influence of the
treatment, as the number of patients undergoing
any prior and current MS therapy was similar in
the anti-JCV antibody positive and negative
groups. It has been shown that the cytokines
TNF-a, IL-1b, and IL-6 can stimulate the tran-
scription factors involved in JCV replication (28).
Moreover, the changes in the levels of these
proinflammatory cytokines are associated with
disease activity in patients with MS (29–32).
Therefore, it may be that peripheral immune acti-
vation in patients with active MS could poten-
tially affect the JCV replication and the
production of anti-JCV antibodies. One way to
study this further would be to relate the anti-JCV
antibody levels to the levels of total IgG in the
same sample.

The temporal instability of the JCV seropreva-
lence during the follow-up period was detected in
this study. Marked and consistent increases in the
screening indices in the patients who converted to
JCV seropositivity may suggest the activation of a
humoral immune response to a new JCV infection,
or alternatively, to a new site of infection or change
in the viral load due to a re-exposure to JCV (22).
Earlier studies using the first- and second-genera-
tion two-step ELISA reported seroconversion rates
ranging from 2% to 36% and seroreversion rates
between 1.5 and 4.7%, respectively (18, 20, 33, 34).
As the second-generation assay is in good agree-
ment with the original test showing similar sero-
prevalence (12), the differences in the results may
not be explained only by the different methodolo-
gies, as suggested by others (34).

It is noteworthy that the screening indices of
six patients fluctuated around the cut-off value of
the assay. This result appears to reflect the natu-
ral fluctuation of antibodies or the analytical
variability of the assay (18). Additionally, the
potential cross-reactivity of the antibodies with
other polyomaviruses, innate differences in indi-
viduals’ production of antibodies, and non-speci-
fic changes in the levels of antibodies relating to
disease activity may also influence the results of
the assay. Because the risk of natalizumab-associ-
ated PML depends on the presence of anti-JCV
antibodies (8), the interpretation of the test
results may lead to uncertainty in patients with
screening indices near the cut-off points. More-
over, the overestimation of PML risk may occur,
as the high or increasing anti-JCV antibody levels
have been associated with the onset of PML (18,
22, 27, 35). Additionally, the false-negative rate
of JCV serology, ranging from 2.5% to 37% (20,
36), combined with the increase in JCV sero-
prevalence with age suggests the need for
repeated testing of JCV antibody-negative
patients treated with natalizumab (20, 36).

The definitive diagnosis of PML is based on
the detection of virus DNA in the cerebrospinal
fluid or on a brain biopsy to demonstrate the
histopathological changes caused by the replicat-
ing JCV (37). The assessment of the L-selectin-ex-
pressing CD4 T cells (38) and the cerebrospinal
fluid JCV antibody index (39) has been proposed
recently for PML risk stratification. Testing for
JCV DNA in the blood or urine was found to be
non-predictive (reviewed by Rudick et al. (40)).

In summary, this study confirmed the high
prevalence of anti-JCV antibodies among patients
with MS. Although MS treatment does not seem
to have an influence on JCV seropositivity, the
patients using natalizumab had lower levels of
anti-JCV antibodies, suggesting an immunosup-
pressive effect of natalizumab. Due to fluctua-
tions in JCV serostatus, further studies focusing
on the longitudinal changes in the anti-JCV anti-
body levels as well as the identification of new
PML markers are needed.
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