

Lam Le

E-TICKET SYSTEM
As an example of Internet of Things application

Faculty of Information Technology and Communication Sciences
M. Sc. Thesis

May 2019

ABSTRACT
Lam Le: E-ticket system as an example of Internet of Things application
M.Sc. Thesis
Tampere University
Master’s Degree Programme in Information Technology
May 2019

We are entering a new revolution of technology called Internet of Things (IoT). It enables ma-

chines to be connected and exchange data. It brings a huge potential to different areas of tech-

nology. It is being used in several applications in different fields: building smart city, smart

home, health care and agriculture. This thesis summarizes current IoT application development

and the development of an E-ticket system as a demonstration of IoT application.

The literature research was taken place prior to the implementation phase. Several studies on

existing scientific articles were done about current IoT applications and its use cases. After that,

current IoT technologies were studied and the best technologies were chosen to implement the

E-ticket system. It involves Amazon web services (AWS) [8], Java Spring framework [9] and

REST [10] calls over 3G [11] connections.

As the result of the research and implementation, the E-ticket system was developed and

demonstrated to the teacher. The solution provides police officers a quick and easy way to is-

sue fine tickets and automates the fine payment process. Moreover, it also allows people to

give feedback about performance of police officers. It is being sold to the government to solve

cash payment issues in developing countries.

The research shows that IoT can be utilized in many different existing applications. It will im-

prove the scalability of the application and allow collecting a huge amount of data, which will be

the resource for big data analysis, machine learning, etc. IoT is a part of a big technology revo-

lution we are going through at the moment.

Key words: IoT, internet of things, Amazon AWS, 3G, POS, web services

ACKNOWLEDEGEMENTS

I would like to thank my thesis advisor Dr. Timo Aaltonen, university lecturer of de-
partment pervasive computing at Tampere University of Technology. He was always
responsive and supportive whenever I needed to discuss. Moreover, he also spent time
to read through my thesis and gave constructive feedback on it. He allowed me to have
decision of my own work, however steered me to the right direction when he thought I
needed it.

I would also like to acknowledge my schoolmate Long Tran for supporting me on serv-
er-side implementation of this project. His contribution was very valuable since I had
little knowledge about web application development.

Author

Lam Le

Contents

1 Introduction ... 3

2 Literature review ... 4

2.1 IoT architecture 4

2.2 IoT applications 6
2.2.1 Smart city 6
2.2.2 Smart home 7
2.2.3 Health service 7
2.2.4 Agricultural 8

2.3 Microservices 8

2.4 Microservices with Spring Boot and Spring Cloud 9

3 Software design .. 12

3.1 Application overview 12

3.2 Use cases 13

3.3 Software structure and components 17

3.4 Application security 19

4 Implementation .. 22

4.1 Device software 22
4.1.1 Components overview 22
4.1.2 Components interfacing 23
4.1.3 Sequence diagram 26

4.2 Server side software 29
4.2.1 Components overview 29
4.2.2 Sequence diagram 30
4.2.3 Implementation 32

5 Result .. 34

6 Conclusion .. 36

References.. 37

Appendices .. 39

-1-

List of figures

Figure 1. Basic IoT work flow [4]. ... 4
Figure 2. IoT architecture [4]. .. 6
Figure 3. Microservices implementation from Netflix OSS [19]. 9
Figure 4. Microservices architecture using Spring Cloud[7]. .. 11
Figure 5. Overview of E-ticket solution. .. 13
Figure 6. Police officer use case diagram. .. 14
Figure 7: Normal user use case diagram. ... 15
Figure 8. System admin use case diagram. ... 16
Figure 9. Main software components. .. 17
Figure 10. Solution security setup. ... 19
Figure 11. Bridged VPN connection setup. .. 21
Figure 12. Device software components outline. ... 22
Figure 13. Interface between MVC and services. .. 24
Figure 14. Create fine ticket sequence diagram. .. 27
Figure 15. Architectural design of E-ticket cloud. ... 29
Figure 16. Search and make payment sequence diagram. .. 31
Figure 17. Citizen detail page. .. 34
Figure 18. Fine ticket detail. ... 35

-2-

List of symbols and abbreviations

IOT Internet of Things

REST Representational state transfer

AWS Amazon Web Services

POS Point of Sales

UMTS Universal Mobile Telecommunications Service

BAN Body Area Network

VPN Virtual Private Network

SSL Secure Socket Layer

VPC Amazon Virtual Private Cloud

EC2 Amazon Elastic Compute Cloud

DB Database

MVC Model - View - Controller

-3-

1 Introduction

The phrase Internet of Things (IoT) [2] refers to a vision of the future Internet where

every physical device is connected to the Internet and exchanges information about

themselves and their surroundings. It allows digital and physical entities to link up and

communicate by different means of information and communication technologies. This

enables a new category of innovative applications and services where devices have the

knowledge about their surroundings [2].

The term IoT was first introduced by Kevin Ashton in 1998 [1]. Since then, it has

caught more and more attention from the educational institutes and industry. Recently,

IoT has become the driving force in the development of Industry 4.0 [12], which focus-

es on making the next generation of intelligent manufacturing, or so-called modern

manufacturing. It empowers the possibility that machine can learn, predict and prevent

human errors.

Nowadays, the number of connected devices is increasing rapidly. They are computers,

smart phones, tablet, smart watches, and many other embedded devices. Most of the

devices are equipped with different sensors, such as light, noise, humidity, location, and

send the collected information to the server other the Internet. IoT applications can uti-

lize a network of such devices and analyze their enormous data to provide a new class

of services with bigger benefits.

This thesis will discuss the general structure of IoT application, existing IoT applica-

tions and future development. Moreover, it describes the implementation of IoT E-ticket

solution as an example of IoT’s use cases. IoT has very big potential in developing

smart applications in almost every field in our daily life.

-4-

2 Literature review

2.1 IoT architecture

Technology in general and IoT in specific has hugely evolved in the last couple of

years. Many types of smart device with intelligent sensors, low power consumption and

Ethernet connection were made and become a great source of information. At the same

time, supercomputers [14] were boosted with substantial computing power enabling the

capability to process big data. Cloud technology [13] with clustering and load balancing

feature allows server to handle a huge amount of request concurrently. These changes

place a great foundation for the advancement of IoT. The basic workflow of an IoT ap-

plication [4] is described in figure 1 and explained in detail as the following:

 Smart device equipped with sensors collects environment data. The information

can be temperature, humidity, noise, light, motion, etc. One smart device can be

equipped with multiple sensors.

 The sensor data is transmitted to IoT server via wire or wireless communication

protocol. It is stored in IoT server internal database. The design principle of IoT

server allows it to handle a substantial number of requests concurrently, thus it is

able to support big amount of smart devices.

 IoT server processes and analyzes the received data via a computation and pro-

cessing system. The statistical result is displayed to end user via a web interface.

Moreover, a decision-making and action-invoking unit can be added to notify

administrator about current system state or when unexpected event happens.

Figure 1. Basic IoT work flow [4].

-5-

Architect of IoT application depends on the advancement of technology and the design

of applications and business models. IoT needs to deal with challenges related to securi-

ty and privacy. It is due to the fact that it connects to billions of devices over Ethernet,

which implies cyber security risk. Moreover, substantial amount of data storage is also

an important requirement for IoT application. Last but not least, scalability and reliabil-

ity are also challenges that need to be addressed. As can be seen from figure 2, the

structure of IoT is divided to five layers [4]:

 Perception layer: This layer, which is also called device layer, consists of physi-

cal devices and their sensors. There are different methods for identifying objects:

RFID, barcode, infrared sensors, etc. This layer is responsible for identifying the

objects and collecting their sensor information. The type of information varies

and depends on the sensor and the intended use. It can be location, temperature,

identification, humidity, etc. The gathered information is handed to network lay-

er to be sent to IoT server.

 Network layer: This layer, which is also called transmission layer, is responsible

for transferring the gathered information from perception layer to IoT server

over a secured connection. The transmission protocol can be wire or wireless

such as 3G, UMTS, Wifi, Bluetooth, infrared, ZigBee, etc.

 Middleware layer: This is the first layer in IoT server, responsible for collecting

the data from network layer and storing it in a database. After that, it processes,

analyzes the received information and takes actions based on the analysis result.

 Application layer: This layer implements different applications based on the in-

formation collected in middleware layer. The applications implemented in this

layer will be discussed in the following chapter.

 Business layer: This layer manages the applications and provides services for

end users. It includes business models, visual elements of the received and pro-

cessed data. Business model plays an important role on the success of IoT appli-

cation. It defines the action and business strategy taken from analysis results.

-6-

Figure 2. IoT architecture [4].

2.2 IoT applications

There are various application domains, which will be benefited and greatly improved as

a result of the development of IoT infrastructure and technology. Below is a list of main

sectors where IoT application can have a great impact.

2.2.1 Smart city

The concept of smart city focuses on using IoT to manage public services such as: ener-

gy, lighting, transport, waste management, and pollution control. The concept has been

deployed successfully in many cities such as London, Amsterdam, Singapore, etc [5]. It

includes many public sectors, where a few popular ones are smart environment, smart

mobility, smart governance, smart grid, smart traffic, smart home.

Many ongoing smart city IoT projects are focusing on “identification of smart city sce-

narios, the integration and interaction of various IoT data sources and systems, big data

representations and analytics, security and privacy issues” [5]. The target is to under-

stand different system structures, businesses, and citizens to be able to model a smart

city system that is applicable to each particular city.

One of the biggest Smart city IoT project is FP7 SmartSantander project [6]. In the pro-

ject, a large number of IoT devices were deployed in many different urban scenarios,

which are distributed over several cities. The project tested the analysis and evaluation

of IoT application in large-scale, real-life situation.

-7-

2.2.2 Smart home

Smart home is a concept of having a home automation system controlling all devices

and operations inside a house. It also enables remote control capability of a smart home.

Some advanced system allows using smartphone as a remote controller managing all

devices and appliances at home. Smart home works best when allocated within a smart

city where an apartment can be integrated as part of communication facility of a build-

ing, or a residential area. This provides the infrastructure for a wide range of applica-

tions in different areas, such as security, information sharing, fault detection, service

automation, and entertainment system.

Saving power is an important area of IoT smart home application. The smart home can

be integrated with smart grid to optimize power consumption cost. The application can

provide a service, which monitors the power consumption of all household devices and

re-schedules, arranges their operations to avoid peak period with more energy cost

while still maintains the performance.

2.2.3 Health service

IoT health care service focuses on monitoring patient health remotely and continuously.

It brings the benefit of preventing serious patient condition, improving life quality of

elderly people through a set of smart services and health statistics. The medical and

healthcare sector will be greatly benefited from the development of IoT [2].

Health service works via a set of sensor devices. Advanced sensing devices allow con-

tinuous monitoring of medical parameters and vital functions of patient such as blood

pressure, heart rate, and sugar level. The collected data is sent to a gateway device via

low-power communication protocol, eg Zigbee [15] or BLE [16]. Gateway device is

responsible for forwarding the data to IoT server to process. The analysis result is used

by medical staff to diagnose and manage patient’s health.

One of the popular terms in IoT health service is Body Area Network (BAN) [17], a

network of inter-connected wearable devices, allowing doctor to monitor patient’s

health remotely. BAN devices may be implanted inside patient’s body or worn on hands

or kept in the pocket. BAN devices may need to be connected to other devices such as

mobile phone to send the collected data.

At the moment, IoT health application has not reached its full potential. The concept of

a connected health care system and medical devices has a huge potential to improve

people’s health and their well-being. However, its potential has not been fully realized

and implemented yet. It is expected that big IoT start-up in health sector with applica-

tion deployed in large scale will rise in the near future.

-8-

2.2.4 Agricultural

IoT agricultural application controls and monitors agricultural production and feed by

using sensor system. The system consists of different sensors, which can measure data,

perform data processing, and notify the farmer via a communication facility. For exam-

ple, device sends text message informing that a portion of land needs more water.

Intelligent farming system will help farmer to have more efficient planting practice by

providing statistics of land condition and climate variability during the year. This will

increase the productivity of the farm.

2.3 Microservices

Microservices [18] is an application implementation approach focusing on decomposing

applications into multiple single-function modules which have their own interfaces and

can be deployed independently. This approach allows each module to be managed inde-

pendently by a small team. As a result, it reduces the needed communication between

teams and risk of a change. Consequently, it also speeds up project delivery. Last but

not least, Microservices architecture allows scalability of the application, in case high

load of a particular service.

Below are the main features of Microservices architecture.

 Decomposing:

As opposed to traditional application with large implementation, Microservices decom-

poses it into many independent small services (so-called microservice). Each micro-

service is responsible for a specific business domain (eg: organizations, departments,

employees). It has its own user interface, business logic, database connection like a

small application.

As in below figure 3, the application is split into three microservices: organization ser-

vice, department service, employee service. Each handles its own respective business

logic and is communicated through a gateway. It is similar as traditional software archi-

tecture. However, these three services are running as standalone applications, opposed

to traditional software where they are part of a single application.

-9-

Figure 3. Microservices implementation from Netflix OSS [19].

 Single- function:

Each microservice implements a specific entity or business domain. In other words,

each microservice handles a single function. It can implement many tasks; however all

of them should be related to this single function.

 Independent

Microservice does not need to know about implementation of other microservices. This

enables each service to be tested and deployed independently. However, one micro-

service can use the service of other microservices. For this to work, each service should

have a clear interface defining how it can be communicated. The interface of a service

should be kept intact while updating its implementation to avoid affecting other ser-

vices.

2.4 Microservices with Spring Boot and Spring Cloud

Spring Boot [20] is one of the most well-known and widely-used java frameworks for

implementing Microservices. It is used to build stand-alone Spring applications [23]

which are ready to be run in any production server. Spring Boot makes it easy for de-

velopers to understand and develop Spring applications. Thus it increases productivity

and reduces development time.

Spring Cloud [21] is a framework built on top of Spring Boot. It contains a collection of

design patterns to implement cloud-native applications. In other words, it provides an

architectural design and supported libraries to implement cloud-based applications

which can be scaled up if needed. This allows developer to focus on core business with-

out worrying about cloud infrastructure aspect. Below are few basic, widely-used

Spring Cloud modules.

-10-

 Spring Cloud config service: This service is used to store configuration of other

microservices. This allows various application configurations, such as database

URL, to be defined in one central place. Consequently, configuration options

can be updated merely by restarting this service and not affecting other services.

 Spring discovery service: This service, which is also called service registry or

eureka server, is a central place where services register themselves. Each service

is given a name. Several instances of the same service will have the same name.

Discovery service allows other service (gateway) to access an available instance

of a service based on its name. It abstracts away the IP addresses of services;

other services do not need to know about IP addresses.

 Spring gateway service: This service is the first entry point to access the applica-

tion from outside. It has a mapping between URL prefix and corresponding ser-

vice name. When receiving a request from outside, it will recognize needed ser-

vice name, and ask discovery service to provide corresponding available service

based on that. In summary, gateway service is an intermediate layer between us-

ers and services. Zuul [6] is an implementation of gateway service. It provides

dynamic routing, monitoring services. Moreover, it also load balances between

multiple instances of the same service using Ribbon [7].

 Spring Cloud security: In case microservices need to be protected from anony-

mous access, Spring Cloud provides single sign-on feature using OAuth2 [22].

This distributes the authentication context across services.

-11-

Figure 4. Microservices architecture using Spring Cloud[7].

Above figure 4 demonstrates the general structure of Microservices architecture using

Spring Cloud. In this example, all services, such as statistics, account, and notification

are standalone services. They are accessed through a gateway. Services are discoverable

via discovery service. Apart from those, other services provide enhancement features

like configuration, authentication, logging, dashboard monitoring, etc.

-12-

3 Software design

3.1 Application overview

E-ticket solution aims to provide cities a convenient way to issue and manage fine tick-

ets. Moreover, it also helps citizen pay for the ticket and give feedback of the perfor-

mance of police officer. Feedback will eventually help to improve the service of po-

liceman and hence contribute positively to the relation between government and citi-

zens.

At the highest level of abstraction the architecture of the solution consists of two main

parts: the IoT cloud server and handheld device.

The handheld device is used for issuing the tickets. It looks similar like normal POS

machine with a screen, a keypad, barcode scanner and thermal printer. It contains soft-

ware required to display the data to the user, as well as the logic to enable the user to

communicate with the IoT server. Policeman will use the E-ticket device to query need-

ed information about the driver and vehicle from the IoT server. At the same time, he

can create and print a fine ticket to the driver committed a fault. The fine ticket infor-

mation is stored in the IoT server to be processed further.

The IoT cloud server contains two web applications: E-ticket Client and E-ticket Ad-

min.

 E-ticket Client: public web application for everyone to check their own fine

tickets and pay for them. After paying the fine ticket, citizen will have the possi-

bility to give feedback about policeman’s service.

 E-ticket Admin: private web application used by system admin to manage fine

tickets, feedback and statistics. It also provides communication with handheld

device. This web application can only be accessed via a computer inside VPN

network and with user credentials.

The two web applications share the same database. However, due to their respective

purpose, they have different access rights. E-ticket Client can be publicly accessed

while E-ticket Admin can only be access via VPN and only for authenticated users.

The communication interface between handheld device and E-ticket Admin is REST on

top of SSL and key authentication. Moreover, the device uses a special sim card that

enables it to connect to the same VPN network with E-ticket Admin. This ensures that

the connection between them is secure.

Below figure 5 demonstrates the overview of the whole E-ticket solution.

-13-

Figure 5. Overview of E-ticket solution.

IoT cloud server is split into two sections: public cloud providing services for public

access (normal user access), and private cloud providing services for authenticated ac-

cess on top of VPN network. The private cloud serves both E-ticket devices and E-ticket

Admin web application. Both private and public clouds are bridged and share the same

database.

3.2 Use cases

The use case diagrams for this solution illustrate the interactions between actors and use

cases (actions) in the solution. There are three actors in this solution: police issuing fine

tickets, citizen paying the fines, and administrator monitoring tickets’ status and feed-

backs. Below figures show the three use case diagrams for each actor.

Figure 6 depicts the actions a police officer should perform while giving a fine ticket.

As can be seen from the diagram, the police needs to login first and all actions happen

in a hierarchical order from top to bottom. First, the police will check the citizen info:

basic information, driving license and unpaid tickets. Then, he will select a new fine

type and create a new ticket. Finally, he will print out the ticket and give it to the person

committed the fault to pay.

-14-

Figure 6. Police officer use case diagram.

Figure 7 illustrates citizen use case diagram. It describes different actions a citizen who

committed a fault can do in the E-ticket public web application. Again the actions hap-

pen in a hierarchical order from top to bottom. First user can search for the ticket infor-

mation based on their social security number or ticket‘s number. Then he can pay the

fine ticket online via the web application. Finally, he can give the feedback about police

performance only after the payment is complete.

-15-

Figure 7: Normal user use case diagram.

The last use case diagram in figure 8 shows various actions an administrator can per-

form on private admin web application. All actions are protected behind login page. On

this page, administrator can manage citizens, their driving licenses, vehicles and exist-

ing fine tickets. Moreover, they can update fine tickets’s information based on the pay-

ments received in a designated bank account. Last but not least, they can review polices’

performance and get a report out of that.

-16-

Figure 8. System admin use case diagram.

Above three diagrams show the basic functionality of the solution. There are other use

cases which are not mentioned here, such as check vehicle information, search payment

station, payment procedure. More detail on the application can be found in the appen-

dices or in the following chapters.

-17-

3.3 Software structure and components

Below figure 9 describes the general setup of the solution as well as main basic compo-

nents. On top layer, there is an E-ticket device with 3G connection. At the center, there

is IoT cloud with its components, including REST server and two UI hosting servers.

The bottom layer represents end users. There are two groups of users with different ac-

cess rights: system admin and normal user.

Figure 9. Main software components.

-18-

IoT cloud consists of 3 running servers.

REST server: the server is actually a collection of microservices. They provide REST

web service for device software application and for the two web applications. They have

their own database.

 AdminUIServer: nodejs server providing the HTML pages to end users via a

web browser. It does not serve any data. Instead, the web application gets its da-

ta via REST web services mentioned above. This server is targeted for system

admin and available only under VPN connection and with sufficient user privi-

leges.

 ClientUIServer: same as AdminUIServer but this server provides HTML pages

for normal users. The server is publicly available for all users (vehicle owners).

Device software communicates with REST server via REST API calls. Upon an event,

for example issuing new ticket, the device software will enable its 3G connection and

make REST calls to REST server to query data or to create new fine ticket. After the

process is done, the device will close the 3G connection. The device’s SIM card is a

special one with VPN connection built-in. Once connected, the device is in the same

VPN network with the private section of IoT cloud server. On top of that, the trans-

ferred data between them is encrypted using SSL. This ensures the connection from E-

ticket device to IoT server is secure.

-19-

3.4 Application security

Security is a very important aspect of this IoT application. Amazon cloud service AWS

[8] was selected to host this application. As the result, all security settings for the appli-

cation are based on Amazon AWS. Figure 10 illustrates the security setup of E-ticket

solution.

Figure 10. Solution security setup.

Since there are two separate use cases for this application, secured connection with

handheld device and public web application access for normal user, the application is

designed and deployed in two different VPCs [24]: public VPC and private VPC. With-

in each VPC, micro-services are deployed in different EC2s [25] inside a VPC subnet.

This provides maximum security for the solution: each application is restricted in its

own EC2 sandbox and is not allowed to access elsewhere.

-20-

 Public VPC: hosts REST server including micro-services and Client UI server.

All of them are public services and are available over internet via an internet

gateway.

 Private VPC: hosts REST service including micro-services and Admin UI serv-

er. They are private services and communicate with outside via a Virtual private

gateway. The gateway is configured to have bridged connection with the VPN

network provided by network provider. This setup allows a secure connection

from hand-held device to private VPC services.

Both REST servers use the same database. This is the only shared information between

both VPCs. The security for database connection is done by DB security group. Both

REST servers and database are part of this security group. Only member of this group

can access the database.

The traffic of the whole solution is monitored by Amazon CloudWatch component. It is

configured to log input and output data to the VPC via either virtual private gateway or

internet gateway. It can be used to diagnose communication issue or detect fishing traf-

fic. Moreover, it also allows setting alarm on the system if certain condition is satisfied.

Moreover, the solution supports clustering and auto-scaling. Each EC2 has auto-scaling

feature to duplicate itself to multiple instances in case the coming traffic is high and

reduce the instances in case of low traffic.

Below figure 11 shows configuration step to configure bridged VPN connection be-

tween private VPC and VPN of network provider.

-21-

Figure 11. Bridged VPN connection setup.

Bridged VPN configuration allows machines within a VPC connected to VPN network

of network provider. The bridged VPN configuration is easy: two most important fields

are Virtual private gateway we want to map and the IP address of the VPN gateway of

the network provider. Moreover, it also allows configuring IP address range of EC2s

within the VPC.

-22-

4 Implementation

4.1 Device software

4.1.1 Components overview

Device software is the software running on the E-ticket device. It implements percep-

tion layer and one side of the network layer in IoT architecture we discussed in litera-

ture review chapter. The software application is written in C language and run under

Linux OS on ARM processor.

The application collects inputs from policeman and connects to server via 3G to send

the command creating a fine ticket. After that it prints out the fine ticket to be given to

the person committed to the fault. The application is also used to query and check vehi-

cle data such as inspection info, owner or driver data such as contact info, driving li-

cense, unpaid tickets, etc.

Detail information about device components and services is listed in below figure 12.

Figure 12. Device software components outline.

-23-

The application consists of 4 main packages: UI components, services, mvc and utils.

Each package is made as a separate module with own functionality. Detail description

on the services is as the following.

 UI components: this package contains basic UI components of a page such as

button, label, textfield, etc. Since the application UI is built based on directfb,

which is quite low level framework, all UI components need to be built from

scratch.

 Services package: this package contains services needed for the application to

interface with the hardware and communicate with the server. There are four

services. Scanner service is used to scan barcode. Printer service is for printing

tickets. Network service allows configuring 3G connection. COM service is re-

sponsible for REST communication with the IoT server.

 MVC (model – view - controller): this package contains the main UI application

code. It is responsible for displaying UI pages together with logic of switching

between pages and handle user actions. It composes the pages from the UI com-

ponents and uses needed services from service package.

 Utils: utility package.

4.1.2 Components interfacing

The components interact with each other via API function calls. MVC is the main com-

ponent; other services from services package are called from MVC when required. Fig-

ure 13 describes the interaction between MVC and services.

-24-

Figure 13. Interface between MVC and services.

As can be seen from above figure, services are independent and only interface with

MVC. Each service handles a respective job. Below is the detail on each service and its

functions.

 Scanner service is used by MVC to scan driver’s license number.

 Printer service provides a function to print newly created ticket.

 COM service is the REST service providing user data such as: get citizen infor-

mation, get citizen’s unpaid tickets, get categories, and get vehicle information.

This service is the main communication channel between the device and IoT

cloud server. It also implements SSL encryption to secure the connection be-

tween them.

 Network service is used to initialize or close the data connection. It also handles

the re-connection when connection interruption happens. In the background, it

uses pppd agent, which is a process controlling the modem via a collection of

AT commands called chatscript. Network service uses a configuration file to

store network provider configuration (username and password). Below is the

chat script network service uses to initiate the 3G connection.

-25-

/**

 * Chatscript to issue AT command and check the reply.

 * For different provider, the APN(internet), callnumber(*99#),

 * and username/password shall be updated accordingly.

 * Read more about chatscript in ppp website

 */

char GPRS_CHAT_SCRIPT[] = {

 "ABORT 'NO CARRIER'" "\n"

 "ABORT 'NO DIALTONE'" "\n"

 "ABORT 'ERROR'" "\n"

 "ABORT 'NO ANSWER'" "\n"

 "ABORT 'BUSY'" "\n"

 "ABORT 'Invalid Login'" "\n"

 "ABORT 'Login incorrect'" "\n"

 "TIMEOUT '60'" "\n"

 "'' 'ATZ'" "\n"

 "'OK' 'AT+CGDCONT=1,\"IP\",\"internet\"'" "\n"

 "'OK' 'ATDT*99#'" "\n"

 "'CONNECT' ''"

 "\n"

};

-26-

4.1.3 Sequence diagram

The main usage of E-ticket device is to check vehicle info, driver info and issue fine

tickets. Examples of vehicle information which is checked are vehicle year, owner and

inspection data. Vehicle information is retrieved based on the license plate number. For

a driver, information such as name, age, address, driving license is checked. Driver in-

formation is fetched based on his social security number. The following figure 14 shows

the sequence when police issues a fine ticket.

-27-

Figure 14. Create fine ticket sequence diagram.

-28-

E-ticket machine is used by police officer to issue fine tickets. The device does not con-

stantly have the 3G Ethernet connection to IoT could server; the connection is switched

on only when needed and off after the action is done. However, it is not described in

above diagram to reduce the complexity. In order to access E-ticket functionality, at

first police officer needs to login using his own credentials. Secondly, he scans the driv-

er’s driving license number and fetches the driver’s info and unpaid tickets. Finally, he

selects a new fault for the driver and prints a new ticket. If there are unpaid tickets, all

of them will be summed up in the newly created ticket.

-29-

4.2 Server-side software

4.2.1 Components overview

As mentioned in theory part, the cloud server of this solution is implemented using

Spring Boot [20] and Spring Cloud [21] frameworks. It utilizes the implementation of

basic cloud services instead of reinventing the wheel. This allows the application to in-

herits all the nice features of IoT cloud service such as clustering, load balancing, ser-

vice gateway, etc. Below figure 15 describes in detail the implemented services and

their purposes.

Figure 15. Architectural design of E-ticket cloud.

There are several micro services which form this cloud-based server side application.

Each micro service is independent and does distinctive jobs. It also have its own data-

base connection and own data table. JPA [26] and Hibernate [27] are the software com-

ponents used to handle database connection and database transaction. Below is a short

description of the implemented microservices.

-30-

 Config service: generic service storing configuration, eg: database configuration.

 Discovery service: generic service storing services and their names.

 Gateway service: generic cloud service acting as an entry point to the whole sys-

tem. It asks discovery service for the correct service to handle incoming request

and passes the request to it.

 Authentication service: handle user authentication.

 Account service: handle user account.

 Citizen service: main service providing all information related to a citizen: citi-

zen info, driving license info, fine category, fine ticket, vehicle info, feedback,

etc.

4.2.2 Sequence diagram

A driver having a fine ticket can make the payment for it via bank transfer or via E-

ticket website. The information for paying the fine ticket (amount, bank account, refer-

ence number) is already present in the paper ticket itself. However, in case the paper

ticket is lost, driver can check their tickets based on their social security number on E-

ticket website. Moreover, the website provides more information about the fine, such as

incident time, evidence photo of the fault, lawful information about the fault, nearest

debt collection station. In addition, it allows user to make payment on the website and

give feedback about performance of the police officer.

The following figure 16 shows the sequence when a driver searches and makes payment

via E-ticket website.

-31-

Figure 16. Search and make payment sequence diagram.

Normal users don’t need to login to search for their ticket information. Instead, the sys-

tem uses user information, such as social security number or fine ticket number, to

search for existing fine tickets. The search result gives a list of paid and unpaid fine

tickets. User can click on a ticket to view its detail: incident time, evidence photo of the

fault, lawful information about the fault, nearest debt collection station. After that, user

can choose to pay for the fine ticket, the system will navigate user to payment gateway

page to make the payment. Finally, user can give feedback about police performance

once the payment process is done.

sd Pay fine ticket

Citizen

ClientUIServer RestServer

ProcessPayment()

GetTicketsBySSN(socialNumber)

GiveFeedback(ticketId)

UpdateTicketStatus()

GetTicket(ticketId)

MakePayment()

ViewTicket(ticketId)

ViewMyTickets()

GiveFeedback()

-32-

4.2.3 Implementation

The solution consists of multiple microservices. Each has each own role described in

previous chapter. The general structure all microservices is described in the following.

 Config service

Config service is a generic Spring Cloud service. There is no customization to it. The

code base of this service is also very simple through Spring Cloud framework. The key

in code implementation is @EnableConfigService annotation which indicates that this is

a config service.

package com.latekco.config;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.config.server.EnableConfigServer;

@SpringBootApplication
@EnableConfigServer
public class PbmConfigApplication
{
 public static void main(String[] args) {
 SpringApplication.run(PbmConfigApplication.class, args);
 }
}

Config service manages configuration files for other services. The service is a central

place to configure and manage all other microservices. This simplifies the maintenance

work. Moreover, it also allows editing the configuration of all applications without the

need of restarting them. Examples of configuration include database connection URL,

security settings, etc. Below is example of a configuration file.

security:
 oauth2:
 client:
 clientId: pbm-account-service
 accessTokenUri: http://localhost:5000/uaa/oauth/token
 resource:
 tokenInfoUri: http://localhost:5000/uaa/oauth/token
 clientId: pbm-account-service
spring:
 jackson:
 serialization.indent_output: true
 datasource:
 driver-class-name: com.mysql.jdbc.Driver
 url: jdbc:mysql://localhost:3306/pbm_account
 username: root
 password: root

 jpa:
 database-platform: org.hibernate.dialect.MySQL5InnoDBDialect
 database: MYSQL
 show-sql: true

-33-

 Gateway service

Gateway service is the interface to the application. It is responsible for routing requests

to a correct service and balance the load among services of the same type. When receiv-

ing a request from outside, it will recognize needed service name, and ask discovery

service to provide corresponding available service based on that. This is also a generic

Sping service with minor modification.

 Discovery service

Discovery service stores the information about all available micro-service applications.

Every micro-service registers itself to discovery service. As a result, this service knows

every micro-service application running on each port and IP address. This is a generic

Spring service with minor modification.

 Account service

Account service is responsible for creating and managing user accounts. The account is

granted for police officers and administration staff. Account service has own database.

Below is example code to create a new account.

@Override
public Account create(UserDc user) {

 Account existing = repository.findByName(user.getUsername());
 Assert.isNull(existing, "account already exists: " + us-
er.getUsername());

 authClient.createUser(user);
 Account account = new Account();
 account.setName(user.getUsername());
 account.setLastSeen(new Date());

 repository.save(account);

 return account;
}

 Authentication service

Authentication service is responsible for implementing login and user authentication

service. It is also responsible for security layer of the application.

 Citizen service

Citizen service is the main service providing data for both E-ticket device and E-ticket

web application. It provides all the functionalities that are available in E-ticket device

and E-ticket web application. It contains the following controllers: citizen controller,

driving license controller, vehicle controller, policeman controller, fine category con-

troller, fine ticket controller, billing machine controller, and feedback controller.

-34-

5 Result
The user interface of this E-ticket application was made using latest web technologies

such as Angular JS, Bootstrap, Awesome font, jquery, typescript, HTML 5, CSS 3.

Moreover, sockjs-client was used to create websocket connection between web browser

and the IoT server. It allows the client side to detect new changes from the server side

and update accordingly. Below figures 17 and 18 demonstrate the interfaces in both

admin page and user page. More detail user interfaces can be found in the appendices.

Figure 17. Citizen detail page.

-35-

Figure 18. Fine ticket detail.

-36-

6 Conclusion
IoT envisions the future Internet where every physical device is connected to the Inter-

net and exchanges information about themselves and their surroundings. This thesis

discussed the general structure of IoT application, existing IoT applications and future

development. The result of this research suggests that IoT has very big potential on de-

veloping smart applications in almost every field in our daily life.

The demonstration of E-ticket system in this thesis has given a concrete example of IoT

application development and IoT use cases solving real life problems. Although the

application is not yet taken into production, it presents a demonstration of ways to im-

prove existing public service in developing countries using IoT. The application shall be

developed further and sold to government to take it into use.

-37-

References
[1] Debasis Bandyopadhyay and Jaydip Sen. Internet of Things: Applications and

Challenges in Technology and Standardization. Wireless Pers Commun (2011) 58:49–

69.

[2] Eleonora Borgia. The Internet of Things vision: Key features, applications and

open issues. Institute of Informatics and Telematics (IIT), Italian National Research

Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy.

[3] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, Marimuthu Palaniswami.

Internet of Things (IoT): A vision, architectural elements, and future directions. Future

Generation Computer Systems, Volume 29, Issue 7, 2013.

[4] Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future Internet: The Internet

of Things Architecture, Possible Applications and Key Challenges. In 2012 10th Inter-

national Conference on Frontiers of Information Technology (FIT): Proceedings (pp.

257-260). Institute of Electrical and Electronics Engineers Inc. DOI:

10.1109/FIT.2012.53.

[5] Gardašević G, Veletić M, Maletić N, Vasiljević D, Radusinović I, Tomović S, et al.

The IoT Architectural Framework, Design Issues and Application Domains. Wireless

Personal Communications. 2017;92(1):127-48.

[6] Smart Santander, EU FP7 project. Future internet research and experimentation.

http://www.smartsantander.eu/.

[7] Bharath Mannaperumal. Microservice using Sping Cloud and Netflix OSS.

https://jsoftgroup.wordpress.com/2017/05/09/micro-service-using-spring-cloud-and-

netflix-oss/

[8] Amazon web services (AWS). Retrieved 11.11.2019, from http://www.

https://aws.amazon.com/.

[9] Microservices with Spring. Retrieved 11.11.2019, from

https://spring.io/blog/2015/07/14/microservices-with-spring.

[10] What is REST. Retrieved 11.11.2019, from https://restfulapi.net/.

[11] What is 3G. Retrieved 11.11.2019, from https://www.megapath.com/blog/blog-

archive/what-is-3g-network/.

[12] Bernard Marr. What is Industry 4.0? Retrieved 11.11.2019, from

https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-

easy-explanation-for-anyone/#3a27b3d39788 /.

-38-

[13] What is Cloud computing? Retrieved 11.11.2019, from

https://aws.amazon.com/what-is-cloud-computing/.

[14] Supercomputer wikipedia Retrieved 11.11.2019, from

https://en.wikipedia.org/wiki/Supercomputer/.

[15] What is Zigbee? Retrieved 11.11.2019, from https://zigbee.org/what-is-zigbee//.

[16] Bluetooth Low Energy (BLE). Retrieved 11.11.2019, from

https://www.novelbits.io/what-is-ble-bluetooth-low-energy-iot//.

[17] Diamond A. K. Asare. Body Area Network Standardization, Analysis and Appli-

cation.

[18] What are microservices? Retrieved 11.11.2019, from https://microservices.io//.

[19] Quick Guide to Microservices With Spring Boot 2.0, Eureka, and Spring Cloud.

Retrieved 11.11.2019, from https://dzone.com/articles/quick-guide-to-microservices-with-

spring-boot-20-e.

[20] Spring Boot. Retrieved 11.11.2019, from https://spring.io/projects/spring-boot/.

[21] Spring Cloud. Retrieved 11.11.2019, from https://spring.io/projects/spring-cloud.

[22] OAuth 2.0. Retrieved 11.11.2019, from https://oauth.net/2/.

[23] Building an Application with Spring Boot. Retrieved 11.11.2019, from

https://spring.io/guides/gs/spring-boot/.

[24] Amazon VPC. Retrieved 11.11.2019, from

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html.

[25] Amazon EC2. Retrieved 11.11.2019, from https://aws.amazon.com/ec2/.

[26] What is JPA? Introduction to the Java Persistence API. Retrieved 11.11.2019,

from https://www.javaworld.com/article/3379043/what-is-jpa-introduction-to-the-java-

persistence-api.html.

[27] Hibernate. Retrieved 11.11.2019, from https://hibernate.org/.

-39-

Appendices
Appendix 1: User interface of E-ticket Admin.

Login page:

Citizen page: view all citizen and edit citizen.

-40-

View citizen information.

Edit or add driving license.

-41-

Vehicle page: view all vehicle and edit vehicle information.

Edit or add vehicle information:

-42-

Fine ticket page: view all fine tickets and their statuses.

Fine ticket detail page

-43-

Update fine ticket status after payment has been received.

Manage fine categories: add/edit/delete fine category, including fine type, name, fine
amount, and lawful information about the fine.

-44-

Add new fine category

Police feedback

-45-

View feedback detail

-46-

Appendix 2: User interface of E-ticket Client.

Search for fine tickets based on ticket number or citizen’s social security number.

-47-

Fine ticket detail

-48-

Payment method

-49-

Send feedback

