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The monitoring of vital signs is used to determine human health status. Healthcare monitoring 
devices are usually attached to the human skin to obtain information about the human body.  
However, the main inconvenience of using conventional electronic devices is the mechanical mis-
match between the devices and the skin. This issue can lead to measurement errors, and patient 
comfort can be affected negatively when these devices are used continuously. Therefore, it is 
needed to develop skin-conformal electronic devices to overcome these drawbacks. This thesis 
explores the fabrication process of ultrathin interdigitated pulse wave sensors based on the pie-
zoelectric effect. The aim of this research is to demonstrate that printed electronics technologies 
are an excellent alternative to fabricate low-cost skin-conformal sensors. 

First, this thesis explores the theoretical background of piezoelectricity, flexible and ultrathin pie-
zoelectric pressure sensors, and printed electronics technologies. Then, the fabrication process 
is analyzed. The sensor is fabricated onto a Parylene-C substrate using the piezoelectric polymer 
P(VDF-TrF) and the conductive polymer PEDOT:PSS. Preliminary experiments are done to de-
termine substrate wettability and to characterize the electrical properties of the conductive ink. A 
substrate surface treatment is used to modify the wetting properties of the substrate. The effect 
of the surface treatment exposure time is evaluated by measuring the width of printed lines. The 
experiment results are used to evaluate the sensor structure printing process. IDE structure is 
fabricated by inkjet printing, and the piezoelectric layer is screen printed on top of the electrodes. 
Electrical properties and piezoelectric sensitivity of the final samples are characterized. 

The results of this research show that the ink and substrate properties have an impact on the 
performance of the printed structures. The surface energy of the substrate is modified to improve 
its wettability. Thus, UV/O3 surface treatment can be used to make Parylene-C hydrophilic. Fur-
thermore, the IDE structure can be fabricated by inkjet printing technology. However, the coffee-
ring effect is observed in narrow PEDOT:PSS inkjet printed lines (i.e. IDE fingers). This may have 
an impact on the conductivity of the lines due to the non-uniform distribution of the material. On 
the other hand, the validation of the piezoelectric sensitivity characterization suggests that the 
poling process has to be improved to guarantee the operation of the device as a piezoelectric 
sensor. The results of this research validate that ultra-thin sensors can be fabricated using printed 
electronics technologies. The overall thickness of the sensors is below 6 µm. In conclusion, further 
research has to be done to activate properly the piezoelectric properties of the P(VDF-TrFE) ma-
terial in this sensor configuration. 
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1. INTRODUCTION 

Vital signs are indicators that are monitored to check the human health status. The pri-

mary vital signs are body temperature, blood pressure, heart rate, electrocardiogram 

(ECG), and respiration rate [1]. Additionally, the continuous monitoring of these indica-

tors could help to detect abnormalities and lead to the detection of diseases at an early 

stage. Traditionally, monitoring of vital signs has been done using rigid and bulky elec-

tronic devices. Thus, using these types of devices could be uncomfortable when moni-

toring is done continuously. Furthermore, the mechanical mismatch between the skin 

and the rigid devices could lead to measurement errors [2]. As a consequence, the de-

velopment of skin-conformal devices needs to be studied. Skin-conformal devices are 

characterized by having a thickness below 10 μm [3]. Figure 1 illustrates some medical 

applications of skin conformal devices.  

 

 

Figure 1.  Illustration of medical applications of skin-attachable devices. Adapted 
from [4]. 

Lately, the research in the field of wearable monitoring systems is focusing on developing 

flexible and conformal devices which can be easily attached to the skin[5][6][7]. Self-

powered ultra-thin flexible piezoelectric sensors for pulse monitoring have been reported 

[8]. However, the sensors utilize a lead-based piezoelectric material which has toxic ef-

fects. Furthermore, the fabrication limitations in scalability, associated with inorganic-

based laser lift-off (ILLO) transfer process, reduces the cost-effectiveness. In contrast, 
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printed piezoelectric pressure sensors based on the piezoelectric polymer poly(vinyli-

denefluoride-co-trifluoroethylene) (P(VDF-TrFE)) have been demonstrated [9][10][11]. 

Using polymers and printed electronic technologies eliminate biocompatibility issues and 

decrease production costs. Nonetheless, the sensor is fabricated on a relatively thick 

substrate (>> 10 μm), and an adhesive patch must be used to attach the sensor to the 

skin.  

Consequently, the development of ultrathin, low-cost, biocompatible sensors needs to 

be investigated. First, the ultra-thin feature makes the sensors skin-conformable [12][13]. 

Conformability decreases the mechanical mismatch between the skin and the sensor 

observed when thick and rigid sensors are placed on the skin. This feature should also 

facilitate the transmission of the signal across the skin-sensor interface. Furthermore, 

ultra-thin sensors can conform to the human skin which eliminates the need to use ad-

hesives to attach the devices on the skin [2]. Second, using fabrication methods such as 

printed electronics technologies can considerably decrease the production costs and 

material waste in comparison to traditional processes such as transfer processes (e.g. 

ILLO) and photolithography [9][7][14]. Therefore, printed electronic technologies can be 

used to fabricate low-cost sensors. Additionally, the fabrication process is simplified by 

using these technologies [15]. Third, biocompatibility is a key property when sensors 

interface with biological tissues. Piezoelectric polymers, such as P(VDF-TrFE), are a 

promising class of materials to be used in medical applications because of being bio-

compatible and environment-friendly [11][16]. Moreover, these materials can be pro-

cessed using printed electronics technologies which do not increase the fabrication 

costs. Furthermore, the sensor configuration could have an impact on the sensitivity of 

the sensor. Thus, sensors will be fabricated based on the interdigitated electrodes (IDE) 

structure. IDE configuration allows having access to a piezoelectric mode which leads to 

high piezoelectric sensitivity.    

To summarize, the research aims to develop ultra-thin IDE piezoelectric pressure sen-

sors using printing technologies. Sensors will be fabricated using inkjet printing and 

screen-printing technologies. The fabrication of the sensor will be done using biocom-

patible polymer materials. Furthermore, it is intended to use these sensors for pulse 

wave measurements. However, the application of these sensors is not limited only to 

healthcare. It is also possible to use them in robotics and prosthetics applications.  

This thesis document is divided as follows. First, in Chapter 2 the piezoelectric sensors 

working principle and properties of different piezoelectric materials are explained. In ad-

dition, most common piezoelectric sensors configurations are also explored. Printing 
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technologies such as inkjet printing and screen-printing are also examined in this chap-

ter. Chapter 3 describes all the experiments and fabrication processes used in this thesis 

for the fabrication of the ultra-thin IDE pressure sensors. Chapter 4 focuses on present-

ing and analyzing all the obtained results from this research. Finally, Chapter 5 summa-

rizes the thesis outcomes, and future work is also presented in this chapter. 
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2. LITERATURE REVIEW 

This section introduces the theoretical background of this thesis work. First, the piezoe-

lectric sensors working principle is explained and the properties of some piezoelectric 

materials are given. In addition, most common structures used for implementing flexible 

and ultra-thin piezoelectric sensors are described. In addition, printing technologies are 

briefly described. Inkjet printing and screen-printing are explained in more detail because 

those technologies were used in this thesis. 

2.1 Piezoelectricity 

Piezoelectricity was discovered in 1880 by the Curie brothers; however, its use in prac-

tical applications was introduced after several years [17]. Piezoelectricity is an electro-

mechanical phenomenon. This phenomenon occurs in response to an interaction be-

tween mechanical and electrical properties of a material such that mechanical defor-

mation of the material causes a change in net polarization across the material. A material 

exhibits piezoelectricity if the structure of the material does not have a symmetry center. 

Owing to this characteristic, piezoelectric materials are a distinct type of dielectric mate-

rials that show transducer properties [18][19].  

Piezoelectric materials are used in a wide variety of technical applications, for instance, 

in information and communications (e.g. battery-free systems), industrial automation(e.g. 

robotic systems), medical technology (e.g. vital signs monitoring devices), among others 

[17]. Recently, applications of piezoelectricity to wearable sensors and actuators have 

increased dramatically owing to the discovery of new low temperature and solution-pro-

cessable materials (e.g. PVDF-family polymers), and new fabrication methods for de-

vices (e.g. printing technologies). This is a vast research field, which can be divided into 

the study of synthesis and properties of piezoelectric materials, fabrication of devices, 

characterization techniques and potential applications [18].  

2.1.1 Direct and indirect piezoelectric effect 

Piezoelectric effect can be divided into direct and indirect piezoelectric effect [18]. The 

direct piezoelectric effect can be defined as the change of the net polarization when an 

external mechanical deformation is applied to the material. This deformation leads to 

electric displacement in the material. Thus, this can be detected as a change in the 
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amount of charges accumulated on the material surface. Figure 2 illustrates the direct 

piezoelectric effect. As seen in this figure, tensile or compressive stress can be applied 

to the material. As a result, a positive voltage is generated when tensile stress is applied 

parallel to the poling direction (Figure 2b). On the contrary, a negative voltage is gener-

ated when compressive stress is applied (Figure 2c). [19] 

 

Figure 2.  Direct piezoelectric effect: a) tensile stress applied; b) compressive 
stress applied. Adapted from [19]. 

On the other hand, the indirect piezoelectric effect results when applying an external 

electric field to the material. Figure 3 depicts the indirect piezoelectric effect. In this sce-

nario, a mechanical strain is generated in response to the applied electric field. If the 

electric field is applied in the same direction as the polarity of the material, the material 

is stretched (Figure 3b). Otherwise, when the electric field is applied in the opposite di-

rection, a compressive strain is generated in the material (Figure 3c) [19].  

 

Figure 3. Inverse piezoelectric effect: a) voltage with the same polarity; b) reverse 
voltage. Adapted from [19]. 

Both effects have several applications owing to the conversion of electrical energy into 

mechanical energy and vice versa [18]. In Figure 4, it is shown a summary of some 

practical applications of piezoelectricity. The piezoelectric pressure sensor developed in 



14 

 

this thesis is based on the direct piezoelectric effect. Thus, a more detailed analysis of 

this effect is presented below. 

 

Figure 4.  Practical applications of piezoelectricity [18]. 

The piezoelectric sensitivity of a piezoelectric material is described by the piezoelectric 

coefficients, which connect the input and output parameters (i.e. mechanical and electri-

cal parameters). External stress (T) and strain (S) are forms to express the mechanical 

input. Electrical output can be in the form of electric field (E), or surface charge density 

(D) [19]. The equations that describe the relation between mechanical input and electri-

cal output are detailed below.  

D = dT   

E = gT   

D = eS   

E = hS   

Moreover, the piezoelectric coefficients (e, h, d, and g) define the direct piezoelectric ef-

fect. These coefficients can be described by the partial derivatives shown in Table 1.  
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Piezoelectric 
coefficient 

Definition Unit 

d 
polarization

stress
 d = (

∂D

∂T
)

E
 C/N 

g 
electric field

stress
 g = − (

∂E

∂T
)

D
 V ∙ m/N 

e 
polarization

strain
 e = (

∂D

∂S
)

E
 C/m2 

h 
electric field

strain
 h = − (

∂E

∂S
)

D
 V/m 

 

The coordinates system used to represent the direction of the poling and the stress is 

the right-handed Cartesian. Figure 5 illustrates this system. The X-, Y- and Z-axes are 

denoted by 1, 2, and 3, respectively. In addition, the rotations around the X-, Y-, and Z-

axes are denoted by 4, 5, and 6. [19] 

 

Figure 5. Right-handed cartesian coordinate system [19]. 

Equation (1) can be represented in terms of the T and D components. T is a tensor with 

components: 

(

T11 T12 T13

T21 T22 T23

T31 T32 T33

) 

T is also symmetric due to 𝑇12 = 𝑇21, 𝑇13 = 𝑇31, and 𝑇32 = 𝑇32. Thus, it has only six inde-

pendent components. In addition, D has the components: 

(
D1

D2

D3

) 

Therefore, the electric displacement field can be also described by equation (5). 

Table 1.  Direct piezoelectric coefficients [19].  
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D1 = d111T11 +  d112T12 + d113T13 + d121T21 + d122T22 + d123T23 + d131T31

+ d132T32 + d133T33 

D2 = d211T11 +  d212T12 + d213T13 + d221T21 + d222T22 + d223T23 + d231T31

+ d232T32 + d233T33 

D3 = d311T11 +  d312T12 + d313T13 + d321T21 + d322T21 + d322T22 + d323T23

+ d331T31 + d332T32 + d333T33 

  

These equations can be simplified as denoted in equations (6). In these equations, the 

indexes 1, 2, and 3 represent tensile or compressive stress (or strain) and 4, 5, and 6 

denotes shear stress (or shear strain). [19].  

D1 = d11T1 +  d12T2 + d13T3 + d14T4 + d15T5 + d16T6 

D2 = d21T1 +  d22T2 + d23T3 + d24T4 + d25T5 + d26T6 

D3 = d31T1 +  d32T2 + d33T3 + d34T4 + d35T5 + d36T6 

  

Many of the materials employed in sensor and actuator applications are isotropic. These 

materials lose the isotropic property after the poling process. The poling direction usually 

is in the Z-direction. Then, owing to the system properties after poling, the system is 

cylindrically symmetric. As a result, the number of independent piezoelectric components 

decreases. Then, the piezoelectric coefficient matrix is defined by equation (7). It is as-

sumed that d13 = d31 and d15 = d51. Therefore, the piezoelectric properties of a poled 

material are defined by the coefficients d31, d33, and d15. These piezoelectric coefficients 

express the relation between the charge collected on the electrodes and the applied 

mechanical stress. [19] 

d = (

0 0 0 0 d15 0
0 0 0 d15 0 0

d31 d31 d33 0 0 0
)   

The d31 coefficient is named the transverse mode. Equation (8) defines the direct piezo-

electric effect when the external stress is in direction 1 on face 1 (X-axis) and the charge 

response is on face 3 (Z-axis). The d33 coefficient defines the direct piezoelectric effect 

when the external stress is in direction 3 on face 3 (Z-axis); the charge response is also 

on face 3 (Z-axis). This is called the longitudinal mode. Equation (9) represents the rela-

tion between D, T, and d33. Furthermore, the coefficient d15 is called the shear mode. 

Equation (10) defines the direct piezoelectric effect when the stress is applied parallel to 

face 1 (direction 3), and the response is the charge on face 1. [19] 

D3 = d31T1   
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D3 = d33T3   

D1 = d15T5   

2.1.2 Poling process 

To induce piezoelectricity in piezoelectric materials, it is necessary to pole the material. 

The poling process is performed by applying a high electric field to the material to gen-

erate net remanent polarization [19]. Figure 6 illustrates the poling process. Dipoles are 

randomly oriented before the poling as can be seen in Figure 6a. When the electric field 

is applied to the material, the electric dipoles get oriented in the direction of the applied 

field (Figure 6b). Then, if the electric field exceeds the coercive field of the material, most 

of the dipoles are oriented in the same direction after the poling process (Figure 6c). This 

results in maximum material polarization. This process requires a set of steps. For certain 

materials, it is first necessary to heat the material to a temperature below the Curie tem-

perature or stretch it. Next, a high electric field is applied to the material [20]. The most 

common methods used for performing this process are corona poling and direct poling 

[21]. 

 

Figure 6. Poling process: a) non-poled material; b) during poling; c) after poling. 
Adapted from [19]. 

The corona poling method is performed by applying an electric field to the material 

through a needle that is kept under a certain distance from the material. This method is 

depicted in Figure 7a. As can be seen in the figure, the material is placed on a base 

plate, and voltage is applied to the needle and the base. In addition, the base plate tem-

perature is increased until it reaches the material glass transition temperature. Once the 

needle reaches the ionizing energy of the adjacent air, ionic species are created and 

attracted to the plate. After enough surface charge density is created, the ions flow to-

wards the base plate through the thickness of the material [22]. This process results in 

the polarization of the material. On the contrary, the direct poling method is done by 
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applying the electric field directly to the electrodes that are in contact with the piezoelec-

tric material. The direct poling method is illustrated in Figure 7b. As depicted in this figure, 

the piezoelectric material is distributed between two parallel electrodes. Thus, the poling 

electric field is applied to the electrodes.  

 

Figure 7. Poling methods: a) corona poling method [22]; b) direct poling method. 

However, the materials should work under certain conditions to maintain the piezoelec-

tric properties after polarization. According to [23], three main conditions should be ful-

filled to maintain the piezoelectric properties. First, the temperature of the material should 

be maintained below its Curie temperature. Second, the material should not be under 

very strong alternating electric fields or direct fields, opposite to the polarization direction. 

Third, the mechanical stress applied to the material should not surpass a specific limit. 

Failing in fulfilling these requirements, the piezoelectric properties could be weaker or 

could be vanished. 

2.1.3 Piezoelectric materials 

Piezoelectric materials belong to a material group that is characterized by their noncen-

trosymmetric crystal structure. Depending on their structural features, these materials 

can be classified into four groups: ceramics, single crystals, polymers, and composites. 

Ceramics are polycrystalline materials that are formed by several crystal “grains” that 

have identical chemical composition. However, the ions in the grains can be orientated 

differently from one grain to other and the distance between ions can be slightly different. 

In contrast, single crystals have their positive and negative ions distributed periodically. 

On the contrary, polymers are materials composed of hydrogen and carbon atoms. 

These materials are based on long polymer chains that are composed of repeated units 

called “monomers”. The main advantage of these materials is that they are more flexible 

than ceramics and single crystals. In addition, composites are formed when some mate-

rials from the previous groups are combined to get certain properties. [24] 
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Previously, inorganic materials such as lead zirconate titanate (PZT) and zinc oxide 

(ZnO) nanowires were broadly studied owing to their high piezoelectric sensitivity. How-

ever, these types of materials present some disadvantages such as expensive produc-

tion costs, stiffness, and biocompatibility issues due to lead content. On the other hand, 

there is a tendency for developing devices based on organic piezoelectric materials such 

as polymers. These materials are being highly investigated because of their high me-

chanical stability and compatibility with low-cost processing technologies [25]. The prop-

erties of piezoelectric materials play a major role in the device application. For flexible 

pressure sensors used in medical applications, it is desired to use materials with prop-

erties such as low-cost production, high mechanical stability, high piezoelectric coeffi-

cient, simple processing, and biocompatibility [26][27]. Table 2 summarizes the main 

properties of some piezoelectric materials. 

Recently, most of the research done in this field make effort to develop flexible pressure 

sensors using piezoelectric materials that are biocompatible and can be implanted or 

attached directly to the human skin [28][29]. Therefore, polymer piezoelectric materials 

are excellent candidates to be used in this type of application. Polymeric piezoelectric 

materials are characterized for being flexible, mechanically stable, and can be processed 

as large-area thin films. Furthermore, these materials can be processed at lower tem-

peratures compared to inorganic materials. In addition, these materials are compatible 

to be processed using solution processing methods such as spray coating, spin coating, 

doctor blade coating, screen printing, and inkjet printing, among others [27]. Although 

polymer piezoelectric materials have lower piezoelectric coefficients than ceramic mate-

rials, their compatibility with the aforementioned cost-effective fabrication technologies 

has enabled their wide use in sensor applications [3]. All the advantages associated with 

organic and polymeric materials allow developing flexible pressure sensors with out-

standing properties.  
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Table 2. Piezoelectric materials properties.  
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2.1.4 PVDF and its copolymer P(VDF-TrFE) 

The most used and studied piezoelectric polymer is polyvinylidene fluoride (PVDF) and 

its copolymer with trifluoroethylene (P(VDF-TrFE)) [29][40]. PVDF material has a semi-

crystalline structure with crystalline and amorphous regions, and its crystallinity is be-

tween 40% and 60%. The piezoelectric inactive amorphous regions decrease the effec-

tive piezoelectric performance of the material when compared to single or polycrystalline 

ceramic materials [18]. For instance, P(VDF-TrFE) has a charge piezoelectric coefficient 

d33 of -24 to -30 pC/N while ceramic materials such as PZT and BaTiO3 have a higher 

charge piezoelectric coefficient as can be seen in Table 2. 

In addition, PVDF exhibits at least four different crystal phases α, β, γ, and δ depending 

on the fabrication conditions. The phase that exhibits strong piezoelectricity is the β-

phase. Nevertheless, after the material crystallization, the non-polar α-phase is mostly 

observed. β-phase can be obtained by stretching the material when it is in the α-phase 

or by applying a high electric field to the material when is in α-phase and δ-phase [40]. 

In addition, the poling process is recommended to be done under thermal treatment [18]. 

Figure 8 illustrates the distribution of the crystal grains of PVDF before and after the 

poling process. Figure 8a illustrates the morphology of PVDF which is characterized by 

having crystalline regions scattered within amorphous regions. Figure 8b represents the 

stretching of the material. This process is done to align the crystalline regions and facili-

tate the rotation of the dipoles during the poling process. The orientation of the crystalline 

regions after poling is represented in Figure 8c. 

 

Figure 8.  PVDF schematic crystal structure: a) melt cast; b) mechanically oriented; 
c) electrically poled. Adapted from [41]. 

In contrast, the copolymer formed with TrFe can reach a crystallinity of up to 90% [40]. 

P(VDF-TrFE) copolymer can be transformed directly to β-phase when the proportion of 

TrFe is higher than 20 % without applying a specific post-treatment [42]. The piezoelec-

tric properties of P(VDF-TrFE) are owing to the remanent polarization obtained by align-

ing the internal dipoles of the crystalline phase by applying a strong electric field [43]. 
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Thus, this material requires less fabrication steps during the fabrication process com-

pared to PVDF fabrication, where stretching and thermal treatment are required. In ad-

dition, P(VDF-TrFE) is characterized by its high flexibility, great chemical resistance, and 

biocompatibility. These features make it an excellent candidate for flexible pressure sen-

sors used for health monitoring. Moreover, P(VDF-TrFE) can be processed using printing 

technologies methods because it is soluble in common polar solvents (e.g. water, etha-

nol, methanol), and can be adjusted to the different solution-based fabrication methods 

[9]. 

2.2 Flexible and ultra-thin piezoelectric pressure sensors 

Recently, flexible piezoelectric pressure sensors have drawn wide interest in the re-

search community. For example, the PVDF based piezoelectric sensors offer ad-

vantages such as higher flexibility, low-cost fabrication, biocompatibility, and compatibil-

ity with large-area fabrication processes. There is a broad range of applications where 

these sensors can be used such as flexible electronic skin (E-skin) (e.g. soft robotics, 

prosthetics), healthcare monitoring (e.g. pulse-wave measurements), wearable devices 

(e.g. smart wristband), and industrial applications (e.g. structural health monitoring) 

[27][26].  

Additionally, ultra-thin piezoelectric sensors are a sub-category of flexible piezoelectric 

sensors which are characterized by having a total thickness under 10 µm [44][45][13]. 

These type of sensors are being highly developed for biomedical applications. The trend 

in this research field is to fabricate sensors that can be attached directly to the human 

skin. Therefore, the ultra-thin characteristic makes the sensors skin-conformable which 

eliminates the drawbacks of thick and rigid sensors. This feature improves the quality of 

the acquired signals from the skin. Furthermore, ultra-thin piezoelectric sensors are more 

sensitive to mechanical deformations [2]. Nevertheless, their reusability is limited be-

cause of their softness and minimal thickness. Thus, using fabrication methods, such as 

printing technologies, minimizes fabrication costs and material consumption [12]. 

In particular, polymer piezoelectric materials are widely used in this type of sensors be-

cause they can be used for detecting deformations produced by small forces, mechanical 

vibration, bending, elongation or compression. Moreover, the fabrication of flexible pie-

zoelectric sensors based on polymers is mostly based on thin-film geometries [46]. A 

thin-film can be described as a layer of material with a thickness fluctuating between 

several nanometers to some micrometers. Among piezoelectric polymers, P(VDF-TrFE) 

is an optimal piezoelectric material because of its chemical inertia, flexibility, simple fab-

rication, and large piezoelectric coefficient [47]. 
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Further, the most common modes used for piezoelectric applications are d31 and d33. 

The main difference between d31 and d33 modes is the direction of the generated electric 

field. In mode d31, the electric field is perpendicular to the direction of the applied me-

chanical stress. On the other hand, the electric field is parallel to the direction of the 

applied mechanical stress in mode d33. However, during bending stress, various piezo-

electric coefficients are activated and their relative strength will determine the overall 

response of the sensors to the applied bending force. The most common structures used 

in flexible and ultrathin piezoelectric sensors are the metal-piezoelectric(dielectric)-metal 

(MIM) and interdigitated electrodes (IDE) structures [48].  

2.2.1 MIM-based sensors 

In MIM-based sensors, the piezoelectric material is distributed between two conductive 

electrodes. The sensing layer is deposited onto the bottom electrode before the top elec-

trode deposition. Figure 9 illustrates the front and cross-sectional view of a MIM-based 

device, and the relative direction of the electric field between the electrodes. Some chal-

lenges could arise when fabricating this type of sensors using printing technologies. For 

example, non-uniform layers can increase the risk of short-circuit between the elec-

trodes, and dielectric breakdown could happen during the film poling process. The poling 

electric field is determined by the piezoelectric material thickness [49].  

 

Figure 9.  MIM-based device. 

MIM structure is directly related to the parallel plate capacitor structure. The capacitance 

of a MIM-based sensor is mainly determined by the piezoelectric material thickness. 

Therefore, the capacitance of a sensor based on the parallel plate configuration can be 

calculated based on the material properties and structure dimensions (i.e. piezoelectric 

layer thickness) using the equation (11). Where A represents the overlapping area be-

tween the electrodes, εr is the relative dielectric constant of the piezoelectric material, 

ε0  is the dielectric constant of free space, and t the thickness of the piezoelectric film. 
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C =
εrε0A

t
 

  

Moreover, the output voltage can be calculated if the generated charge Q and the capac-

itance values are known using equation (12). 

V =
Q

C
 

  

Furthermore, the voltage can also be expressed in terms of the piezoelectric constants. 

In general, when force is perpendicular to the electrode surface, charge generation is 

based on d33, and when the force is parallel to electrode surface d31 is activated.  Equa-

tion (13) describes the voltage in terms of mechanical stress (σxx), piezoelectric voltage 

constant (g3j), and the thickness of the piezoelectric material (t).  

V3j = σxxg3jt   

In addition, g3j can be defined as equation (14). d3j represents the charge piezoelectric 

coefficient, and εT represents the material permittivity under a constant strain. 

g3j =
d3j

εT
 

  

Therefore, the output voltage can also be calculated using the piezoelectric charge con-

stant (d3j) and the material permittivity using equation (15). 

V = σxx

d3j

εT
t 

  

2.2.2 IDE-based sensor 

In IDE-based sensors, the term “interdigitated” is referred to a finger-like pattern repeated 

periodically. The main difference between IDE and MIM structures is the distribution of 

the materials. In IDE configuration, a thin layer of conductive material is distributed on 

the substrate to build two electrodes with an interdigitated approach, and the active ma-

terial is deposited on top of the electrodes. Figure 10 illustrates the front and cross-sec-

tional view of an IDE-based sensor. The working principle of IDE structures is similar to 

the MIM structure, but in this case, the piezoelectric effect occurs between each pair of 

successive electrodes. Thus, IDE geometry is based on a set of cells. A pair of contigu-

ous electrode fingers composes each cell. Piezoelectric effect occurs in each cell owing 

to the piezoelectric material between the fingers [48]. In addition, using the IDE structure 

requires less processing steps during the sensor fabrication process. This geometry also 

decreases the possibility of short-circuit between the electrodes in comparison to the 
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MIM structure. In this configuration, the poling field is determined by the distance be-

tween IDE fingers [49]. 

 

Figure 10. IDE-based device. 

Although the IDE structure working principle can be explained based on the MIM struc-

ture approach (i.e. equation (12)), the underlying equations that describe different pa-

rameters such as capacitance, electric field or generated charge are not the same in 

both cases. More complex equations are needed to calculate IDE-based sensors char-

acteristic parameters [50][51]. Nevertheless, the output voltage can be also calculated 

using the piezoelectric coefficients as in MIM-based sensors, using equation (16).  

V33 = σxxg33t = σxx

d33

εT
t 

  

2.2.3 MIM and IDE comparison 

A comparison of a MIM and IDE sensor can be done based on the illustration in Figure 

11. When the applied stress is parallel to the electrodes, the MIM sensor works in 

d31 mode (Figure 11a). On the other hand, an IDE sensor works in d33 mode under the 

same conditions (Figure 11b). Therefore, an IDE sensor can generate a higher output 

voltage compared to a MIM sensor with the same piezoelectric material thickness and 

area. This is because the magnitude of the piezoelectric coefficients d33 and g33 are 

higher than d31 and g31 [49]. Furthermore, MIM-based sensors are characterized by hav-

ing a higher capacitance than IDE-based sensors [52]. Thus, a higher capacitance value 

leads to a low output voltage as described in equation (12). On the contrary, a higher 

output voltage is obtained when the capacitance is low. 
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Figure 11. Schematic of a) MIM-based sensor on 𝑑31 mode and b) IDE-based 

sensor on 𝑑33 mode. 

Table 3 lists the main characteristics of previously reported studies about thin flexible 

piezoelectric pressure sensors. Reported studies about IDE-based pressure sensors are 

lower compared to MIM-based sensors. This is because of the difficulty of IDE structure 

fabrication. However, using the IDE structure reduces the number of processing steps 

which eliminates possible challenges related to annealing conditions when printing mul-

tiple layers as in MIM-based sensors fabrication. Therefore, owing to the characteristics 

of IDE-based sensors (i.e. higher output voltage and less fabrication steps), developing 

piezoelectric pressure sensors based on this configuration can be advantageous.  

Material Structure Sensitivity 
Thick-

ness 

Fabrica-

tion 

method 

Refer-
ence 

PZT IDE 0.018 kPa-1 < 10 μm ILLO [8] 

P(VDF-TrFE) MIM 0.8 V∙MPa-1 > 50 μm 
Screen 

printing 
[9] 

P(VDF-

TrFE)/MWCNT 
MIM 0.04 V/N > 50 μm 

Screen 

printing 
[14] 

P(VDF-TrFE) MIM - > 50 μm 
Inkjet 

printing 
[10] 

P(VDF-TrFE)  MIM 
0.008 – 0.185 

V∙kPa-1 
> 50 μm 

Electrospin-

ning 
[11] 

2.3 Printing Technologies 

Printed electronics is a category of electronic devices, which are fabricated employing 

printing technologies. Usually, these printing technologies have their origins in the 

graphic industry and are referred to the traditional printing methods [5]. The main printing 

technologies used for fabricating electronics are flexography, gravure, offset, screen, 

and inkjet printing. The main difference between the traditional printing methods and 

printed electronics technologies is that in the latter case electrically functional inks are 

employed. Electrically functional inks have conducting, semiconducting, and dielectric 

properties [5]. For instance, some functional inks are nanoparticle silver inks, single‐

Table 3. Summary of reported flexible piezoelectric pressure sensors. 
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walled carbon nanotube (SWNT) based inks, and polydimethylsiloxane (PDMS). Fur-

thermore, piezoelectric inks (e.g. PVDF, and P(VDF-TrFE)) are a subcategory of dielec-

tric inks that can be processed using different printing technologies, such as screen print-

ing and inkjet printing. In addition, the ability to process these materials at low-tempera-

tures has made them compatible with ultra-thin and flexible substrates that employ low 

glass transition temperature polymers. This feature has increased the interest of devel-

oping ultra-thin flexible electronic devices owing to the wide range of applications where 

these devices can be used (e.g. E-skin applications, healthcare monitoring devices). 

Secondly, printing technologies have many advantages compared to traditional fabrica-

tion processes. The main benefit is the reduction of tooling and material costs during the 

process. Printing is an additive method, as a result, only the required materials are uti-

lized. Thus, there is less material waste compared with traditional subtractive methods 

used for fabricating electronics. Generally, the fabrication of electronic devices using tra-

ditional methods is characterized by the use of complex and expensive processes such 

as photolithography [53].  

On the other hand, the selection of the printing technology is not straightforward. Several 

parameters determine the most suitable technology for the desired application. In addi-

tion, there is not a single choice for one application. The selection of the printing tech-

nology is usually made based on the required resolution, functional ink, and substrate. 

The printing technologies chosen to develop this research work were inkjet printing and 

screen-printing. Further details of the working principles of these technologies are ex-

plained in the next sections. 

2.3.1 Inkjet Printing 

Inkjet printing is characterized by being a non-contact printing technology. This technol-

ogy is mostly based on two methods for drop generation: continuous inkjet (CIJ) and 

drop-on-demand (DOD). When this technology is based on the CIJ method, the flow of 

the fluid going through the nozzles is continuous. While in the case of the DOD method, 

drops are formed only when they are required. Comparing both methods, CIJ based 

systems are more complex than DOD based because the CIJ systems must have a 

method to generate drops, a method to choose the drops, and a method to retrieve and 

dispose the liquid [54]. In this thesis, only DOD based inkjet printing is presented, as this 

is the method selected to fabricate the sensors developed in this work. 

DOD printing systems are classified based on the type of actuator that is used for the 

droplet ejection mechanism. The most common methods are based on piezoelectric or 
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thermal components. In thermal DOD (Figure 12a), there is a small heating element in 

contact with the ink reservoir. When this element is heated, the ink starts to evaporate 

and a vapor bubble is created. The expansion of the vapor bubble generates the fluid 

displacement and energy needed to drive a droplet through the nozzle [54]. 

  

Figure 12. Schematic of thermal and piezo DOD principles: a) thermal DOD; 
b) piezo DOD. Adapted from [55]. 

On the other hand, when a piezoelectric actuator is used, the drop ejection is generated 

when the piezoelectric actuator is deformed. The deformation of the piezoelectric actua-

tor changes the internal pressure of the ink reservoir which produces pressure waves in 

the ink chamber. Thus, this process results in the ejection of the ink through the nozzles. 

The parameters that define the initial droplet ejection are the piezo drive waveform, fre-

quency, and voltage amplitude. All these parameters can be configured using the printer 

software. The deformation of the piezoelectric component is mainly controlled by apply-

ing a specific voltage waveform to it. In Figure 13, it can be seen drops ejected from an 

inkjet printer. It should be noted that the waveform design depends on the fluid. Thus, it 

is not possible to use the same waveform to print different types of inks. [56] 
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Figure 13. Firing nozzles. 

This technology presents some advantages. For example, it avoids damaging of previ-

ously printed layers, as it is a non-contact technology. An important advantage of this 

technology is its compatibility with fluids with low viscosity. Thus, inks that are not com-

patible with other technologies can be deposited using inkjet printing [56]. Additionally, 

using this technology is possible to customize the pattern to be printed. Patterns can be 

designed using the printer software or an image editor software. 

On the other hand, some issues can arise when using inkjet printing technology. If the 

manufacturer does not supply the waveform, its design process can be time-consuming. 

In addition, another possible limitation at lab-scale is the limited number of nozzles. This 

can make the printing process very slow. Further, the jetting process is very sensitive to 

changes in the rheological properties of the ink, which can lead to the clogging of the 

nozzles. Clogging may also happen if the particle size of the ink becomes too large due 

to the agglomeration of the particles. In certain cases, this issue can be solved by clean-

ing the nozzles, but sometimes the cartridge needs to be replaced. Moreover, as the ink 

jetting is not continuous, possible changes in the ink, such as solvent evaporation from 

the ink meniscus at the nozzle, can have a negative impact on the nozzle performance 

[54][56]. 

2.3.2 Screen Printing 

Screen-printing is an old technology, which has been adapted for the fabrication of elec-

tronic devices in the last decades. The screen-printing process is depicted in Figure 14. 

As can be seen in this figure, a screen is placed above the substrate. The screen is 

composed of a mesh attached to a metallic frame. Further, the gap between the screen 

and the substrate has an impact on printing quality. The screen mesh contains the de-
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signed pattern of homogenous thickness. The ink is poured on the screen using a flood-

ing plate or a metal squeegee without applying any pressure to the screen mesh (Figure 

14a). Then, a local stress is applied to the screen mesh using a polymeric or metal 

squeegee (Figure 14b). Thus, the ink is pressed through and put in contact with the 

substrate. The printing process is done at low printing pressure. [56] 

 

Figure 14. Screen printing process: a) ink poured onto the screen; b) ink 
pressed through the screen. Adapted from [56]. 

In addition, several parameters have an impact on the printing quality. For instance, 

mesh type, ink viscosity, print speed, and squeegee angle. Patterns printed using 

screen-printing technology do not exhibit the same printing quality that can be obtained 

with printing technologies such as inkjet, gravure or flexography. In comparison with 

other technologies, using screen printing is possible to print high aspect ratio objects. 

The thickness of materials printed using this technology are in the order of tens of mi-

crons. Further, it is possible to print thicker patterns with thicknesses higher than 100 µm 

with a single pass; this cannot be produced using any other printing technology [57]. The 

main printing defect observed, when using this method, is the inaccuracy of the edges 

of the printed patterns. Furthermore, the roughness of the printed layers is higher com-

pared with other techniques. Resulting from the adhesion of the printed fluid to the mesh 

fibers during the printing process [56]. 
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3. MATERIALS AND METHODS   

This section describes the materials and equipment used in this work. Moreover, the 

experiments executed to analyze the properties of the materials are explained. The re-

sults obtained in these tests were used in the sensor design process. Furthermore, the 

fabrication process of the final samples is reported. Finally, electrical characterization 

setup and sensitivity measurement setups are explained.  

3.1 Materials 

The fabrication process steps are illustrated in Figure 15. The fabrication process starts 

with the deposition of a release layer onto the carrier (Figure 15a). Then, the substrate 

material is deposited (Figure 15b). Next, the electrodes are fabricated using inkjet print-

ing (Figure 15c) and the piezoelectric material is deposited by screen printing (Figure 

15d). Further, a second layer of Parylene-C is deposited as a protection layer (Figure 

15e). Finally, the sensors are peeled off from the carrier (Figure 15e). All the materials 

and the equipment used in each fabrication step are described in this section. 

 

Figure 15. Schematic of the sensor fabrication process, cross-section view. 
The fabrication process is described above. 
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3.1.1 Substrate 

The thesis aimed to fabricate an ultra-thin flexible sensor that is highly skin-conformable 

and can be placed on the human skin without the use of adhesives. For this reason, the 

sensor had to be fabricated in a substrate with excellent mechanical properties such as 

high flexibility. In addition, the material should be biocompatible. To meet the required 

specifications, poly-para-xylylene (Parylene) was chosen as a substrate. Parylene is a 

class of polymer, which is semi-crystalline and hydrophobic. This polymer can be depos-

ited as thin, conformal, and pinhole-free films using chemical vapor deposition. There 

are many types of parylene, for instance, Parylene-N, Parylene-C, Parylene-D, and 

Parylene-HT. [58] 

In this work, the material used was Parylene-C. This material has been widely used in 

biomedical applications owing to its biocompatibility, and chemical and solvent inertness. 

Furthermore, this material can be deposited without using any extra harmful chemicals 

[59]. During the fabrication process, Parylene-C can also be deposited onto a temporary 

substrate. When all the fabrication processes are completed, it is easy to peel off the 

whole materials stack from the carrier, if the carrier has been coated with a release layer. 

Parylene-C is a transparent, highly flexible, and durable material. Further, thicknesses 

of Parylene layers can be in the order of few microns, and even 150 nm thick layers have 

been demonstrated for transistor gate dielectrics [12][60]. These features make it an ex-

cellent candidate to be used as a substrate in ultra-thin and flexible electronics applica-

tions.  

The compound GALXYL C from Galentis S.r.l. manufacturer was used as a substrate in 

this work. The temporary carriers, where this material was deposited, were glass wafers 

with a thickness of approximately 1200 µm. Before doing the Parylene-C coating, glass 

substrates were cleaned to eliminate surface contamination. Next, polytetrafluoroeth-

ylene (PTFE) was deposited by a spin-coating process. This step was required to facili-

tate the Parylene-C layer peel off. Then, Parylene-C was deposited on the carriers using 

the LabTop 3000 ParaTech coating machine depicted in Figure 16. 
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Figure 16. Parylene coating machine 

3.1.2 Inks 

For this research, it was used two types of commercial inks. The conductive material 

used to print the electrodes was the conductive polymer poly(3,4-ethylenedioxythio-

phene):poly(styrene sulfonate) (PEDOT:PSS). The ink Clevios P Jet CEO 3 was pur-

chased from Heraeus manufacturer. The ink properties are detailed in Table 4. 

PEDOT:PSS is an electrolyte composed of two polymers. PEDOT is positively charged, 

and PSS is negatively charged. The function of PSS is also to promote the dispersion 

and stabilization of PEDOT in the used solvent. The conductive polymer PEDOT:PSS is 

highly used in practical applications such as sensors, energy harvesters, and photovol-

taic cells. The advantage of using this material is that it is possible to form a homogenous 

thin film on rigid or flexible substrates. This polymer can be processed using different 

methods such as spin casting, doctor blade, inkjet printing or screen-printing. Further-

more, PEDOT:PSS printed films exhibit good conductivity when compared to other con-

ductive polymers. Flexibility is also a key property of this material. All these properties 

make it an excellent candidate to be used in flexible printed electronics. [61]  

On the other hand, the piezoelectrically active layer was printed using a piezoelectric ink. 

The piezoelectric ink used in this work was the commercial ink Piezotech FC 20 from 

Arkema. This ink is a P(VDF-TrFE) printable electroactive polymer formulation. The main 



34 

 

properties of this ink are summarized in Table 4. The ink does not need any pre-condi-

tioning before printing and can be stored at room temperature. To activate the piezoe-

lectric properties of the material, a poling process is required. According to the manufac-

turer specifications, for thin printed layers, the poling electric field can be applied directly 

to the electrodes that are in contact with the piezoelectric layer. The poling setup used 

in this work is detailed in section 3.1.5. 

Piezotech FC 20 P(VDF-TrFE) 

Annealing T (ºC) 135 

Annealing time (min) 60 

d33 (pC/N) -24 to -30 

Remanent polarization (mC/m2) 80 

Coercive field (V/µm) 45 

Dielectric Strength ((V/µm) 400 

Poling field (V/µm) 100 

Transmittance (%) >96 

Clevios P Jet CEO 3 

Annealing T (ºC) 80 to 130 

Conductivity (S/cm) 43 

Solid content (%) 1 

Viscosity (mPa.s) 7 

Surface tension (mN/m) 26.9 

3.1.3 Printing equipment 

Two printing technologies were used to fabricate the sensors. Electrodes were printed 

using the inkjet printer Dimatix 2831. This printer is shown in Figure 17, and the printing 

process using this technology is illustrated in Figure 18. First, the printing patterns could 

be designed either using the printer software or using an alternative software to design 

a bitmap file with the desired resolution. In this work, printing patterns were designed 

using the software Corel PaintShop Pro X8. Secondly, a 10 pL cartridge with 16 nozzles 

was filled with PEDOT:PSS ink, and stored in a water-saturated atmosphere based on 

the ink manufacturer recommendations. Next, cartridge settings were set through the 

printer software. Printing settings such as substrate thickness, platen temperature, and 

cartridge print height were also adjusted using the printer software. The cartridge print 

Table 4. P(VDF-TrFE) and PEDOT:PSS ink properties [30][62]. 
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height and platen temperature were set to 1 mm and 38 ºC, respectively. The same 

parameters were used in all the experiments where the inkjet printer was used. Moreo-

ver, the printing file was loaded into the printer software. Finally, glass substrates were 

placed on the printer platen, and the patterns were printed. 

 

Figure 17. Dimatix 2831 inkjet printer. 

 

Figure 18. Inkjet printing process diagram. 
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Secondly, the screen-printing method was used to print the piezoelectric active layer of 

the sensors. The screen-printing machine utilized in this work was the semi-automatic 

TIC SCF 300 DE from Eickmeyer. This screen printer is shown in Figure 19. Printing 

parameters, such as screen mask height, squeegee´s distance to the screen mask, and 

alignment of the screen mask were adjusted manually. The screen type used was the 

UX 100-040/255, their properties are listed in Table 5. The screen mask can be seen in 

Figure 19. 

Screen mask properties 

Mesh count (/cm) 100 

Thread diameter (µm) 40 

Mesh opening (µm) 56 

Open area (%) 32 

 

Figure 19. TIC SCF 300 DE screen-printer. 

3.1.4 Surface treatment equipment 

The surface cleaner series PSD-UV from Novascan, which is depicted in Figure 20, was 

used for applying UV/O3 treatment to the substrates. Samples were placed on the sample 

stage inside the device chamber, and the required surface treatment time was adjusted 

as required using the control panel. The UV/O3 treatment was executed under cleanroom 

conditions. 

Table 5. Screen UX 100-040/255 parameters. 
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Figure 20. Novascan PSD-UV surface cleaner. 

UV/O3 is a method used to modify the surface properties of a material. When applying 

this treatment to polymeric materials, an oxide layer on top of the material surface is 

created. This process makes the surface more hydrophilic. The operating principle of this 

technique is based on the combination of ultraviolet light with oxygen. Ultraviolet light 

with two different wavelengths, 185 nm, and 254 nm, is applied to the substrate. When 

the 185 nm light is absorbed by oxygen, ozone is generated. The 254 nm ultraviolet light 

stimulates the organic molecules present in the material surface. Furthermore, the 254 

nm light produces free radicals that react with oxygen. This effect generates more oxy-

gen-containing species, which augment the surface free energy and decreases the hy-

drophobicity [63]. 

3.1.5 Poling setup 

To activate the piezoelectric properties of the P(VDF-TrFE) material, a poling process 

was executed. The poling setup was composed of three equipment: a waveform gener-

ator, a high voltage amplifier, and an oscilloscope. Figure 21 illustrates the used equip-

ment. The waveform generator 33500B from Keysight was used to generate an arbitrary 

sinusoidal waveform. This signal was applied to a high voltage amplifier, model 610C 

from TREK. Then, the output signal was applied to the electrodes. The applied poling 

field had a frequency of 50 mHz and a maximum amplitude of 10kV. Moreover, an oscil-

loscope DSOX2002A from Keysight was used to monitor the high voltage amplifier out-

put signal. 
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Figure 21. Poling setup. 

3.2 Characterization equipment 

All the characterization setups used in this thesis work are explained in this section. First, 

the electrical measurement setup is described. Then, the equipment used for inspecting 

the printing quality of the samples are explained. In addition, the piezoelectric sensitivity 

measurement setup is described. 

3.2.1 Optical inspection 

Printed patterns can be non-uniform due to surface energy differences of the substrate. 

In addition, inkjet-printed patterns can be affected by variations of the printer jetting while 

the printing process is being executed. Therefore, pattern dimensions can be slightly 

different from one sample to others during the fabrication process. Therefore, to examine 

the variations on the printed samples during the fabrication process, samples were in-

spected using an optical microscope. Moreover, the optical microscope was also used 

for measuring the line width of the printed patterns, and the dimensions of the final sam-

ples. The microscope used for the optical inspection of the samples was the Olympus 

BX51. The magnification of the microscope can be adjusted to 5X, 10X, 20X, 50X and 

100X. Further, image acquisition was controlled by computer software.  

In addition, a stylus profilometer was used to examine the thickness of the samples. The 

equipment used for performing these measurements was the Dektak XT from Bruker. 

The measurements were controlled through the computer software Vision64. Measure-

ment parameters, such as stylus force, resolution, and measurement length, can also be 

adjusted through this software. 
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3.2.2 Electrical measurements setup 

The electrical characterization was done using a Keysight probe station setup. Figure 22 

shows this measurement setup. This setup is composed of the Keysight B1500A semi-

conductor device parameter analyzer. The Keysight B1500A device provides a broad 

variety of measurement capabilities. For instance, it is possible to measure the re-

sistance and capacitance of a sample using the same setup. The semiconductor device 

parameter analyzer is controlled using the computer software Keysight EasyEXPERT. 

The required measurement mode can be adjusted through this software. In addition, this 

setup is composed of a stage where samples are placed, and the probes connected to 

the signal acquisition module.  

 

Figure 22.  Keysight probe station setup. 

3.2.3 Piezoelectric sensitivity setup 

The measurement setup shown in Figure 23 was used to determine the piezoelectric 

sensitivity of the sensors. This device has an electrodynamic shaker with a piston that 

applies a dynamic excitation force to the sample when it is on the sample holder. The 

excitation force was controlled by applying a sinusoidal signal of 5 Hz to the electrody-

namic shaker. In addition, a static force of approximately 3 N was applied to avoid the 

displacement of the sample while the measurement was being executed. The static force 

was adjusted by pressing the sample against the piston using the adjustment knobs. 
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Figure 23. Sensitivity measurement setup [64]. 
 

As can be seen in Figure 23, the charge produced by the sample was measured using 

a charge amplifier and a 16-bit analog-to-digital (AD) converter. These components were 

connected to a PC to analyze the sensor signal. Further, voltage signals from the refer-

ence sensors were sampled with the AD converter, and the sample signal was also ac-

quired using this module. Then, the signals were processed using MATLAB. The sensi-

tivity was calculated as the sensor charge divided by the dynamic force that was applied 

to the sensor [64]. 

3.3 Methods 

To design the IDE sensor structure, it was necessary to perform a set of experiments. 

The experiments were executed to analyze printing dimensions and to characterize the 

electrical properties of the conductive material. Experiment results were used to design 

electrodes printing pattern.  

3.3.1 Printing test 

The first step was to test if it was possible to print uniform PEDOT:PSS lines on Parylene-

C. By doing this test, it was observed that the printed patterns were not uniform. This 

was because of the hydrophobic properties of the substrate material. Hydrophobic ma-

terials are characterized by repelling polar liquids (e.g. water) easily, and the selected 

conductive material ink is water-based. Then, the next step was to find a suitable surface 

treatment to make the Parylene-C substrate hydrophilic. From the literature review, it 

was found some methods that can be used to change hydrophobic surfaces into hydro-

philic, such as oxygen plasma, chemical grafting, and UV/O3. Of these methods, the 

most practical is UV/O3 as it requires less sophisticated processes, and it offers minimal 
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hydrophobic recovery. Further, this treatment method also has as an advantage that it 

can be executed under atmospheric pressure, and therefore the equipment costs are 

reasonably low [63][65]. Therefore, it was necessary to analyze the effect of the UV/O3 

treatment on the wetting properties of Parylene-C used in this research. 

The next performed experiment was to analyze the effect of the UV/O3 treatment on the 

substrate and to find a suitable drop spacing to form uniform and thin lines. The experi-

ment was executed by varying two parameters, surface treatment time and drop spacing. 

All the analyzed test cases are listed in Table 6. In each sample, a drop matrix was 

printed to measure the drop size. Five random droplets from the matrix were selected 

and measured. The drop size was measured using an optical microscope using a mag-

nification of 20X. Then, the mean value of the five measurements was calculated to ob-

tain an approximate value of the drop size. Moreover, a set of five parallel lines was 

printed to measure the line width. The lines to be printed were designed to be only one-

pixel width to obtain the smallest line width after printing. Once the lines were printed, it 

was used an optical microscope to check the print quality and to measure the line width 

for each test case. Line width was also measured using an optical microscope with a 

magnification of 20X. The average value of the line width was calculated based on ten 

measurements taken from random line places. These experiments were necessary to do 

to find the optimal drop spacing and the optimal substrate treatment time. 
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Test 

Case 

Surface 

Treatment 

Time 

Drop 

Spacing (µm) 

1 5 45 
2 5 50 

3 5 55 

4 5 60 

5 5 65 

6 10 45 

7 10 50 

8 10 55 

9 10 60 

10 10 65 

11 15 45 

12 15 50 

13 15 55 

14 15 60 

15 15 65 

 

 

16 25 45 

17 25 50 

18 25 55 

19 25 60 

20 25 65 

21 35 45 

22 35 50 

23 35 55 

24 35 60 

25 35 65 

26 45 45 

27 45 50 

28 45 55 

29 45 60 

30 45 65 

3.3.2 Edge roughness measurements 

This experiment was done to analyze the effect of the drop spacing on the edge rough-

ness along the edges of printed lines. The line edge roughness can be defined as the 

deviation of the edge from a uniform and ideal shape. To perform this analysis, two ran-

dom lines were selected from each test case detailed in Table 6. Thus, ten measure-

ments were taken from each line. Measurements were taken using an optical microscope 

with a magnification of 20X. Then, a statistical analysis was done to determine the line 

Table 6. Test cases based on surface treatment time and drop spacing variations. 
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edge roughness. Additionally, the minimum line distance was determined based on the 

line width variation. Results of the line edge roughness analysis are presented in chapter 

4. 

3.3.3 Conductive ink characterization 

After finding a suitable drop spacing, it was necessary to characterize the electrical prop-

erties of the ink. The first thing to do was to measure the material sheet resistance. Sub-

sequently, its conductivity was calculated. First, the four-point probe method was used 

to perform the resistance measurement. However, it was observed that the ink exhibited 

a very high resistance by using this method. Therefore, it was not possible to obtain a 

resistance value with the measurement equipment due to its limited range. The meas-

urement device was the Keithley 2425 sourcemeter, and the material resistance was out 

of the device range. 

Secondly, to improve the conductivity of the printed pattern, it was tried to print multiple 

layer lines as well as multiple layer pads. The first layer was printed based on the optimal 

drop spacing, and the subsequent layers were printed using a smaller drop spacing. The 

results of this experiment showed that it was possible to print a big pad using multiple 

layers, but it was not possible to print multiple layer lines. Lines printed using the multi-

layer method are shown in Figure 24. From the image in Figure 24a, it can be seen that 

the printing of two-layer lines was done successfully. However, different results were 

obtained when the same process was repeated. Figure 24b shows printed lines using 

the same printing parameters as in Figure 24a. The challenges faced in this experiment 

were due to the inkjet printer resolution. Furthermore, the spreading of the ink could be 

affected by differences in the surface energy of the substrate. Therefore, it was needed 

to execute the experiment using a different approach. 

 

Figure 24. Two layers lines printed under the same conditions: a) uniform line; 
b) defects on the printed line. 
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Next, a new pattern was printed to perform the 2-point probes measurement. The pattern 

used in this experiment is shown in Figure 25. The whole structure was printed using 

PEDOT:PSS ink. The pattern was printed as follows. First, the lines were printed using 

the same resolution and dimensions as the ones to be used in the IDE structure design. 

Next, pads were printed using the multi-layer approach. Although better results were 

obtained in this experiment, the resistance was still too low compared to the manufac-

turer specifications. 

 

Figure 25. Resistance test pattern. 

Thus, it was decided to analyze the annealing temperature effect on the PEDOT:SS 

conductivity. According to the manufacturer specifications, the recommended annealing 

conditions were between 80 ºC to 130 ºC for 15 minutes. The pattern used in the previous 

experiment was printed again, but the annealing conditions were varied. The test cases 

analyzed in this experiment are detailed in Table 7. 

Time (min) Annealing Temperature (°C) 

15 90 
15 110 

15 130 

Finally, sheet resistance was calculated as follows. The equivalent resistance of the 8 

lines printed in parallel was measured using the Keysight probe station setup. Thus, as 

there were 8 lines in parallel in the measurement pattern, the equivalent resistance RT 

value can be expressed by equation (17). 

Table 7. List of parameters for the conductivity test. 
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Then, it was possible to calculate the resistance of each line (R) based on the equivalent 

resistance. Subsequently, the sheet resistance RS can be calculated using equation (19), 

where L corresponds to the line length, w to the line width, and t to the line thickness. 

Based on the initial tests, it was observed that the line thickness of the printed lines was 

not uniform. Thus, it was used the mean value of the line thickness measurements to 

calculate the material conductivity. Equation (20) was used to calculate the conductivity. 

  R = ρ ∙
L

w ∙ t
=  RS  

L

w
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R ∙ w

L
=

ρ

t
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ρ
 

  

3.4 Sensor pattern design 

The sensor dimensions were mainly designed based on the results of the experiments 

of section 3.3.1 and 3.3.2. To avoid short-circuit between the electrodes, it was decided 

to set the distance between the fingers center equal to the finger width plus four times 

the standard deviation of the finger width. The finger width was set based on the line 

roughness experiment. Thus, IDE fingers were designed to be one pixel width. The re-

sulting number of fingers using those dimensions was 80. IDE structure and sensor di-

mensions are depicted in 0. This figure shows the dimensions based on the printing file 

design. However, real dimensions differ from the design because the ink will spread on 

the substrate giving a higher line width. 

 

Figure 26. IDE sensor dimensions. 
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The next step was to design the printing file of the sensor structure. The drop spacing 

used for printing the IDE fingers was higher than the one used for printing the current 

collectors. Therefore, two printing files were designed. Figure 27 shows the design of the 

printing files. The patterns shown in Figure 27a and Figure 27b were designed to print 

the current collectors and the electrode fingers, respectively. A more detailed description 

of the printing process of the sensor structure is given in section 3.5.           

 

Figure 27. IDE printing patterns: a) current collectors; b) IDE fingers. 

3.5 Sensor fabrication 

A set of 12 samples were fabricated in cleanroom conditions. The fabrication process of 

the final samples is depicted in Figure 28. First, glass substrates were cleaned to improve 

printing quality. Subsequently, they were spin-coated with PTFE. Then, the substrates 

were annealed at 100 °C for 10 min and at 150 °C for 30 min. Next, a Parylene-C layer 

with an approximated thickness of 2 µm was deposited on top of the glass carriers. The 

next step was to place the substrates in the UV/O3 chamber for 10 minutes to make the 

Parylene-C layer hydrophilic. After these substrate preparation steps, substrates were 

prepared to start printing the sensor layers. 

IDE patterns were inkjet printed using PEDOT:PSS ink. To print the electrodes, the pro-

cess was divided into 2 main steps. First, fingers were printed using a drop spacing of 

55 µm. Then, current collectors were printed using the multilayer approach. In total, 6 

layers were printed; the first layer was printed using a drop spacing of 40 µm, and the 

following layers were printed using a drop spacing of 20 µm. Samples were annealed at 

130 °C for 15 minutes to make the material conductive. Once the electrodes were fabri-

cated, the P(VDF-TrFE) layer was screen printed on top of them. After printing the pie-

zoelectric active layer, samples were annealed at 135 °C for 1 hour. Once the printing 



47 

 

processes were completed, the piezoelectric material was poled using the setup de-

scribed in section 3.1.5. 

 

Figure 28. Sensor fabrication process. 

After all the samples were poled, it was necessary to attach some connectors to the 

sensors. Thin cables were attached to the pads of the samples using a screen printable 

PEDOT:PSS ink. Then, the samples were annealed at 90 °C per one hour. Further, the 

second layer of Parylene-C was coated on top of the sensors to prevent electrodes deg-

radation. The thickness of this layer was about 1 µm. Finally, sensors were peeled off 

from the glass carriers and attached to a polyethylene terephthalate (PET) foil. Some 

pictures of the final samples are illustrated in Figure 29. It can be seen the samples after 

peeling them off from the glass carrier, and a sensor attached to the skin. 

 
Figure 29. Final samples pictures. 
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3.6 Sensor characterization 

During the whole fabrication process, samples were inspected to check printing quality 

after each printing step. In addition, electrical properties were also characterized. Re-

sistance was measured after each printing step to control the resistance variation. Once 

all the samples were finished, resistance and capacitance were measured. Further, the 

piezoelectric sensitivity of the samples was measured. The processes used to charac-

terize the samples are detailed next.  

3.6.1 Print quality 

Samples were inspected using an optical microscope. IDE structure dimensions were 

measured after annealing the printed patterns. Moreover, the optical microscope was 

used to check the print quality. This was also done to detect print-quality defects that 

could create short-circuit between the electrodes.  

In addition, the thickness of the samples was also examined using the stylus profilometer 

described in subsection 3.2.1. Measurements were done only to three samples. Thick-

ness was measured in five different places for each sample. The measurements repre-

sented the average thickness of the electrodes layer plus the P(VDF-TrFE) layer. Thus, 

the average thickness of each sample was calculated based on the five measurements. 

Furthermore, a single printed P(VDF-TrFE) layer was measured to have a reference of 

the thickness of the active layer. 

3.6.2 Electrical characterization 

Resistance and capacitance were measured for a set of 10 samples. The setup ex-

plained in section 3.2.2 was used to perform these measurements. Resistance was 

measured after printing and annealing the IDE structure to detect possible short-circuits 

between the electrode fingers and to determine if the leakage current could prevent the 

poling of the device. In addition, the resistance of the final samples was also measured. 

The method used to measure the resistance was the 2-point probe measurement. Meas-

urements were executed before peeling the samples off from the glass carriers. First, 

probes were connected directly to the sensor pads before printing the active layer. Figure 

30 shows probe connections. Lastly, when the samples were finished, probes were con-

nected to the sensor connectors as can be seen in Figure 31. Capacitance was meas-

ured after all the fabrication processes were completed.  



49 

 

 

Figure 30.  Probes connection before printing the active layer. 

 

 
Figure 31. Probes connection to the final samples. 

3.6.3 Piezoelectric sensitivity measurements 

The piezoelectric normal and bending mode sensitivity were measured for all the sam-

ples using the setup described in section 3.2.3. Measurements were done for each sam-

ple in ten different places in both cases. The piezoelectric normal mode sensitivity was 

determined by performing the measurement while the samples were still attached to the 

glass carrier. In this case, the samples were placed on the sample holder (Figure 32a), 

and a piece of PET foil was placed between the sample and the metallic piston to avoid 

short-circuit. In this scenario, the results should not be affected by any bending. Further-

more, bending mode sensitivity was determined by placing the samples on a PET foil 

after peeling them off from the glass carrier.  Then, the sample under test was placed on 

a PDMS holder with a small hole in the center such that the active part of the sensor was 



50 

 

on top of the hole (Figure 32b). By using this setup, when the piston was applying an 

excitation force to the samples, the samples were bent. 

 

Figure 32. Piezoelectric sensitivity measurement modes: a) normal mode; b) 
bending mode. 



51 

 

4. RESULTS 

In this section, all the experiment outcomes are summarized. Moreover, the results ob-

tained when characterizing the final samples are presented. First, printing experiments 

to evaluate substrate wettability are detailed. In addition, the characterization of printed 

lines is also analyzed. Then, conductive ink characterization results analysis is pre-

sented. Finally, an analysis of the electrical and piezoelectric properties of the final sam-

ples is given. 

4.1 Surface treatment optimization 

All the experiments done before the fabrication of the final samples were based on inkjet 

printing technology. The results and analysis of these experiments are presented in this 

section. First, substrate wettability is evaluated. Then, an analysis of the line width vari-

ation based on the printing resolution and surface treatment time is given. 

At the beginning of the experiments, printed lines on Parylene-C revealed that the sub-

strate was highly hydrophobic. As explained in section 3.3.1, UV/O3 surface treatment 

was used to improve the wetting properties of the ink on the substrate surface. Figure 33 

shows the drop diameter variation based on different exposure times. The drop size in-

creased for all the exposure time analyzed in this experiment. Based on these results, it 

can be concluded that UV/O3 treatment effectively changed the surface properties by 

increasing its hydrophilicity. Furthermore, it was observed that it was enough to treat the 

substrate for 5 minutes to increase the drop size. An increase in the drop size was also 

detected in the next three test cases (10, 15, and 20 minutes). However, when the ex-

posure time was higher than 30 minutes, the drop size started to decrease. This could 

happen due to substrate material degradation. 
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Figure 33. Drop diameter variation for different drop spacing and different 
UV/O3 exposure time. 

Furthermore, the wetting properties of a material or surface are usually determined by 

measuring the contact angle. The contact angle is determined as the angle created by 

the intersection of the liquid-solid interface and the liquid-vapor interface. The wetting of 

the liquid on the substrate is high when the contact angle is << 90°. In contrast, when 

the contact angle is >> 90°, the wetting is unfavorable [66]. The contact angle variation 

also results in a variation in the drop size. The smaller the contact angle, the higher the 

drop size is, and vice versa. Thus, these can also be an alternative method to character-

ize the wetting properties of a substrate. A literature survey was done to find any reported 

study about the relation between the contact angle and drop size of liquids deposited on 

UV/O3  treated Parylene-C. However, it has not been reported any study about the effect 

of UV/O3  on Parylene-C. On the other hand, it has been reported that applying oxygen-

plasma treatment to the Parylene-C substrate the material turns hydrophilic [67][68]. 

Therefore, UV/O3 treatment could be an alternative method to improve Parylene-C wet-

tability. Although alternative approaches to investigate the wetting properties exist, it was 

demonstrated that measuring the drop size is a simple process to determine if the wetting 

properties of a material have been changed. 

Next, the analysis of the line width variation was done based on different drop spacing 

and different UV/O3  exposure time. This experiment was done to examine how to control 

the width of the fingers that would be used in the IDE structure. Furthermore, this was 

needed to do because the finger width variation has an impact on the total capacitance 

of the IDE sensor. IDE sensors with narrow fingers exhibit a lower capacitance value 

compared to electrodes with wider fingers [69]. This results in a higher output voltage. 

Figure 34 shows the interval plot of the analyzed groups. The interval plot illustrates a 



53 

 

95 % confidence interval for the mean of each test case. The confidence interval repre-

sents the range of values where the population mean could be included. Moreover, the 

mean value of each test case is also represented. 

 

Figure 34. Interval plot of the line width variation for different drop spacing and 
different UV/O3 exposure time. 

What can be seen in Figure 34 is the impact of the drop spacing on the line width. In all 

the cases, wider lines were observed when a smaller drop spacing was used, while nar-

rower lines were observed using a higher drop spacing. Additionally, the line morphology 

of the printed lines was also affected by the drop spacing. Although the lines did not 

show any discontinuity, the lines were not uniform in all cases. For example, lines printed 

with a drop spacing of 65 µm showed scalloping along the line edge. The uniformity of 

the lines is mostly influenced by the drop spacing and the delay period between droplets 

deposition. In general, five morphologies can be seen in printed lines. When the drop 

spacing is higher than the drop diameter, individual drops are formed. Then, when the 

drop spacing is decreased drops start to merge and scalloped lines are created. Uniform 

lines are created by further decreasing the drop spacing. However, if the drop spacing is 

very small, a bulging line is generated. Moreover, if the evaporation of a droplet occurs 

in a small period time than the jetting period, individual drops will dry forming a stacked 

coin pattern [70]. 
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Additionally, the motivation of this experiment was to examine the effect of drop spacing 

and surface treatment time on the line width. First, the effect of surface treatment time 

was analyzed. As can be seen from Figure 34 narrower lines were printed when the 

substrate was UV/O3 treated for 5 and 10 minutes. In addition, when the substrate was 

treated for 15 and 25 minutes, lines were wider for all the drop spacing values. On the 

other hand, as the drop diameter decreased when the substrates were treated for 35 and 

45 minutes, there was a reduction in the width of the lines. From this preliminary analysis, 

it could be concluded that it was enough to expose the substrate to UV/O3 treatment for 

5 or 10 minutes.  

Therefore, it was observed that the variation of the line width was lower when the sub-

strate was treated for 5 and 10 minutes, and when the lines were printed using a drop 

spacing of 55 µm and 60 µm. In summary, when the substrate was treated for 5 minutes, 

it was obtained a line width size of 82 µm and 81 µm using a drop spacing of 55 µm and 

60 µm, respectively. In addition, line width was 94 µm and 85 µm when the substrate 

was treated for 10 minutes using a drop spacing of 55 µm and 60 µm, respectively. These 

four cases are illustrated in Figure 35. Based on these images, it can be seen that the 

line width is smaller for 5 minutes treated samples. Nevertheless, the lines are more 

uniform on samples treated for 10 minutes. Then, the next thing to do was to choose 

which surface treatment time would be used in the sensor fabrication process.  

 

Figure 35. Printed lines. 55 µm drop spacing: a) 5 minutes UV/O3 treated sub-
strate; b) 10 minutes UV/O3 treated substrate. 60 µm drop spacing: c) 5 minutes 

UV/O3 treated substrate; d) 10 minutes UV/O3 treated substrate. 
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Consequently, between 5 and 10 minutes of surface treatment time, it was chosen to 

use 10 minutes. This selection was done for practical reasons. Patterns printed on the 

substrate treated for 5 minutes were difficult to see using the printer camera after the 

printing process. This could be an inconvenience when it is needed to print two consec-

utive patterns with different drop spacing as the alignment is done by optical inspection 

of the first printed pattern. Therefore, the printing process variation of printed lines on 10 

minutes UV/O3 treated substrates was examined. The analysis was done for printed lines 

using 55 µm and 60 µm drop spacing. Some statistics parameters of the printed lines 

are listed in Table 8.  

Line  Mean (µm) STD (µm) Min. (µm) Max. (µm) 

DS55-1 95.20 10.04 72 108 
DS55-2 93.70 9.26 72 105 

DS60-1 88.30 6.50 75 95 

DS60-2 82.00 5.72 69 91 

Additionally, the Two-sample T-test was used to verify if the differences of the means of 

the line widths were significant to determine line-to-line variation (i.e. printing process 

variation). In this case, lines printed with the same drop spacing were compared. The 

test results are presented in Table 9. The parameter listed in the third column represents 

the difference between the population means. The 95% confidence interval provides an 

estimated range where the difference could be included. Furthermore, the P-value is 

used to determine if the difference between the means is statistically significant. Gener-

ally, a threshold of 0.05 is used for the P-value [71]. When the P-value is less than or 

equal to the threshold value, the difference is statistically significant. As can be seen, the 

P-value is higher than the threshold when the lines were printed using a drop spacing of 

55 µm, and it is below the threshold for a drop spacing of 60 µm. Thus, for a drop spacing 

of 55 µm, the difference between the means is not statistically significant. The results 

suggest that the printing of the lines can be repeated without showing a meaningful var-

iation in the line width dimensions. However, for a drop spacing of 60 µm, it can be as-

sumed that the line width of the printed lines is different despite using the same drop 

spacing. 

Population A Population B Difference 95% CI for Difference P-value 

DS55-1 DS55-2 1.50 -7.61 to 10.61 0.733 

DS60-1 DS60-2 6.30 -0.53 to 12.07 0.034 

 

Table 8. Statistics values of printed lines in 10 minutes UV/O3 treated substrate. 

Table 9. Two-sample T-test, line-to-line variation. 
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Nonetheless, the results could be negatively affected by skewness and outliers of the 

sample data. Therefore, data was represented using a boxplot to examine the data dis-

tribution. Figure 36 displays the data distribution of the analyzed cases. As can be seen 

in Figure 36a, lines printed using 55 µm drop spacing show a similar line width. On the 

contrary, data distribution of lines printed using 60 µm drop spacing seems to be severely 

skewed as seen in  Figure 36b. Comparing the data distribution for both cases, it can be 

seen that the line width values are distributed in the same interval when lines were 

printed using 55 µm drop spacing. However, lines printed using 60 µm drop spacing 

show a big difference between the interval distributions. Additionally, it should be noted 

that data distribution show outliers in both cases. Outliers represent unusual data points 

in a data set. These values can have an excessive effect on the mean value of the line 

width. 

 

Figure 36. Boxplot of line width measurements: a) printed lines using 55 µm 
drop spacing; b) printed lines using 60 µm drop spacing. 

Therefore, statistics values calculation was repeated without including the outliers. Nev-

ertheless, data from lines printed using 60 µm drop spacing was not analyzed because 

of the considerable difference between the interval distributions. Thus, it was observed 

that although the mean value increased, the standard deviation decreased (Table 10). 

Consequently, it was chosen to use 55 µm drop spacing to print the fingers of the IDE 

structure based on the analysis results. 

Line Mean (µm) STD (µm) Min. (µm) Max. (µm) 

DS55-1 97.78 6.22 90 108 
DS55-2 96.11 5.58 90 105 

Table 10. Statistics values of printed lines in 10 minutes UV/O3 treated substrate, 
outliers removed. 
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4.2 Line edge roughness 

Printing quality can be affected by the surface properties, drop spacing, and ink proper-

ties. The objective of this thesis work was to develop a printed piezoelectric sensor based 

on IDE structure which can be poled with the available 10 kV high voltage amplifier. 

Thus, before designing the IDE dimensions, it was necessary to examine the limitations 

of the printed lines based on the printing quality. For example, if the edge roughness of 

the line is too high, there will be short-circuits between electrodes which will lead to failure 

of the device. In addition, the distance between fingers should have a minimum distance 

gap to avoid the electrical breakdown of the piezoelectric material during the poling pro-

cess. Thus, this analysis was done to find the optimal drop spacing to minimize the edge 

roughness of the electrode fingers. The minimal edge roughness allows the placement 

of the electrodes as close to each other as possible. This, in turn, allows maximum de-

sign variability in the IDE structure.  

The relationship between the standard deviation of the measured line widths (i.e. the 

edge roughness) and drop spacing and substrate treatment time is represented in a con-

tour plot (Figure 37). This plot is a graphical representation of a three-dimensional (3D) 

surface on a two-dimensional (2D) plane. Therefore, the points in the same range are 

represented using a specific color. As can be seen in the graph, higher edge roughness 

are on the left side of the plot which corresponds with small drop spacing values. Fur-

thermore, this occurs when the substrate has been treated from 10 to 45 minutes. On 

the other hand, lower values of edge roughness are on the right side of the plot which 

corresponds to higher drop spacing values, and the same results are obtained for almost 

all surface treatment times. However, there are small regions where the edge roughness 

is higher than expected.  

Therefore, based on the contour plot graph, the chosen surface treatment time and drop 

spacing (i.e. 10 minutes and 55 µm) do not show the lowest standard deviation. Never-

theless, it should be noted that the contour plot representation was done only using the 

data of one printed line of each test case, and the representation of the results could be 

biased. Therefore, a higher number of data points should be used to avoid a high varia-

bility between the analyzed cases.  
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Figure 37. Contour plot of line width standard deviation vs. surface treatment 
time and drop spacing. 

4.3 PEDOT:PSS electrical characterization 

As was explained in section 3.3.3, the electrical properties of the conductive ink were 

analyzed by measuring the equivalent resistance of 8 lines printed in parallel. Thus, to 

calculate the sheet resistance of the material, it was necessary to measure the thickness 

of the printed lines. Therefore, the line profile was characterized to examine the PE-

DOT:PSS material distribution. Figure 38 illustrates the PEDOT:PSS distribution of a 

printed line. From this analysis, it was observed the coffee-ring effect on the material 

distribution. This phenomenon is produced because of the solvent evaporation which 

leads to differences in the temperature resulting in higher concentrations of the particles 

in comparison with the center of the printed drop [72]. Furthermore, this effect is typically 

seen when the ink is deposited onto materials with high surface energy. 
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Figure 38. Line profile of a printed line using 55-µm drop spacing. 

Consequently, to determine the sheet resistance of each line, the following procedure 

was followed. First, line resistance was calculated using the equation (17). Then, equa-

tion (19) was used to determine the material sheet resistance. As the line thickness was 

not uniform, it was used the mean value thickness. The line width was estimated based 

on the measurements that were done using the microscope. Thus, both values were 

used to compute the cross-section area of the printed lines, and subsequently the mate-

rial conductivity. The conductivity of the material was also examined by varying the an-

nealing temperature. The sheet resistance and the conductivity of the material for differ-

ent annealing temperatures are listed in Table 11. Nevertheless, the conductivity was 

very poor for all the test cases. The results were very low in comparison to the manufac-

turer specification which was 43 S/cm. In summary, higher conductivity was obtained 

when the printed lines were annealed at 130 ºC for 15 minutes. Nonetheless, it should 

be noted that the determined effective conductivity was used only as a reference. As the 

conductive material is mainly distributed on the line edges, the material conductivity may 

be calculated more accurately using the dimensions of the region where the PEDOT:PSS 

material is spread (i.e. area and length).  

Annealing T Sheet Resistance (MΩ/sq) Eff. conductivity (mS/cm) 

90 ºC 127.70 3.58 
110 ºC 35.78 11.49 

130 ºC 9.28 48.87 

Additionally, the main issue related to the poor conductivity of the conductive material is 

the non-uniform thickness of the printed lines. According to the ink manufacturer speci-

fications, the thickness of a printed pattern to exhibit high conductivity should be at least 

100 nm. As can be seen in Figure 38, the concentration of the material is higher at the 

edges of the line but still lower than 100 nm. The effective conductive cross-sectional 

Table 11. PEDOT:PSS ink properties for different annealing temperatures. 
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area of the PEDOT:PSS conductors is therefore very low. The observed behavior can 

be explained by the coffee-ring effect. This phenomenon induces the segregation of the 

ink particles to the line edge. Several parameters can have an impact on the ink distri-

bution. For example, ink and substrate wettability, ink viscosity, solvent type, particle 

size, droplet volume, and droplet drying conditions [73].  

4.4 Final samples characterization 

The analysis of the characterization of the final samples is presented in this section. A 

set of 10 samples were characterized. First, it is detailed the IDE dimensions. Then, 

electrical and piezoelectric sensitivity measurement results are presented.  

4.4.1 IDE dimensions 

First, samples were inspected using a microscope after the inkjet printing process was 

completed. This process was done to check if there was any defect such as short-circuits 

between electrodes or any discontinuity on the printed patterns. Thus, it was not ob-

served significant printing defects. In addition, IDE structure dimensions were measured. 

Figure 39 shows an image of a sample where can be observed the variation of the struc-

ture dimensions. As can be seen, the distance between the right and left finger end were 

different. There was a variation of more than 100 µm. These values did not match with 

the dimensions from the designed pattern, as expected.   

 

Figure 39. Distance between current collectors and fingers: a) right side; b) 
left side. 
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In addition, the finger width was measured to determine the variation range. An image of 

IDE fingers is shown in Figure 40. As can be observed in this image, the width of the 

fingers was not uniform. Based on the images obtained from the printed IDE structures, 

it was determined that the finger width varied from 100 to 130 µm. This fluctuation leads 

to a variation in the fingers gap. The variation of the line width corresponds to the non-

uniform distribution of the ink. This occurred due to the differences in the surface energy 

of the substrate which affect the spreading of the ink on the substrate. In addition, ink 

behavior during the printing process may also have an impact on print quality. The di-

mensions of the IDE structure are summarized in Table 12.  

 

Figure 40. IDE fingers. 

Dimensions (µm) 

Line width 100 to 130 
Finger gap 50 to 100 

Current collector distance (right) 300 to 330 

Current collector distance (left) 470 to 490 

 

In general, the printing quality was acceptable. Figure 41 shows images of the printed 

IDE structure. Nevertheless, the variation of the finger width and finger gap could have 

an impact on the capacitance of the sensors. 

Table 12. IDE sensor dimensions. 
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Figure 41. Sensor pictures taken with a microscope. 

In addition, the total thickness of the fabricated sensors was also determined. Figure 42 

illustrates the thicknesses of all sensor layers. The thickness of the Parylene-C layers 

was expected to be 2 µm and 1 µm for the bottom and top layer, respectively. Only 

PEDOT:PSS electrodes and  P(VDF-TrFE) thicknesses were measured individually. The 

mean value of the PEDOT:PSS layer was around 25 nm. The P(VDF-TrFE) layer thick-

ness was in the range of 1.5 µm to 2.5 µm. The variation between the measured samples 

might be because of the printing technology used to print the active layer. Screen printing 

parameters were adjusted manually. Thus, this could have had an impact on the printed 

layer thickness. Therefore, the total thickness of the sensors was around 6 µm. 

 

Figure 42. Final samples layers schematic. 

4.4.2 Electrical characterization 

Lower capacitance leads to higher voltage sensitivity as discussed in chapter 2.2. There-

fore, the capacitance of the final samples was measured. The histogram of the capaci-

tance measurement results is shown in below Figure 43. Capacitance values are in the 

range of 0.6 pF to 1.4 pF. The average capacitance for the ten samples is 0.99 ± 0.32 

pF. Previously, MIM-based flexible piezoelectric sensors, which were fabricated using 

printed electronics technologies, showed a capacitance value of 1.5 nF [74]. Therefore, 
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the results indicate that effectively the capacitance of IDE-based sensors is lower than 

MIM-based sensors and should result in higher sensitivity. 

 

Figure 43. Histogram of the capacitance of the sensors at 1 kHz.  

Additionally, the capacitance of IDE-based sensors also depends on the distance be-

tween fingers. In the previous section, it was shown that the fingers width and finger gap 

were not uniform. Therefore, this may cause a variation in the capacitance between sam-

ples. Computing the capacitance of IDE-based sensors is not as straightforward as for 

MIM-based sensors; there are more parameters affecting the equivalent capacitance of 

the IDE-based sensor. Thus, it was not possible to determine an expected capacitance 

value to compare it with the results. In future, finite element (FE) modeling of the IDE-

based sensors should be done to determine an approximate capacitance value. 

The high resistance (i.e. low leakage current) of piezoelectric sensors is important for 

achieving effective poling which is necessary for achieving high sensitivity of the sensor. 

Resistance was also measured for all the samples. The histogram of the resistance 

measurement results is shown in Figure 44. It can be seen that the range of the re-

sistance of the samples. Resistance values are in the range of 45 GΩ to 120 GΩ. All the 

samples were fabricated following the same fabrication process. Thus, the variation on 

the resistance of the samples could not be influenced by variations on the fabrication 

processes, such as annealing conditions. However, it can be assumed that the leakage 

current of the sensors can be neglected owing to their high resistance. 
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Figure 44. Histogram of the resistance of the sensors. 

The mean value and coefficient of variation of the capacitance and resistance are listed 

in Table 13. The coefficient of variation (CV) can be used to examine the variability of 

measurements in a dataset. The CV value for both cases is high which indicates that the 

variation between the data points and the mean value is high. This result suggests that 

there is a high difference in the electrical properties between samples resulting from pro-

cess variation. 

Parameter Mean Coefficient of variation (%) 

Capacitance @1 kHz 0.99 ± 0.32 pF 32.27 
Resistance 73.60 ± 23.83 GΩ 32.36 

4.4.3 Sensitivity measurements 

In this thesis work, the piezoelectric sensitivity characterization was done to test the pi-

ezoelectric response of the samples. However, the normal and bending mode measure-

ments could be affected by different piezoelectric charge coefficients. Therefore, the ob-

tained results not only correspond to the d31 or the d33  piezoelectric charge coefficient.  

The piezoelectric sensitivity measurements of the sensors in normal mode are repre-

sented in Figure 45. This histogram represents the mean value of ten measurements 

from each sample with normal distribution fit. The mean piezoelectric sensitivity varies 

from 0.5 pC/N to 6 pC/N. However, there was not any reference value to compare the 

obtained results in this mode. Thus, further analysis should be done to determine which 

piezoelectric coefficients are activated when performing this measurement.  

Table 13. IDE sensor’s electrical properties. 
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Figure 45. Histogram of the charge sensitivity measurements in normal mode. 

Additionally, piezoelectric sensitivity was also measured in bending mode. Figure 46 

shows the histogram of the piezoelectric sensitivity measurements in this mode. The 

obtained results are distributed in the range of 1 pC/N to 16 pC/N. Theoretically, IDE-

based piezoelectric sensors should show a much higher piezoelectric sensitivity in bend-

ing mode than in normal mode. However, the results of the piezoelectric sensitivity char-

acterization did not show a big difference between the examined cases.  

 

Figure 46. Histogram of the charge sensitivity measurements in bending 
mode. 

Therefore, the two-sample T-test was performed to determine if it could be concluded 

that the measurements represented different piezoelectric modes. The results of the 

analysis are listed in Table 14. The difference between the means is 4.24, and the P-
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values is less than 0.05. Therefore, based on the obtained results, it could be concluded 

that the examined modes are different.  

Population A Population B Difference 95% CI for Difference P-value 

Normal Bending -4.24 (-7.65; -0.83) 0.019 

Furthermore, the generated charge by the applied stress could be vanished by charges 

present in the environment (i.e. air-borne charges), leakage current (i.e. non-zero con-

ductivity of the dielectric), or by the input resistance of the signal acquisition equipment 

[75]. Nevertheless, the measurements done in this research were not affected by these 

conditions. The PEDOT:PSS electrodes were covered with P(VDF-TrFE) which should 

prevent vanishing of the charges; the resistance of the samples was very high which 

eliminates the possibility of having a high leakage current. Additionally, the charge gen-

erated by the sensors was measured using a charge amplifier. Thus, using this configu-

ration, the measured charge is not affected by the input impedance of the signal acqui-

sition equipment. 

4.4.4 Voltage response estimation 

Voltage response estimation was calculated based on the charge sensitivity and the ca-

pacitance measurements using equation (12). The voltage approximation was calculated 

for normal and bending mode. Although sensors capacitance was not measured in bend-

ing mode, an approximation of the voltage response for this mode was also calculated 

based on the capacitance measured in normal mode. The capacitance value may be 

different when the sensors are bent. Figure 47 shows a boxplot of the estimated output 

voltage for normal and bending mode.  

Table 14. Two-sample T-test results of piezoelectric sensitivity measurements.  
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Figure 47. Boxplot of the estimated output voltage in normal and bending 
mode. 

It should be noted that it is expected to obtain a much higher output voltage when sen-

sors are operating in bending mode [48]. Thus, statistical analysis was done to examine 

the obtained results. Some characteristic parameters are listed in Table 15. The differ-

ence between the standard deviation and the maximum voltage value of both modes do 

not show a big difference. Thus, Two-sample T-test was also performed to check if it can 

be assumed that the data sets were independent of each other. Table 16 lists the results 

of this test. As the P-value is less than 0.05, it could be concluded that there is a differ-

ence between the analyzed modes. Nevertheless, the characterization of the sensors 

voltage response should be done to analyze the relation between the voltage response 

and the generated charge. 

Voltage Mean (V) STD (V) Min. (V) Max. (V) 

Normal 3.10 3.23 
 

0.44 10.72 
Bending 6.84 3.63 1.43 11.68 

 

Population A Population B Difference 95% CI for Difference P-value 

Normal Bending -3.74 (-6.98; -0.50) 0.026 

Table 15. Statistic values of estimated output voltage 

Table 16. Two-sample T-test results of output voltage modes.  
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4.5 Verification of the sensitivity measurements results 

As the characterization of the piezoelectric sensitivity showed inconsistent results, it was 

decided to verify the piezoelectric sensitivity measurement results. Therefore, the piezo-

electric sensitivity was measured from a non-poled sample in normal mode. The motiva-

tion was to compare the piezoelectric sensitivity response between a non-poled and a 

poled sample. However, the obtained results were comparable to those obtained from 

the poled samples.  

Therefore, to detect possible measurement errors, it was measured the piezoelectric 

sensitivity response before printing the piezoelectric material layer. A set of four samples 

were measured in normal mode. Each sample was measured in ten different places. The 

measurement results (sample E1 to E4) are represented in the interval plot shown in 

Figure 48. The piezoelectric sensitivity in normal mode of the ten poled samples is also 

represented in this figure (samples S1 to S10). The mean value of the samples without 

the piezoelectric layer is 0.66 pC/N and the mean of the poled samples is 2.48 pC/N. As 

can be seen in the figure, there is a difference in the distribution of the obtained results 

between the two analyzed cases. The piezoelectric sensitivity of the samples E1, E2, E3 

and E4 are distributed in the same range and do not show a significant difference be-

tween them. However, the piezoelectric sensitivity of samples S1, S6 and S7 are in the 

same range as the samples without the piezoelectric layer. The low piezoelectric re-

sponse of these samples could be a result of possible sensor failures. However, it was 

not possible to determine the reason for the low response since the results in the elec-

trical characterization of these samples did not show a big difference compared to the 

other samples (see Figure 43 and Figure 44). Thus, these measurements could not be 

excluded from the analysis. 
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Figure 48. Interval plot sensitivity measurements in normal mode. Red dots 
represent the samples without the active layer (Mean = 0.66 pC/N). Blue dots 

represent the poled samples (Mean = 2.48 pC/N). 

Furthermore, the 1-Sample T test was performed to compare the mean value of the 

samples without the piezoelectric layer to the poled samples and to determine if there 

was a statistically significant difference between the two analyzed cases. To perform this 

test, the mean value of the piezoelectric response of the poled samples in normal mode 

was used as reference mean (i.e. 2.48 pC/N). Thus, this test determines if the mean of 

the dataset E1, E2, E3 and E4 is different from the reference mean. The test results are 

summarized in Table 17.  The mean value and the standard deviation of the dataset is 

listed in this table. In addition, the confidence interval indicates that the mean can be 

between 0.5420 and 0.7718. The P-value is less than 0.05 which determines that the 

population mean is different from the poled samples mean in normal mode. Therefore, 

polarized samples clearly showed some piezoelectric response. 

 

Number of 
data points 

Mean STD 95% CI for mean P-value 

40 0.6569 0.3593 (0.5420; 0.7718) 0.000 

 

Based on the obtained results, it can be concluded that the piezoelectric response 

showed by the sensors was not as strong as expected. Furthermore, the variation of the 

piezoelectric sensitivity between poled samples showed that the piezoelectric properties 

Table 17. 1-Sample T test. Reference mean value = 2.48 pC/N. 
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are less pronounced in some samples despite the fact that the poling process was per-

formed under the same conditions for all the samples. Therefore, further research have 

to be done to determine possible sensor failures. 

In addition, the piezoelectric sensitivity response of the sensors depends on the piezoe-

lectric properties of the P(VDF-TrFE) layer. Thus, the piezoelectric layer should have 

been poled properly to show good piezoelectric response. Therefore, based on the ob-

tained results, it can be assumed that the poling process did not fully activate the piezo-

electric properties of the P(VDF-TrFE) layer. The poling process could have been limited 

because of the non-uniform distance between fingers. In addition, it should be pointed 

out that the electric field does not distribute uniformly during poling. This results in a 

disparity in the piezoelectric properties of the poled material [76]. There are three differ-

ent regions between each pair of finger electrodes: an active region, an ineffective re-

gion, and a transition region [77].  In the active region, which is formed between the 

electrodes, the electric field is distributed uniformly. On the contrary, the electric field is 

not uniform in the ineffective region, which is located above the electrodes. Thus, the 

electric field is very low in the ineffective region compared to the active region. Further-

more, the transition region is located between the active and the ineffective region. Con-

sequently, it can be assumed that there is a poling loss factor associated with the non-

uniformity of the poling process. The poling loss factor also depends on the relation be-

tween the electrode finger width and the piezoelectric layer thickness [78]. Thus, further 

analysis should be done to examine the poling losses, and to determine an optimal finger 

width and piezoelectric layer thickness. 

Additionally, the piezoelectric material cannot be properly poled if the electric field is very 

low. The PEDOT:PSS printed patterns showed a very high resistance, which results in 

conductor losses. As a consequence, the applied electric field could have not been as 

high as required because of the conductor losses. Therefore, the conductivity of the elec-

trodes has to be improved to eliminate possible losses associated with the poor conduc-

tivity. 
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5. CONCLUSIONS 

Flexible pressure sensors have the potential to be used in healthcare monitoring appli-

cations and artificial intelligence systems. In this thesis, the design and fabrication of 

ultra-thin IDE flexible pressure sensors were evaluated. The transduction method used 

in this sensor was piezoelectricity. The sensor was fabricated using printing technolo-

gies. The IDE structure was inkjet printed while the active layer was fabricated using 

screen-printing. It was demonstrated that printing technologies are compatible to fabri-

cate these types of flexible electronic devices. In addition, a set of sensors was fabricated 

to characterize their electrical and piezoelectric properties by measuring their resistance, 

capacitance, and piezoelectric sensitivity. An analysis of the characterization results was 

done to evaluate the performance of the samples. 

The sensor substrate selected was Parylene-C. This material showed high mechanical 

stability after all the fabrication processes. However, it was necessary to apply a surface 

treatment to the Parylene-C layer before printing the conductive material. This process 

was done to change the material from hydrophobic to hydrophilic. It was found that UV/O3 

could be employed to change the surface properties of Parylene-C. Therefore, the next 

test was to analyze the effect of UV/O3 treatment exposure time on printed patterns. 

Droplet size variation and line width variation was analyzed when the substrate had been 

treated. Based on the results of this test, it was found that it was enough to treat the 

material for 10 minutes to print uniform patterns. Furthermore, the results of the line width 

test were used to find the optimal drop spacing to print the IDE structure. 

The conductive material used for the fabrication of the IDE structure was a commercial 

PEDOT:PSS ink. The ink conductivity was evaluated before the fabrication of the IDE 

patterns. The objective of this test was to examine the conductivity of the lines that would 

be used in the IDE structure. However, the characterization results showed that the 

printed lines exhibited poor conductivity. Furthermore, the surface profile of the printed 

lines was measured, and it was observed that the distribution of the material was domi-

nated by the coffee ring effect. The average thickness of the printed lines was much 

lower than the manufacturer recommendations. Therefore, the non-uniformity and low 

thickness of the printed lines had an impact on the material conductivity. 

The fabrication of the sensor was fully done using printing technologies. Inkjet printing 

was a suitable method to print the electrodes structure. Nevertheless, the measured pat-

tern dimensions showed variations on the IDE fingers width and gap between fingers. 
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Non-uniform finger width and therefore non-uniform finger gap could be decreased by 

optimizing the electrodes fabrication process. In addition, the piezoelectric material was 

screen-printed. Printing the active material on top of the inkjet printed electrodes did not 

show any major inconvenience. Thus, the combination of both technologies to fabricate 

this type of sensor was successful. 

The electrical properties of the sensor samples were also analyzed. It was demonstrated 

that IDE-based sensors can show a lower capacitance value compared to MIM-based 

devices. In addition, the piezoelectric sensitivity of the samples was evaluated. Sensitiv-

ity measurements were done in two modes, without bending and by bending a small area 

of the samples. Despite the weak piezoelectric response, the piezoelectric characteriza-

tion results are promising and further research have to be done in order to fully activate 

the piezoelectric properties of the piezoelectric material used in this study.  

In future, how to improve the piezoelectric sensitivity of the samples should be further 

studied. Thus, it is necessary to enhance the conductivity of the electrodes. To increase 

the conductivity of the electrodes, it could be possible to examine how to print thicker 

lines without increasing the line width. In addition, an alternative to overcome the poor 

conductivity issue is to use a more conductive ink. For example, the IDE structure could 

be printed using a high conductive PEDOT:PSS ink (e.g. conductivity of 700S/cm) or 

nano-silver ink. This will eliminate the conductor losses because of the poor conductivity 

and will guarantee that the applied electric field during the poling process is high enough. 

In addition, modeling of the IDE-based sensors could be done to optimize the IDE di-

mensions. This could also help to examine the impact of the IDE dimensions on the 

poling losses because of the non-uniform electric field distribution. Thus, based on this 

analysis, it could be studied if changes in the current IDE structure dimensions should 

be done. Furthermore, according to the literature, it is necessary to use an optimal pie-

zoelectric layer thickness to guarantee that the poling field penetrates all the piezoelec-

tric material layer. Thus, this could be also found by modeling the sensors. Moreover, 

modeling could also be used to analyze the impact of the sensor dimensions on the 

electrical properties of the sensors.  

Additionally, sensor electrodes could be optimized to decrease the areas where the pol-

ing electric field is non-uniform. For instance, a second IDE structure could be printed on 

top of the P(VDF-TrFE) layer, and it should be aligned to the IDE structure under the 

P(VDF-TrFE) layer. Thus, the area, where the dipoles have been oriented during the 

poling process, will increase. Alternatively, the sensor electrodes structure could be fab-

ricated using a 3D IDE approach. This could be done by increasing the thickness of the 
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electrode fingers. Thus, the contact area between the fingers and the piezoelectric ma-

terial will increase, and the area where the poling electric field is uniform will also in-

crease. Printing multiple layers could be used to fabricate 3D interdigitated electrodes. 

In conclusion, ultra-thin IDE sensors were fabricated using printed electronics technolo-

gies. Additionally, the low thickness of the fabricated sensors (i.e. < 10 μm) could allow 

to attach them to the human skin without using adhesive patches. Nevertheless, further 

research has to be done to enhance the piezoelectric properties of the sensors and con-

sequently be able to use them to measure the human pulse wave signal. 
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