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ABSTRACT 
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The existing electrical infrastructure is very unlikely to expand overnight. Therefore, a smart 
solution is certainly needed to integrate the additional load which electric vehicles (EV) bring to 
the network. The aim of the thesis is to study the electricity market, different intelligences related 
to electric vehicle charging and establish an algorithm that produces an optimized charging sched-
ule for electric vehicles. The algorithm ensures a cost profit for user and takes part in demand 
response by shifting the timing of charging loads based on energy prices. 

The core intelligences integrated to the EV charging system in the thesis are cost optimization, 
peak shaving and load shifting. The algorithm follows the hourly unit cost related to the energy 
consumption and distribution fee in order to find the cheapest time slot for charging operation. It 
allocates as high charging power as possible to the cheapest time slots and then start selecting 
the expensive time slots until the battery is charged to desired state of charge. Along this process, 
the algorithm continuously calculates the maximum charging power available after other house-
hold usage. The Elspot area price of Finland for 2018 added with 0.3 cents/kWh margin and 24% 
VAT are used as energy prices. Distribution unit prices include time-of-use pricing for day and 
nighttime energy use in addition to the fixed fuse-based fee. By following these unit prices, the 
algorithm shifts the load from high demand to low demand hours in order to minimize the total 
costs. 

The algorithm is implemented in MATLAB and tested through a case study on different type 
of Finnish detached houses. Detached houses with different load profile data are used as input 
for charging a 75 kWh EV with a 10 kW and 7.5 kW charger in different cases, where the other 
inputs remain same for all the test cases. The Elspot area price of Finland for 2018 added with 
0.3 cents/kWh margin and 24% VAT are used as energy prices. Different day and night-time 
distribution prices are applied depending on the consumption. The simulation results are com-
pared to regular EV charging, where the charging operation starts right after the EV is plugged in 
and finishes charging within shortest time.   

The results from the simulation are investigated from user’s and grid’s point of view. From 
user’s perspective, all the charging events with intelligent charging have costs savings over reg-
ular charging. The monetary profit is higher for higher charger rating (10 kW). In cases where the 
household usage is low, the proportional profit is high. From grid point of view, over 99% of the 
load gets shifted to night-time for 10 kW charger cases. For the 7.5kW charger, the amount of 
shifted load is over 97%, which is a little lower than 10 kW charger cases because of longer 
charging time. The findings of the case study validate the use of smart charging algorithm in order 
to ensure cost savings for the user. 
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1. INTRODUCTION 

The modern era has made energy a basic need for human race. With the limited stored 

energy in different form like oil, coal etc. the efficiency of using the energy has become 

”the talk of the time” in recent years. On top of that, the way of using the energy has been 

creating a lot of environmental challenges like increased carbon level in air, greenhouse 

effect etc. Burning of the fossil fuels are the main source of this increased carbon, more 

specifically carbon dioxide (CO2). It comes in process of converting the chemical energy 

to directly usable form like electrical, thermal or mechanical energy.  

Internal combustion engines (ICE) use fossil fuel, which is one of the biggest sources of 

CO2 emission in today’s world. Introduction to renewable energy as solar power, wind 

power etc. opened a new opportunity to produce the energy in a “greener” way. This 

reason drove us to electrification of one of the biggest sectors of energy use, transpor-

tation.   

Electricity usage in transportation is a century old concept. But due to the convenience 

of other options like ICE engines, it did not last for long. But at the end of 20th century, 

the environmental and other issues started forcing us to adopt the use of green energy 

for transportation. Renewable energy integration into electricity consumption has made 

the choice easier to choose the electric energy in this case. This process included adding 

the hybrid cars to the road. It was an effort to reduce the use of fossil fuels for driving 

wheels. But it was just a start of a new beginning. The success of hybrid cars inspired to 

bring the plug-in hybrid cars and eventually the (battery) electric cars take their part in 

today’s road. [21] 

In the year 2005, number of EVs running in the roads used to be counted in hundreds. 

But by 2018, there were 5.1 million plug-in hybrid cars and EVs were in action [25]. This 

steep rise in the curve of EV usage refers to the future scenario of the road.  

The biggest challenge electric transportation brings is the congestion of power demand 

to the current electrical distribution infrastructure. This extra load comes up with chal-

lenge of electrical infrastructure as well as power supply and demand congestion. To 

minimize this economic effect, load shifting throughout the day can be a feasible solution. 
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Regular charging time of EVs is more associated to the driving pattern and vehicle fea-

ture. As most of the vehicles sit idle at home during major time after work hours, it has a 

big flexibility with charging hours. 

The purpose of this thesis is to study the electricity market and EV charging infrastructure 

and apply the possible intelligences in order make the operation profitable for user at the 

same time.  

The objective of this thesis is to develop an intelligent charging EV algorithm for a de-

tached single house scenario. The hourly energy pricing by retailer and distribution costs 

related to the energy consumed is considered for cost optimization in this study. The load 

profile distribution of the house itself during the day shapes the power consumption of 

EV charging.  

This thesis is divided into seven chapters. Chapter 2 describes the Nordic energy market 

and its actors. Chapter 3 gives an introduction to electric vehicles, used battery technol-

ogy, related definitions and EV charging mechanism. Chapter 4 describes different intel-

ligences used in EV charging, algorithms and methods of their use in previous studies. 

Chapter 5 introduces the intelligent charging algorithm developed in this thesis, de-

scribes different parts of it and discusses the constrains. Chapter 6 carries out a case 

study with real time data set from 2018 for different type of detached houses. Chapter 7 

describes the conclusion of the study and possibilities of related future work. 
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2. NORDIC ENERGY MARKET 

Power is an important element of our daily life at home and outdoor. The increasing 

demand and supply have created dynamic power markets around the world. This chapter 

explains the structure of Nordic electricity market and digs deeper into the economic 

system to explain the method for price formation for end users. 

Nordic countries have deregulated their own energy’s market and integrated together to 

make a common Nordic power market in early 1990 [10]. That means the power market 

is not run only by the states anymore as it becomes an international power market. Later 

during 2010-2013, countries like Estonia, Latvia and Lithuania also joined Nordic market 

by deregulating their own energy markets. And now as the electricity sharing capacity is 

established between the Nordic, Baltic and the European continent, this power markets 

covers a big part of Europe [10].  

Supply and demand usually determine the price of electricity. As high the demand is 

related to supply, higher the price is. This is the way how supply and demand get bal-

anced in power market through price. The supply and demand balance system depend 

a lot on market players and different mechanism as demand response (DR) etc.  

2.1 Market actors 

Nordpool has a dynamic electricity trading pattern involving different market players. 

Small end users usually buy electricity from local retailer companies (retailer market). 

Large end users can buy the power directly from the wholesale market (like the power 

exchange run by Nordpool). Different market players and their role is covered in this 

chapter. For some actors like producers, retailers, end users etc. the market is open. 

Some part of the market, actors like TSO and DSOs are regulated monopolies.  

2.1.1 Transmission system operators (TSOs) 

Transmission system operator (TSO) is an organization that is neutral and totally inde-

pendent from commercial players of the energy market. TSOs are the entities who en-

sures the stability and security of electric grid for a specific region. In other words, TSO 

ensures the frequency to be kept 50Hz and electricity is arriving to DSO end or in some 

cases some big customers.  

TSO manages the regulating market in order to obtain the frequency stability of trans-

mission grid. When the generation is higher than the consumption, the frequency rises 
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and can go above 50 Hz. In this case, TSO ensures one or more electricity producers to 

reduce their electricity production. It is called as TSO procuring “down regulation”. In 

contrary, the consumption can be too high than electricity production. In this case, fre-

quency can fall below 50 Hz. Then TSO ensures the extra supply by one or more pro-

ducers generating more electricity or some consumers to temporarily decrease con-

sumption. In this case TSO buys more power from a producer or consumer. It is called 

TSO procuring “up regulation”. This traded electricity is called regulating power.  

TSOs in Norway (Statnett), Denmark (energinet.dk), Estonia (Elering), Lithuania (Litgrid) 

and Sweden (Kraftnät) are state-owned and ‘Fingrid’ the Finnish TSO is partly owned by 

Finnish public organizations and financial and insurance institutions. 

2.1.2 Producers 

The main task of producers is to produce electrical power. Producers bid-in on Nordpool 

spot market with their projected power generation for every hour of the next day. Balanc-

ing the real production with the projected plan is the main responsibility of Production 

balance responsible (PBR).   

For power production there are 370 companies working in Baltic and Nordic regions [10]. 

Hydro power plants are the biggest source for power production in Nordic countries. Ac-

cording to Nordpool website, they produce half of the yearly demand with a normal ex-

pected amount of rain and snowfall.  

Norway is almost fully dependent on hydropower as Sweden and Finland have mixture 

of hydro, steam driven thermal and nuclear power. Day by day renewable power is pen-

etrating more in these power markets. That allows to reduce the use of expensive 

sources like oil, gas etc. As an example, thermal power was predominant in Denmark, 

Estonia and Lithuania, but wind power is becoming more important increasingly in Den-

mark.  

Hydro is the cheapest power source among all [10]. Production cost goes high with the 

employment of more expensive power sources. During the dry years, Nordic power mar-

ket become more dependent on the power import from nearby countries like Russia, 

Netherlands, Estonia, Germany and Poland. 

2.1.3 Distribution system operators (DSOs) 

Distributors ensures that the power generated by producers reaches the end users. DSO 

maintains the local grid. The number of distribution companies working in Nordic and 
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Baltic countries are around 500. The networks that is operated by the DSOs connects 

the private homes and other buildings to the grid.  

In some countries, DSOs are obliged to ensure the meters are installed and read at the 

end users point. Like TSOs, DSOs are legally independent from the commercial players 

like producers, suppliers etc. 

Figure 1 shows the relation between different market actors in Nordic electricity market. 

 
 

 Nordic market actors. Adopted and modified from [12]. 

2.1.4 Retailers 

Retailers or suppliers are ones who sell the power to end users (e.g. medium or small 

companies and households) Retailer buys the power directly from the producer or 

through Nord Pool. Retailers are the association that works between the end user and 

power market. There are usually different retailers operating within a country. End users 

have the freedom to choose one of them and one of the several contracts offered by that 

retailer. The different contracts a supplier can offer are for example fixed price and mar-

ket price. [10]  

Load balance responsible (LBR) is the entity that makes the plan of the generation and 

related consumption for the next day. Some retailers can take the role of LBR and in 

some cases LBR is a different entity. Several different retailers follow this common LBR. 

If there is an imbalance between planned generation and consumption, LBR must pay 
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to TSO for the imbalances. LBR can take an active part in power market regulation by 

submitting bids subject to down and up-regulation.  

2.1.5 Traders 

Traders are usually representing the player of the market who owns the power. Power 

can be sold in many routes in power market from producers to the end users. Traders 

are the entity who buys the power from producer and sells it to retailer. Or they can buy 

it from one retailer and sell it to another. Traders do not own the power but acts as 

agents/intermediary for retailers and producers. [10] 

2.1.6 End users 

End user can be either a company or a household. End user pays for the power in three 

portions to three entities. End user pays to supplier for the power consumed, to DSO for 

power transmission and taxes to government. Every geographical area has its own as-

signed DSO. End users have the only option for a DSO in the area. [10] 

2.2 Market models 

The electricity price is set up in a way that includes both buyer and seller in the process. 

The models working in this process are Day-ahead market, Intraday market etc. 

2.2.1 Day-ahead market (Elspot) 

Day-ahead market, as well known as Elspot market, is the place where the majority 

power trading happens in Nord pool. Buyer and seller make the power trading bids here 

for the following day. According to Nord pool website, there are more than 300 traders in 

Nord pool’s day-ahead market. Majority of these traders are active daily. 

Day-ahead market is mainly driven by customer demand planning. Buyers (usually a 

retailer) assess the electricity demand for the following day and the price they are willing 

to pay for the volume. The seller (e.g. power plant owner, other traders) calculates and 

declares how much power it can deliver at what price. This demand prediction and of-

fered price are calculated for every different hour from both buyer and seller side. 

Figure 2 shows the relation between sets of selling bids and buying bids for price for-

mation. 
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 Price formation. 

The time of bidding for following day power trading ends at 12:00 CET. Then these in-

formation goes through the calculations with an advanced algorithm to set up the price. 

Basically, the price is decided as the point of the curve where the selling and buying 

prices meet. 

Figure 3 shows the supply and demand curve. The intersection point of these two curves 

is used for setting optimum price of electricity. 

The main role of the power market is to establish the equilibrium between power produc-

tion and demand. The inability to store energy makes it more important. Price formation 

of energy market related to demand and supply is more complex because the generated 

power needs to be delivered at very precise moment.  The day ahead market helps to 

establish this equilibrium through forward planning, but the final balancing process takes 

place in real time balancing market through some adjustments. The price for electricity 

is set in a way so that the production cost of electricity for every individual hour of the 

day is set as lowest as possible.  

The calculated prices for hours are declared at 12:42 CET or later. The traders are set-

tled once the price is calculated. The power is delivered hour by hour as per contract 

from 00:00 CET the next day.  

 
 Setting the optimum price depending on supply and demand side bid-

ding [10]. 
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For electricity market the generation cost varies vastly over different source and installa-

tion. There are some installations that need intensive capital like hydro power, nuclear 

etc. These plants can run for years with very efficient costing. On the other hand, there 

are other expensive options like combined heating power or gas turbines. These re-

sources are used in a way, so the fuel-efficient sources are used to cover maximum 

demand. The most expensive sources are used only during high demand with higher 

price of electricity.  

The power trade is also dependent on the transmission constraints. When the demand 

is high and supply is set high to meet it, the transmission congestion might come  in. 

Different area transmission prices are introduced to relieve this congestion. Thus, the 

transmission cost is set high to lower the demand in affected area. 

2.2.2 Intra-day market (Elbas) 

Intra-day market works as a back-up for the day ahead market to balance the supply to 

existing demand. Most of the electricity trade happens in day-ahead market, but Intra-

day market gives the opportunity to tune the balance in case any challenges come up. 

The day ahead market closes at noon CET. If anything happens between the closing of 

day ahead market and deliver next day, there need to be a backup plan. For example, a 

source like nuclear power plant can go off by this time. Then there will be some arrange-

ment needed to meet this lagging demand next day. Here comes the intra-day market in 

action. Intra-day market gives the opportunity for buyers and sellers to trade the missing 

volume close to the real time and bring the balance back to market. 

After declaring the hourly prices for day ahead market, the capacities that are accessible 

for Nord pool’s following intraday market is published at 14:00 CET. In Intra-day market 

trades happen continuously, and the market gets closed for a specific hour one hour 

before the real supply time. Prices are set based on first-come first-served principle in 

cases the bids are same.  

With the injection of more unpredictable renewable energy sources, the importance of 

intraday market is increasing day by day. Different renewable energy sources like wind 

power forecast includes high uncertainty in nature. It causes an offset in day ahead 

traded volume and produced volume, and Intra-day market helps to ensure the supply 

to bring back the equilibrium. [10] 
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2.2.3 Balancing market 

Balancing market maintains the balance between demand and supply in real time. Bal-

ancing market is usually managed by TSO. The bids at day-ahead market and intra-day 

market are made before the actual consumption. These predictions can go wrong some-

times and that results there are either higher supply than demand or vice versa [9].  

TSO upholds the dynamic balance between demand and supply in real time through 

introducing automatic frequency control and by accumulating balance power available in 

balance market [8]. Market players that have the capacity that can be regulated, submit 

their available regulating volume to this market. TSO buys power from this balance mar-

ket and sells it to the balancing responsible party (BRP) that have the extra demand [2]. 

BRP is the entity that balances the equivalent ‘injection’ and ‘subtraction’ from the grid. 

[3] 

2.3 Demand response (DR) 

Demand response is a broad idea in general. It can be described as the change of ac-

tions by consumers in order to balance the supply and demand management of electric-

ity. These actions are enabled through different feedback (e.g. price) from the service 

providers in market. [1] 

When the power consumption goes high, the market responds to it in several ways. One 

way is to maintain this balance most of the power market uses is to shift the load from 

peak hour to off-peak hours. Hours that have high demand are referred as ‘peak hour’ 

and hours with low demand are ‘off-peak’ here. The way the market responds to this 

extra load from existing generation and changes the end user’s usage from their normal 

usage pattern is known as demand response [1]. This whole load shifting is done in most 

of the market by introducing incentive for the user. That means end users get electricity 

for lower price when the demand is low. US energy department has defined the demand 

response as “changes in electricity consumption by customers due to electricity price 

difference in different time or by some other incentive provided by the market to change 

the electricity usage pattern when there is a possibility of system reliability going low” 

[11].  

DR can be used to increase the efficiency of the system by using minimum resource 

possible. It enables improvement of the distribution system planning and usage leading 

to lower electricity prices in short and long term.  
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3. CHARGING OF ELECTRIC VEHICLES 

This chapter describes the mechanism of different electric vehicles, different battery 

technology used for electric vehicles, their charging mechanism, related terminology and 

standards for EV charging. 

3.1 Electric vehicle (EV) 

The term ’EV’ is used for a broad meaning in related industry. Total number of EVs in 

today’s world can be described in four categories depending on the design of electric 

train. These are- 

 Battery electric vehicles (BEV)  

 Plug-in hybrid electric vehicles (PHEV) 

 Hybrid electric vehicles (HEV) 

 Fuel-cell electric vehicles (FCEV) 

Battery electric vehicles (BEV) can be described as full electric vehicles, where a set of 

battery installed in the car is charged mainly from power grid and partially by regenerative 

braking. Wheels are driven by the electric motor that is powered by the battery pack. 

Battery EVs have a simple design powertrain compared to ICE engines as there is no 

clutch involved also in some cases not a gearbox. Here traction power flows in a simple 

path from battery to wheels through motor drives, motor, mechanical coupling, and trans-

mission (if available).  

Plug-in hybrid electric vehicles (PHEV) engage both electric motor and internal combus-

tion engine (ICE) to power the wheels. Typically, PHEVs have smaller size battery banks 

than BEVs that gives comparatively lower battery range. PHEV’s driving range is mostly 

reinforced by the IC engine. Therefore, the combined driving range of battery bank and 

IC engine helps the user to get rid of range anxiety. 

 
 Battery EV architecture [21]. 
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This combined hybrid system in PHEV uses both battery and fuel in two different mode 

known as charge sustaining (CS) and charge depleting (CD) mode [6]. In charge sus-

taining mode, fossil fuel is burned through IC engine to generate the power needed for 

the operation and charge depleting mode uses the battery as primary source for energy. 

PHEV reduces the gasoline usage while operating in CD mode [4].  

Including both IC engine and battery driven motor makes the PHEV architecture a bit 

complex. There are two powertrain architecture available for PHEVs. Series and series-

parallel architectures. In series powertrain, the traction power of wheels generates only 

from electricity. Power from both battery and IC engine combines as DC power flow that 

powers the electric motor. Therefore, IC engine does not take part in driving the wheels 

directly as conventional IC vehicles. On the other hand, series-parallel powertrain design 

allows both electric motor and IC engine to get directly coupled with wheels. That means 

wheels get driven by engine and motor while using fuel and battery as power source 

respectively.  

  

Electrical energy is used for both PHEV and BEV to drive electric motor to create the 

propulsion force for the automobile. This electricity is provided by a battery on board. 

 
 PHEV architectures [21]. 
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This battery can be charged by power grid in both case of BEV and PHEVs. For EVs on-

board motors also works as charger when regenerative braking is enabled [6].  

Hybrid electric vehicles (HEV) uses traditional fuel source such as gasoline or diesel to 

drive the wheel through internal combustion engine. These vehicles also include a 

smaller battery bank that cannot be charged from an external energy source. The battery 

packs are charged by mostly regenerative breaking and/or the ICE and are used to im-

prove overall fuel efficiency of the car.  

Fuel-cell electric vehicles (FCEV) also consist of battery bank to store the energy and, 

uses an electric motor to drive the wheel, but unlike other EVs, it uses fuel cells, typically 

hydrogen as power source to drive the vehicle and charge the battery pack. One of the 

main differences between FCEV and ICE vehicles is the propulsion system. FCEVs have 

more efficient propulsion system than conventional ICE vehicles. The battery bank in 

FCEVs is very small in size compared to other EVs. But it cannot be charged from ex-

ternal power sources. This technology is still in its beginning stages.   

Electric vehicle (EV) is defined in this thesis as the road vehicle that includes an electrical 

powertrain and an electrical energy storage that can be charged from an external energy 

source.  

3.2 Electric vehicle battery technology 

Battery technology is the key technology for EV industry as this is the most influencing 

factor for desired range, performance and reliability of EV. Today, small-scale batteries 

represent quite mature technology that serves most of the daily chores we use. These 

cannot be considered as suitable for EV purposes because of capacity limitations. In 

contrast, large-scale batteries are mostly developed for stationary uses in power grid as 

renewable energy integration or emergency power backup. These batteries usually 

come with lower specific energy (Wh/kg). Batteries for EV usage are subject to more 

robust usage. Size and weight constrain of large-scale batteries brings challenges in 

matter of acceleration, braking distance and driving range of EV. For electric vehicles 

usage larger specific energy is needed for the battery as it allows higher energy stored 

with less weight involved.  

Table 1 shows the list of some top-rated recent electric car models and their battery 

technology with driving range. 
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Car Battery technology Driving range (electric) up to 

Mitsubishi i-MIEV Li-ion 160 km 

Tesla Model 3 Li-ion 386 km 

Tesla Model X Li-ion 523 km 

Chevrolet Spark EV Li-ion 132 km 

Tesla Model S Li-ion 600 km 

Ford Focus Electric Li-ion 122 km 

Chevrolet Bolt EV Li-ion 415 km 

 

As shown in Table 1, Li-ion is the most used battery technology at current market. Li-ion 

batteries, when discharged, convert chemical energy to electrical energy. This electro-

chemical conversion takes place mostly by oxidation-reduction reactions. Basic compo-

nents of a Li-ion battery are anode (negative electrode), cathode (positive electrode), 

electrolyte, membrane and container.  

In the process, anode gives electron to the outer circuit that acts as load and gets oxi-

dized. In return, cathode receives the electron from outer circuit. Inside the cell electrolyte 

mediates ion transfer between anode and cathode in the process. Membrane keeps an-

ode and cathode separated, so they do not get short circuited. Container holds all the 

components and serves the safety purpose. Typical anode is made of graphite. Different 

cobalt oxide-based materials (NCA, NMC) are mostly used as cathode material for pas-

senger car EVs. Li-ion moves from cathode towards anode through the electrolyte during 

the charging process while charging. Vice versa happens during the discharging. [21] 

There has been a growing attention towards development of new technology that can 

offer more advanced energy density and lower cost. Recent research shows that for 

example lithium-sulfur batteries could someday be a good alternative that can promise 

higher electric range for EVs [26]. This technology is still in early development phase. 

To quantify and characterize the battery performance in EV applications, there are cer-

tain definitions used widely. Most of them are used in this thesis. These are described in 

the following. 

Pack, module and cells are the basic components of an EV battery. Multiple modules 

located and used as a whole, makes a battery pack. Similarly, multiple cells connected 

in series and maybe also in parallel delivers as a module. Cell is the smallest possible 

unit of the battery pack that contains the electrodes, electrolyte and separator. Typically, 

output voltage of a cell varies from 2 to 4 volts depending on the design.  

Table 1. Recent top-rated electric cars (BEV and PHEV) and their used battery. 
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State of charge (SoC) represents the percentage of energy available compared to total 

usable energy of a battery. Due to technical limitations perfect gauging for SoC is always 

hard for battery management systems. A simple formula for calculating SoC [21] is, 

𝑆𝑜𝐶 =
Amount of charge available

Total usable amount of charge
%                              (3.1) 

Depth of charge (DoD) is represented as the percentage that got discharged from the 

total usable amount of charge [21]. 

DoD =
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑢𝑠𝑎𝑏𝑙𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒
 % = 1- SoC       (3.2) 

State of health (SoH) is the term used to present the maximum charging capacity com-

pared to the ideal capacity of the battery. It is very closely related to performance depri-

vation and remaining lifetime.  

The number of charging-discharging cycles that a battery can perform, until it is running 

with a minimum performance is called a cycle-life of a battery. Usually cycle-life of a 

battery is calculated for charging and discharging in nominal conditions. However, due 

to different challenges such as high temperature, battery does not get charged or dis-

charged in nominal condition in real life. Therefore, the actual life of a battery can be 

higher or lower than the rated cycle-life depending on the individual cell properties. 

The capacity of EV battery can be measured in different metrics. The amount of charge 

that is transferred in one hour with a one ampere flow is one Ah. E-rate represents the 

amount of power need to drain the battery in one hour. Another popular term used to 

measure the battery capacity is watt-hour capacity. Apparently, it is the product of battery 

voltage and Ah rating. A higher capacity battery needs added time to charge and out-

wardly provides longer driving range for EV.  

Specific energy is the ratio of rated battery capacity in Wh and total physical weight of 

the battery in kg. In short, specific energy is how much power a battery can deliver per 

unit mass. As related to packaging and battery weight, specific energy indicates how 

much additional weight this battery is going to add to the EV. That affects the perfor-

mance of EV regarding the driving range, breaking etc. Specific energy [21] is computed 

as 

Specific energy = 
Rated capacity in Ah × Battery voltage

Battery mass in Kg
       (3.3) 

Specific power is referred to the peak available power (in watt) of the battery per unit 

weight (kg). It is related to different performance degree of EV like acceleration, regen-

erative braking etc. Gravimetric power density is another name of specific power. Spe-

cific power is computed [21] as, 
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Specific power = 
Rated maximum power

Battery mass in Kg
        (3.4) 

Energy density and power density of a battery is known as nominal energy (Wh/L) and 

nominal power (W/L) of unit volume respectively. These are related to the physical space 

needed to achieve a specific performance goal for EV. 

The acceleration and top speed of EV is determined from the electric motor specification 

and maximum discharge current (continuous) of the battery. This maximum discharge 

continuous current rating means the maximum current that can be drained from the bat-

tery continuously. It is set by manufacturers to protect the battery life. Another discharge 

current rating called maximum 30-sec discharge pulse current affects the acceleration 

performance of EV that is set by battery design. It is the peak current that battery can 

drain in pulse up to 30 second. 

To prevent shorter battery life, the battery is taken out of use after a minimum permissible 

voltage. It is called the cut-off voltage. It is considered as the charge empty state of 

battery while using. The equivalent resistance of the battery is called internal resistance. 

It is different for charging and discharging.  

Battery management system (BMS) works as a link between the vehicle and battery in 

order to maximize the performance and protect battery health. It also minimizes total 

power consumption. In order to do so, BMS continuously monitors different property of 

battery and maintains the control by communicating with battery. Different BMS functions 

are, 

 Under and over voltage protection 

 Cell balancing 

 Control of battery charging and discharging 

 Short circuit protection 

 Thermal protection 

 Determine battery SoC and SoH 

 Safety protection.  

Figure 6 shows a block diagram of a battery management system and the dynamics of 

its major functions. The sensing unit consist of temperature, voltage, current and SoC 

monitoring systems. These sensing units continuously collects data in order to determine 

different actions needed by balancing and protection unit to maintain safe operation of 

battery. SoC level determining is a challenging job since factors like manufacturing con-

ditions, battery age, SoH etc. comes into consideration [21].  
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Typically, multiple cells are connected in series inside a module/pack to obtain the higher 

voltage requirements. Because of chemical offsets, these cells have different properties. 

That leads to different voltage level for different cells. This phenomenon can harm the 

battery life as well as lead to other threatening incidents. Balancing unit of BMS contin-

uously collects voltage readings and balances the voltage level of different cells of the 

battery pack. In this process, widely used techniques are buck-boost shunting, multi 

winding transformers, dissipative resistors and switched capacitors.  

3.3 Electric vehicle charging 

To prevent the premature life of batteries of EV, its charging mechanism is very im-

portant. Improper charging of batteries can damage them very easily. That is why, EV 

needs to be charged through a proper charging mechanism (Figure 7). The setup needed 

to charge an electric vehicle is known as electric vehicle service equipment (EVSE). The 

physical EVSE usually consists of power cords/cable, vehicle connector/socket outlet 

and in some cases ’in cable protection device’. [21] 

AC charging and DC charging are the two types of charging available for EVs. For AC 

charging system the on-board charger placed inside the vehicle that rectifies the AC 

power to DC power. In DC charging system AC to DC power transformation is done 

 
 Battery management system (BMS) block diagram[21]. 

 
 EV charging setup outline [21]. 
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outside the vehicle in the charging station. The on-board charger gets bypassed while 

charging from a DC source.  Due to high-quality power requirements the car always 

needs to be charged through an authorized charging station [6]. There are different 

charging solutions used around the globe and those are described in the following sec-

tion. 

Four kind of charging modes are defined in the international standard IEC 61851-1: mode 

1, mode 2, mode 3 and mode 4. Three of them are AC charging methods and one is DC.  

Mode 1 is a low current AC charging method that is used mostly for very light vehicles. 

In practice mode 2-4 are the widely used methods for charging passenger cars [1]. 

Mode 2 charging is a slow AC charging method that comes with an in-cable control and 

protection device (IC-CPD). Mode 2 is a widely used charging method. Most of the EV 

sold is provided with a mode 2 charging cable. These devices include safety features 

like residual current device (RCD). For safety purposes, the protection device IC-CPD 

usually restricts the charging current to 8–10 A. Like many European countries, Schuko 

single phase sockets could be used in Finland for mode 2 slow charging, as those are 

available in different households for engine preheating during winter. Low current capac-

ity of those sockets can be a challenge in that case. 3-phase IEC-60309 plugs and sock-

ets or 1-phase high current camper plugs and socket could be a good option. In that 

case, an additional costing for setting up the charging point appears as these two kinds 

of supplies are not available in most of the households. 

Different regulative organizations and EV related industries recommended mode 3 

charging solution for EV charging in regular use. Mode 3 comes with higher current 

charging possibilities compared to mode 1 and 2. For this kind of charging solution, ded-

icated charging sockets for EVs are used. The standard for mode 3 socket is defined as 

’type 2’ in IEC 62196-2 in most of the European countries. And this ‘type 2’ socket was 

declared as mandatory for all public fast charging stations by EU directive 2014/94/EU 

[1]. 

The only DC charging mode is available is mode 4. It introduces the possibility for fast 

charging with high power supply, because in this case the charging station is situated 

totally outside the vehicle. That gives the opportunity to include bigger setup for AC to 

DC power transformation. Typically, these charging stations have up to 50 kW nominal 

power [1],  but 150 kW and 20 kW commercial stations also available. Mode 4 chargers 

can charge the car very fast. These charging stations also comes with advanced safety 

features. 

Table 2 summarizes the properties of all the wired charging modes.  
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Table 2. Different EV charger modes [1]. 

Charging 
mode 

Description 

Mode 1 

 AC charging method. 

 Used mostly for charging light vehicles. 

 These are used with low charging current and short periods. 

 Maximum AC current flow allowed: 16 A. 

 There must be an RCD included with the feeding socket. 

 Available in 1- or 3-phase charging. 
 

Mode 2 

 AC charging method. 

 Known as slow charger for electric cars and most available system in pre-
sent. 

 Cable includes a protective device (IC-CPD) that can restrict the current 
flow through the cable after certain extent.   

 RCD is included into the IC-CPD protective device. 

 Includes continuous earth conductor continuity checking. 

 Includes a protection system so there is no AC voltage available on the 
delivering side of the cable until the cable is properly connected to the ve-
hicle. 

 Maximum AC current flow allowed: 32 A. 

 Available in 1- or 3-phase charging. 
 

Mode 3 

 AC charging method 

 Available in 1- or 3-phase charging. 

 Allows high current charging up to 70A for 1-phase and 63 A ×3 for 3-phase 

 Includes continuous earth conductor continuity checking. 

 Includes a protection system so there is no AC voltage available on the 
delivering side of the cable until the cable is properly connected to the ve-
hicle. 

 This charging method has possibility to control the charging current taken 
from the charging station  .  

 This mode is planned for the basic EV charging.  
 

Mode 4 

 DC charging method 

 The continuous communication between the charging station and vehicle 
is used to control the charging process in this mode. 

 This mode has theoretical maximum charging power of 120-170kW accord-
ing to IEC 62196-3. Practical products typically have lower nominal power. 

 The charging cable is fixed with the charging station. 
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Wireless charging technology is an emerging technology as it allows the vehicles to 

charge in a contactless way.  Inductive power transfer enables the possibility to charge 

the vehicle even during driving. Therefore, the electric range can be extended without 

subjecting the vehicle to additional time for charging services. On top of that, it creates 

the opportunity to reduce the size of required battery [22] that can help to improve the 

EV performance in a lot of way. But there are certain safety concerns like change of 

exposing human body to a high frequency magnetic field that is required in between 

transmission and receiving coil for wireless charging. In addition, the high price plays a 

negative role behind deploying the technology. 

3.4 EV as electrical load 

The electricity consumption of an electric vehicle can be different depending on the size, 

technology used and producer. Considering the small-medium electric vehicles during 

2013-2018, it has been estimated that the average consumption of electricity is 130-140 

Wh/km of drive for a study [19]. This estimation was mostly based on contemporary the-

oretical calculation depending on the electric motor, battery and charger efficiencies 

available. In Nordic countries, the energy usage of EV is also depends widely on ambient 

temperature, road surface condition etc.  Another study shows that, the estimated range 

for different EVs varies widely depending on the driving speed, usage of heater etc. in 

practice. As example, a 55 kWh Tesla have the highest range of 280 km driven in aver-

age 50 kmph in −20 °C ambient temperature. And a 24 kWh Nissan Leaf have the mile-

age of 105 km with the same conditions. That makes the average consumption 180-220 

W/km for wintertime [28]. 

A traditional personal vehicle runs 16600 km a year in average [20]. Assuming the con-

sumption as 170 Wh/km, the annual consumption of an electric vehicle would be 3780 

kWh. Due to the limited range of electric vehicles, the regular driven km can be lower for 

EV. Therefore, EVs can have a yearly consumption of less than 2240 kWh. To make a 

comparison, a typical Finnish detached house that does not include electricity for heat-

ing, consumes 5000 kWh [29] [30] electricity per year. It means that adding an EV to 

household consumption can increase the electricity demand up to 75.6%.  

The consumption of the EV is different than other household electricity usage. Unlike 

most of the heavy household electric chores, the consumption (charging) takes place 

during a different time than its usage(driving). Depending on the driving pattern, charging 

installation etc. most of the EVs need 2-8 h of charging for a full battery. Subject to the 

time of charging taking place, it can be represented as a huge opportunity (storing the 
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energy for later use) or a serious challenge for electricity service providers to expand the 

capacity for additional usage.  

Fluctuation in demand is the most undesirable property an electric power system seeks 

for. If a significant sum of EV owner starts charging their EV right after arriving home 

from office, this will surge the demand of electricity during a time of the day that is already 

typically a peak time.   

That leads the demand side strategies for electric power system to take different 

measures like load shifting etc. to obtain a flatter demand curve. Load shifting is a strat-

egy that enables the shifting of certain quantity of electrical load from a busy hour to the 

time period that have lower expected demand. In this case, if a big enough portion of the 

EV users delay the event of charging till the evening or early morning, the EVs would still 

be charged fully for the next day. In this case, the charging would take place during the 

off-peak hours.  

Another market actor ‘fleet operator’ comes to consideration when discussing electric 

vehicles (EV) as load. Fleets operator acts as the middleman between the electrical net-

work and EV but does not necessarily own the EVs. EV owners have contractual agree-

ments with fleet operators in terms of charging, payment, level of control etc. The main 

task of fleet operators is to manage EV charging. An individual operator or the retailer 

himself can be acting as fleet operator.  
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4. INTELLIGENT EV CHARGING METHODS  

In this chapter, different intelligences used in developing a smart charging algorithm is 

discussed. Problems related to EV charging have been studied and can be divided into 

three different perspectives. Customer oriented study, grid-oriented study and aggrega-

tor-oriented study [13].  

4.1 Intelligent charging vs. regular charging 

Regular charging of an EV is referred in this thesis as direct ’plug and go’ charging. That 

means the power transfer starts right after it is plugged in to charger and charges the EV 

battery to full capacity continuously or until it is plugged off. 

Introduction of different intelligence like load shifting, load balancing, load shaving etc. 

adds new dimension to performance, safety and reliability to EV charging and its inte-

gration to grid usage. Load shifting means using the hours of low demand or low price to 

support the electricity grid and utility and gain some monetary profit for the user. A toy 

example is described here to explain the effect of intelligences like load shifting, peak 

shaving etc. applied to EV charging.  

 

Assuming a vehicle arriving and plugged in at the starting of hour 1 (shown in Figure 8 

a). It has five hours to charge full battery, but it needs only three hours of charging to 

reach the full battery while charging with rated charging power. Hours no. 1, 3 and 4 

have the lower electricity price depending on the grid demand compared to hour 2 and 

5. Assuming the rated charging power is available for the whole charging time, regular 

 
 Load shifting. 
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plug in charger would use hour number 1,2 and 3 for the charging event, but an optimized 

intelligent charger will shift the charging load from high price hour 2 to low price hour 4. 

In this case, customer saves the extra costs of hour 2 (shown in Figure 8 b).  

Introducing similar scenario to a user charging the vehicle in a detached house that have 

limited power capacity can be used to explain peak shaving. Due to other household 

uses, power available for charging EV is limited in detached houses. The summation of 

power rating of EV charger and total household usage cannot be set over the fuse power 

rating of the house. In this case, for a regular charger user needs to set the EV charger 

power rating as the remaining capacity of house fuse rating when the household power 

usage is at the maximum level. Therefore, some power capacity of house will remain 

unused when the household’s electrical appliances are not in full use (Figure 9 a). With 

this limited power, capacity EVs will need more time to charge. 

An intelligent charging system with peak shaving optimization in this case would use the 

full available power after the other household usage for charging. In this case, The EV 

charging with intelligent power system (Figure 9 b) leaves with higher SoC than that of a 

regular charger(Figure 9 a).  

 

4.2 Admission control mechanism 

An aggregator oriented study in scheduling electric vehicles in a workplace station con-

ducted by Zhe Wei et al. considering the service quality under time of use pricing shows 

that it is 30% more profitable than the state of art solution [15]. This model incorporates 

an admission control algorithm, so all the vehicles arrived at the charging station gets 

proper power supply to get fully charged before it leaves. The model is shown in Figure 

10. 

 
 Peak shaving. 
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To ensure the good quality of service, each admitted EV needs to be charged to full 

battery before it leaves facility. That is the main motive of admission control mechanism.   

Admission control mechanism can be described as virtually planned scheduling proce-

dure in other words. When a new EV arrives to the charging facility, it is added as a new 

task as i to total scheduling task set, I.  I consist of more tasks related to the admitted 

EVs that arrived the facility before. Each admission much fulfill desired goal to achieve 

target SoC. Therefore, algorithm checks if all the EV gets to full battery by desired time 

if task i is added to the existing schedule. If it fulfills, a task is added to I and the facility 

continues its charging schedule according to the new schedule, but if not, the newly 

arrived vehicle is declined, and it continues the previous charging schedule. The figure 

above illustrates the admission control algorithm [18]. 

4.3 Time of use price-based systems  

The hours of the day are divided in TOU price system with different electricity energy 

prices depending on the demand and supply of the grid. Usually the hours are divided 

into three load schemes. Peak load, off-peak load and mid-load [14]. Peak load time 

consists higher electricity price. Off-peak load time has the lowest prices considering e.g. 

that the demand is low compared to the supply. Table 3 shows a typical TOU pricing 

model according to season, load and voltage in Jeju, South Korea [14]. TOU price-based 

systems aim for the lowest price hours to use for charging to minimize the costing.  

 

 Admission control mechanism [18]. 
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Class Time period 
Charging season 

Summer 
(jeon/kWh) 

fall/spring 
(jeon/kWh) 

Winter 
(jeon/kWh) 

Low voltage 

off peak hour 57.6 58.7 80.7 

mid-load hour 145.3 70.6 128.2 

peak hour 232.5 75.4 190.8 

High voltage 

off peak hour 52.5 53.5 69.9 

mid-load hour 110.7 64.3 101 

peak hour 163.7 68.2 138.8 
 

The hour circulation can be different depending on the season. Figure 11 shows the hour 

distributions for peak, off-peak and mid-load hour in different seasons Ontario, Canada 

[16]. 

While scheduling the charging hours for admitted vehicles to the system, the charging 

priority is dependent on the urgency of the task. The objective is to find the best allocation 

for charging vehicles in a way, the lowest price hours serves most of the charging to 

minimize the total cost. As the arrival of vehicles are not prescheduled, this optimal allo-

cation is hard to be guaranteed. 

Table 3. TOU price model of energy price for different seasons [14]. 

 

 Typical time of use rate periods [16]. 
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4.3.1 Greedy based scheduling (GRD) mechanism 

When there are several charging tasks in que, selecting the right time slot for right task 

is a challenge. Considering the charging demand and time constrains, the highest priority 

of charging should be given to a task that have higher urgency.  

For this purpose, a metric called flexibility were introduced that indicates the urgency of 

each task. Flexibility of a task is defined by “the difference between amount of remaining 

time to complete a task and remaining unfinished charging requirement” [23].  

To solve the problem greedy based scheduling suggests, higher the flexibility of task, 

higher its deferability. That means if a task is not flexible (flexibility=0), then it has the 

highest urgency [18]. This task should be served immediately to ensure that it ends be-

fore the deadline.  

Apparently, GRD scheduling mechanism has higher resource utilization ratio and its per-

formance regarding admission performance is outstanding, but it does not consider the 

variation of price depending on the hour of the day. Therefore, it does not ensure the 

utilization of lower price hours to maximize the monetary profit. 

The simulation was compared to the results to ‘real time scheduling’ [17] that is treated 

as the benchmark comparison algorithm. The result shows that, during high traffic hours 

this algorithm achieve higher profit than real time scheduling algorithm. During the low 

traffic, the profit gain over real time scheduling goes up to 30% that is quite high in com-

parison [15].  

4.3.2 Price oriented scheduling (POS) mechanism 

To lessen price insensibility of GRD scheduling, a price-oriented  scheduling (POS) 

mechanism was developed to ensure the monetary profit. The aim of POS is to employ 

more charging task to high profit or low-price hours. That means the task with higher 

amount of energy is allocated to high profit periods until the high profit period reaches its 

capacity limits. Then it keeps doing the same for lesser profitable periods and finally ends 

at the most expensive period if the charging service is still needed.  

Although POS scheduling mechanism mostly concentrates on profit maximization, it 

does not ensure the lowest task declining probability for different tasks arriving at differ-

ent time, as example in case of a parking garage situation. That becomes a performance 

issue in case of a service provider ensuring best resource allocation for its charging ser-

vices.  
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In addition to that study, the authors Zhe Wei et al. proposed an advanced approach that 

incorporates practical battery charging characteristics in another paper [18]. On top of 

admission control and scheduling algorithm, an adaptive utility-oriented scheduling algo-

rithm is adopted in the study to optimize the charging operator utility. The aim is to lower 

the utility cost, lower the task declining probability and higher the profit margin for charg-

ing operator.  

4.3.3 Charging model considering TOU price and SoC curve 

A study by Yijia Cao et al. included one of the battery characteristics into consideration 

while developing a charging schedule for EV charging depending on TOU price. [27] 

The charging power vs SoC curve is not entirely linear in nature for charging of EV bat-

teries. The study develops a charging algorithm for a single EV. Considering the time 

constrain from a user as the user needs the vehicle to be charged within specific time, 

this algorithm works towards these goals: 

 Finish charging within specific time 

 Charge to full battery or higher with maximum charging power available within 

the user specified time 

 Use the lowest price hours for most power usage  

Considering an EV performs the charging operation within charging time available, user 

pays, total cost = ∑ 𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 × 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑢𝑛𝑖𝑡 𝑝𝑟𝑖𝑐𝑒. Charging power for the 

EV is selected as the minimum value among maximum rated power for charger, maxi-

mum charging power rating of battery and maximum power rating set by user.  

Figure 12 shows the overall process of charging system developed by Yijia Cao et al. 

[27] 

The system creates a charging schedule without any optimization in the beginning. Then 

it calculates the charging power for next cheapest hour and shifts the charging load to 

that hour if it is within charging time available. And it continues the process for all the 

hours till the SoC is full.  



27 
 

 

 Optimizing of charging schedule by TOU price [27]. 
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5. DEVELOPED MARKET BASED INTELLIGENT 

EV CHARGING ALGORITHM  

In this chapter, development of a market based EV charging scheduling is described. An 

energy price list is set by retailer that states the energy price for every hour of the day. 

These hourly prices reflect the demand and supply in the electricity market. Additionally, 

a cost based on TOU (two-time) distribution tariff is applied. In addition, a fixed monthly 

distribution cost is set depending on the fuse size of the house. The distribution costs 

related to energy consumed is also designed in a way that it reflects power congestion 

of network. This developed algorithm calculates and schedules the EV charging in lowest 

possible costs within a given time to charge the vehicle to a certain state of charge. By 

following the low-price hours, the algorithm shifts the electric load of charging toward low 

price period of the day.  

5.1 Intelligences applied 

The main task of the algorithm is to create a charging schedule that can offer the mini-

mum possible costs for a charging session and shift the charging load to low price hours. 

There are different related terms and intelligences that comes into consideration while 

planning for achieving such goal. The intelligences applied to the developed algorithm 

for the thesis can be summarized as below. 

 Finding lowest possible costs: The algorithm finds the lowest possible costs for 

one charging event. Following the hourly energy costs and distribution costs, the al-

gorithm finds the total costs per unit energy for all the hours of the day. It then assigns 

highest possible power transmission to the hours that have lowest total (energy and 

distribution) cost. A related toy example is presented in detail in section 4.1 as de-

scription of load shifting.  

 Peak shaving: EV charging power consumption can increase the power demand up 

to maximum power capacity available for the facility. Maximum capacity available is 

dependent on variable loads of the charging facility like other household usage. In 

these cases, user needs to be careful about switching loads ON without tripping the 

main fuse/protection device off while charging the vehicle with maximum charging 

power. Intelligence like peak shaving prevents this. For creating the charging sched-
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ule, this algorithm calculates the possible maximum power available for charging dur-

ing an hour from historical data of other household usage. Then it calculates the total 

energy transferred for that period.  

The maximum charging power is restricted by charging power available from facility 

or grid (𝑃𝑔𝑟𝑖𝑑) and the rating of onboard charger, 𝑃𝑢𝑠𝑒𝑟. 

𝑃𝑚𝑎𝑥 =  𝑚𝑖𝑛(𝑃𝑔𝑟𝑖𝑑 , 𝑃𝑢𝑠𝑒𝑟)      (5.1) 

Therefore, the possible maximum charging power for EV as expressed in (5.1). That 

makes the optimum costing more challenging specially in a case when maximum 

power limit of 𝑃𝑔𝑟𝑖𝑑 or 𝑃𝑢𝑠𝑒𝑟 is less than optimum during the lowest price hours. An-

other toy example is described for peak shaping in section 4.1 for detailed explana-

tion. 

 Optimize within limited charging time: EV is going to be plugged-in at the charging 

facility for a certain time. That leads to the challenge of optimizing the charging op-

eration to be finished within given time.  

5.2 Suggested topology 

A feasible topology of the system is important for proper data handling within the system. 

Topology is referred here as the body of the charging system where the intelligence 

algorithm is implemented. For implementing the proper intelligences, algorithm needs to 

collect, process and deliver certain set of data within different parts of the system. That 

makes the right implementation of algorithm crucial. According to study of different com-

ponents of the system, the topology and information flow mechanism suggested for de-

veloped system is shown in Figure 13. 

Stakeholders that share different information in this system are electricity market actors, 

user, electric vehicle, charging station, hysterical power consumption record and facility 

power usage data monitor. Electricity market actors provide the price information for the 

electricity. Algorithm gets the hysterical power usage data from the record. User inputs 

own priorities (e.g. target SoC, time of vehicle leaving the facility etc.) through mobile 

application or input devices installed in charging station. In case user does not give any 

new input for target SOC or time of next trip, it follows the setting of most previous oper-

ation. 
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While EV is connected to charging station, it continuously exchanges the information like 

battery SoC, battery capacity etc. with charging system. Charging stations share the in-

formation about maximum allowable charging power. All the power information from dif-

ferent parts of the system is used to calculate the maximum charging power available. 

In the whole system, the charging station is the best possible position for the implemen-

tation of the algorithm. Although the vehicle onboard charger can be an alternative posi-

tion for the algorithm's implementation, continuous data handling required for calculating 

maximum power available requires extra attention. External charging station is already 

connected to the facility and connectivity solution with other stakeholders like market 

data, vehicle etc. is easier for the communication system.  

5.3 Model for optimized intelligent charging 

5.3.1 Problem description 

An EV arrives at household (charging station) at a certain time and will be leaving the 

facility after certain period. After arrival a charging schedule need to be developed con-

sidering the hourly energy price and distribution cost related to the amount of power 

drawn from network at specific time. Assumed, EV arrives the charging station and 

 

 Suggested System Topology. 
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plugged-in at 𝑡1 and leaves at 𝑡2. It needs to be charged up to desired SoC by 𝑡2. The 

total time available for charging, T=  𝑡2 − 𝑡1.The available power for charging is 𝑃𝑐 and 

battery has fixed charging efficiency as ŋ𝑐.  

5.3.2 Objective function derivation 

The actual power the battery stores is shown in (1) 

𝑃(𝑡) =  𝑃𝑐(𝑡)/ ŋ𝑐        (1) 

ŋ𝑐 is the efficiency of charger and 𝑃𝑐(𝑡) is the power delivered from facility (electric grid).  

In this thesis, the value of ŋ𝑐 is approximated to be 1. As the energy has different hourly 

price, the price per unit energy is a function of time M(t). Cost for energy consumed can 

be expressed as shown in (2). 

𝐶𝑒𝑛𝑒𝑟𝑔𝑦(𝑡) =  𝑀(𝑡)𝑃(𝑡)         (2) 

An hourly unit distribution charge that is also different for different hour of the day, D(t) 

is added to the cost related to the consumption. Distribution costs can be expressed as 

shown in (3). 

𝐶𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑡) = 𝐷(𝑡)𝑃(𝑡)        (3) 

The total costs related to every charging event starting from 𝑡1 and ending at (𝑡1 + 𝑇), 

can be expressed as shown in (4). Here, T is the total time available for charging. 

𝐶𝑡𝑜𝑡𝑎𝑙 =  ∫ {𝑀(𝑡)𝑃(𝑡)  + 𝐷(𝑡)𝑃(𝑡)} 𝑑𝑡 
(𝑡1+𝑇)

𝑡1
    (4) 

The expression shows that both the cost is dependent on the power consumed at a 

certain time. That indicates that to achieve the lowest total charging cost, the charging 

should be made during the hours with the lowest sums of the energy and distribution 

prices.   

For a convenient calculation, the total charging time is divided into very small events. N 

is the total number of events and each event period length is Δt. With that information 

equation (4) can be expressed as, 

𝐶𝑡𝑜𝑡𝑎𝑙 =  ∑ {𝑀(𝑡𝑖)  + 𝐷(𝑡𝑖)}𝑁
𝑖=1 Δt . 𝑃(𝑡𝑖)      (5) 

The time between 𝑡1 and 𝑡2 can be divided into K slots where every slot has period length 

of Δt. 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑠𝑙𝑜𝑡 is the set of total slots that have duration of Δt available for charging. 

Here, Δt is the unit time for charging. As an example, Δt can be as small as fraction of 

second or a full second. It is seen from (5) that, total cost for charging can be minimized 
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if the slots that have lowest {𝑀(𝑡)  + 𝐷(𝑡)} and belongs to 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑠𝑙𝑜𝑡, can be used for 

charging.  

5.4 Developed algorithm 

The whole process of car charging can be divided into two parts, then 'main algorithm' 

and the 'optimizing algorithm'. 

5.4.1 Main algorithm 

The main algorithm shows all the events happening between the car arriving (plugged 

in) and car leaving (plugged off) (Figure 14).  

The steps are described below, 

 Step 1. Car arrives the charging facility and gets plugged in. 

 Step 2. The algorithm collects all the data necessary from different parts of connected 

system. It collects the price information from market and finds the total hourly cost 

per unit energy for next 24 h. Current state of charge (SoC) and battery capacity data 

is taken from the vehicle. Average power consumption for 24 h is collected from the 

historical data. That does not confirm to take the real time power consumption into 

consideration while checking for available charging power, but it gives more realistic 

calculations for the charging power. User defines the end time for charging and target 

SoC at the end of charging event. The data about total power available from the 

facility is collected from charging facility (e.g. detached house charger box). Current 

time is collected from the vehicle in case it does not match the system time. Other-

wise different vehicle system time can lead to a wrong result.  

 Step 3. Define the charging slots available between the starting time and end time in 

distance of Δt, and then store the charging slot info into a data set 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑠𝑙𝑜𝑡. 

 Step 4. Analyze the possibility of charging for all the hours starting from the cheapest 

to expensive hours. Then store the possible charging hour information to the charg-

ing table. The next subchapter named ‘Optimizing algorithm’ explains this step in 

more detail. 

 Step 5. Using the optimized charging table created from step 4, EV is charged until 

the end of charging schedule.  

 Step 6. Check if the target SoC is reached. If the desired SoC has not been achieved 

yet, go back to step 4. If the target SoC is achieved, go to step 7. 



33 
 

 Step 7. Store the record and finish charging. 

 

 

 Developed algorithm. 

 

5.4.2 Optimizing algorithm 

Optimizing algorithm checks all the hours starting from cheapest electricity price (energy 

cost + distribution cost) for the possibility of energy transfer. This is the main part of 

algorithm that minimizes the costs and implements other intelligences to achieve the 

desired charging schedule.  
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The optimizing algorithm is shown in Figure 15. 

The steps of algorithm are described below, 

 Step 1. Find the cheapest available time slot (hour of the day) from price list. Set 

the first time slot as starting point of the charging event 

 Step 2. Set the next number of Δt (e.g. number of second, depends on the unit 

time Δt) as current slot, 𝑡𝑠𝑙𝑜𝑡 . 

 Step 3. Checks if the SoC is full or reached to desired SoC. If yes, go to Step 8. 

Otherwise go to step 4. 

 Step 4. Checks if  𝑡𝑠𝑙𝑜𝑡 is a member of 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑠𝑙𝑜𝑡. If yes, go to step 5. Other-

wise, go back to Step 1.  

 
 Optimizing algorithm. 
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 Step 5. Find maximum power available for charging by calculating 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟. 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟 is calculated from the Maximum power available in the facility, 𝑃𝑓𝑢𝑠𝑒 and 

power usage in other sections from the same facility, 𝑃𝑜𝑡ℎ𝑒𝑟_𝑢𝑡𝑖𝑙𝑖𝑡𝑦. 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟 =  𝑃𝑓𝑢𝑠𝑒 - 𝑃𝑜𝑡ℎ𝑒𝑟_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 

 Step 6. Calculate the parameters for charging for unit time (Δt) from, 𝑡𝑠𝑙𝑜𝑡 and 

record the data for this action. 

 Step 7. Check if the same price hour ends. If yes, go to step 1. Otherwise, go to 

step 2. 

 Step 8. End the optimization process, build total charging schedule and store the 

record. 

5.5 Constraints  

The developed algorithm comes with certain constraints. 

 Battery charging efficiency: In this thesis, it is assumed that the charging effi-

ciency, ŋ𝑐 is constant through the whole charging process, but practically, ŋ𝑐 is a 

variable dependent on temperature, current [5]  and state of health (SOH) [7]. As 

it is given that proper measures are taken to keep the temperature constant 

throughout the charging process, still the charging current and SOH changing is 

present. But the effect of changing charging current and SOH is ignored in this 

thesis. 

 Total charging time: Charging time needed for car cannot be more than 24 h 

for this model. If the car is plugged in for more than 24 h and still not charged to 

target SoC, a new charging event introduces the next day. 
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6. CASE STUDY 

The developed algorithm was analyzed through a case study by simulating EV charging 

in some detached houses of Finland. This chapter describes the simulation process in-

cluding parameters for initial settings, expectations, results and reasoning behind differ-

ent characteristics of algorithm through the simulation.  

Different detached houses are divided into four types depending on the consumption 

profile. These are the following. 

 Type-4: Detached houses that do not have electric heating.  

 Type-5: Energy efficient detached houses with electric heating.  

 Type-6: Detached houses with direct electric heating and timed domestic water 

heater.  

 Type-7: Detached houses with domestic electric storage heater.  

All the houses should pay the bill for energy consumption and a distributor tariff bill re-

lated to the amount of energy consumption. The energy and distribution cost vary during 

the day depending on the hour of use. On top of that a fixed distribution charge depend-

ing on the fuse size is added on monthly basis. The fuse rating of all the houses are 

3x25A. 

The developed algorithm was implemented in a MATLAB program for simulation with 

real time data. The simulation was run for the whole year 2018 except the last day. The 

following sub-chapter describes the initial settings and value selection for the simulation 

work. 

6.1 Setting simulation 

The initial data and settings that the algorithm needs to start the simulation are described 

below. 

Household power usage data: Load profiles for the four types for detached house cus-

tomers were taken from a study made for Finnish Energy Authority in 2018 [29][30]. 

These profiles describe average electricity consumption in Finnish detached houses. 

That means these consumption models do not model the exact energy consumption of 

a detached house. In real life, hourly power or energy consumption varies a lot depend-

ing on the size of the house, number and habits of the users and other variables. The 
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following graphs in Figure 16 show average hourly consumptions for different type de-

tached houses during 2018.  

 

 Average hourly power consumptions of different detached houses 
during 2018. 

For this study, these average consumptions are used as consumption for a single de-

tached house.  

Hourly energy price: Hourly energy prices are not very common in Finland yet. In this 

study, spot prices from Nordpool for 2018 were used as hourly prices. A value added tax 

of 24% and 0.3 cents/kW margin were added on top of the spot price. That gives more 

realistic customer end electricity prices for different hours of 2018. Figure 17 shows 

hourly price distributions in cents/kWh for different month.  
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 Customer end hourly energy prices per unit for 2018 [10].  

Hourly distribution price: Distribution price component that is dependent on the energy 

consumption have two face values. A lower price for off-peak and a higher price for peak 

hours of the day. On top of that there is a monthly fixed cost of 31.09 €.  

In this study, the fixed price component is considered during comparing monthly bill dif-

ferences only. In rest of the cases, this component is ignored. Figure 18 shows the dis-

tribution cost for different hours of the day. The same list is used for all the days of the 

year for simulation. 

 
 

 Distribution unit prices in different hours of the day 

EV arrival time: It is assumed that EV gets connected to the charging facility right after 

arriving. Although real time EV arrival time depends on the driving behavior and lifestyle 

of the user. EV arrival time is set as 17:00:00 (time in 24h format hh:mm:ss) for all the 

simulation events for this study.  

EV departure time: Assumed that EV leaves the facility at 8:00:00 (time in 24h format 

hh:mm:ss) in the morning. That gives a total available window of 15 hours to charge the 

EV to target SoC. 

Initial SoC:   For all the simulation events the initial SoC for EV is assumed as 10%. 
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Target SoC: For all the simulation events EV is expected to charge till the battery is full 

(SoC = 100%). 

EV and its battery capacity: An EV with a battery capacity of 75 kWh is chosen for this 

study. Depending on the manufacturer and model a 75 kWh EV can have different driving 

ranges. For example, one of the bestselling EV is Tesla 3. It has a 75-kWh model that 

have a driving range of 400km+ [24]. 

Rated fuse power of house: It is assumed that all the houses have the same fuse rating 

as 3x25A. The nature of protection device installed in the houses allows 80% of the fuse 

capacity to be used for total electricity usage of the house. Therefore, total power that 

can be used for total electricity usages = 0.8 x 3 x 230 x 25 W = 13800 W = 13.8 kW. 

Additionally, the house type has three-phase network connections with different number 

of loads connected to different phase. If there is no phase-wise charging current control 

is installed, the most loaded phase is a restricting factor for three-phase EV charging 

operation. 

Rated charging power for charger: As described in chapter 3.3, charger power can 

vary from 3.5-22+ kW depending on the type of charger. For this study a 10-kW charger 

is chosen. With a 75-kWh battery, this charger would require 7.5 hours to charge the 

battery from zero to full if the rated maximum power is available.  

The value of smallest unit time (𝚫𝐭): Setting the value for Δt is important for the preci-

sion of the cost optimization. For this simulation work all the calculations were made by 

setting the smallest unit time as (Δt=) 1 second.  

Peak and off-peak hours: The typical peak hours (high demand) are assumed as 7:00 

– 22:00 and rest of the hours are considered as nighttime off-peak (low demand) hours.  

6.2 Results and analysis 

The simulation over the whole year 2018 gives long list of schedules that include a huge 

amount of data regarding time, power usage, cost and state of charge. Looking from both 

user and grid point of view, the total simulation results brings different perspectives into 

observation. From customer point of view, the most important utility is optimizing price. 

From grid point of view, proper load distribution during day is the main parameter to 

assess the success of optimizing algorithm.  

In this chapter, the results are taken into discussion according to different customer type 

and season of the year. Finland is a country of four seasons with clear differences be-

tween each other. Due to a big range of change in temperature (roughly from -30 ̊ C to 
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+30  ̊C) in different seasons (Figure 16), energy usage for heating changes a lot during 

the year. The segments of simulations from different seasons of the year are analyzed 

to study the effect of optimized algorithm over EV charging process. Four different 

months, January, May, July and October are taken into brief investigation as example of 

wintertime, springtime, summertime and autumntime, respectively.   

Grid has the highest electricity demand during winter among the seasons (Figure 16). 

Winter season starts in Finland from the end of the year (November) and lasts until April. 

More demand in household means less power available for EV charging. That makes 

the charging time for EV higher. Therefore, there is less possibility for the algorithm to 

shift the charging event from peak hour to off peak hour, and that affects the total cost 

savings through using costly hours. 

None of the calculated charging costs for an individual event during this simulation in-

clude the fixed distribution cost component.  

6.2.1 Type-4 detached house 

Type-4 detached houses currently have average annual consumption of around 5 MWh. 

That consumption is distributed throughout the year. Because there is no electric heating, 

the load profile does not vary a lot during the year as shown in Figure 16 (a). Still there 

is a small decrease in consumption at the middle of the year during summertime. The 

simulation results from different seasons are presented below.  

Winter 

Analyzing the load distribution for charging with the algorithm (smart charging) and with-

out any intelligence (regular charging) shows a clear picture of load shifting. Figure 19 

shows the load distribution for individual charging events during different day types of 

the week. Simulated data from dates 1st January (a public holiday), 6-8 January (typical 

winter weekend and weekday) 2018 is taken for this chart. All the charging hour lies on 

the peak demand hours of the day after plugging the vehicle in without optimization, but 

after optimization all the power usage hours are shifted to off peak hours. 
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 Typical load profiles with and without optimization during different 
days of the week in winter. 

From the household load profile in Figure 16 (a) it is noted that the peak power is quite 

low (~1.3 kW) in contrast to the available maximum power of the house (13.8 kW). There-

fore, a charger rated 10 kW can use its maximum rated power to charge the EV. That is 

the reason behind the household load profile have no effect in the charging power profile 

for type-4 houses.   

According to the simulation results for January-April and November-December 2018, 

100% of the charging load gets shifted to the off-peak hours from peak hours during 

winter.  

Table 4 shows the monetary profit for all the events of January 2018 as an example of 

charging events happening during winter. There are some days of the month like day 19 

or 23 that have comparatively higher profit percentage. This is because of high electricity 

price hours during the peak hours that lead to high charging costs for regular method 

(without optimization). After the optimization, these loads are shifted to the low-price (off-

peak) hours, which reduces the charging cost exceptionally.  
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Day 
Cost without 
Optimization 

(Euro) 

Cost with 
Optimization 

(Euro) 
Profit (Euro) 

Profit  
Percentage % 

1 6.60 5.73 0.87 13 

2 7.28 5.88 1.40 19 

3 6.87 5.88 0.99 14 

4 7.17 5.91 1.26 18 

5 7.13 6.04 1.09 15 

6 7.12 5.88 1.24 17 

7 6.87 5.79 1.09 16 

8 7.13 5.88 1.25 17 

9 7.33 6.01 1.32 18 

10 8.04 6.20 1.85 23 

11 8.06 6.13 1.93 24 

12 7.48 6.09 1.39 19 

13 7.21 6.01 1.20 17 

14 7.00 5.79 1.21 17 

15 7.10 5.50 1.60 23 

16 7.35 5.98 1.37 19 

17 7.82 6.06 1.76 22 

18 7.89 6.17 1.73 22 

19 9.69 6.14 3.55 37 

20 7.57 6.14 1.43 19 

21 7.64 6.12 1.51 20 

22 8.65 6.34 2.31 27 

23 10.05 5.86 4.19 42 

24 7.28 5.22 2.06 28 

25 7.48 6.08 1.40 19 

26 8.04 6.17 1.87 23 

27 7.17 5.93 1.25 17 

28 6.76 5.93 0.84 12 

29 7.34 5.97 1.37 19 

30 7.66 6.08 1.58 21 

31 7.33 5.88 1.44 20 

 

The average cost profit for the charging events during January-April 2018 is 17.81% for 

type-4 detached houses. This charging cost optimization is reflected to the monthly bill 

for the house. 

Assuming the average load profile as actual load during the month, total monthly elec-

tricity bill (January 2018) for optimized and regular charging is compared in Figure 20. 

The bill (Figure 20 b) includes all the cost components for energy and distribution related 

to total energy consumption and the fixed distribution monthly cost. Looking from user’s 

Table 4. Profit by optimizing algorithm in January 2018 (winter season) for Type-4 detached 
houses. 
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point of view, Figure 20 (a) gives a good example of intelligent algorithm influencing the 

monthly bill during winter for type-4 detached houses.  

 
 Monthly bill comparison before and after charge optimization. 

 
Spring 

During the spring, the average household consumption is like the winter for type-4 

houses as the heating is not included into the electricity consumption, but there is a very 

abrupt change in energy hourly price during May (Figure 22). Figure 21 shows the opti-

mization effect on charging load distribution on a public holiday, a typical weekday and 

weekends respectively during spring. 

 
 Optimization effect on charging load distribution during spring for 

type-4 detached houses. 
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During May, 100% of the peak loads are shifted to off-peak hours with intelligent charging 

for type-4 detached houses. All the charging loads are shifted to off-peak hour after op-

timization in most of the cases, but some of the load may remain in peak hour region in 

some cases. As the total load during the off-peak hours is not high enough to influence 

changing the peak charging power, the reason behind this is different. The hourly price 

during the charging event of one of the weekend days (12th may) is shown in the Figure 

22. It shows that there are some cheaper hours during the peak hours (hour 15 and 16) 

that are cheaper than some of the off-peak hours. 

 
 Hourly sum of total distribution and energy price/kWh for 12th may  

That causes the algorithm choosing these peak hours before those off-peak hours for 

charging. Therefore, some of the charging loads may remain in the peak demand hours 

of the day in cases vehicle arrive before 15:00 h.  

Figure 23 shows the daily charging cost comparison for week 19.   

 
 

 Cost comparison of regular and intelligent charging during spring 
for type-4 detached houses. 

The effect of charging optimization is not very regular for different events during the 

week. Abrupt high-energy price hours cause this. The average cost profit for charging 
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events during this month is 23.21%, but the values are distributed almost evenly between 

a wide range where the smallest value is 15.24% and the highest is 53.75%.  

Total monthly cost saving over bill is 17% for May 2018 (Figure 23 b) after optimization.  

Summer 

Summer starts in June and the warm weather lasts until mid-September in Finland. Sim-

ulation data taken from starting of June until end of August are studied as summertime 

simulation. For type-4 detached houses 100% charging load gets shifted to the off-peak 

hours during June-August. Figure 24 shows the comparison between regular charging 

and intelligent charging load distribution for typical summer weekday and weekend. 

 
 Load distribution for EV charging of typical days of June-July 2018 

for type-4 detached houses. 

The data plotted were taken from June 30th, 2018 and July 1-2, 2018 respectively. Like 

the previous result from winter, all the loads are shifted from peak-hour to off-peak hour. 

In this case, the load profile peaks are lower than that of winter load profiles. Therefore, 

like wintertime the household loads do not have any effect on available EV charging 

power or charging time.    

Looking from customers point of view, simulated charging cost comparison over a week 

of July 2018 (Figure 25 a) gives better idea about cost profit for every charging event. 

The charging cost have an average profit margin of 17.36% over the regular charging 

during June-August. 

In terms of monthly bill comparison (Figure 25 b), monthly profit is 11%. This is less than 

the profit of a wintertime month, January. The reason behind this is the comparative 

lower costs during peak hours in summer. 
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 Weekly and monthly cost and profit comparison of July 2018 for 

type-4 houses. 

Autumn 
 

Autumn is very short period in Finland. Simulation for October is considered while stud-

ying the optimized results for autumn. 100% of the charging loads are shifted to the off-

peak hours after optimization during October for type-4 detached houses. Figure 26 

shows some typical day’s load distribution effect of optimizing algorithm during autumn 

2018.  

 
 Load distribution for EV charging of typical days of autumn 2018 

for type-4 detached houses. 

 

Figure 27 (a) shows the cost comparison for different charging events during week 41. 

The average cost profit after optimization for all the charging events happening during 

October is 19.50%. The effect of optimized charging in monthly bill of October is 15%.  
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 Cost comparison after optimization during autumn for type-4 

houses. 

The overall summary for the whole year 2018 for type-4 detached houses is as follows, 

 100% of the charging load gets shifted to off-peak hour zone during the whole 

year. 

 Average costs for one optimized charging event is 6.86 € (not including the 

fixed distribution price component) and average profit is 1.49 € per event com-

pared to regular charging. 

6.2.2 Type-5 detached house 

Type-5 detached houses have average yearly consumption of around 10 MWh with the 

fuse rating of 3x25 A. This type of houses includes electric heating into the electricity 

consumption. Therefore, the average daily power usage varies during the different sea-

sons of the year. Optimized simulation results found from different seasons of the year 

is presented according to different seasons in this chapter. 

Winter  

Figure 28 shows the load distribution for individual charging events during different day 

types of the week. Simulated data (for type-5 houses) from dates 1st January (a public 

holiday), 6-8 January (typical winter weekend and weekday) 2018 is taken for this chart. 

From the household load profile in Figure 16 (b) it is noted that the peak power is low 

(~2.5kW) compared to the available maximum power of the house (13.8kW). Therefore, 

a charger rated 10kW can use its maximum rated power to charge the EV even during 

the maximum household usage. Hence, the household load profile has no effect in the 

charging power distribution profile here.   

As shown in the graph (Figure 28) all the electrical loads are shifted to the off-peak hours 

of the day after charging optimization.  
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 Load distribution for EV charging of typical days of winter 2018 for 

type-5 detached houses. 

The simulation result for months January-April and November-December 2018 shows 

that 100% of the load is shifted to the off-peak hours for type-5 customers. 

The average cost profit for the charging events during January-April 2018 is 17.81% for 

type-5 detached houses. Figure 29 (a) shows some typical charging event cost compar-

ison over a week during this time. This data is taken from week 1 simulations.   

 
 Cost comparison after optimization during winter for type-5 houses 

The effect of optimization in average monthly bill is shown in Figure 29 (b and c). This 

bill is calculated for January including the average load profiles as the actual load data.  
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Spring  

During the spring, the average electricity consumption reduces from the past days in 

winter for type-5 houses. Therefore, the load profile of the house does not have any 

effect on charging power of EV like in wintertime as shown in Figure 30.  

 
 Load distribution for EV charging of typical days of spring 2018 for 

type-5 detached houses. 

This data is taken for the same days of type-5 houses simulation as used for type-4 

houses simulation (Figure 21). During May, about 100% of the peak loads are shifted to 

off-peak hours with intelligent charging. 

Figure 31 (a) shows the cost differences of regular and intelligent charging during differ-

ent days of the week. These values are taken from week 19 data for type-5 houses.  

 
 Cost comparison after optimization during spring for type-5 houses 
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The average charging cost profit for all the charging events happening in May for type-5 

houses is 23.21%, but this value varies from the minimum value of 15.24% to maximum 

53.75%.  

Summer 

Summertime has the lowest average power usages for the household among the sea-

sons (Figure 16 b). Therefore, there is maximum power available for EV charging during 

the peak hours for house are higher than the past two seasons. Figure 32 shows the 

data from some typical weekend days and a weekday respectively from July 2018. 

 
 Load distribution for EV charging of typical days of summer 2018 

for type-5 detached houses. 

For type-5 detached houses 100% charging loads get shifted to the off-peak hours during 

June-August.  

The charging costs have an average profit margin of 17.36% over the regular charging 

during June-August. The effect of this optimization in monthly bill is shown (for July) in 

Figure 33 (b and c).  

 
 Cost comparison after optimization during summer for type-5 

houses  
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Autumn 

During the autumn, the average household consumption starts to rise with colder days 

approaching, but it does not go over the average wintertime daily consumptions for type-

5 detached houses.  

Figure 34 shows the load shifting after optimization for typical weekend and weekdays 

of autumn. 100% of the charging loads are shifted to the off-peak hours after optimization 

during October.  

 
 Load distribution for EV charging of typical days of autumn 2018 

for type-5 detached houses. 

Figure 35 (a) shows the cost comparison for different charging events during week 41. 

The average cost profit after optimization for all the charging events happening during 

October is 19.5% for type-5 houses. 

 
 Cost comparison after optimization during autumn for type-5 

houses 
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The overall summary for the whole year simulation for type-5 detached houses is as 

follows, 

 100% charging load gets shifted to off-peak hour zone during the whole year. 

 Average cost for one optimized charging event is 6.86 € (not including the fixed 

distribution price component) and average profit is 1.49 € per event compared 

to regular charging. 

6.2.3 Type-6 detached house 

Type-6 detached houses have direct electric heating and timed domestic water heater. 

Yearly average energy consumption for this type of house is around 16 MWh/year. These 

house types have fuse rating of 3x25 A. Optimized data found from different seasons of 

the year for type-6 detached houses are presented according to different seasons below. 

Winter 

Analyzing the load distribution for charging with the algorithm and without any intelli-

gence shows a clear picture of load shifting. Figure 36 shows the load distribution for 

individual charging events during different day types of the week. Simulated data from 

dates 1st January (a public holiday), 6-8 January (typical winter weekend and weekday) 

2018 is taken for this graph. All the charging hours remain on the peak demand hours of 

the day after plugging the vehicle in without optimization. After the optimization all the 

power usage hours are allocated to off peak hours. 

 
 Load distribution for EV charging of typical days of winter 2018 for 

type-6 detached houses. 

The simulation for January-April and November-December 2018 shows that 100% of the 

load is shifted to off peak hours after the optimization for type-6 detached houses.  
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Average cost profit for charging events happening during January-April 2018 is 17.81% 

for type-6 detached houses. Figure 37 (a) shows the comparison for some typical days 

from week 1.  

 
 Cost comparison after optimization during winter for type-6 houses 

The effect of cost optimization in monthly bill is shown in Figure 37 (b and c). The cost 

profit is 10% compared to the regular charging. This bill is calculated for January includ-

ing the average load profiles as the actual load data.  

Spring 

During the spring, the average electricity consumption reduces from the past days in 

winter for type-6 houses. Therefore, the load profile of the house does not have big visi-

ble effect on charging power of EV like in wintertime as shown in Figure 38. 

 
 Load distribution for EV charging of typical days of spring (May) 

2018 for type-6 detached houses. 
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Simulation results show that about 100% charging load gets shifted to off-peak hours 

after optimization during May 2018 for type-6 detached houses.  

The cost optimizations are not very regular during different days of the week 19 (Figure 

39 a). The average charging cost profit for all the charging events happening in May for 

type-6 houses is 23.21%. The effect of optimization in monthly bill is shown in Figure 39 

(b and c). 

 
 Cost comparison after optimization during spring for type-6 houses 

Summer 

Summertime has the lowest average power usages for the household uses compared to 

the other seasons (middle part of the graph Figure 16 c). Therefore, there is maximum 

power available for EV charging during the peak hours that are higher than in the past 

two seasons. Some typical days load shifting is shown in Figure 40 from June-July. 

 
 Load distribution for EV charging of typical days of summer 2018 

for type-6 detached houses. 
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June-August 2018 simulation data shows that 100% charging load is shifted to off-peak 

hours.  

Average cost profit for charging events during June-August 2018 is 17.36%. Some typi-

cal charging events comparison is shown in Figure 41 (a). The monthly bill has 10% profit 

compared to the month using regular charging. 

 
 Cost comparison after optimization during summer for type-6 

houses 

Autumn 

During the autumn, the average household consumption starts to rise with colder days 

approaching, but it does not go over the average wintertime daily consumptions for type-

6 detached houses (Figure 16 c). Figure 42 shows the load shifting after optimization for 

typical weekend and weekdays of autumn. 

 
 Load distribution for EV charging of typical days of autumn 2018 

for type-6 detached houses. 
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During October, 100% of the charging load is shifted to the off-peak hours after optimi-

zation.  

Figure 43 (a) shows the cost comparison for different charging events during week 41. 

The average cost profit after optimization for all the charging events happening during 

October is 19.5% for type-6 houses. 

 
 Cost comparison after optimization during autumn for type-6 

houses 

The overall data for the whole year for type-6 detached houses is as follows, 

 100% of the charging load gets shifted to off-peak hour zone during the whole 

year. 

 Average cost for one optimized charging event is 6.86 € (not including the fixed 

distribution price component) and average profit is 1.49 € per event compared 

to regular charging. 

6.2.4 Type-7 detached house 

Type-7 detached houses have the highest consumption among all the four house types. 

Assuming the average load profile as actual average hourly load, simulation was done 

for all the days of 2018. In this process, all the other starting parameters remain same 

as other house type simulations. This house type has a yearly average consumption of 

around 16MWh. The installed fuse rating for this house type is like other house types, 

3x25A. 

Winter  

Load profiles in winter days have a significant effect on optimized results for type-7 de-

tached houses. Figure 44 shows some typical days load distribution comparison for a 

single charging event in January 2018. That includes a typical public holiday, weekend 

and a weekday into study.  
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 EV Charging load of some typical days of winter 2018 for type-7 

detached houses 

The first pair of graphs are taken for a public holiday (1st January, new year holiday). 

Depending on the starting time, most of the charging events takes place during the peak 

hour for regular charging. After optimization, all the charging events are shifted to the off-

peak hours, but during the off-peak hours the charger does not get enough charging 

power to charge the EV with maximum power. It happens because the household electric 

load during those hours are high. Therefore, the algorithm uses all the available power 

slots from off-peak hours first. Then one of the lowest price hours from typical peak hours 

is used to charge the remaining energy needed for the EV battery. This event is an ex-

ample of all the charging events when maximum power available during off-peak hour 

are not enough to charge the battery to full.  

For the remaining typical weekday and weekends all the charging power is shifted to the 

off-peak hour, but there are some hours when the charging power is less than maximum 

because of the unavailability of maximum power after the general usage of house.  

The simulation results show that, total 99.46% of the charging load is shifted to off peak 

hours during January-April and November-December for type-7 detached houses.   

The daily charging cost comparison for a segment (one week) of wintertime is presented 

in the Figure 45 a as an example. The values are taken for the first week of January (1st 

– 7th January 2018). 
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 Weekly and monthly cost and profit comparison of January 2018 

for type-7 houses. 

All the charging events are cheaper with the intelligent charging. This week contains a 

public holiday (new year day). The nature of the day (holiday or weekend) does not have 

much effect on the results. The optimized charging cost is almost similar for all the days 

of the week. The average charging cost profit for charging events happening during Jan-

uary-April is 17.10%.  Figure 45 (b and c) shows the effect of regular and intelligent 

charging over the monthly bill. It is calculated considering the average hourly load profile 

as the actual load during the month. The monthly profit shown in total bill is 9%. 

Spring  

During the spring, (end of April - May) household power consumption goes lower than 

winter as the heating load reduces (Figure 16 d). The charging power distribution for 

regular and intelligent charging for a holiday and typical weekdays are shown in Figure 

46. Here, in most of the cases there are some power remaining in the peak hour region 

for smart charging. The load profile during spring has lower spikes than in wintertime. 

Additionally, during May 2018, there are some hours during off-peak hour region that 

have a higher cost than some of the peak-hours during daytime as explained in Figure 

22. That leads the algorithm to choose those low-price hours from peak-hour region over 

the off-peak higher price hours for charging in some cases. That causes some aberrance 

to load shifting to typical off-peak hours. 100% of the charging loads are shifted to off-

peak hour during May for type-7 detached houses.  
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 EV Charging load distribution for some typical days of spring 2018 

for type-7 detached houses 

The charging cost comparison graph over a week (Figure 47 a) of use shows that there 

are significant differences in charging cost optimization during the week. The data is 

taken for week 19 (7-13 May 2018). The difference in cost profit ratio is irregular in this 

period because of the irregular hikes in energy prices during May 2018. Average cost 

profit for the events in May is 22.91%. The monthly profit visible in total bills is 14% 

(Figure 47 b).  

 
 Weekly and monthly cost and profit comparison of May 2018 for 

type-7 houses 

Summer  

The simulation results starting from June changes because of the load profile as it be-

comes warmer than past months.  Figure 48 shows one weekend and a typical weekday 

of summer, respectively. The storage heater load gets to its minimum of the year during 

the summer. Therefore, the available charging power during off-peak hours gets higher 

than the past cold months. As a result, the charging power load portion that is shifted to 

the off-peak region increases during summer.  
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 EV Charging load distribution for some typical days of summer 

2018 for type-7 detached houses 

Total 100% of the charging load is shifted from peak to off-peak hours during June-Au-

gust. 

Daily charging costs over different days of the week during summer looks steady from 

Figure 49 (a). The data were taken for week 28 (9-15 July 2018). The price curve looks 

steady during the month July 2018 (Figure 17). As a result, there is a comparatively 

smaller number of unusual high or low prices during the peak and off-peak hours. That 

explains the steady cost optimization in Figure 49 (a). The monthly profit visible in 

monthly bill is 10% for the month July (Figure 49 b). It is less than the spring, because of 

the lower volatility of the prices than in  May (Figure 17). The average charging cost profit 

per event during June-August is 17.28%. 

The effect of optimized charging shown in Figure 49 (b and c) for the month July 2018. 

 
 Weekly and monthly cost and profit comparison of July 2018 for 

type-7 houses 
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Autumn  

Colder days approaching in autumn results an increase in electricity consumption for the 

household. A typical autumn week of October data shows that, intelligent charging shifts 

most of the peak-hour charging loads to the off-peak hour region (Figure 50). The data 

were taken for an autumn weekend and a weekday respectively. Total 99.81% of the 

load is shifted to off peak hours during October for type-7 detached houses.  

 
  EV Charging load distribution for some typical days of autumn 

2018 for type-7 detached houses 

Figure 51 (a) shows cost comparison between different days of week 41. The example 

shows that the optimized cost is lowest during weekends. The average cost profit for 

charging events happening in October is 19.11% for type-7 customers. The effect of 

optimization over the monthly bill is shown in Figure 51 (b and c). The data is taken for 

the month October. 

 
 Weekly and monthly cost and profit comparison of October 2018 

for type-7 houses 
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The overall data for the whole year for type-7 detached houses is as follows, 

 99.71% of the charging load gets shifted to off-peak hour zone during the whole 

year. 

 Average cost for one optimized charging event is 6.88 € (not including the fixed 

distribution price component) and average profit is 1.44 € per event compared to 

regular charging. 

Table 5 shows the summary of simulation results for 10 kW charger. 

 

House 

type 

Winter Spring Summer Autumn 

Load 
shifting 

cost sav-
ing per 
event 

load 
shifting 

cost sav-
ing per 
event 

load 
shifting 

cost sav-
ing per 
event 

load 
shifting 

cost sav-
ing per 
event 

Type-4 100% 18% 100% 23% 100% 17% 100% 19.5% 

Type-5 100% 18% 100% 23% 100% 17% 100% 19.5% 

Type-6 100% 18% 100% 23% 100% 17% 100% 19.5% 

Type-7 99.71% 17% 100% 22% 100% 17% 99.81% 19% 

 

In addition to the simulation presented so far, another simulation was conducted to vali-

date the results. The second simulation was done with different charger rating of 7.5 kW. 

Rest of the simulation settings remained unchanged. Similar kind of results were found 

from this study. The summary of this study is shown in Table 6. 

 

House 

type 

Winter Spring Summer Autumn 

Load 
shifting 

cost sav-
ing per 
event 

load 
shifting 

cost sav-
ing per 
event 

load 
shifting 

cost sav-
ing per 
event 

load 
shifting 

cost sav-
ing per 
event 

Type-4 99.29% 13% 97.10% 15% 99.97% 12% 98.18% 13% 

Type-5 99.29% 13% 97.10% 15% 99.97% 12% 98.18% 13% 

Type-6 99.29% 13% 97.10% 15% 99.97% 12% 98.18% 13% 

Type-7 91.44%  12% 96.89%  15% 99.97%  12% 96.61%  13% 

The summery table for 7.5kW charger validates the similar results found for 10kW 

charger. 

  

Table 5. Simulation results summary for 10 kW charger. 

Table 6. Simulation results for 7.5 kW charger. 
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6.3 Limitations 

The simulation was analyzed assuming that it was done with the actual data from real 

life. Some limitations of the simulation work are stated below. 

 Load profile data: The average hourly load profile data used for different type of 

house types are the average electricity consumption in Finnish detached houses. 

Meaning that these profiles do not model the consumption of an individual houses 

as such. The size of the house, the number of occupants, and other variables 

that influence on the yearly energy consumption vary a lot in real life. In real life, 

the hourly energies vary a lot. In the used load profile list, the variability of the 

hourly energies is assumed to be normally distributed and standard deviation for 

each hour is given. 

 EV arrival time and departure time: EV arrival time and departure time of the 

vehicle from facility is more random than regular in real life. Though if users would 

leave at the same time for work during weekdays, the assumption of this thesis 

would be closer to reality, but during weekend and holidays the available charging 

hours are more dependent on the lifestyle of the user. 

 Initial SoC: The initial SoC can be different for EV batteries as the charging mode 

and driving habits are different depending on the user. 
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7. CONCLUSIONS 

The challenges coming with electrification of transportation are significant. The existing 

electric generation and distribution system is very unlikely to change overnight, but with 

the emerging congestion of electrical power caused by charging of the newly introduced 

electric vehicles, a smart solution is inevitable. The solution might include the adaptation 

of certain behavioral changes for users. Therefore, creating enough value for the solution 

to user end is equally important. In this chapter the summary of the thesis is discussed, 

key findings from the simulation work is pointed out and future research possibilities of 

the topic is discussed. 

Different intelligences applied to electric vehicle charging algorithm was researched in 

this thesis and a smart charging algorithm was developed including multiple intelli-

gences.  

The algorithm calculates the total energy and distribution unit cost for all the hours. Then 

it creates a charging schedule by selecting the lowest possible price timeslots for charg-

ing available within certain time, before the vehicles leaves. During this process, it cal-

culates the available power for charging after the other domestic electricity usage of the 

facility (house). The hourly energy and distribution prices are set in a way that higher 

demand or low supply hours have higher price and lower price hours are usually the off-

peak hours. By allocating charging power usage towards the low-price hours means that 

the algorithm takes part in demand response (DR). The developed algorithm is imple-

mented in MATLAB.  

For studying the effect of this algorithm implementation, a case study was investigated 

by simulating four different type of Finnish detached houses having electric vehicles in 

use. The houses have load profile of different ranges. These are labeled as Type-4, 

Type-5, Type-6 and Type-7 house. Type-4 have the lowest consumption of all house 

types and type-7 have the highest. An EV having 75 kWh battery with a charger rated 

10kW for all types of detached houses was modeled producing large amount of result 

data.  

After analyzing all the charging schedules found from the simulation events for EV charg-

ing the summary is listed in Table 7. 
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Battery capacity 75 kWh 

Charger rating 10 kW 

Type of house type-4 type-5 type-6 type-7 

Load shifted from peak hours 

to off-peak hours (whole year) 100% 100% 100% 99.71% 

Cost saved per event 17.81% 17.81% 17.81% 17.43% 

Charger rating 7.5 kW 

Type of house type-4 type-5 type-6 type-7 

Load shifted from peak hours 

to off-peak hours (whole year) 99.14% 99.14% 99.14% 95.11% 

Cost saved per event 12.81% 12.81% 12.81% 12.13% 

 

The investigation of the whole year data suggests that the load shifting is quite successful 

for all the house types for different charger rating scenarios. For 10 kW charger more 

than 99% of the loads are shifted to off-peak hour for all the house types in general. 

Type-7 houses have a bit lower success rate because of unavailability of enough charg-

ing power during the low-price hours. Related to that, the cost saving scenario is kind of 

similar for type-4, type-5 and type-6 houses. Type-7 house cost savings are slightly low 

because of using more power during the high price hours.  

The seasonal analysis of load distribution shows that type-4, type-5 and type-6 detached 

houses have similar effect of the optimizing algorithm. The optimized charging load dis-

tribution and cost saving percentages are similar for these three house types during dif-

ferent seasons, but for type-7, the numbers are a bit lower.  

From the seasonal results, it is seen that the typical load shifting is different in cases 

when hourly prices do not follow the regular peak/off-peak hour pattern. Typical load 

shifting is referred here as the electrical load shifting from hours 7:00-22:00 to nighttime 

(22:00-7:00 h). This irregularity does not affect the monetary profit for customer achieved 

by algorithm, but it changes the expected load profile for the charging load. 

The study of simulation segment from different seasons of the year shows that during 

the spring the algorithm has highest proportional cost saving for intelligent charging over 

regular charging method. After winter, the average cost benefit increases during spring 

to highest. Then it decreases as the summer approaches. After the hot days of summer 

end, the cost benefit increases again in autumn.  

Table 7. Summary of simulation results. 
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The aim of this thesis was to study possibilities of different intelligences related to EV 

charging and research them to be used in a smart charging system that establishes a 

good cooperation between the EV and electricity market. The rapid integration of EVs to 

the grid demands smart behavior from EVs as a load. New possibilities like vehicle-to-

grid (V2G) integration makes the smart interaction between the grid and vehicle more 

important. V2G is a technology where EV can be used as an electrical energy storage. 

EV owners can buy the electricity from the grid and sell it back to the grid incentivized by 

different types of earning models. This thesis is an addition to establishment of the smart 

infrastructure related research that could help enabling “market based V2G technology” 

in the future.   
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