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I INDEFINITE INTEGRAL
1.1 Indefinite Integrals

Definition A function F(x) is called an antiderivative of f(x) on an interval I if
F'(x)= f(x) forall x in I .

For instance, let f(x)=x". If F(x)=1/3-x", then F'(x)=x" = f(x). But the
function G(x)=1/3-x’ +  also satisfies G'(x) = x”. Therefore, both F(X)"and G(x)

are antiderivatives of f(x). Indeed, any function of the form H(x)=1/3-% +C,
where C is a constant, is an antiderivative of f(x).
Theorem 1f F(x) is an antiderivative of f(x) on an interval /, then the most
general antiderivative of f(x) on I 1s F'(x)+ C, where C is ansarbittary constant.
Definition The set of antiderivatives of f(x) on,an“interval / is called an

indefinite integral and is denoted by I f(x)dx = F(x)+.C4C =const .

Finding an indefinite integral of a function is called integrating a given function.
This operation is the inverse of differentiation.«So Wwe. can regard an indefinite integral
as representing an entire family of functions (one,antiderivative for each value of the
constant C).

Basic integration rules
| d(j f(x)dx): F(x)dx or( j f(x)dx), ey
2. [aFre)=F)+cC.

3. (e ronax=c j @

4. ()t g(Nt=F(x)£G(x)+C.

5. If J- f(x)dx=FE(x)+C and u = ¢(x) is a differentiable function, then

j f(u)du = F(u)+C.

~

6 _[f(ax L b)dx =2 F(ax+b)+C.
a

Every differentiation formula, when read from right to left, gives rise to an
antidifferentiation formula. We therefore determine the Table of Indefinite Integrals.

Any formula can be verified by differentiating the function on the right side and
obtaining the integrand.



Table of Indefinite Integrals

. n+l .dx

I |x'dx=——+C,n=-1 2. | ==2Jx+C
. n+1 . \/;

3. .axdx: a +C 4. edc=e"+C
J Ina *

5. cosxdx=sinx+C 6. sinxdx =—cosx +C

7. —=tgx+C 8. ——=—cigx+C
J cos” x Jsin” x

9. [“-mld+c 10, [=2 =19, ¢
J x Jx —a 2a Yx+a

" * dx :larctg£+c 12. dx :arcsin£+C

2 2 2 2

Jx +a” a a JJaF < x a

13. Lzln‘x—k\/xz—az +C | 14. Lzln‘x+\/x2+a2 +C
JxT—a? Jx*+a’

15. chx dx=shx+C 16. shx.dx=chx+C

17. |=-=thx+C 18N E — cthx+ €, x %0
Jch™x Jsh'x

Note 1 All integral formulas of the table of integrals remain valid if we substitute
some differentiable function go(x) for the variable x in them.

The Simplest Methods of Integration
The simplest integration'methods include finding indefinite integrals using the
basic integration rules andia table of integrals, integrating by introducing a derivative

under the sign of differential.

All integral formulas remain valid, if we substitute the variable x a certain

differentiated function from x in them. The case of reducing the integral to tabular

integral in question semetimes it sufficient to represent dx with one of the following

formulas:
1. dx=d(x+a)
Example 1 Find
a) I(4x3 — 23/372 +% + l)dx

dx
]
) sin” 6x

Solution

2. dx =ld(ax)
a

b) J‘ dx
V16x* +9

3. dx:ld(ax+b).
a

LS dx
(2x-1)

e) Iﬁ /) I(4x3+1)cos(x4+x)dx



a) J‘(4x3 - 23/)72 + % + 1] dx = (we will use the table of indefinite integrals)=

b)

¢)

d)

e)
b

4 é -2
_4. j S — 2_[ 3dx+2j 3dx+_[dx:=4 . %x 2.5 i xiC=

=x" ——x ——+x+C

dx _ dx :1 d(4x) ll 4 16 C
s T

dy= J' Q-1 dv=> _[ Qx-1)"d(2x—1)=

.[(2 ~1)°

=—(2x—1)74 +C=—;4+
-8 8(2x—-1)
. , aix =1J. a.’(?x) = —lctg6x+ C.
Jsin“6x 6Jsin”6x 6
( dx [ d(x+1]) 1

— = arct —+C
X42x+3 Jx+D)?+2 2 g\/—

.(4x3 +1)cos(x4 +x)dx :J-cos(x4 +x)d(x +x)= sin(x4 +x)+ C

In the following examples the method of introduction of derivative under the sign

of differential will be used. It is based on the use of the formula ¢'(x)dx = d(g4(x)),
from which, in particular, it follows/that

L, .,y 1 2 . 2 7. 1/ 5y . 1 3\.
xdx:g(x )dx=§d(x ), xdx—g(x)dx—gd(x),
@ =(Inx)'dx=d(Inx); cos xdx = (sinx)'dx = d(sinx) ;

X

sin xdx = —(cosx)'dx=—d(cosx); erdx = (ex )' dx = d(ex) :

dx b
dx 2 (o) = d(1gx) R —(ctgx)'dx = —d(ctgx)
cos’ X _
& (arctgx)'dx = d(arctg).

I+ x

Example 2 Find
dx X — arctgx
a)jx Y4+ dx b)j c)j d J‘—dx
(x + 1) ln(x + 1) arcsin xv'1— x> ) 1+ x?

Solution

a)

8

sz 4+x3dx=%j(4+x3);(4+x3)’ dx =§j(4+x3); d(4+x)=



b)

d)

)

3

=§(4+x3)2 +C=2\/(4+x3)3 +C.

. dx (ln(x +1))'dx J‘ d(In(x+1)) —In|In(x+1)|+C
J(x+1)In(x+ 1) In(x+1) In(x +1) '
( dx _ [ (arcsinx)'dx J‘ d(arcsinx) In | arcsin x| +C
J arcsin 1 — x* arcsin x arcsin x '
X— arcztgx = xdx2 B arctgx J‘d (x* + ) arctgxd(drctgx) =
J 1+x 1+x 1+x° 2
1 1
=—In(x*+1)——arctg’x+C.
(37 +1) - aretg
Exercise Set 1.1
In exercises 1 to 12 evaluate the integral.
* dx * dx  ndx
JJxr=5 Jx*-9 ¢ V3 3x7
[ dx [_dx Nx+15dx
R xz +5 Jx+5 *
F 1 d f dx f dx
J2x+3 J3x*+7 JJa4 2
* dx f dx (3272 3xdx
o 8 — xz . o Sx — 2 . o 5)C

In exercises 13 to 24 evaluate the.integral.

21.

23.

(SX7 - 33/)73 + %) dx
X

*  CcOoS2x

dx

cos® x-sin’x

.(2sin(l — 6x)+ Se’*° )dx

¥ 6
m—5(3x+7)7jdx
(. 5 10 4x°
24/ x —F+—,x—3]dx

14.

16.

18.

20.

22.

24.

[((1-2x) +27¢")ax

(V1) (=5 1)

WP - 52

8\/2;]6136
X

3 B 21 -
Jsxt+4 3xT-4
3sinx—2% -3 + 32

9+x

Jas
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In exercises 25 to 38 evaluate the integral.

25. \sinx -cosxdx 26. 2x\x* +8dx
Xt ‘(arct x)2
27. dx 28. \arcigx) 4.
JNA+ X Jo1+x’
29. |e'sine’dx 30. ™ ¥ sin 2xdx
. .3x_1
3] —Vl+1nxdx 32. ——dx
o X J X +9
33 (=270 % 3. [P la
Jx —3x+8 Jx-2
* X -
35. dx (1+x)
J x+9 36 ] x2 +1 dx
4 o
* X xdx
37. dx 38.
J1—x J J1+x*
Individual Tasks 1.1
1-10. Evaluate the integral.
1L
7 de 7 2dx
Jx +7 Jx =10
2. 3 - 21 dx 2. 2 - 21 dx
J \/2x2+4 3x"+4 J \/4—x2 3x7+1
3. |(2sin(1—6x) + 4> ) 3. |(2sin(1-8x)+6e* )dx
4. 2x dx 4. 4x_3dx
Jx-3 J x-2
5 # 5 #
Jx +4x+13 Jx"—-2x+10
+ 2x=1 * 2x+5
————dx ——dx
6. Jx*=3x+4 6. Jx*—2x-8
* X+3 d * xdx
%W L2 4 7o ) oxt 43
*2x —Sarctg’x ( arcig’4x
8 T dx 8. ;
o) 1+x o 1+16x
[ . dx [ .3 dx
Jarcsin 2x —_ 9 arcsin 2X'—
9. 2 o — A2
R 1—4x 1-4x
o x2 (* ex
dx
10 )7 7% 10. ) 3¢




1.2 Replacement of Variable in the Indefinite Integral
The method of integration by the replacement of a variable is based on the use of

the formula
[ reode= [ goene = [ gwyar.
Note 1 The above considered operation of introducing the derivative ¢'(x) under

the sign of the differential in the integral j g(@(x))@'(x)dx is equivalent to replacing

the variable p(x)=t.

Example 1 Find
1 3 2
jxvx—ldx I(1+sinx)3 cOS X dx .[ 7 S
Solution

a) jx\/x—ldx= 2‘[(# +1)t’ dt:2j(t4+t2)dt = 2It4dt+ ZJ'tzdt =%t5 +§t3 +C=

=%t3(3t2 +5)+C:%\/(x—1)3 (Bx+2)+C,
where x —1=¢*; dx=d(t* +1)=2tdt .

4 4

1 1
b) _[(1+sinx)3 cos xdx = _[ﬁdt :%ﬁ ‘C =%(1+sinx)3 ‘C,

where ¢ =1+ sin x.

J\/ﬁ+2

Cx+1=rt, de=d4cdd
x=t"-1.

t:2 4](1‘ +2t)dt—§t w4t +C——(x+1)4+4\/x+ +C.

Consider the usage ofithe replacement of a variable when some functions
containing a square trinomial must be integrated. To find the integrals of the

Ax+ B Ax+ B : L .
form J‘ J- dx the square trinomial in the denominator of
ax’ +bx t ¢ Nax® +bx+c

the integrand can be written in the following form:

, s, b P b bY ¥
ax"tbx+c=a| X" +2x—+—~ |+tc——=a| x+— | tc——.
2a  4a 4a 2a

Then the replacement of the variable x + 2i =t,x=t— 2£, dx =dt can be made.
a a
Example 2 Find

)J‘ xdx b) J‘ 3x—1 I
u o=
2x* +2x+5 Vxt —4x+8

Solution

11



xdx 1 xdx 1 xdx
Y .[22+2 15 2 525-[ : -
X X x2+x+5 (x_l_l) +2
2
x+l—t x—t—l 1 t_l
e ! :—j. 2 .
2J , 9
dx =dt t +Z

We divide the obtained integral by the algebraic sum of two integrals. The first
integral is found by introducing a derivative under the sign of the differential, and the
second integral is a tabular one.

1 9

_1 d| i +>

1p!Tp Mg 1 od 1 ( +4j di

_.[—dt: j B .[ _I o~
2

2 9" ") 4 , 9

£+ A 9 4 £+ Bt =
4 T4 T4 4 4

:l ln(t2+2j_zarctg2 +C:llﬂ(?€2+x+§)—larctg2x+l+c_

b)j 3x—1 dx:-[ 3x—1 {x 2=t =t+2}
Vxt —4x+38 J(x=2)° +4

:j 3t+5 _3j Sj J' t +4 Sj dt
N J£+4 N 2 J£ +4 N+ 4
=3 +4+5In|t -+ +4 | +C =3 24x+8 +5In|x—2+x* —4x+8|+C.

Exercise Set 1.2
In exercises 1 to 15 evaluate the integral.

1 & 2. .em _ & 3 (x+2 dx

1+ Jx+3 J J4-3x ) Ux

g [ P RUEILE o [

o Ux -1 - J xInx J x2x+1
o 2 . .

7. r & 8. ZL 9. ZL
J J12y? Jx +2x+3 JA4x +4x+5
- (x+2)dx [ dx [ dx

Y Si2) 1. | —2
J2x" +6x+4 Y 1-(2x+3) I Jax-3-x

i3 e (2x+1)dx i ¥ (3x—5)dx I ¥ xdx
J2x* +4x+6 J\2x* —8x+6 X +8x+5

Individual Tasks 1.2
1-8. Evaluate the integral.

12



¥ dx

] S5+x .
. 5+ x
2. .x\/1—2xdx
* dx
o ex+1

.—dx
Vx +4/x

dx
Jx*—-8x-9

* xdx
Jx*+6x+5

¥ dx

7 e 1 ax+20
¥ (2x—1)dx
J=2x% +8x+6

I1.
1. |cosv3—5x- dx
[~ 3—5X
2. .x\/6—7xdx
3 * dx
Ve -1
* 1
4, | ————==dx
Y x+Vx
N
Jx +4x+6
F (x—1)dx
0. Jax’> 16x+4
¥ dx
7. N=x>+8x45
F (4x+1)dx
5 4 A’ —2x+4

1.3 Integration by Parts

Every differentiation rule has a corrésponding integration rule. For instance, the
Substitution Rule for integration corresponds to the Chain Rule for differentiation.
The rule that corresponds to the Product, Rule for differentiation is called the rule for

integration by parts.

The method of integration by:parts is based on the use of the formula
Iu(x)dv(x) =u(x)v(x)— jv(x)du(x) or J-udv =uy— Ivdu,

where u = u(x), v =v(x)qare continuously differentiated functions.

The application of'a formula is expedient, when under the integral sign there is a
function work of different classes. In certain cases it is necessary to use the formula

of integration by parts several times.

Example 1 Find

d) I(2x +1)cos3xdx

9 jln xdx

Solution

a) J.(Zx +1)cos3xdx =

_ 2x+1

u=2x+1,

dv = cos3xdx,

sin3x+§cos3x+ C.

e) I x” sin xdx

g) j 2x arctgx dx

2x+1

sin3x — —J.sm 3xdx =

13
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u=x’, du =2xdx

b) sz sin xdx =

2
. =—X cosx+2jxcosxdx=
dv=sinxdx, v=-cosx

U=x du = dx . .
’ :—x2cosx+2(xsmx—J‘smxdx):

dv=cosxdx, v=sinx

=—x?cosx+2xsinx+2cosx+C.

dx
—Inx, du=2
c) Ilnxdx:” n ! x|=xInx-— J‘x@_xlnx dx =
dv=dx, v=x X
=xInx—-x+C=x(Inx-1)+C.
dx
= t d = 2
d) szarCthdx:u R =x2arctgx__[1x dxz:
dv=2xdx, v=x +X
-1
_xarctgx judx Xlarctgx — J‘dx+J‘ dxzz
1+x

= x"arctgx — x + arctgx + C .

Exercise Set 1.3
In exer01ses 1 to 15 evaluate the integral.

1. e dx 2. (x —2x+5) Yax 3. [xcos3xdx
4. .xcos(3x+1)dx 5. .(1—x2)sinxdx 6. .(x2 —4x)cos xdx
7. .arccos xdx 8. .(1 —3x)In(4x)dx 9. .ln(x — 3)dx
10. .xarctg2xdx 1. .cos(ln x)dx 12. .xSe*xzdx
3 arcsu; xdx 14 [ gx I x.cozsx d
o X L4 [ SlIl X
Individual Tasks 1.3
1-7. Evaluate the.integral.
IL.

1. | (3 —x)sin4xdx 1. | (x—2)cos5xdx

2 [ 3)e > 2. [ - 4yerax

3 [ xIn(2x)dx 3. [(x=3)In(5x)dx

4. . arcsin 2xdx 4. . arccos 3xdx

5. .x3e_x2dx 5. .ln<1+x2)dx




xdx X arctgx
6. jsinzx 6. j 1+x° a

7. IVX2+169dx 7 Je sin x dx

1.4 Integration of Rational Functions
The relation of two polynomials is called the rational function (rational

£,(x)

m

degree n, Q, (x) 1s the polynomial of the degree m. If n=m g then that rational
fraction is called incorrect, if n < m, then that rational fraction 18 called correct.

fraction), 1.e., the fraction of the form where P, (x) 1s the polynomial of the

Theorem Any incorrect rational fraction can be uniquely represented in the form
of the sum of a polynomial and correct rational fraction

0,(x) Mo Q @)/
—3x* +5x° -1
Example 1 The rational fraction of the form y f +2 al is incorrect.
x —2x

Solution Since the degree of numerator (7=95) 1s more than the degree of
denominator (m =3), then the given rational fraction is incorrect. We divide the
polynomial of the numerator “by long division” into the polynomial of denominator.
Then in the quotient we obtain a<polynomial M(x), and in the remainder-a
polynomial R(x).

x5—3)§4+5x3—1:x2_3x+7_6x23—14x+1-
X =2x X —=2x

The rational fractions of the following forms are called the simplest rational

fractions:

1. 4 . 2. —,m>1, meN .
X—a (x—a)

3. 2Ax—+B, D= p* —4¢<0. 4. 2Ax+B ,D<0, m>1l,meN.
X"+ px+q (x"+ px+q)"

The integration of such functions:

L [E20 = dinx—a+C.
Jo X—a
[ A -m —m+1
2 dx:Aj(x—a) d(x—a)= (x—a)™ +C.
J (x—a)” —m+1
o [detE
Jax"+bx+c

It is necessary to isolate the complete square in the denominator of integrand in a
square trinomial
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) s, b P b bY ¥
ax"+bx+c=a| X" +2x—+—~ |+c——=a| x+— | tc——.
2a  4a 4a 2a

The replacement variable x + b =t,x=t— i, dx = dt can be made (see chapter 1.2).

2a 2a
Ax+ B

(x4 px+q)
using the recurrent formula.

D <0, m>1, me N. This rational fraction can be evaluated by

m?

P, (x)
Q,,(x)

Theorem 1t is possible to uniquely represent each correct rational funetion

in the form of the sums of the simplest rational functions.
We factor the denominator as Q(x) = (x —a)* (x —b)(x* + pxtg)&” + px+q)".
Then the rational function can be represented in the form

P(x) 4 , A, B Cx +D, C,x+D,
= +oeet + + +
O(x) (x— a)k (x— a)k_1 x—a x—-b x*f px+q ()c2 + px + q)2
C, x+D, , et Cx+D,
(x> + px+q)"" (x2 + px+ q)m ’

where A, 4,,--+,4,,B,C,D,C,,D,,---,C,,D, ‘are teal numbers, which must be
determined.

In the obtained decomposition we reduce both parts to the common denominator.
We make level the numerators. The obtained equation is correct for any x. We find
unknown coefficients either by the method of particular values or equalizing
coefficients with the identical degrees,x4or combining these two methods.

Example 2 Find

2
x4 x*—=3x+1

_ 2
¥ (x+1) a c) I, =I—dx

26 —x+3 9\ B) zzzj
X +1

Solution
a) We factor the denominator as
O(x)=x"+x" —2x=x(x"+x-2)=x(x—1)(x +2).
The partial fraction decomposition of the integrand has the form:
2x* —x+3 B 2x* —x+3 A B c
C+xt-2x x(x—-D(x+2) Tx ox—1 x+2
CAx-D(x+2)+ Bx(x+2)+ Cx(x—1)
- x(x=1)(x +2)

We make level the numerators
2x> —x+3=A(x -1 (x+2)+ Bx(x+2)+ Cx(x—1).
The polynomials in the last equation are identical, so their coefficients must be
equal. Let’s choose values of x that simplify the equation.

16



x=0: 3=A(-1)2, A=— y

x=1: 2-1+3=3B, B= /

x=-2: 8+2+3=C(-2)(-3), :14

The expansion of the rational function into partial fractions was obtained

2x? —x+3 3 4 13
I, = I =J -——+ + X =
X+ x - [ 2x 3(x—1) 6(x+2)jd

:_im\x\+i1n\x_1\+21n\x+z\+c.
2 3 6

b) The partial fraction decomposition of the integrand has theform:
x*+4 4 B C D |, E _ (A+ Bx+Cx* )t DA+ (D + E(x +1)x°

— = 44— =
rx+1) ¥ X x (x+1)7 x+1 ¥’ (x+1)°

We make level the numerators
X +4=(A+Bx+Cx*)(x* +2x+1)+(D¥ Ex+ E)x’,
X +4=(C+E)x"+(B+2C+D+E)x’ +(A+2B+C)x* +(B+2A4A)x+ A.
The polynomials in the last equation are ddentical, so their coefficients must be

equal. The coefficients of polynomials aresequaliand the constant terms are equal.
This gives the following system of equations, for 4, B and C.

x*: C+E=0, E=-C=-13.
x> B+2C+D+E=0, D=+B-2C-E=8-26+13=-5.
x*: A+2B+C =A, C=1-4-2B=1-4+16=13.
x': Be24=0, B=-24=-8.
S A =4. A=4.
The expansion of the rational function into partial fractions was obtained:
X +4 4 8 13 5 13
PaA)? 2 2 x (x41)? x4l

12=—%+§+13ln|x|+i—l3ln|x+1|+C.
x° X x+1

¢)» The partial fraction decomposition of the integrand has the form

2x’ =3x+1 2x” —3x+1 A N Bx+C
x +1 (x+1)(x —x+1) x+1 x*—x+1
The polynomials in the last equation are identical, so their coefficients must be

equal. The coefficients of polynomials are equal and the constant terms are equal.
This gives the following system of equations for 4, B and C.

17



A+B=2 B=2-4 B=2-4 A=2
-4+B+(C=-3 < C=1-4 <1C=1-4 < < B=0
A+C=1 -A4+2-A+1-A4A=-3 -34=-6 C=-1

The expansion of the rational function into the partial fractions was obtained:

d(x—lj
I J‘x—3x+1 _J‘(2dx_ dx j:21n|x+1|_J‘ 2

x +1 x+1 xX*—x+1 x—ljz EZ
2 4

=2In| x+1|—iarctg£+C
NERAANE
Exercise Set 1.4
In exercises 1 to 12 present rational fractions as the sum‘f the simplest fractions,
without calculating the coefficients.

4x’ —2x" +6x—1 p 2x54 7
(x* —1)* C (@ +16x)(x-3)
6x° —3x+7 4 7x*Fu’ —4x+5
(x+2)(x* +4) ' (x> —4)
3x° —5x+7 > 2x> -4
(x +2)(x> +1) x4+ (x+3)
45 —x* +5x -1 X +9
(x> —4x+3)*(x=5) - X’ =5x" +6x
9 3x—11 10. 2x* —4x+6
(x3+4x)(x2+8x+18) (x+2)2(x2 —1)
I 34x+52 I 24x2+1
X —x (x=3)"(x"+2x+5)

In exercises 13 to 24 evaluate the integral.
f x—4 Cx° +x" -8

13. | —=d S —
Jx2—5x+6 * 14 J X’ —4x dx
| 16 ( x'=2x+3 J
73 J ¥ dx o (x—l)(x3—4x2+3x) *
. 2 o 4_ 3 2 _
1 jc I I X 4jc +5;c +10x Ide
Jx'—1 J x =3x"+x+5
19 [— 2 4 2. | d
v (x+1)(x2+1) J (x—l)(x+2)(x+3)

18



2
21 j 2x"—3x-3 d 22 4dx

. _ 4dx
(x—l)(x2—2x+5) Jx(x*+4)
o 3
x +2x+1 )P —9x

Individual Tasks 1.4
1-6. Evaluate the integral.

11.
) _ o~
1. %);de 1. 2xt—6xl+7dx
J x'—4x J X -
~ _ (* 2_
5 : 2x -3 i Py 6x" —12x+6 7
* 2 +x+3 ( x=1
3. dx
3 J x3+2x2—3xdx JxP +0x* =8x
o 2 .« 220
4 X _2x+63dx 4 3x 26x+7 I
J(x+1D)(x-2) J (x+1) (x—2)
J (x3+3x2+3x+1)x S 3 dx
dx =x +x-1
* x—1  2x+1
d ——dx
6. ) 13 136 6. ) ¥ “5x 1+ 4

1.5 Integration of Nonrational Functions
Let us examine such nonratignal, functions, whose integration is reduced with the
aid of the specific replacement of the variable of integration to the integration of
some rational functions.
Ax+ B

])Ifj‘
Vax? +bx+c

It is necessary tomisolate the complete square in the denominator of integrand in
the square trinomial

b b b bY ¥
ax’ +bxsc=a| x° +2x—+—|tc—=a| x+— | +¢c——.
2a  4a 4a 2a

The, replacement variable x+ 2i =t,x=t— 2£, dx=dt can be made (see
a a

chapter 1.2).

Note 11f [

dJax’ +bx+c

the following formula can be used:

. AL dx:Qn_l(x)-\/ax2+bx+c+lj
JNax* +bx+c

dx , where P (x) 1s the polynomial of the degree n, then

dx
2 b
Nax® +bx+c
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where O, (x) is the polynomial of the degree n—1 with unknown coefficients
and A1s some unknown coefficient whose must be determined by the method of
particular values or equalizing coefficients with the identical degrees x.

Differentiating both sides of the equality, the identity from which the unknown
coefficients are found will be obtained:

AC) = (Qn_l (x)-Nax® +bx+c
Nax* +bx+c
the substitution

dx 1
(x—a)"\/ax2+bx+c, X—a

3)If | R(x, %,T/;,---,{/;)dx, where R is the rational function of its arguments,

' A
) + .
Nax® +bx +.¢

=t can be used.

2)If

the substitution x =¢" can be used ( n- all least common multiple indices k,m,---,s).

4) If | R(x, ax +b)dx, the substitution ax + b =t" £an be;used.

5)If | RWxX* —a’,x)dx; IR(\/xZ +a’,x)dx; IR(\/aZ —%°,x)dx, where R is the

rational function of its arguments, we must use trigonemetric substitution.
In the following table we list trigonometrie substitutions that are effective for the
given radical expressions because of the specifieditrigonometric identities.

Table of trigonometric substitutions

Expression Substitution Identity
Ja? = 12 xzasiné’,—%S@S% 1-sin* @ =cos’ @
T T 2

vat +x? x=atgld,——< 0 < — 1+1tg°60=

@ i 2 2 & cos’ 6
a V4

22 X = ,OS@<— 1+¢ 20:
rod cos’ 6 2 & cos’ 6

In each case the testriction on @ is imposed to ensure that the function that
defines the substitution.is one-to-one.

6) If J.xm (a + bx" )p dx, where m,n,p € Q; a,be R, then the integrand is called

differential sbinomial. The integral of it is reduced to the integrals of rational
functions mithe following three cases:

a)If peZ, then the substitution x=¢" can be used (N is the common
denominator of m and n).

m+1

n_ N
bIf peZ, e Z , then the substitution ¢ +0x" =17 an be used ( N is the

denominator of p).
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N

o)If peZ, + p) €7, then the substitution @ 10X =X"1" ¢ap

m+1 7. (m +1
n
be used (N is the denominator of p).

IfpeZ, ml ¢Z,(m+1+p}22, then the integrals of this type cannot be
n n

expressed by a finite combination of elementary functions.

Example 1 Find
JUxT—4x+8 -x—%/)T2
C) * xdx W x3dx

d
Y+ =gfx+1)° ) J o

[ x’ d ~ 34 x +1dx
N

Solution
a)J‘ 3x—1 dx—J- 3x—1
Vx? —4x+38 J(x—2)° +4
tdt dt d(t* +4)
=3 o5 —_j +5j
Nt +4 £’ +4 Nt +4 N2+ 4

=3Vx’ —4x+8+5In|x—2+& —4x+8|+C.

3t+5

Vit +4
=3 +4+5In|t+N +4|+C=

x—2:t, dx =dt B

x=t°, dx=6tdt 3615 8 4
b)j—&dx _ =jt66”ff=6j ! dt:6j L =
e W=y (a=r t°—1t £t -1 £ -1
4_
:6jwdz=6j' : ! jdt—2t+6t+3ln Ul e
| t+1
—2\/;+6\/;+31n\/_ N, c.
\/;+1
Xdx x+1=¢°, dx=6dt

J'(t 1)6t5dt

I\/(x+l) ety |zt Yxri=
6M—6j(t 1)di = [%+t]+€=%$/(x+l)2+6\6/x+1+C.

G

d) We must use trigonometric substitution x = J2sint.
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. x:\/zsint,
J‘\/xdixz: dxzx/zcostdt, :I
2—x
\/Z—xzzx/zcost

3
:—2\/5_“(1—0052 t)d(cost) =—2\/§[cost+ C03S t]+ =

(2x

(\/5)3 sin’ ¢ -~/2 cost
J2 cost

dt=2ﬁjsin3tdt=

2_xt 4 o7

e) ]=I—dx=(Ax+B)\/1—2x—x2 +4L.
V1-2x—x V1-2x—%
Differentiating both sides of the equality, the following identity will be obtained
2 —_ p—
Y alm 2o 4 (Ax )22 G LA
V1-2x—x° 2\/1—2x—x2 \/l—2x—x2

EA(I—2x—x2)+(Ax+B)(—1—x)+/l;

x> =A—2Ax— Ax* — Ax= B—=4x’ — Bx + A.
Compare coefficients with the same degrees

X —A-A=1, A=—L

, 1.€.

x': —24-A<B=0, B=
A

x*: A—-B+A=0.
1

—(——x+3) 1—2x—x2+2j -
\/1 2x —a? 2—(x+1)
=(—%x+%j\/1—2x—x2 +2arcsinx—+1+C.

Therefore I = j

V2

1

34 1 )3
/) Since I:jM:jx 2-(1+x4] dx,
Jx
1 1 1 m+1 . _r
thenm:—E,n:Z, ng, =2. The following substitution must be used:
n

W A x:(t3 —1)4, a’x:4(t3 —1)3t2dt,t:\3/<‘/;+1 o
Jx +1dx t
I:I T :j(z3—1) 12t dt—le t —t )dt
t’ ¢! 12
=12-7—12-Z+C:7(\/;+1) (J_+1)

22



Exercise Set 1.5
In exercises 1 to 15 evaluate the integral.

; *+ 2x+7 i P r 3x+7 A3 T ) 4
. . , X
JNx*+5x—4 d=x’ +4x+8 I +2x-3

) 2 _ * dx .
g2 s [ 6 [
I 42543 I x+4x e _i
7 l_x@ 8. .x53 1+)C3 ’ 9 [ 1—)C2 dx
o ].+.x X ® o X
( dx . [2 . 3
0 [ —&— X +4 12 [ 22— ax
J xz x2—1 11. ] xz dx J /—x2+2
. 3 . .
13 [ 14. [\o—x2dx T s EN

JJx-1 J 1+ f
Individual Tasks 1.5

1-7. Evaluate the integral.

11.
[ Tx-1 L 2x+7
1. dx 1. 4y———m——dx
JJ2-3x—x° JIx+x-6
3 2_ PS 2
2. x 1 dx 2 Xy dx

V2-3x—x’ YxP+2x-3
3 | dx ¢ JxHl+2
I Ux+2+3Ux+2 (x+1) —x+1
(e -

dx

4 4 dx
A e YR )
5. al 4+9dx 5 ( dx
" 3 5 ' J x*9—x?
3 .
6. | V(143 ) dy 6 |31+ x) ax
. dx R .
7. xzm : (V9 —x Jx
Cdx

1.6 Trigonometric Integrals
Trigonometric identities can be used to integrate certain combinations of
trigonometric functions. We start with powers of sine and cosine.

1)If Jsinzmxcosz” xdx, m>0,n>0, element of integration must be converted

with the aid of the formulas of reduction in the degree
1+ cos2x . 2 I—cos2x

cos’ x=—— sin” x =
2 2
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2)If Isin mx cos nxdx, Isin mx sin nxdx, Icos mx cosnxdx , the multiplication of

trigonometric functions should be replaced with the sum

sin mx cos nx = %(sin(m +n)x +sin(m —n)x)
sin mx sin nx = %(cos(m —n)x —cos(m + n)x)
COS 71X COS X = %(cos(m —n)x +cos(m +n)x).

3)If IR(sinx,cosx)dx, where R is the rational function of it§ arguments, the

universal trigonometric substitution = tga can be used to obtain the integral of the

rational function variable ¢.

tgf =t sing = 2t
=1, 2 -
IR(sin X,C08 X)dx = 2 ) b B IRl (t)dt.
1—t¢ 2dt
COSX=——,, dx= >
1+1¢ 1+¢

4) If R(—sin x,cos x) =—R(sin x,cosx), the substitution ¢ =cosx can be used.
5) If R(sinx,—cos x)=—R(sin x,cos x), the'substitution ¢ =sinx can be used.

6) If R(—sinx,—cosx) = R(sin x,cosx) , the,substitution ¢ =¢gx can be used.
Example 1 Find

6
J‘C,tg 3x dx b) jsin3 2xcos’ 2xdx c) jsinz xcos® xdx
sin”3x
s ; . ) dx
d) jtg dx e) jsmxsm3xsm 2xdx  f) J‘ .
2sinx+3cosx+5
Solution
1063 t=ctg3x, dt=- .3021)6 .
) J'c'g2 xdx: sin 3x:——J't6dt:
sin” 3x dx B g 3

sin3x 3

7
__Lppon c83X o
21 21

b) j sin’ 2xcos* 2xdx = Isinz 2xcos’ 2xsin 2xdx =

t=cos2x, dt = —-2sin 2xdx

1
=lsin’2x=1-¢°, sin2xdx=—%dt =—§I(l—t2)t4dt=
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7 5 7 5
:lj( )dt—t——t—+C:COS 2x_cos 2x+C.
2 10 14 10

c) jsinzxcoszxdxz Zj(2sinxcosx)2dx: %J‘sin2 2xdx = %I#dx:

= lJ‘(l—cos4x)abc: l(x—lsin4xj+C: lx—Lsin4x+C.
8 8 4 8 32

r=1gx, X =arctgt

dt !
d J.t dx = = =I tdt = —
) e e I+ d1x7 T 2Ja5P
1+t
:‘tzzz‘ II dz :—I(Z _1)+1 Z—lj(z—l+ ! de:
2J1+z z+1 2 z+1

1

Z2 1 4 2 2
=—| ——z+In|z+1]| |+ C=—(te"x -2te"x+2In(d + te"x))+C.
2(2 z+In|z+]1| ;g —2ug (1 1g°x))

e jsinxsin 3xsin2xdx = % j (cos2x —cos4x)sin2xdx =

= % J‘ cos2xsin2xdx — % J‘ cos4xsin 2xdx :iJ.sin 4xdx — %J(sin 6x —sin2x)dx =

cosd4x cosbx cos2x

=— + - +C.
16 24 8
X 2dt
1g—=1, dx = >
J‘ dx _ 2 1+ | 2dt _
2sinx+3 5 — £ B -2
sinx +3cosx + cosle tz, Sinx = 2t2 (1+t2) 4t2+31 z‘2+5
1 +¢ 1+¢ 1+¢ 1+¢
2dt _J’ d a1 i+l
4t +3-3> +5+5¢° £ +2t+4 t+1)*+3 3 g\/g
1 1+tgx2
= arctg +C
NER N
Example 2 Find j—
1+ sin

) dx dx d(ctgx)
Soluttonj. — :j — 5 :j — - :_I . —
l+sin"x J2sin"x+cos"x Jsin”x(2+ctg x) ctg'x+2

—Larctg—+C
NERAGING

Exercise Set 1.6
In exercises 1 to 16 evaluate the integral.
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9.

11.

13.

15.

sin x dx

(1 —cosx)2

: 2
sin” xcos® xdx

dx

\/gcosx +sinx
dx

sin® xcos® x

dx

J 16sin? x + cos® x

Jcos’ x sin 2xdx

sin* 2xcos? 2xdx

tg’ 5xdx

1-6. Evaluate the integral.

10.

12.

14.

16.

rsin4xdx

J  COSX

4
cos” 2xdx

sin3xcosSxdx

* dx
J 3sinx+cosx+1
*  sin&x

J16—cos’*8x

. 6
COS’ X
dx

J sin’ x

cos®Bxdx

sinzcos S—de
3 3

Individual Tasks 1.6

sin’ xcos’ xdx

sin’ 2x cos” 2xdx

sin xdx
J4+cos’x

y dx

J 3cosx+sinx

¥ dx

sin x€os 9xdx

J sin? x — 2§inw ¢os x — 3cos’ x

IL.

Jcos? xsin® xdx
sin®3xdx
dx
{tg’ 2x cos® 2x
dx

5—4sinx + 6c¢cosx
dx

4sin® x +cos* x+6

cos6xcos8xdx

Ewvaluate the integral.

Additional Tasks 1

L [ & 2. [_dx 3. |tg3xdx
o Sin2 5X o 5 — 2)C ¢

4 [ tgxdx 5 e o ( ex) o d 6. [ cosxdx
J cos®x . J sin’x

7. [_cos2xdx 5 8. [ & 9. 2)c(x2 + 1)6 dx
v (sin2x+3) J xInx .
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10. [ e dx 11. [ €'dx 12. ( x’dx

J24e™ J1+e™ J16—x°
13. [ xdx 14 ( xdx 15 [ dx

Jx'+a’ Jx-ad’ Y 3-5%°
16. ((arcsinx — x)dx 17 (ezx)3 d 15 3igixdx

. N . J cos’x
19. | dx 20. ex2+4x+3(x+2)dx 21. | xcos3#dx

* 2 [ 4 [
arcsin xv\1—x

22. | xarctgxdx 23. | X’ Inxdx 94 [ Xarcsin xdx

’ ) . V11— x*

25 .ln(x+\/1+x2)dx 26. [(5x—4)cos8xdx | 27.(f(6x=T7)dx
. J3x7—12x+15

28. [ (3x—2)dx 20 [ dx 300 (x+3)dx

J x2+8x+20 Vax* +4x+3

. 5 4 o _
31 (X +x —de 3 dx 33 3x-7 e

(OS]
|
N
=
|
)
[N

Jox—4x -(x—1)2(x+2) JX+x+4x+4
34, [ xdx 35 [ 9 o 36, [_Xdx
J il v1 Y xRl J2-x
37. [N+l 38, X dx 39, [sin® xcos* xdx
o X g 1—X2 *
40. | cos’ xdx 41 | tg’xdx 42. [_dx
. . Jsin*x
43. | sinxsin3xdx A4, [ dx 45. [ sin’ xdx
J J4—-5sinx J1+cos’x
46. .1+tgxdx 47. dx 48. | sin’® xdx
J1—tgx J8—4sinx+7cosx ¢
II DEFINITE INTEGRAL

There dswa connection between integral calculus and differential calculus. The
Fundamental Theorem of Calculus relates the integral to the derivative, and we will
se¢ 1n this chapter that it greatly simplifies the solution of many problems. In this
chapter we discover that in trying to find the area under a curve, the arc length or the
volume'of the solid.

2.1 The Definite Integral
We start with the solving the area problem. find the area of the region that lies
under the curve y= f(x) froma tob. This means that the region, illustrated in
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Figure 1, is bounded by the graph of a continuous function f(x) (where f(x)>0),

the vertical lines x =a and x =b, and the x axis.

y ,
’ o Ax

0

Figure 1 Figure 2

We all have an intuitive idea of what the area of a region is-"But apart of the area
problem is to make this intuitive idea precise by giving an exact definition of the
area. We first approximate the region by rectangles and themywe take the limit of the
areas of these rectangles as we increase the number of rectangles (Figure 2).

The width of the interval [a,b] isb—a, so the width of each of the n strips
b—a
.
subintervals [a,x, ], [x,,x, ], [%,,%;],.... [x,.,.B]. Let’s approximate the i -th strip by 4,,
a rectangle with the width Ax and the héight\sh = f(x,), which is the value of f(x) at
the right endpoint (see Figure 2). Thenuthe area of the rectangle is S, = f(x,)Ax,.

What we think of intuitively as the area of the region is approximated by the sum of
the areas of these rectangles, which 1s
R, = f(x)AX, + f(x)Ax, +...+ f(x,)Ax, .
Definition The area S. of the region A4 that lies under the graph of the continuous

is Ax = These strips divide the interval [a,b] into n

function f(x) is the limityof the sum of the areas of approximating rectangles:

n

S=lmR =lim ) f(x)Ax,.
n—>0 n—0 1
It can be proved that the limit in definition always exists, since we assume

that f(x) is continuous.

The same type of limit occurs in a wide variety of situations even when the
funetion 1s‘not/necessarily positive. We therefore give a special name and notation to
this type of a limit.

Definition (Definite Integral) 1f f(x) is a function defined fora<x<bh, we

b—a

divide the interval [a,b] into n subintervals of equal width Ax= We

n
leta = x,, x,, x,,..., x, = b be the endpoints of these subintervals and we let x,, x,..., x,

n

be any sample points in these subintervals, so x; lies in the i -th subinterval [x,_,,x,].
Then the definite integral of f(x) from ato b is
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b n
[ reoar=1imy ro)ax
a i=1
provided that this limit exists. If it does exist, we say that f'(x) is integrable on [a,b] :
b
Note 1 In the notation I f(x)dx f(x) is called the integrand, a and b are called

the limits of integration; a is the lower limit and b is the upper limit. Thewdx. simply

indicates that the independent variable is x. The procedure of calculating an integral
is called integration.

b
Note 2 The definite integral J f(x)dx 1s a number; it does'not depend on x. In

fact, we could use any letter in place of x without changing the value of the integral:

_if (x)dx = jf (¢)dt = j Flu)du .

Note 3 The sum z f(x)Ax, that occurs in ‘the last Definition is called a
i=1
Riemann sum after the German mathematician Bernhard Riemann (1826—1866).
Theorem If f(x) is continuous on [a,b], ot if f(x) has only a finite number of

jump discontinuities, then f(x) is “integrable on [a,b]; that is, the definite
b
integralj f(x)dx exists.
Properties of the Integral
b

1) : F(x)dx = j F(x)dx.

2) | f(x)dx=0.

(]
TGS

3) [ rode= _[ £ (x)dx + j £(x)dx.

e
SR

DN+ £@)ds=[ fodt [ .

[]
SN

5) |of(x)dx= cjf(x)dx, ¢ = const .

a
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6) If £(x)>0 (f(x)<0) on [a,b], then .[ F(xX)dx=0 [ I F(x)dx < OJ.

7) 1If £(x)= p(x), a<x<b, then J' F(x)dx > .[ P(x)dx .

8) Ifm< f(x)<M,then m(b—a)sjf(x)dst(b—a).

The Fundamental Theorem of Calculus (Newton and Leibniz Theorem)
Suppose f(x) is continuous on [a,b].

LIfF(x) = j F(0)dt, then F'(x) = f(x).

b
2. I f(x)dx=F(b)— F(a), where F(x) is any antiderivative off (x).

The Fundamental Theorem of Calculus say$ that differentiation and integration
are inverse processes. The Fundamental Theorem of'Calculus is the most important
theorem in calculus.

Rules of the Calculation of the Definité:Integral
1. The formula of Newton - Leibniz. 1If f(x) is continuous on [a,b],

then j f(x)dx = F(b)—F(a).

2. The replacement of a variable in the definite integral. If f(x) is continuous
on [a,b], the function x = p(#),is differentiated in the section [, 8] and t e[a, ],

b B
Pl <la.b). p() =a {plB) =b. then [ f(x)dx= [ Fpe)e' (s,

3. Evaluatedefinite integrals by parts Ju(x)dv(x) =u(x)v(x)|° - Iv(x)du (x).
4_[{Gds=0.1f 1(=x)=—f();
[ rax=2f reoax.ir s = reo.

Example 1 Find
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NG}
8 2 1 2
I(i/;—l)dx j zx dx
X
1 V2
3
&2 5

dx
e -
J;x fxax J2s f3x+1
Solution

a) Using the formula of Newton — Leibniz for this integral, however, we have

[ N (3 V(3 ) (3
'!.(\/;l)dx—'!.(x I]dx—(zx le_(z.z _gj_(z_lj_

=12-8-0.75+1=4.25.

b x =sint dx = costdt 5 3
b) j‘\/l—xzdx_ 72 ’ 5 4 j‘cosztdt_ j‘l—sinztdl_
x x:_z,;zz, _x:—3,t:£ §in’¢ sin’¢
V2 2 4 2 3 % 3
2
= (—ctgt—t);z—(ctg£+£j+(ctg£+£j: —(L+£j+(l+£j:
z 33 4 S3 4
r 1
=1-———=0.161.
12 3
¢) Using the formula for integration by parts we get
u=Inx du—dx 22 2
- ) - 2 ! 4 2 2\ 2
/- XXy, _jxdx:e_.z_e__ X el
dv = xdx v—x—2 2 e e 2x 2 2 4. 2
’ 2
4 2
—%+%=%(3e4—ez)z39.10.
A 3x+1=t¢, x=0=1r=1 )
5 4 ¢
dx 1 3
d)j—: x==(P=1), x=5=>1=4 =j—dt=
y 2+ 3x+1 32 1 24t
dx=—tdt
3
20 ¢ 2 [1+2-2 . 2 | 2 2
=3 I—dtz—j dtz—-j[1——)dt=—-(t+21n‘t+2‘)‘f:
2+t 31 2+t 3 t+2 3
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10.

13.

8 2 4
3

8 2 A 6- 32+ 2m2~2.904.
33 3 3

Exercise Set 2.1

In exercises 1 to 15 calculate

2

.£2x2 + %de
ul X

3
e

* dx

. xvV1l+Inx

7/2
j \/cosx—cos3xdx

-z/2
3

* dx
x\/x2 +5x+1

X1+ x*dx

aﬁ -

1-8. Calculate

2.

5.

8.

11.

14.

1
J'\/1+xdx
0

j‘ dx
x*+4x+5

xcosxdx

S 3 (=
Y o'—.b

X —x+2

——dx
x'=5x*+4

[ ]
r 3 [O8)

2
x° -9
4

dx

o X
3

Individual Tasks 2.1

16 d
3. j X
d x+9—\/;
4
s J‘ dx
' O1+J2x+1

o
» L

9. In(xet 1) dx

,51 o
W

xdx

cos™x

gy

/6

J8
o xdx

2°ﬁ\/4+x2

15.

3. yln(y—l)dy
—213

4 xe Xdx
3
HQZ Ci

s ¥
. 2+ cosx
3

. 23x—2 N
o X —4x+5
3

7 X1+ xdx

II.

—_

'—,E}

/.

N
o'—.u‘ o

172

-1/2
T

0
7/2

3

dx

e \Jl—e™*

dx

24+3x+1

3. I arccos 2xdx

4. J'xsin xdx

5 J‘ dx
1+cosx
-r/2

dx

0§| —e

6. xvVxt+5x+1
7 A1+ x*dx
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-r/4 3 T .

J‘ cos” xdx J‘ sin x Jx
8. 3 - 8. 3

i ]/sin x m(l—cosx)

2.2 Improper Integrals
b

In defining a definite integral I f(x)dx we dealt with the function f(x) defined

on a finite interval [a,b], and we assumed it does not have an infinite discontinuity. In

this section we extend the concept of a definite integral to the case where'the interval is
infinite and also to the case where f(x) has an infinite discontinuity in [a,b]. In either

case the integral is called an improper integral.

Type 1: Infinite Intervals
Definition (Improper Integral of Type 1)
t

(a) If j f(x)dx exists for every number ¢ > a, then

j f(@)dx=lim j F(x)x (1)

provided this limit exists (as a finite number)iand 1s called an improper integral on an
infinite interval [a,+ ).

b
(b) If I f(x)dx exists for gvery number ¢ < b, then

[ Faas = tim [ £ @

provided this limit exists (as a finite number) and is called an improper integral on an
infinite interval (—oo,b].

+00 b
Definition The improper integrals J‘ f(x)dx and I f(x)dx are called convergent

if the corresponding limit exists and divergent if the limit does not exist.

40 b
If both I f(x)dx and j f(x)dx are convergent, then we define

Tf(x)dx = jf(x)dx + Tf(x)dx = [lir_roloj‘f(x)dx + [lirgoj‘f(x)dx 3)

In the formula (3) any real number can be used.
Any of the improper integrals in Definition 1 can be interpreted as an area
provided that f(x) is a positive function. For instance, in case (1) if f(x)>0 and the
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integral j f(x)dx is convergent, then we define the area of the

region A= {(x,y) |x>a, 0<y< f(x)} in Figure 3 to be §(4) = I f(x)dx.

YA

Figure 3

+00

Example 1 Evaluate J xe " dx.

0

Solution
+00 . 1 +00 , 1 b . 1 ,

xe " dx =——J‘ex d(-x*)=—=1lim J‘ex d=x*)=——1lim(e™ )|’ =
,(‘)‘ 2 f ( ) 2 b—>+0 f ( ) 2 b~>+oo( ) 0

11 1, 1
:—_1lm_2+_e =—.
2b—>+aoeb 2 2

Example 2 Evaluate j 2 dx .

1x-(9+1112x)
Solution
0 b b
| 2 ix=lim 2 gv=lim | 24000 _
x-(9+ln x) b0 1x-(9+1n x) b+ ] 94 In’x

b

b—>+ow

=2 tim (arctg(lnb)—arctg(lnl))zgg:%.

3 b—>+ow

. 1
= lim Z-Earctg(ln‘x‘)

1

Type 2:.Discontinuous Integrands
Definition (Improper Integral of Type 2)

(a) If f(x) 1s continuous on [a,b) and is discontinuous at b, then
b b—¢
j f()dx =1lim j F(x)dx @)

provided this limit exists (as a finite number) and is called an improper integral of
discontinuous at x =b function f(x).

(b) If f(x) is continuous on (a,b] and is discontinuous at a, then
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[ reoax=tim [ foax 5)

a+o

provided this limit exists (as a finite number) and is called an improper integral of
discontinuous at x = a function f(x).

y YA

Figure 4

If f(x) has a discontinuity atx=c, where a<c<b, and both J‘ f(x)dx

b
and I f(x)dx are convergent, then we define

c

j‘f(x)dx = j'f(x)dx + j)'f(x)dx = !EBT f(x)dx + ?23 j. f(x)dx (6)

c+d

Parts of Definition are illustrated inyFigure 4 for the case where f(x)>0 and has
vertical asymptotes at a, b and c sespectively.

2
dx
Example 3 Evaluate I )
P 0\/Z—x
Solution
p dx

2—¢ 1
:—mnf 255) 2d(2 - x) = —lim 242 —x
| )¢ e =

4
Example 4 Evaluate j &

o * ==2lime + 22 =212,

1 X’ —6x+9
Solution
4 4 3 4
dx dx dx dx
2 = 2 >t 7
!X —-6x+9 1(x—?’) 1(x—3) 3(x—?’)

3-a

dx

1m
a—>+0 1 (.X—3)

2

1P . ] ]
=— lim — =
3, as+0|3_g—3 1-3

a—>+0 X —

35



o dx : : 1 1

lim j >=— lim =— lim — -

p—>+0 Ky (x-3) F=+0 x=3|5, 4 p>+0\ 4-3 3+p-3
—1+00=+00.

1
|
mr—i
‘5
7\
|
|-
N
1
|
+
=
t3
|
N
1

Since limits are equal to infinity, then improper integral diverges:

Comparison Test for Improper Integrals

Sometimes it is impossible to find the exact value of an improper integral and yet
it is important to know whether it is convergent or divergent. In such cases the
following theorem is useful. Although we state it for Type I integrals, a similar
theorem is true for Type 2 integrals.

Theorem (Comparison Theorem) Suppose f(x) andg(x) are continuous

functions with f(x)>g(x)>0 forx=>a .

a) If I f(x)dx is convergent, then j' g(x)dx s conyergent.

b) If I g(x)dx 1s divergent, then I f(x)dxyis divergent.

Geometrical Interpretation 1If the.areawnder the top curve y = f(x) is finite, then
so is the area under the bottom curve y = g(x). And, if the area under y = g(x) is
infinite, then so is the area undetr.y = f(x) (see Figure 5).

VA

)
<
=Y

Figure 5

+00

Example 5 Evaluate J 2+sinx

Jx
1
Solution Let us estimate the integrand for all x from the space of integration, we

will obtain the inequality

dx.

2+sinx

L .3
JxoooNx T Ax
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—2})im\/;

[e-imf

It means that the given integral is divergent.

In exercises 1 to 15 calculate improper integrals or establish their divergénce.

|} =2limv/b -2 =c0.

b—wo

Exercise Set 2.2

Lo[% 2. [sin2var 3 j
X x*+4
2 0
0 1
4 J‘ : dx 5 xdx : 6. dx
Jx +2x+2 °0~/1—x < xln x
2 2,5 o
7 xdx 3 dx 9 dx
G Vx— 1 x —-5x+6 X
e 0
10, [ g, 1. j Sy
. X +1 xIn® x Jx +8x+17
P 1
13. 51r12x dx 14 J‘ __dx I J‘ x’dx
U% X ) ex_cosx f 5'(x5+3x4)7
Individual Tasks 2.2
1-7. Calculate improper integrals or establish their divergence.
O~ d 1
N R S I} j
JxT+8x+17 x> +2x+10
T odx T dx
2 2 j
J X —4x’ x +1
3 0
h dx h dx
3 | 30 | ——
o X — 6Xx+ 8 <X —8x+7
) 1
4. | Fe dx 4. | xInxdx
.0 .0
1 1
5 3 dx 5 ( dx
S 2-x)W1-x" (3 x)V1— x>
' dx ¢ xdx
0. ’ xIn® x 0. < Vx—1
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+00 o]

J‘ dx J‘ dx
7. (4+x2)\/arctg0,5x 7 ) xInx

2 e

2.3 Geometrical Applications of Integration
In this chapter we explore some of the applications of the definite integral by
using it to compute areas between curves, volumes of solids, and arc length. The
common theme is the following general method, which is similar to the one we used
to find areas under curves: we break up a quantity Q into a large number of small

parts. Next we approximate each small part by a quantity of the formyf(x’)Ax, and
thus approximate Q by a Riemann sum. Then we take the limit/and express O as an

integral. Finally, we evaluate the integral using the Fundamental Theorem of
Calculus.

Areas between Curves
Integrals can be used to find areas of regions that lie/betweensthe graphs of two
functions. Consider the region A that lies between two curves y = f(x), y = g(x) and

between the vertical lines x =a, x =b, where y=¢(x) and y = g(x) are continuous
functions and f(x) > g(x) forall xe [a,b] (See Figure 6).

¥4 VA
y=fx) y=d
d _—
J Ay
S x=g(y) x = f(y)
c———— y=c
0| a b x
y =4(X) 0 X
Figure 6 Figure 7

The area § of.the region bounded by the curves y = f(x), y=g(x), and the
lines x =a,x="5b, where y = f(x) and y=g(x) are continuous and f(x)> g(x) for
all x €[a,b]/can be calculated by the formula

S:j(f(x)—g(x))dx )

b
NotelIfy:g(x):O,thenS:J‘f(x)dx.

Note 2 Some regions are best treated by regarding x as a function of y. If a
region is bounded by curves with the equations x = f(y), x=g(y), y=c, y=d,
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where x = f(y) and x=g(y) are continuous and f(y)>g(y) for ye [c,d ] (see
Figure 7), then its area is

s=[(r»m-gt)ay @

Note 3 If we are asked to find the area between the curves y = f(x) and¢y = g(x)
where f(x)> g(x) for some values of x, but f(x) < g(x) for other values of x, then
we split the given region into several regions A,, 4,, 4,,... with areas'S,,S,,S;,... as
shown in Figure 8. We then define the area of the region A4 to be thé sum of the areas
of the smaller regions 4,,4,, 4,,..., thatis S=S +85, +....

The area between the curves y = f(x) and y = g(x), between x=a and x=»> is

S = _[ 1/ (x)— g()|dx 3)

Note 4 1f the curve is assigned by the parametric equations x = x(¢), y = y(¢), the
area A of the region bounded by this curve is

B
S = j 9(0)-X()dt, where a=x(dYy b="x(f) )
Note 5 The area of figures in the polar coordinates (see Figure 9 and Figure 10) is
B B
S:%Iﬁ(@)d@ or S:%j(ﬁ(e)—gz(e))de (5)

VA

Figure 8 Figure 9 Figure 10

Exampled Find the area enclosed by the line g(x)=—x+1 and the
parabola f(x)=-—x"+2x+5.
Solution_By solving the two equations we find that the points of intersection
are (—12), (4;-3):
f(X)=g(x)=> x+1=—x"+2x+5=>x"-3x-4=0,
x,=-1x, =4,
»n=2y,=-3.
Thus
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4 4 4
S:J-(f(x)—g(x))dxzj(—xz+2x+5—(—x+1))dx:J‘(—x2+2x+5+x—1)dx:
_ -1 -1
x x’ ! 4 4?
—x’ +3x+4 dx=| —+3-—+4x| =|—+3-—+4-4
3 2 » 3 2

—(— ) +3. D’ +4- (—1)} =202
3 2 6

: x=2cos’t
Example 2 Find the area enclosed by the curve L
y=2sin’¢
Solution These equations determine an astroid. Since the figure is symmetrical
relative to coordinate axes, then let us find 1/4 of the areay which'lies in the first
quadrant.

x'(t)=2-3-cos’t-(—sint)=—6-cos’ ¢ -sint.

Ifx(tl):0:>t1:%; x(t,)=2=1,=0.

Thus S = j W(t)- X' (6)dt -

a1
T

2
sin'z-cos’t dt =3 J‘sinz 2t-sin’t dt =

%)
Il

2sin3t-(—6 coszt-sint)dt =12

1—cos2t

sin® 2¢ T dt —% sin” 2t dt — sin?2¢-cos2t dt =

Il
W

o'—)'\"ﬁ M\.}]'—.o

o'—’m\.ﬁ
l\.)lw
© Lm0 |y

2 3z
o 8
After multlplymg the obtained area to 4, we will obtain the area of the entire of

_4.5=4.37 3% 4712 .
g8 2

%
1 —cos4t J’ _l sin® 2

——_dt -
0

sin® 2td(sin2t) = %t ’ —lisin 4¢

0

'—ow\ﬁ

0

the astroid §

astroid

Veolumes
Trying to find the volume of a solid we face the same type of problem as in

finding areas. We have an intuitive idea of what the volume means, but we must
make this idea precise by using calculus to give an exact definition of the volume.
For a solid S that is not a cylinder we first “cut” § into pieces and approximate

each piece by a cylinder. We estimate the volume of S by adding the volumes of the
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cylinders. We arrive at the exact volume of S through a limiting process in which the

number of pieces becomes large.
We start by intersecting § with a plane and obtaining a plane region that is called

a cross-section of §.

y

y=fx)

Figure 11 Figure 12

Let A(x) be the area of the cross-section of S 4n asplanc P, perpendicular to
the x — axis and passing through the point x, where a <x< b (see Figure 11). Think
of slicing S with a knife through x and computing the area of this slice. The cross-
sectional area A(x) will vary x as increases from.a to b..

Definition Let S be a solid that lies between x=a and x=5. If the cross-
sectional area of S in the plane P , through x'and perpendicular to the x-axis, i1s 4A(x),
where A(x) is a continuous function, theén the wwolume of S is

V= f A(¥)dx (©6)

Note 1 The volume of the solid in Figure 12, obtained by rotating the region
under the curve y = f(x) from'a to b about the y-axis, is

v, = x| s [Vy =27fx.s (x)dx} ()

Note 2 If a curvilinear sector revolves around the polar axis, then the volume of
the body of revolutionis found by the formula

) B
V:En_[ﬁ(e)-sinede )

Example 3 Find the volume of the solid obtained by rotating the region bounded
by & x—x” and y =0 about the line x=2.

Solution Figure 13 shows the region and a cylindrical shell formed by the
rotation about the line x=2. It has radius 2—-x, circumference 27 -(2—-x), and

height # = x —x*.
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Figure 13

The volume of the given solid is

1 1 4 1
V:JZﬂ-(Z—X)(X—xz)dx=27r-I(x3 —3x’ +2x)dx 2272'-[%—)63 +xzj :%.
0 0

Arc Length

Suppose that a curve C is defined by the equation”y= f(x), where f(x) is
continuous and a < x <h. We obtain a polygonal approximation to C by dividing the
interval [a,b] into n subintervals with endpointsia = x,, x,, x,,..., x, =b and equal
width Ax. If y, = f(x,), then the point P(x; ), lieston C and the polygon with
vertices B, P,, B,,... illustrated in Figure 14, is an,approximation to C .

YA

=Y

Figure 14 Figure 15

The length Lof C is approximately the length of this polygon and the
approximation gets better as we let n increase.

The Ar¢ Length Formula 1f y = f(x) is continuous on [a,b], then the length of
the curve y=f(x), a<x<b is

l:j‘w/1+(f’(x))2dx 9)

Note 1 1f a curve has the equation x=¢@(y),c<y<d, and x=¢(y) 1is a
continuous function, the following formula can be used:
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= j\/u(w'(y))zdy (10)

Note 2 If a curve 1is assigned by the parametric equations
x=x(t), y=y(t), t €[, f] the following formula can be used:

= I\/ ¥(0)) +(y'(0))d (11)

Note 3 If it is known that the polar equation of arc AB i1s r=r(6), 0 €[, 8] the
length of its arc is equal to:

B
I:I\/r2(9)+(r'(6’))2d¢9 (12)

y2=(x+1)3,

Example 4 Find the arc length function for the curye
<1<x <0.

3
Solution The given line can be described by the formula y =(x+1)2 and it is

symmetrical relative to x-axis. Therefore we Wwill search for the length of the line

1
lying at the second quater. Let us calculate the'derivative ' = 3 (x +1)2.

Then /= _[JH( x+1) )dx j x+1 Jox+13dy=
11 (9x+13)2 1( ; 1313 -8
g = (\Tal-8) =
27

29 3 27
2

-1
L:2-l:2-13\/21?_8:26\/5_16 ~2.879.

Example 5 Find the arc length function for the curve » =3(1+ cosé).

Solution Cardieid 1s a curve symmetrical relative to polar axis. Let us calculate
the length of the,arc lying above the polar axis (See Figure 15).
For (calculating the arc length of this line we will use the

B
formula / :I \/ r+ (r’)2 d@ . Let us calculate the derivative ' = -3 sin@. Then

Z=J-\/9(1+0059)2 +9sin’ 9d¢9=3j J2+2cos@dO= 6jcos§ dQ:IZSing =12.
0 0

0 0
Consequently, the length of the entire cardioid is equal L=2-1=2-12=24.

43



Exercise Set 2.3

In exercises 1 to 15 calculate the areas of the figures, bounded by the assigned

curves.
I. y=x"+4,y=x+4 |2. y=hx,x=e,x=€,|3 y =x,y=1,x=5
y=0

4. y’'=9x, y=3x 5. yP=x"-x 6. y'=1-x, x=-3
{x:a(t—sint) _ols y=x"—6x+9, ¥+ 8x =16,
y:a(l—cost)’y_  4x—y=12 y* —24x =48

10 {x:3cost i1 {x:3cos3t I {xzf&t2
y =15sint y =3sin’¢ y=4t-1

13. r=5(1+cos0) 14. r=23cos26 1567%= a®sin 26

In exercises 16 to 24 find the volume of the body; formed by the rotation of the
figure bounded by the assigned curves around the indicated axis.

16. y=4x—x*,y=x,0Y

17. y=x",4x-y=0,
oY

18&/y=x",x=2, y=0,0Y

19. y=0,5x"-2x+2,
y=2,0Y

20. y* =16x, x=4,0Y

21 y=x*,y=+/x,0X

22. y=x",x=2, y=0,
OX

23. X’ —y’=9, ¥=6,
OoX

24. xy=4, 2x+y-6=0
0).¢

In exercises 25 to 36 find the length of the arc of the curve.

_ 2
3 %,=0,25, x, =1 x=0,x,=0,5
x,=9
28. x=Incosy,y, =0, 29. x=0,25y"-0,5Iny 30 x =3cost
y2:7[/3 ylzl,yzze . y=3Sil’1f
0<t<r7m/2
_ _ & _ 3 _t
31 {x—a(t sint) 32 x =3cos to<i<nr 13 x=¢' cost
v = a(l=cost) y=3sin’t y=eé'sint
0<t<2r 0<t<Inrx
34. r =4(1+cos0) 35. r=2cos*(0/3) 36. 12 =a*sin20
Individual Tasks 2.3

1-3. Calculate the areas of the figures, bounded by the assigned curves.
4-5. Find the length of the arc of the curve.
6. Find the volume of the body, formed by the rotation of the figure bounded by
the assigned curves around the indicated axis
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II.

1. y=x",y=2-x" 1. y=4x, x’ =4y
2. r=T7(+sinf) 2. r=9(1-sinf)

{x:SCost {x:4cost
3. _ 3. _

y =35sint y =3sint
4. y=1-Incosx,x,=0,x,=7/6 4. y=Insinx,x, =7n/3,x,=7/2
5. r=4cosb 5. r=5sinf
6. y=x",x=y",0X 6. x’ =16y, y=4,0X

2.4 Applications to Physics and Engineering

Work

In physics the term work has a technical meaning that dépends on the idea of a
force. Intuitively, you can think of a force as describing@ pushior pull on an object.
Let the material point move along x-axis under the action ef force F(s). The

work of this force in the section of way [a,b] is determined by the formula

A= J' F(s)ds (1)

Moments and Centers of Mass

Among many applications of integral,caleulus to physics and engineering, we
consider one here: centers of mass. As with our previous applications to geometry
(areas, volumes, and lengths) and tesworks“our strategy is to break up the physical
quantity into a large number of small parts, approximate each small part, add the
results, take the limit, and then gvaluate'the resulting integral.

Xy

Figure 16 Figure 17

Our main.objective here 1s to find the point on which a thin plate of any given
shape balances horizontally as in Figure 16. This point is called the center of mass
(or center of gravity) of the plate.

If we have a system of particles with masses m ,m,,....,m_ , located at the

n?o

points x,,x,,...,x, on the x-axis, it can be shown similarly that the center of mass of
the system is located at
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x=t— )

The sum of the individual moments M =Zml.xl. is called the moment of the
i=1

system about the origin. Then Equation 2 could be rewritten as m - x =M , which says

that 1if the total mass was considered to be concentrated at the center of mass x, then
its moment would be the same as the moment of the system.
Now we consider a system of particles with masses m,,m,,..,m, , located at the

points (x;;,), (X,;¥,),..., (x,;»,) 1n the xy-plane as shown in Figure 17.

By analogy with the one-dimensional case, we define the.moment of the system
about the y-axis as

M y = imixi (3)
i=1

and the moment of the system about the x-axis as
M, =) my )
i=1

Then M, measures the tendency of the system to rotate about the y-axis and M

measures the tendency to rotate about the x-axis.

As in the one-dimensional case, the coordinates of the center of mass are given in
terms of the moments by the formulas

LMY — M
x.—_‘—y, = X 5
M 4 M ©®)

Next we consider @ flat plate (called a lamina) with a uniform density o that
occupies a region R=of the'plane. We wish to locate the center of mass of the plate,
which is called the cemntroid of ‘R. In doing so we use the following physical
principles:

The symmetry principle says that if ‘R is symmetric about a line /, then the
centroid of R lies on /. (If R is reflected about /, then R remains the same, so its
centroid remains fixed. But the only fixed points lie on /). Thus the centroid of a
rectangle is its center.

Moments should be defined so that if the entire mass of a region is concentrated
at the center of mass, then its moments remain unchanged. Also, the moment of the
union of two nonoverlapping regions should be the sum of the moments of the
individual regions.

Suppose that the region R is of the type shown in Figure 18; that is, R lies

between the lines x =a and x=b, above the x-axis, and beneath the graph of f(x),
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where y= f(x) i1s a continuous function. We divide the interval [a,b] into n

subintervals with endpoints a = x,, x,, X,,...,x, =b and the equal width Ax. We
choose the sample point x; to be the midpoint;i of thei-th subinterval, that
)/ 2. This determines the polygonal approximation to R shown in

IS X, Z(Xl. +Xl.+1

Figure 19. The centroid of thei-th approximating rectangle R ¢ is its

center C, (Z,% f (;’)j Its area is f (Z)Axi, so itsmassism,=p- f (Z)Axi.

y

>
o
|
<
~
=<

x O] a \ ‘7/;T
X

A \xz
8 R, i
Figure 18 Figure 19 Figure 20

Adding these moments, we obtain the moment of the polygonal approximation
toR, and then by taking the limit as n — o we obtain the moment of R itself about

the y— axis:

b
M, =p j X (x)dx ©6)
Again we add these moments and take the limit to obtain the moment of R about
the x - axis:
b
1
M5 o £ (e (7)

b
The mass of theplate as'the product of its density and its area: M = 'OJ‘ f(x)dx.

Note 1 1If the'plane figure is limited by the lines y = f,(x), y = f,(x), x€[a,b]
and p = p(x) is the surface density of figure, then

M = [ P ()= 10 d
M, = [x- (i) = () d. ®)

M= [P £20- £ 0)as
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Note 2 The static moments of the material arc, assigned by the
equation y = f(x), x €[a,b] relative to coordinate axes are found by the formulas

M= jp<x>\/1 (1)) dx,
M, =jp(X)-f(X)\/1+(f’(x))2dx, ©)
M, = j p(x) - xy1+(f'(x)) dx.

Example 1 Find the center of mass of a semicircular plate oftadius .

Solution We place the semicircle as in Figure 20 $0 that f(x)=~r" —x’
anda=-r,b=r.

Here there is no need to use the formula to calculate. because, by the symmetry

principle, the center of mass must lie on the y-axis, so x=0. The area of the

.. . 1
semicircle is § = Emfz, SO

r

y— \/ﬁ)z 2 I AP 2. X
= = ro=x") dx=—= M =x"Jdx=—|1r’x——| =
! 2 2—[( v’ 0( ) zr’ 3

—Tr -r 0

2
2 2 4

3 371

The center of mass is located at the point (O;:—rj.
T

Exercise Set 2.4
In exercises 1 to6 find‘the coordinates of the center of the masses of a flat uniform
figure (q)) bounded by the assigned curves.

J y:x2 P y2:2x—2 3 x2+4y—16:0
2:4_x y:x2
4 {y 5. 6. r=1+coséf
y=0 y=\/;

In exercises 7 to 12 find the coordinates of the center of the masses of a flat
uniform curve (L).
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7. r=2cosb, 8. r=3sind, 9. r=1+4cosf,0<p<r
0<@p<rn/4 n/6Zp<r/4
_ _ 3 — (i
10 X—SCf)Sta I X—3COSl" I x=al(t smt)’
y=35sint y=3sin’t y=a(l—cost)
0<t<7/2 0<t<7m/2 0<t<L2rx
Individual Tasks 2.4

1-2. Find the coordinates of the center of the masses of a flat uniform figure (CD)

bounded by the assigned curves.
3. Find the coordinates of the center of the masses of a flat uniform curve (L)

IL.
x:y2 y:x2
1. 1.
y=x y=&+2
y=0 y=0,x=0
2. ix=x 2. 4axE=m/2
y=sinx ¥ =COoSx
3. r=23cos0, 0<p<r/4 35 r=2sin0, 0<p<7/4

Additional Tasks 2
1. Calculate the areas of the figures, bounded by the assigned curves.
x =4cost
2_4 2_4 b)wr =2(1+sin@ c
a)y X, X y ) ( ) ) {y=3sint

2. Find the arc length fungtion for the curve.
a) y=1-Incosx, x, =0,x =7/6 b) r =5sin6
3. Find the volume of the body, formed by the rotation of the figure bounded by
the assigned curves.around.the indicated axis.
x> =16y, y=4,0X r=2(1+cosf), polar axis
4. Calculate thejareas of the figures, bounded by the first and second loops of the
Archimedessspiral » = a6 .
S=Find‘the distance traveled by the material point to a stop, if the velocity of

movement is given by v =te *"".

6."A circular swimming pool has a diameter of 24 ft, the sides are 5 ft high, and
the depth of the water is 4 ft. How much work is required to pump all of the water out
over the side?

III DIFFERENTIAL EQUATIONS

The one of the most important of all the applications of calculus is the differential
equations. When physical scientists or social scientists use calculus, they analyze a
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differential equation that has arisen in the process of modeling some phenomenon that
they are studying.

3.1 General Differential Equations. Separable Equations

Definition A differential equation is an equation that contains an unknown
function and one or more of its derivatives. The order of a differential equation is the
order of the highest derivative that occurs in the equation.

Thus, equation y'=xy is a first-order equation. In this equation the independent

variable is called x. A differential equation of the first order/18.F'(x,y,9)=0

or y'=f(x,y).

Definition A function f(x) is called a solution of a differential equation if the
equation is satisfied when y= f(x) and its derivatives are,substituted into the
equation.

When we are asked to solve a differential equation we.,are€xpected to find all
possible solutions of the equation.

Definition A general solution of the first-order ‘differential equation is a
function y = ¢(x,C), (C = consz‘) such that:

1) y=¢(x,C) is a solution of this equation for any value of C ;
2) for any admissible initial condition y(x,) =y, there is a value C = C, at which
the function y = ¢(x,C,) satisfies the given initial condition.

Definition A particular solution of a differential equation is the solution obtained
from the general solution for a specificiwvalue of the constant C .

When applying differential equations, we are usually not as interested in finding a
family of solutions (the general solution) as in finding a solution that satisfies some
additional requirement. In many physical problems we need to find the particular
solution that satisfies a condition of the form y(x,)=y,. This is called an initial

condition, and the problem of finding a solution of the differential equation that satisfies
the initial condition is called an initial-value problem.

Geometrically,swhen “we impose an initial condition, we look at the family of
solution curves and,pick the one that passes through the point (x,,y,). Physically,

this corresponds to measuring the state of a system at time ¢, and using the solution of
the initial-value problem to predict the future behavior of the system.

Modeling with Differential Equations

In describing the process of modeling, we talked about formulating a mathematical
model of a real-world problem either through intuitive reasoning about the phenomenon
or from'a physical law based on evidence from experiments. The mathematical model
often takes the form of a differential equation, that is, an equation that contains an
unknown function and some of its derivatives.

Models of Population Growth

One model for the growth of a population is based on the assumption that the
population grows at a rate proportional to the size of the population. That is a
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reasonable assumption for a population of bacteria or animals under ideal conditions
(unlimited environment, adequate nutrition, absence of predators, immunity from
disease).
Let’s identify and name the variables in this model: # =time (the independent
variable); P =the number of individuals in the population (the dependent variable).
The rate of growth of the population is the derivative dP / dt. So our assumption
that the rate of growth of the population is proportional to the population size is
written as the equation
dP
dt
where & is the proportionality constant. Equation 1 is our firstimodel for population

kP (D

growth; it is a differential equation because it contains an unknownfunction P(¢) and
its derivative dP / dt.

Having formulated a model, let’s look at its consequences. If we rule out a
population of 0, then P(¢) >0 for all values of . So, ifk> 0, then Equation 1 shows,

that P'(t) >0 forall ¢.
This means that the population is always“increasing. In fact, as P(¢) increases,
Equation 1 shows that dP/dt becomes larger.wIn other words, the growth rate

increases as the population increases.
Equation 1 asks us to find a function.whose derivative is a constant multiple of
itself. We know that exponential functions have that property. In fact, if we

let P(t) = Cée", then P'(t) = (Ce") = Chke! =k(Ce")=kP(t).

Thus any exponential function of the form P(¢) = Ce" is a solution of Equation 1.
Allowing C  to vary through“all the real numbers, we get the family of
solutions P(¢) = Ce" whose graphs are shown in Figure 21. But populations have only
positive values and so we are interested only in the solutions with C > 0. And we are
probably concerned only with the values of # greater than the initial time =0.
Figure 22 shows the physically meaningful solutions. Putting =0, we

get P(0) = Ce” & Cyso'the constant C turns out to be the initial population P(0).

P“/

~

JIN

Figure 21 Figure 21
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Separable Equations
Definition A separable equation is a first-order differential equation in which the
expression for dy / dx can be factored as a function of x times a function of y. In other

words, it can be written in the form:

—=f(x)-0(») )

The name separable comes from the fact that the expression on the right side can
be “separated” into a function of x and a function of y. Equivalently, if p(y)y#0, we

could solve this equation rewriting it in the differential form:

dy dx
dy = f(x)-@(y)dx, ——= :
p(y)  f(x)
Then we integrate both sides of the equation:
dy dx
[=- ()
p(y) Y f(x)

Equation 3 implicitly defines y as a function of x.‘In/some cases we may be able
to solve for y in terms of x.
Note 1 If M(x)-N(y)dx+ P(x)-QO(y)dy =0; then
IM(x)d _[Q(y)d _ @y P(x) %0, N(y)20.
P(x) N(y)
Definition A function ¢(x,y) is calledsa homogeneous function of degree n with

respect to the variables x and y, if for.any # € R the identity go(tx,ly)zt" -go(x, y)

holds.
Definition The differential equation of the form
M (x,y)dx+N(x,y)dy =0 4)
is called a homogeneous differential first order equation, if M(x,y), N(x,y)are
homogeneous functions of ‘the same order.
If functions M (x, ), N(x,y) are the uniform functions of one and the same

measurement, then theiequation (4) is possible to lead to the form

YD_ 2
dx_(p(xj )

The substitution y = x-u(x) can be used to converting the equations (4) or (5) to

the separable equation.
Example- Integrate the differential equation of the model for population growth

2 _kp.
dt

Solution We write the equation in terms of differentials and integrate both sides:

d?P:kdt = jdf:jkdt :ln\P\:kt+C,
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where C is an arbitrary constant. (We could have used a constant C, on the left side
and another constant C, on the right side. But then we could combine these constants
by writing C = C, —C,). Solving for P, we get
P(t) =" =e"e" = 4e" , A =const.
Example 2 Solve the differential equation
(V*+xp°)- Y +x"—yx* =0.
Solution We write the equation in terms of differentials and integrate both.sides:
V(1 +x)dy=x"(y—1)dx.
Ifx#0,y#0,x#-1,y#1, then

2 2
4 dy = T i :>J‘ y+1+L dyzj‘(x—l—l-Ljdx:
y—1 x+1 y—1 x +1

2 2
y?+y+ln|y—l|=%—x+ln|x+1]+C,

where C is an arbitrary constant.
Example 3 Find the solution of the initial-value problem
(x2 —3y2)dx+2xydy =0, w(2)=1.
Solution Let us write down the equation in the form:
dy 3y -« :ﬂ:l(ﬂ_z],
dx 2xy dx 2

XY
. y ix
Since ¢(tx,ty)=3——-—= 3————(o(x y), then the replacement of the
x ty X Yy

unknown function of y = x -u(x) ean be mtroduced and y"' =u(x)+ x-u'(x).

Substituting these expressions into the initial equation, we will obtain the
separable equation:

2_ 2_
x'”'(x)+u=l(3u—lj:> xu'zl(u—l <:>xu’:u 1<:>xdu:u 1a,’x<:>
Z i 2 u 2u 2u

2udu  dx J‘ 2udu
C} = —

. J'— — In|u’=1=In|x|+In|C| < u*>-1=Cx;
u -1 x

2w

Since y(2)=1, we have | -4 =8C; C =-3/8. Therefore the solution to the initial-

valueproblem is
2
y 3 3
—=1-=x, =tx,/l—-—=x.
O

Exercise Set 3.1
In exercises 1 to 12 solve the differential equation.
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1. xdx+ﬂ20 2. xyy'=1—x2 3. (2x+ex)d —Q:O
y+5 Y
4. xy'=y" +1 5. e™"dy=xdx 6. tgx-sin’ ydx +cos’ x - ctgydy =0
2 , X+
7. y,:y_2_2 8 y=- yy 9. ydx+(\/5—\/;)dy20
X
10. )Cy'zyll’lﬁ 11. (x+2y)dx—xdy=0 12. xy':quz—xz
Y

In exercises 13 to 18 find the solution of the differential equation'that satisfies the
given initial condition.

13. (xy2+x)dx+(y—x2y)dy:0,y(0)=l 14. y'-sinx = ylny, y(gjze

1 . = . Q1 _£ ' 2 2
15. sin y-cosxdy =cos y-sinxdx, y(0) = 5 16. xy' =y +yx’+y", y()=0

17. (x+xy)dy+(y—xy)dx=0, y(1)=1 18. xy'=y(1+lny—lnx),y(l)ze2

19. A tank contains 20 kg of salt dissolvedyin 5000 L of water. Brine that
contains 0.03 kg of salt per liter of water enters, the tank at a rate of 25 L/min. The
solution 1s kept thoroughly mixed and drains from the tank at the same rate. How
much salt remains in the tank after half an hour?

20. Suppose you have just pouredwa cup of freshly brewed coffee with

temperature 95°C in a room where the temperature is 20°C. Newton’s Law of

Cooling states that the rate of cooling of an‘ebject is proportional to the temperature
difference between the object and itsisurroundings, provided that this difference is not
too large. Write a differential‘equation that expresses Newton’s Law of Cooling for
this particular situation. Solveithe differential equation to find an expression for the
temperature of the coffee atitime 7.

21. One model for the'spread of a rumor is that the rate of spread is proportional
to the product of theé“fraction of the population who have heard the rumor and the
fraction who have not heard the rumor. Write a differential equation that is satisfied
by y and solve the differential equation. A small town has 1000 inhabitants. At 8

AM, 80 people'have heard a rumor. By noon half the town has heard it. At what time
will 90%/ ofthe population have heard the rumor?

Individual Tasks 3.1
1-3. Solve the differential equation.
4-6. Find the solution of the differential equation that satisfies the given initial
condition.

II.
1. xy'—y=y’ 1. (x2+x)y’:2y+1
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2. 4(yx* +y)dy +/5+ 1 dx =0
2. x4+ Y dx— N1+ x*dy=0 ( y ) y
2

y y 3. xy'cos—=ycos——x
3. 3y,:—2+9—+9 X X

X X 4. xdy—(y+1Ddx=0, y(2)=5
4. y'cos’x=ylny, y(z/4)=e

5. (xy'—y)arctglzx, y(1)=0
5. x/ =xsinX+y, y(2)=x *
X

6. (x> =3y")dx+2xydy=0, y(2)=

S

(x2 +y? )dx =2xydy, y(4)=0

3.2 Linear Equations

Definition A first-order linear differential equation is the“one that can be put
into the form:
Y +p(x)y=4q(x) (or A(x))' +B(x)y+C@) =0) (1)
where p(x) and g(x) are continuous functions on a given interval.

It turns out that every first-order linear differential equation can be solved in a
similar way by multiplying both sides of Equation' I by a suitable function called an
integrating factor

I(x)=el " @)
Thus a formula for the general solution to,Equation 1 is provided by the solution
1
y(x) = —( j I(eyg s + c) 3)
I(x)

where I(x) = eJ PO nstead/ of memorizing this formula, however, we just
remember the form of the integrating factor.

Note 1 1t turns out that'every first-order linear differential equation can be solved
by using the substitution y.=u(x)-v(x), where u(x), v(x) are unknown functions. We
reduce this equationste,the form:

uv+uv'+ p(x)uv = q(x), u'v+u (v' + p(x)v) =q(x).
Since onesof the unknown functions can be selected arbitrarily, then v(x) is
taken as any particular solution of the equation
v+ p(x)v=0,
function u(x)*will be determined from the equation
u'(x) - v(x) =q(x).

Thus, the solution of a linear equation is reduced to the sequential solution of two
equations with the divided variables relative to each of the auxiliary functions.

Note 2 A first-order linear differential equation is one that can be put into the
form

X'+ p(x=q(y).
This linear differential equation can be solved with the help of the substitution
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x(y)=u(y)-w(y).
Note 3 The Bernoulli equation takes the form
V' +px)y=q(x)-y" or x'+ p(y)x=q(y)x", neR.
These equations can be reduced to the appropriate linear equations, but then they
are usually solved with the help of the substitution
y=u(x)-v(x) or x=u(y) - v(y).
Example 1 Solve the differential equation '+ 3y =x".
X

Solution We use the substitution y =u-v, y' =u'v +uv'. We obtain'the following

equation

' ' 3MV 2 [ ' 3V 2
uv+uy +—=x = uv+tu|lv +—|=Xx".
X X

: 3v
We solve two equations v/ + —=0 and u'v=x".
X

dv 3v dv 3dx dv 3dx 1
—=—— o —=—=|—=-|—< hivF38B8h|x|=> v=—.

dx X % X v X X
6

u'-%:x2 < @:xs & du=xdx = u:jxsdx:x—+C.
X dx 6
Multiplying u(x) on v(x), we obtain theigeneral solution of this equation

3

1(x° x C
=—| —+C |%or y=—+—, C—const.
4 x3(6 ] " 6 x

Example 2 Find the solution of the initial-value problem
2ydest (V= 6x)dy =0, y(6)=2.
Solution 1t is easy to see that this equation is not linear relative to y. Let us write

it down in the form
2y@+y2—6x20; ﬂ—éx:—l; X =uv; u'v+uv'—éuv:—z;
ay 'y 2 Y
u'v+u(v’—iv]=—z' dv _3v. ﬂ:@; In|v|=3In|yl; v=)"

y 2 dy oy vy

Then from the equation u'v = —% we determine the function u(y):
1 1
u'y3:—l; u'=——; du:—d—yz; u=—-m-+=~C.
2 2y 2y 2y

Let us extract the general solution of the initial equation
2

X =uv; x:(i+ij3; x:Cy3+y—.
2y 2

Since y(6)=2, we have 6=8C +2, C =1/2. Therefore the solution to the initial-
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value problem is x =0,5 ( Y+ yz) .

Exercise Set 3.2
In exercises 1 to 9 solve the differential equation.

Y

1. y)—==x 2. xy'+2y=x’ 3. x)'+y=xp"Inx
X

4. y,+2_y:& 5. y'—z—y:e"(x+1)2 6. yzdx—(2w+3)dy=0
X  cos"x x+1

7. 2xydx+(y—x2)dy=0 8 xy —-3y=x"-2x+5x 9.ﬂ+1=—xy2

X £ X
In exercises 10 to 15 find the solution of the differential equation that satisfies the
given initial condition.

3 2

10. y'+=y=—, y()=1 11. ¥y +2xy=Inx, y(e)=1
xTox

12. xy'+y—e"=0, y(a)=b 13. y'+3y=e"H)?, ¥(0)=1

14. y’+6—y:x3,y(1):3 150 y' — ytgx = 12 , y(0)=2
x cos” x

Individual Tasks.3.2
1-3. Solve the differential equation.
4-6. Find the solution of the differentialiequation that satisfies the given initial
condition.

I1.
4y x*=3x+1 , 3y 4x-5
l. y+—=—=" " I Y+ =
yr X x? Y X x’
3
' X 2. y'= J
2. 3xy —2)’:7 4 2ylny+y—x
3. (1—|—x2)y':xy+x2y2 3. xzy'+2x3y:y2(1+2x2)
, ! Ay (D) =
4. y'+ ytgx = 2 #(7)=5 4.y . 3+2x-x%, y()=4
cosx
5.y —Ty£eiyk y(o):2 J. xdy:(e x—y)dx, y(l)ZI
L oy _
6. yzdx:£x+ye y]dy, y(O):—3 0. y T -3 r_3° y(l)——2

3.3 Higher Order Differential Equations
Admitting a Reduction of the Order
Definition A differential equation is called a differential equation order n, if it

can be represented as follows:
F (.3, =0 1)
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Definition A function y = ¢(x) is called a solution of a differential equation if the
equation is satisfied when y =¢@(x) and its derivatives are substituted into the
equation.

Definition A function y = ¢(x,c¢,,c,,..,c,) is called a general solution of a
differential equation (1) if the function is satisfied to following conditions:

1. A function y = ¢(x,¢,,c,,..,c,) is a solution of a differential equation.for any
fixed values of constants ¢,,c,,..,c, ;

2. There are unique values of constants ¢, = ¢/, ¢, =cj, .., ¢, = ¢y .for any initial
conditions

2(2) = 3007 (5) = Voo 3" (3) = 3, o

such that a function y = ¢(x,c/,c;,..,c.) is a solution of a differential equation and it

satisfies initial conditions (2).

Definition A function y = ¢(x,c/,c,..,c)) is called a_partial solution of a
differential equation (1) if it can be obtained from a general solution with any fixed
values of constants ¢, = ¢/, ¢, =c3, ..,c, =c..

The problem of finding a solution of the differential equation F (x, 2 y(")) =0

") s called

that satisfies the initial condition y(x,)=y,,»'(%)="»;..... y("*l)(xo) = yo(
an initial-value problem.

The simplest method of solution of a differential equation is the method of
reducing the order of a differential equation. The essence of the method is that this
equation can be reduced to an equation of @ lower order by means of a change of
variable. Let us consider some typesiof‘higher-order equations that allow a decrease

in order.

1. y" = f(x)
The general solutionsis found by the » -times integration method.
Example 1 Solve the differential equation y” = x + cos x.

Solution We successively integrate this equation 3 times
2

.
" :J‘(x+cosx)dx:7+smx+cl;

2 3

X . X
y'=|| —+sinx+c¢, de=—-cosx+cx+¢,;
2 1 6 1 2

X3 x4 . x2
y= Z—COS)(T-i‘C'l)(T'i'C‘2 XZQ—SIHX+CIE+02X+C3.

2. The equation obviously does not contain a function y: y"= f(x,y")

With the help of the substitution y'= p(x), y" = p'(x) the equation y" = f(x,y") 1s
converted into a first order differential equation. The solution of this equation
depends on its type.
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We write the general solution in the form of p = ¢(x,C,). We substitute it in for

the unknown function p(x)=)'(x) and solve the separable equation:
dy

E:(P(X,Cl) = dy=¢(x,C)dx = sz@(x,Cl)dx+C2.

Example 2 Find the solution of the initial-value problem
xy" = y'lny;, y(l) =e, y’(l) =e’

Solution This differential equation is a second-order equation/that does not
explicitly contain the wvariable y. We reduce the order of gheyequation by
substituting ' = p(x), y"= p'(x).The initial equation is transformed into a

homogeneous differential equation of the first order with respect to the unknown
function p(x):

xp’:plng = p’z%lnf.

Solve it in a known way

M:u(x), p(x):x-u(x), p=utxu'; = u+xu' =ulnu
X
L=@;:> In|lnu-1]=In|%¥+M)C|; = [nu-1|=|Cx|; =
u(lnu—l) X

Inyu-1=+Cx; £C=€C, = hhu-1=Cx; =

1+Cix L+Cx 1+Cyx

u=e = _p =we = y' =xe
We use the initial condition y'(1) = e* or p(1)=e’:

el 2=14+C; C =1.
Hence, we obtain the equation

1

1 _4 X+ _ x+1 _ x+1 x+1
V' =xe 3y—jxe dx=xe"" —e" +C,.

From the initial condition y(1)=e we find the value of the constant C, :
e=e’—e’+C;; = C,=e.
Thus, a particular solution of the original equation is the function
y=(x-1e"" +e.

3. The equation obviously does not contain a variable x: y" = f(y,y")
With theshelp of the substitution ' = p (), y" = p’p the equation y" = f(y,)") is
converted into a first order differential equation. The solution of this equation

depends,on its type.
Example 3 Find the solution of the initial-value problem

WY+ " =0,y(0)=1y"(0)=1.
Solution

59



This equation is a second-order differential equation in which the variable x is
obviously not present. We reduce the order of the equation by the

substitution y'= p(y), y" = p’p. We obtain the first-order equation:

r=0,

'+ p+y=0.

We solve a homogeneous differential equation of the first order in a known way:

w+p +ypp'=0= p(Hyp'+p+y)=0 :{

§=u(y), p=y-u, p'=u+yu';

u+tyu'=—u-1 = yu'=-2u-1= ydu=—Qu+0dy =
du _ dy

2u+l y

= l1n|2u+1|:—1n|y\+lln|C| :>2u+1:%,
2 2 y

Exercise Set 3.3
In exercises 1 to 9 solve the differential equation.

4

I. y"=2x+cosx 2. y" P 3. x%y"+xy =1
x

4. yy"+y"” =1 5. y"=x+sin3x 6. xzy"'=(y")2

7.xy"=y'(Iny' ~Inx) 8. y"l‘gy=2(y')2 9. )cy"+y'=(y')2

In exercises 10 to 15 find the solution of'the differential equation that satisfies the
given initial condition.

m_ X o " _ " '
10. y _—(x+2)5’ y)=y'B=9'1)=0 11. y'=¢e", y(O):O, y(O)zl
" N2 ' " In x '
12. 29" =(y), y(-H=Hy(-D=1 13- y"=— y(1)=3 y()=1
14 xym_yrr:xz _}_1’ ]5 (x+1)y"+xy'2 :yr’
y(=1)=0, y'(z1)= 1 y"(-1)=0 y)=-2,y'(1)=4

Individual Tasks 3.3
1-3. Solvethedifferential equation.
4=6. Find the solution of the differential equation that satisfies the given initial
condition.

11.
. Y"=x"—sinx 1. y"=xsinx
) ym — (yll)2 2 Zyy" — 3y!2 + 4y2

1

2

3 xy!l_yl:xZex 3 (1+x2)y"—2xy'=0
4

. xym:2’ y(l):O’S 4 y”:h;_zx, y(l):3, y'(l):1
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y'(1)=»"(1)=0 5. 0" =y =x+1, y(-1)=0
3. y"(x2+1):2xy', y'(-1)=1y"(-1
y(0)=1, y'(0)=3 6. y'=e”, y(0)=
6. yHy'+1=0, y(1)=1, y'(1)=0

3.4 Linear Homogeneous Differential Equations

Definition A differential equation is called a second-order linéar differential
equation, if it can be represented as follows:
P(x)-y"+0(x)-y'+ R(x) -y =G(x) (1)
where P(x),0(x),R(x),G(x) are continuous functions.
In this section we study the case where G(x)=0 for_.all values of x. Such

equations are called homogeneous linear equations. Thus the form of a second-order
linear homogeneous differential equation is
P(x)-y"+Q(x)- ¥+ R(x)-y=0 )
If G(x)#0 for some x, Equation 1 is nomhomogeneous and is discussed in

Section 3.5.
Theorem 1 1f y (x) and y,(x) are both solutions of the linear homogeneous equation

(2) and C,, C, are any constants, then the linear eombination y = C,y, + C,y, 1s also a

solution of Equation 2.
The other fact we need is given by the following theorem which says that the general
solution is a linear combination of twe, /inearly independent solutions y (x) and y,(x).

This means that neither y, (x) nor y,(x) is a constant multiple of the other.

Theorem 2 1f y (x) and y,(x) are lmearly independent solutions of Equation 2,
and P(x) # 0, then the general'solution is given by y = C,y, + C,y,, where C, and C, are
arbitrary constants.

Note 1 Two funactions f,(x) and f,(x) are linearly independent on the

interval [@,b]if and enly if W(f,./,)#0 for any x €[a,b], where the determinant

Lo S
W(~f1’~f2): [ ’
Lo L

is called the Wronskian of the functions f,(x) and f,(x).

In"general, it is not easy to discover particular solutions to a second-order linear
equation. But it 1s always possible to do so if the coefficient
functions P(x),Q(x),R(x) are constant functions, that is, if the differential equation

has the form

Y+ py'+qy=0 (3)
where p,q are constants.
After replacing y = ™, we get the equation

k*+pk+qg=0 4)
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Equation 4 is called the auxiliary equation (or characteristic equation) of the
differential equation (3).
The general solution of the initial equation takes the form:

1. y=Ce" +C,e™, if k #k,; k,k,eR

2. y=e"(C, +C,x), if k =k,

3. y=e"(Cicos Bx +C,sin Bx), if k,=axip.
Definition A differential equation is called a linear homogeneous differential

equations order n , if it can be represented as follows:

(n) (n-1) (n=2) ’ _
yota,y ta,,y +ot+ay +a,y=0 (5)

The general solution to the equation (5) is a function
y=Cn+ Gyt +Cy,,

where y,, y,,..., y, are linearly independent solutions of equation (5).

Particular linearly independent solutions of equation (5) can be founded in the
form y = . To determine k, the following characteristic equation must be formed

k"+a, k"' +a, k" +- +ak +a,20.

1. Each real root k of the characteristic equation corresponds to one particular
solution of (5) of the form y =e* .

2. Each real rootk of orderm comesponds to » linearly independent partial
solutions of (5): y, =e",y, = xe" -,y "= x"e".

3. If a +if is a pair of complex roots ofia characteristic equation of order » , then

it corresponds to 2m linearly independent solutions of  (5):

m—1 _ax m—1 _ax

e’ cos fx, e sin Bx; xe” caos fx, xe” sin Bx; ..., x"e* cos fx ,x" e” sin fx.
Example 1 Solve the equations
y'=5y"+6y=0; ' +8y'+16y=0; y'—6y"+13y=0.
Solution For each case we compile a characteristic equation, we find its roots, we
extract the appropriate linearly independent solutions of a differential equation and
their general solution;

a) k> -5k+6=0 =k =2, k,=3 =y =", y,=¢" = y=Ce™ +C,e”;
b) K*F8k+16=0 =k =-4, k,=—4 =y =e*, y,=xe* =

= p=eC, +Cyx);
) k*—6k+13=0 =>k,=3%£2i=a=3,=2=

=y, =€ cos2x, y, = sin2x= y=¢""(C cos2x + C,sin2x).
Example 2 Solve the initial-value problem

y'=5y'+6y=0; y(0)=1, y'(0)=0.
Solution Example 1 has determined that the general solution of the differential
equation is y = C,e** + C,e™*.
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Differentiating this solution, we get y' = 2C,e** +3C,e™".

To satisfy the initial conditions we require that
y(0)=C+C, =1 (a)
¥'(0)=2C, +3C, =0 (b)

From (b), we have C, = —%Cl and so (a) gives

c-2c-1;1c-1;¢-3,0,--2c --2.3-2,
3 3 3 3

Thus the required solution of the initial-value problem is y = 3¢’ —2¢°*.

Example 3 Solve the equations

14 ” _

Solution For each case we compile characteristic equation, we find its roots,
extract the appropriate linearly independent solutionsfof differential equations and
their general solution:

a) k> =3k>—10k+24=0,k =2,k,=-3,k,=4; y=Ce* + C,e” + C,e*";

b) k*+3k>—4=0, (k*-1)(k>+4)=0, k=&l k, =1,k =—2i, k, = 2i;
y=Ce "+ C,e" +C,cos2x+C,sin2x,

¢) k' +2k>+1=0, (k> +1)* =0, k, =i, kyy="=1i; y, =cosx, y, =sinx,

y,=xcosx, y,=xsinx; y=(C +C,x)cosx +(C, +C,x)sinx.

Exercise Set 3.4
In exercises 1 to 12 solve the differential'equation.

1. y"+y'=2y=0 249"=9y=0 3.9"=2y"+y=0
4. y"-10y'+25y=0 5. '+ 6y +13y=0 6. y"+36y=0
7.y"+2y"-8y=0 8" +3y'=0 9.y"-6y'+34y=0
10. y" +4y"=0 1] v =4y +4y"=0 12. y" +8y'=0

In exercises 1340 18 find the solution of the differential equation that satisfies the
given initial condition.
13. y"—4y' ¥3y=0, y(0)=6,)"(0)=10 4. y"+4y=0,y(0)=0, y'(0)=2
15, y"+4y'+29y=0,y(0)=0,y'(0)=15 16. y"+3y'=0,y(0)=0,y'(0)=3
17. y" 433" 43y —y =0, 18. y"+3y"-5y"+3y=0,

y(0) =1, y(0)=2, y"(0)=3 y(0)=0, y'(0)=1, y"(0)=-2
Individual Tasks 3.4
1-6.,Solve the differential equation.

1.
1. y"=y'=0 1. y"—4y'=0
2. y"—4y'+13y=0 2. y"+16y =0
3. y"+8y'+16y=0 3. y"=10y"+25y =0
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4. y"-2y'-15y=0 4. y"-12y"+11y=0
5' ylV +4y":0 5 y[V +12ym+36y”:()
6. y" =6y"+9y=0 6. ¥ 427y =0

3.5 Nonhomogeneous Linear Equations

Definition A differential equation is called a linear homogeneous differential
equations order n with constant coefficients, if it can be represented as follows:

y(n) + an—ly(n_l) + an—zy(n_z) +eeet aly, +a,y= f(x) (1)
In this section we learn how to solve second-order nonhomogeneous linear
differential equations with constant coefficients, that is, the equations of the form
Y+ py'+ay=f(x) ()
where p,q are constants and f(x) is a continuous function. The related homogeneous
equation
Y+ py'+qy=0 (3)
is called the complementary equation and plays an important role in the solution of
the original nonhomogeneous equation (2).

Theorem 1 The general solution of the nonhomogeneous differential equation (1) can

be written as

y=y+y* 4)
where y* is a particular solution of Equation 2 and y is a general solution of the
complementary Equation 3.

Therefore Theorem 1 says that, we know the general solution of the
nonhomogeneous equation as soon.as we know a particular solution y *. There are
two methods for finding asparticular solution. The method of undetermined
coefficients 1s straightforwardbut works only for a restricted class of functions f(x).

The method of variation of parameters can be used for every function f(x) but is
usually more difficult to apply in practice.

The Method of Undetermined Coefficients

L If f(x)=£ (*):e”, where P (x) is a polynomial of degree », then try
YE=2'0,(x) e,

where Q (&) ‘1s an nth-degree polynomial (whose coefficients are determined by
substituting in the differential equation).

2. If f(x)=e"(P/(x)cosbx +Q, (x)sinbx), where P(x) is anpth-degree
polynemial ( Q, (x)1is an m th-degree polynomial), then try

yE=x"e" (SN (x)cosbx + T, (x)sin bx) ,

where S, (x),T, (x) and are N th-degree polynomials ( N = max {n,m}).

Modification: » number is equal to the multiplicity of the number with respect to
the roots of the characteristic equation.
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Example 1 Solve the equation "+ 3y’ -4y =-4x” —6x +19.
Solution The auxiliary equation of y"+3y'—4y=0 isk’+3k-4=0 with the

_ —=3£425
1,2 2
So the solution of the complementary equation is y = C,e™** + C,e*.

roots

k = k=4, k,=1.

Since f(x)=-4x>—-6x+19 is a polynomial of degree 2, we seckwa,particular

solution of the form of y* = Ax*> + Bx + C. Then (y*)' =2Ax+ B and (y*)” =24 so,

substituting into the given differential equation, we have
24+3(24x + B)—4(Ax’ + Bx+ C) = —4x" —6x+19,
—4A4x* +(64—4B)x+(24+3B-4C) =—-4x"—6x +19.

Polynomials are equal when their coefficients are equal. Thus

—4A4=-4 A=1
64—4B=-6 < 1B=3
24+3B-4C =19 C=-2

A particular solution is therefore y* = Ax* + BetC = x> +3x 2.

The general solutionis y = y* + y=C,e ' +Cye’ + x* +3x - 2.

Example 2 Solve the equation y" — y'=2y=4xe”.

Solution The auxiliary equation “of y"= ' —2y=0 isk’—k-2=0 with the
roots k, =—1, k,=2. So the solutiony, of the complementary equation
is y=Ce™ +C,e™.

For a particular solution we try'y* = (4x + B)e”.

Then (y*) = Ae* + (Ax+ B)e',= (Ax+ A+ B)e* and (y*)"=(Ax+2A4+ B)e* so,
substituting into the giyendifferential equation, we have

24e" + (Ax+ B)e® — Ae* — (Ax+ B)e® —2(Ax + B)e" =4xe”,
A—-2Ax-2B =4x.

Polynomialsiareiequal when their coefficients are equal. Thus
—24=4, A-2B=0; A=-2, B=-1.

A particular selution is therefore y* = —(2x +1)e”.

The general solution is y = Cie™ + C,e** — (2x +1)e”.

Example 3 Solve the equation y" + y = xsin x.

Solution The auxiliary equation of y" + y =0 is k> + 1= 0 with the roots
k=+i=0%1-i (a=0,5=1).

So the solution of the complementary equationis y = C,cosx + C, sin x .

For a particular solution we try y* = x((A4x + B)cosx + (Cx + D)sinx).

We find derivatives (y*)', (y*)" and substitute them in the assigned equation:
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¥y =(Ax” + Bx)cosx + (Cx* + Dx)sinx;
(y*) =(2A4x+ B)cosx — (Ax* + Bx)sinx + (2Cx + D)sinx + (Cx* + Dx)cos x ;

(y*) =2Acosx—2(2A4x + B)sinx — (A4x” + Bx)cosx + 2Csinx + 2(2Cx + D) cos x —
—(Cx* + Dx)sin x;
2A4cosx—2(2A4x+ B)sinx + 2Csinx + 2(2Cx + D)cosx = xsinx.

These expressions are equal when their coefficients before sin&’,cosx,xsin x,
xcosx are equal

24+2D=0 A=-1/4
4C=0 B=0
=
—2B+2C=0 C=0
—44=1 D=1/4
2
Therefore the particular solution is y* = —%cosx + %sinx.

2
.. : X X .
The general solution is y = C,cosx + C, sinx — Tcosx + Zsmx :

The Method of Variation of Parameters
Suppose we have already solved the homogeneous
equation y" +a,y'+a,y =0 and written the = solution as3y=Cy,(x)+C,y,(x),

where C,,C, —const, y,(x), y,(x) areslinearly independent solutions. We look for a
particular solution of the nonhomogeneous equation of the form
¥ =G (%) (0) +C,(x) - y,(x) (5)
(This method is called¢variation of parameters because we have varied the
parameters C,,C, to makedhem functions.)

Functions C,(x),C,(x) are determined from the system of equations:
G ()1 (x)+C, (x)y,(x) =0,
G )y () +C, (x)y, (x)= f(x).

Example 4 Solve the equation y" +4y =

sin 2x
Solution The auxiliary equation of y"+4y=0 isk’+4=0 with the
roots k= +2i.
So.the solution of the complementary equation is y = C, cos2x + C,sin2x.
For a particular solution we try
¥ =C,(x)cos2x+ C,(x)sin2x;
y(x)=cos2x, y/(x)=-2sin2x,
y,(x)=sin2x, y;(x)=2cos2x.
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Functions C,(x),C,(x) are determined from the system of equations:
C/(x)-cos2x + Cy(x) -sin2x =0,

—2C/(x)-sin2x +2C,(x)-cos2x = — :
sin2x

We solve this system according to Cramars’ Rules.

cos2x  sin2x 5 .
A= ) =2c0s 2x+2sin"2x=2.
—2sin2x  2cos2x

Then
1 0 sin2x
Cl(x)=— =——,
2 2 .1 2cos2x 2
sin2x
| Cos2Xx 0 .
C(x)=— = —ctg2x.
S IR B by
sin2x
Integrating last two equalities, we have:
1
C(x)=——x,
1(x) 5

1 .
C,(x)= Zln |sin2x|.
The general solution is
) . 1 1. :
y=y+y =C,cos2x+C,simn2x —Excos2x+zsm2xln |sin2x|.

Exercise Set 3.5
In exercises 1 to 12 solve the differential equation.

Ly" =3y +2y=xe™ Q2 -3y +2y=(Q2x+3)e" 3. y'-3)+2y=e
4 y”—lOy'=10x2+18x 5 y"_gy'+16y:e4x(1—x) 0. y"—lOy'=(3x—4)e5x
7. Y"+9y =3sinx 8. y"+9y=2sin3x—4cos3x 9. y"+16y =xsindx
10. y" ~ y =3xe’ 71, " —y=sinx 12. " =y =2xe*

In exercises, 13 to 16 find the solution of the differential equation that satisfies the
given initial condition.

I35, y'+ y/i=2cosx, 14. y"+4y=4(cos2x +sin2x),
y(0)=1, y'(0)=0 v(r)=2x, y'(n)=2rx

15, y"+y=4sinx—-6cosx, 16. y"+9y=2cosd4x —3sin4x,
y(0)=1,»'(0)=18 y(0)=0, y'(0)=12

In exercises 17 to 22 solve the differential equation.
2x

17. y"—4y' +5y = ¢ 18. y"+4y' +4y=e* Inx 19. y"+y+cig’x=0

COS X
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20. y"+y' =1gx- 21. y"—y' =e* cose” 22. y'+dy=—5

COS X sin” x

Individual Tasks 3.5
1-6. Solve the differential equation.

II.
y'+8y" =8x y'=5y'=x+5
V'+4y' +3y =9 y' =3y +2y=e> (xz +x)

y'+y=4sinx—6cosx y"'+9y=2cos4x —3sin4x

yr!l+ylr_2yr:x2 +x y'"+y":6x

X

n !/ € n
Y =2y ty=— V'+y=

sin x

3.6 Systems of differential equations

Definition A system of differential equations is<called a normal system of two
differential first order equations, if it can be represented as follows:

—Zy = f(x,9.,2),

X

p (1)
Z

—=g(x,y,2).
I g(x,y,2)

The Method of Exception
The solution of the normal systém of two differential first order equations
permitted relative to derivatives™ of two unknown functions y(x) and z(x)

(or x(¢), y(¢)), it 1s reduced to the selution of one differential equation of the second

order relative to one of the functiens. Let us examine the given method with the help
of the following example.
Example 1 Find the géneral solution of the system of the differential equations

xX'=x-y,
{ Y =—4x+y.

Solution We differentiate the first equation of the system x"=x'-y'. Let us
replace )’ in.he last equation with its expression from the second equation of the
system x" =o' —(=4x+y), x"=x"+4x—y. Let us replace  in the last equation
with.its expression from the second equation of the system x"=x"+4x—(x-x'),
x"—2x'-3x=0.

The auxiliary equation ofx"-2x'-3x=0 iSk’-2k-3=0 with the
roots k;=-1,k, =3.

So the solution of the complementary equation is x(¢)=Ce™ + C,e™ .

Differentiating this equation with respect to variables, we will obtain:
X' (t)=-Ce™ +3C,e”.
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Then we find y(¢) from the equation y =x—x":
y(t)=Ce +Cye —(~Cie™ +3C,e" ) =2Cie™ = 2C,e™.
x(t)=Ce ' +C,e”
y(t)=2Ce" —2C,e”
differential equations.

Therefore{ is the general solution of the system of

Euler's method to solving uniform systems of differential equations-with the
constant coefficients
Assume that the system of three equations with three unknownufunctions is

X'(t)=a,x+a,y+a,z,
assigned: {1 )'(t)=a,x+a,,y+a,z,
Z'(t)=a,x +a,y+a,z.
x(t)=owe”,
We will search for unknown functions in the form y(t) =",
Z(t) =y- e”.
Substituting these expressions into the system and converting it, we will obtain
the system of linear homogeneous algebraic equations with variables «, 3, :

(a,, —k)a+a,p+a,y =0,
a,a+(a,—k)f+a,y=0, (2)
a3, + a5, f + (@, = k)y=0.
System (2) has non-trivial selutions; if its determinant is equal to zero. We will
obtain a cubic equation for detérmining the number £:

a,, —k a,, a;
A=|.a, a, —k ay; |=0 3)
ay as, ay; —k

Equation (3) is called the characteristic equation of a reference system. We
solve it, we find,values k, for each getting value £ we find «, B,y from system (2),

write the linearly independent solutions for each unknown function and compose the
general solution of the system.
Example 2 Find the general solution of the system of differential equations
X'=x—-y+z,
y=x+y-z,
z'=2x—y.
Solution The characteristic equation of this system takes the form
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1-k -1 1
1 1-k -1=0,

2 -1 -k
(1-k)(=k)-1+2-2(1-k)-(1-k)-k=0,
(k—D(k=2)(k+1)=0,
ki=1,k,=2,k=-1.

Let us find the appropriate values «, S, y for each k from the system of equations
(1-ka—-p+y=0,

a+(1-k)p-y=0, 4)
20— —-ky=0.
If k=1, then
-B+y=0, L=y, a=1, X =e,
a-y=0, =Ja=y,=> =LA~y =¢,
20— -y =0, 0=0, y =1, z, =€
If k=2, then
—a-pB+y=0, 28 =0, a=1, x,=e”,
a-p-y=0, =>3a=mn =1=0, =< »,=0,
2a— -2y =0, 0'=.0; y=1, z,=e",
If £k =—1, then
2 - +y=0, sy -0 5= 3a. a=1, x3=e‘,t
a+2B-y=0, = = =p=-3, =>iy,=-3e",
2a-p+y=0, N+7=0 r=m y =-5, z,=-5e¢".
We extract the/general solution of the system of differential equations
%) =Cx, +C,x, + C,x,, x(1)=Ce' +Ce” + Ce™,
wt)=Cy, +C,y, +C,y,, =1 y(t)=Ce' -3C,e”,
z2(1)=Ciz, + Gz, + Cizs, Z(t) =Ce' +Ce” -5C,e.

Exercise Set 3.6
In exercises 1 to 14 find the general solution of the system of differential

equations.
; x'=5x+3y; ) X' =2x+y;
=B |y =3x+4y.
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3 { =3x+y; ’ {x—2x+y,
V' =x+3y V' =—6x-3y.

5 { '=—Ty+z; 5 {y =y+2z

=-2y-5z. z =4y+3z.

; { '=—Sy+2z+e’; . {y =3y, -2y, +x;
Z=y—6z+e" =3y, —4y,.
M= X()=x—-4y-z;

9. {y;% {y(t) X+ y;

Yi=y, Z'(t)=3x+z.

i x(t) 2x+y+e'; I {x(t) x—y+8¢;
y(t) x+2y—3e" V'(t)=5x—y.
x(z‘)=3x—y+z, X(t)==3x+4y -2z

13.5y't)=x+y+z; 14.5)'(t)=x+z;
Z'(t)=4x—y+4z. Z'(t)y=6x—6y+5z.

Individual Tasks 3.6
1-3. Find the general solution of the system of'differential equations.
IT.
. {x’=2x+y; ) {x'=4x—8y;
V' =3x+4y. V' =-8x+4y.

5 {x’(t) =3x—4y+e; 5 {x'(t) =4x+y—36t,
Y(t)=x-2y—3e* YO ="2x+y-2¢.
X(@t)=x—4y-z, X@t)=x-2y—z;

3. V() =x+y; 3.3V ()=—x+y+z
Z'(t)=3x4z. Z'(t)=x-z.

IV MULTIPLE INTEGRALS

In this.chapter we extend the idea of a definite integral to double and triple
integrals of functions of two or three variables. We will introduce two new coordinate
systems in“three-dimensional space — cylindrical coordinates and spherical
coordinates — that greatly simplify the computation of triple integrals over certain
commonly occurring solid regions.

4.1 Double Integrals over Rectangles
We consider a function f of two variables defined on a closed rectangle

:{(x,y)eR2|anSb,cSySd}
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and we first suppose that f(x,y)>0. The graph of /' is a surface with the
equation z = f(x, ).

Let S be the solid that lies above R and under the graph of /', that is,

S={(x.y,.2)eR’[0<z< f(x,),(x,y) e R}
(See Figure 22). Our goal is to find the volume of S.

The first step is to divide the rectangle R into subrectangles. We accomplish this by
dividing the interval [¢,b] intom  subintervals[x,_,x,] of the equal
width Ax=(b—a)/m and dividing [c,d] inton subintervals |y, 4{y, [Nof the equal
width Ayz(d —c)/ n. By drawing lines parallel to the coordifiate axes through the
endpoints of these subintervals, as in Figure 23, we form the subrectangles

R, ={(x,y) | X Sx<x,y; <y Syj}
each with the area AS =AxAy.

IR {Ere——r e
pl | O SRdEE ey
/ _ elv o= [[# IRV N
| ay}] “} 7777777 “f P s o e
— e Y1 d i
I _J;‘?E——- d N ¥ j/\/T S |
1 — > I U O O O O
73 L]
R A N O (O O O [ O
0 a n x Xy Xy b x
=
Figure 22 Figure 23

If we choose a sample point(x;,y;) in each R , then we can approximate the part
of § that lies above each R, bya thin rectangular box (or “column”) with base R, and
height f(x},y;) as shown'in Figure 24.The volume of this box is the height of the
box times the area of the base rectangle: f(x;, y;)AS .

Figure 25
If we follow this procedure for all the rectangles and add the volumes of the
corresponding boxes, we get an approximation to the total volume of S:
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ZZf( XV JAS (1)

=l j=l
(See Figure 25). This double sum means that for each subrectangle we evaluate f* at
the chosen point and multiply by the area of the subrectangle, and then we add the
results.
The approximation given in (1) becomes better as » and » become larger.and so
we would expect that

y=lim DY F5.)AS @)

=l j=1
We use the expression in Equation 2 to define the volume of'the solid S that lies
under the graph of f and above the rectangle R.

Limits of the type that appear in Equation 2 occurrequently, not just in finding
volumes but in a variety of other situations as wellleven when £ is not a positive

function. So we make the following definition.
Definition The double integral of f over the rectangle R is

[[ reemds = tim DD, v))AS
R ' =l =l

if this limit exists.
A function f is called integrablesif the limit in Definition exists. The double

integral of f* exists provided that f#is:*‘not too discontinuous.” In particular, if f is
bounded, and f is continuous there, except on a finite number of smooth curves,
then f 1s integrable over R.

The sample point (x}, y;) ‘¢an be chosen to be any point in the subrectangle R,
but if we choose it to be theupper right-hand corner of R, [namely (x,,y,), see Figure

23], then the expression for the double integral looks simpler:

J[ LGS = lim 373 fs3as 3)

The sumzz f(x;,y,)AS is called a double Riemann sum and is used as an

=l j=1
approximation to the value of the double integral. If /' happens to be a positive

funetion, then the double Riemann sum represents the sum of volumes of columns, as
in Figure 25, and is an approximation to the volume under the graph of f* and above

the rectangle R.

Properties of Double Integrals

1 [ @hen pronady =af] ficeddy = B[ £.0c vy
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2. It b=D,uD,, where D, and D, don’t overlap except perhaps on their
boundaries

(see Figure 26), then j _[ £(x,y)dxdy = Z ” £(x,y)dxdy .

VA

Figure 26
3.If f(x,y) > g(x,y) forall (x,y) in R, then ”‘f(x, v)dxdy > ‘”g(x,y)dxdy .
R R

4. If we integrate the constant function f(x,y)=1"0vera region D, we get the

SDz_UldS.
D

5. If f(x,y)>0, then the volume V' of‘the solid, that lies above the rectangle R
and below the surface z = f(x,y) is

area of D :

- ” £(x, )dS .

6. Midpoint rule for double integrals. If function z = f(x, y) is continuous in the
closed domain R, then there i8,a point P,(x,, y,) in this region such, that

[ reemas=re)-s

R
is the average value.of function z = f(x, y) in the region R.

Iterated Integrals

The evaluation of double integrals from first principles is even more difficult, but
in this section,we,see how to express a double integral as an iterated integral, which
can then beevaluated by calculating two single integrals.

Suppose that f is a function of two variables that is integrable on the rectangle

R={(x,y)eR’|a<x<b,c<y<d|.
d
We use the notation j f(x,y)dy to mean thatx 1s held fixed and f(x,y) i1s

integrated with respect to y from y =¢ to y=d. This procedure is called partial
integration with respect toy. (Notice its similarity to partial differentiation.)
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d
Now J f(x,y)dy 1s a number that depends on the value of x, so it defines a function

of x: S(x)= j f(x.y)dy .

If we now integrate the function S(x) with respect to x from x = ¢ to x =5, we get

IS(x)dx _ j [ 1, y)dy}ix ()

The integral on the right side of Equation 1 is called an iterated integral. Usually

the brackets are omitted. Thus
b d b

| f(x,y)dydx=f( f(x,y)dy}ix @

a a

means that we first integrate with respect to y from y =¢ to »=d and then with
respect to x from x = 4 to x=5b.
Similarly, the iterated integral

ﬁf (x,y)dydx = jUf (x,y)dedy (3)

means that we first integrate with respect.to xy(holding y fixed) from x =4 tox=5
and then we integrate the resulting «function of y with respect to y from y =¢
to y =d . Notice that in both Equatiofis2,.and 3 we work from the inside out.

Fubini’s Theorem If f is contimuous on the rectangle

R:{(x,y)eR2|a£x$b,c£y£d},
then

J._[f(x,y)dS = jdyj.f(x,y)dx = j.dXTf(x,y)dy :

More generally, this is true if we assume that f/ is bounded on R, f is

discontinuous only on“a finite number of smooth curves, and the iterated integrals
exist.

Example 1 Evaluate the double integral J-J‘ (x—3y*)dxdy , where
R

R:{(x,y)eR2|0£x£2, 1Sy£2}.
Solution 1 Fubini’s Theorem gives

”'(x ~3y")dxdy = idxj(x —~3y%)dy :j-[xy — yﬂij dx = j-(x - T)dx = {%2— 7X}2 =-12

R 0

Solution 2 Applying Fubini’s Theorem again once more, but this time integrating
with respect to x first, we have
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2 2 2 x2 x=2 2 5
”fdxdy :Idyj(x—Syz)dx :H?—sxyz} dy :_[(2—6y2)dy ~[2v-20'] =12
R 1 0 =0 1

1

on a

If is continuous region D such that
D={(x,y)|a<x<b,g(x)<y<g,(x)} (see figure 27), then
b g (x)
[[reeypas = [ax [ reema @)
D a g

The integral on the right side of (4) is an iterated integral that is similar to the
ones we considered in the preceding section, except that in the inner integral we
regard x as being constant not only in f(x,y), but also in the limits of integration,
g,(x) and g,(x).

We also consider plane regions, which can be expressed as

D={(x,y)lc<y<d, h(y)<& <)y,
where 4,(y) and h,(y) are continuous. Two such regions are illustrated in Figure 28.

Using the same methods that were used in establishing (4), we can show that
hy(y)

d
[[reemas={ay | reevas )
D c )
i ’ v YA )
- y=galx) : y=g,) ' Y= galx)
@
< D
D | D \ |
| | " 4 | |
| | | \ y=aqlx |
| y=alx) | | y=alx) | | |
| | | | \ |
0 a b X 0 a b x 0 4 b
Figure 27
¥y y
di—— — -
d—————
v =) x=h,(y)
Wi D o x=hy) D x=h,(y)
-\
0 X
ll_' _______
(0] X
Figure 28

Example 2 Evaluate-” (x+2y)dxdy, where D is the region bounded by the
D

parabolas y =2x* and y =1+ x".
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Figure 29

Solution The parabolas intersect when 2x* =1+ x?, that is, " =1, so x=+1. We
note that the region D, sketched in Figure 29, is a type I region but not a type Il

region and we can write D = {(x,y) |-1<x<1, 2x° <y Q1+ x2} .
Since the lower boundary is y = 2x* and the upper boundary is y'=1+ x*, Equation 4

gives

1+x2

1 1 1
jj (x+2y)dxdy = jdx J (x+2y)dy =j[xy + yz]yzm dx = I(—3x4 — X +2x" +x+1)dx =
-1 -1

y:2x2
D -1 242

3———+2—F+—+x| =—.
5 4 3 2 15

Example 3 Evaluate jjxydxdy, where D is the region bounded by the
D

{ X x* XX’ T _ 32
-1

line y = x —1 and the parabola %= 2x+6.
Solution The region D isshown in Figure 30. Again it is both of type I and type

I, but the description of Dyas a type I region is more complicated because the lower
boundary consists of two parts. Therefore we prefer to express D as a type Il region:

Dz{(x,y)|—2£y£4, %y2—3£xﬁy+l}

(5,4)

S T a=y+1

=
=

—1.—2) = —i2

Figure 30
Then (6) gives
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4 1+y 4 5 x=l+y 1 5
nydxdyzjdy j xydx:j{%y} dyzij‘(—y?+4y3+2y2—8y)dy=
D ) %y2_3 e —%y2—3

6 3 4
:l —y—+y4+2y——4y2 =36.
21 6 3 .

Exercise Set 4.1
In Exercise 1 to 6, evaluate the iterated integral.

2L 8 5 LN 2
I [ac[@+2ay. 2 [a j (x+20)dv. 3. |dx |
.0 .0 :3 y2_4 .1 Tx y
PR dy 2 X 00 x’dy
4. |ax| ——-. [ _ 6. |a .
J x.1 Gt) 5. | dxj(2x y)dy. | x.o ne

! 0

In Exercise 7 to 12, sketch the region of integration"and change the order of
integration.

1 In x

7 jdxf Foydy. 8 _’def(m)dy. 9. jdx [ reemay.

0

1 m/ﬁ L 1 I-y
10. J' dy I Fyyde. 1 _dXIf(x,y)dy- 12._[ dy j £(x,y)dx.

In Exercise 13 to 16, evaluate/fhe double integral j _[ Fey)dxdy, if f(xy)=1
D
and D is given by:
3. {(e)l ¥ =20.55 20560} 14 {(x,y)l y=4-x", y=Br.x>0]
15. {(x,y)|y:_x,y2=x+2} 16. {(x,y)\yzlogo,sx,y=1,y=—1,x20}

In Exercise 17/to 19, evaluate the double integral

17. .(x3 +3y)dxdy, where D:{(x,y)| x+y=1y=x"—1, xZO}.

O e

L8 .(x—y)dxdya where D:{(x,y)| x+y=2,y=0, x:y}.

Te

19 ‘x4ydxdy,whereD:{(x,y)|xyzl,xzz,x:y}.

Se

Individual Tasks 4.1

1. Evaluate the iterated integral.
2. Sketch the region of integration and change the order of integration.
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3. Evaluate the double integral.

|
z 1+cos x

Lo gy I y’sinxdy -
.0 0

X+
3 2

2. ..dxj f(x,y)dy+jdx _fxf(X,y)dJ"

6 2

3. .Ix_zdxdy , where D : {(x,y)| xy=l,x=2,x= y}.
y
D

11
/2 1
1. dej yidy
0 cosx
2 J-1 5 3-yp
2. 2y j f(x,y)derde f(x,y)dx‘
—Jy-1 2 —J};_A

L4
1
2

d

3. jdxdy,whereD:{(x,yN y=2-x" =4x+4}.
D

4.2 Double Integrals in Polar Coordinates

Suppose that we want to evaluate ay,double integral J‘J‘ f(x,y)dS, where D is one
D

of the regions shown in Figure 31. Tn"either case the description of D in terms of
rectangular coordinates is rather complicated but D is easily described using polar

coordinates.
Y4

xr4+yi=4

Figure 31

|
x+y?=1

Recall from Figure 32 that the polar coordinates of a point are related to the

rectangular coordinates by the equations
x=rcos0,
y=rsin6.
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r=b
¥4 6= B
Pir,8) =P(x,y)
R
7 r/
-~ y ’,J
5 r=a .
Py j/. \ 9 —
¥ o [] < /‘;\&fﬂ/
2 * % ol ¢
Figure 32 Figure 33

The regions in Figure 31 are special cases of a polar rectangle'which is shown in
Figure 33.

Change to Polar Coordinates in a Double Integrall'If f 1s,continuous on a polar
rectangle D given by r(0)<r <r,(0), a<6 < g3, then
r2(0)

J;jf(x,y)dxdy=j;jf(rcosﬁ,rsinﬁ)rdrd9=jd@rl!;)f(rcosH,rsinQ)rdr, 1)(

The formula (1) says that we convert from rectangular to polar coordinates in a double
integral by writing x = rcos@ and y = rsin § ,'using the appropriate limits of integration
for » and @, and replacing dS by drd 6 . Be careful not to forget the additional factor r on

the right side of Formula 1.
x2
“sinﬂ(? +y? jdxdy ,
D

Example 1 Evaluate

xZ xZ yZ
where D: <(x,y)|=+y" =1, —+Z-=1¢.

{( y)| 4 . 16 4

Solution x =2pcos@," vy =rsin@, [=2r.

2
%+y2=1 = r’cos’@+r’sin’f=1 = r=1;
X oo 2 2 r’
St =1 = —(r cos” @+ r’sin 9):1 = —=1=r=2, 0<0<L2r.
16,/ 4 4 4

In polar coordinates it is given by 1<r <2, 0< @ <2x. Therefore, by Formula

(1):
J‘Ljsinﬂ(%z+ yzjdxdy :Usm(”"’z)lrdrdé?: ifdejsm(ﬂrz)@rdr _

2

2
= ZJAsin(r2 ﬂ)d(r2 72') = —2cos(r2 72') =-2(cosd4r —cosm)=-2(1+1)=—-4.
1

1
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Exercise Set 4.2
In Exercise 1 to 6, evaluate the given integral by changing to polar coordinates.

- 2
1. Kl—y—zjdxdy , where D : {(x,y)| x*+yt < 72'2}.
x

2. || 6dxdy, where D:{(x,y)| X+ =4x, x’+y'=6x,y=x, y= O}.

T e

3. ”(xz +y2)dxdy, where D : {(x,y)| xP 4yt < 4x} :
D

Xy

4. —dxdy where D : {(x,y)|1£x2+y2S4,y:x, y=0, x<0, y<0}.

X+
5. "e_xz_yzdxdy, where D : {(x,y)| x4y’ < Rz}.
D

D
Individual Tasks 4.2
1-3. Evaluate the double integral.

6. (x2 +y2)dxdy, where D : {(x,y)| X2+ 0 2hx X+ y? =6x,y > x,y<~3x }

|
L i 2 2
1. dxj 1mx =0 g

[ ]
r T

2. I(lZ—x—y)dxdy» where D:{(x,y)| x*+y* < 25}.

3. .J‘dedy, where D:{(x,y)| 1<x*+y°<16,x < O}.
X+

11
e

1. J-dx J- sin(x” + y*)dy .
0
2. Ij(6—2x—3y)dxdy, where D {(x,y)l x*+ < 4}.
D
3. J'J' ydxdy , where D : {(x,y)|1§x2+y2S9,y20}.

D X+y

4.3 Applications of Double Integrals

Areas of Figures and Volumes of Bodies

81




1. If we integrate the constant function f(x,y)=1 over a region D, we get the

SD:'L'[ldS:LIdS.

2. If the region D is determined in the polar coordinates, we see that the area of
the region D bounded by a <6< B, rn(0)<r<r(0),Is

area of D :

B r2(6)
S= J'J'rdrdaz J'da j rdr
D a r1(0)

3. If f(x,y)>0, then the volume /' of the solid that lies above the region D and
below the surface z = f(x,y) is

V:J"[f(x,y)ds.

Example 1 Find the volume of the solid that lies under the paraboloid z = x* + y?,
above the xy-plane, and inside the cylinder x* + y* = 2x.

Solution The solid lies above the disk*D "whose boundary circle has the
equation x* + y* = 2x or, after completing the square, (x —1)> + y*> =1 (See Figure 34
and 35). In polar coordinates we have x* +y" =%’ and x = rcos@, so the boundary
circle becomes > = 2rcos@, or r = 2cos @

x—1)2+yr=1

for r=2cos #)

=S /
==2 D
= ’ : 2 x
X <
e
3
Figure 34 Figure 35

Thus the/disk D is given by D ={(r,0)|-7/2<0 <7z /2,0<r<2cosf} and we
have

T

% % 4 TJ?cosé 2
= [fe)as=Jao [ rrar=[| 5| a0=s: [eost0a0-

2 2
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3 1+ cos26 : I
I( cos j do =2. J‘(1+20052¢9+5(1+COS4¢9))d6?:
-z :

=2. §9+sin29+lsin46’ ’ :3_7z.
2 8 r 2

Example 2 Use a double integral to find the area enclosed by one loop of the four
leaved rose r = cos 26
Solution From the sketch of the curve in Figure 36, we see that a loopiis given by

the region D:{(r,9)|—%£ QSE,OSrs c0s2¢9}.

So the area is

% cos 26 % 1 cos26 1 % %
S = .Urdrdé’ j j = J‘[—rz} do = jcos 29d9——j(1+c0s49)d(9:
4 T4 4 4
1 9+lsin40 R
4 4 z 8
4
-~ H:E
\ 7
NS 7
et | /7
I "::.\“ ,7’ _
i \
| \‘\
~ T
=
Figure 36

Momentsdand Centers of Mass

Considera lamina with a variable density. Suppose the lamina occupies a
region,.D " of the xy-plane and its demsitfy (in units of mass per unit area) at a

point (x,y) mn D 1is given by p(x,y), where p(x,y) is a continuous function
on D (see Figure 37).

The total mass m of the lamina can be obtained as the limiting value of the
approximations:

k /
m=Jim D" p(xj. ;A8 = j [ px.ds.

i=l j=1
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Figure 37 Figure 38

Suppose the lamina occupies a region D and has a densityfunction p(x,y). The

moment of the entire lamina about the X-axis 18

= lim 3 o, 17)AS = j [yt as.

k,]—>o
=l j=1

Similarly, the moment about the y-axis 1s

- lim ZZ X, (X NS = j j xp(x,)ds .

k,l—>x

We define the center of mass (x, ¥y) so that mx =M |, and my =M _
M, "= M,

;:—y ) y =
m m
The physical significance is thatathetlamina behaves as if its entire mass is

concentrated at its center of mass. Thus the lamina balances horizontally when

supported at its center of mass (see Figure 38).
The moment of inertia (also called the second moment) of a particle of mass m

about the x-axis can be obtained as the limiting value of the approximations

1, = lim 'S 05 o 7S = j [ 1o pds.

=l j=1
Similarly, the moment of mertm about the y-axis is

I, lim ZZ(xU) p(x, Y )AS = j j 25(x, y)dS .

k>0 e

=l j=
It 1s also_of interest to consider the moment of inertia about the origin, also
called the polar moment of inertia:
1= [[ 2+ ) ptx s

D
Exercise Set 4.3
In Exercise 1 to 8, use a double integral to find the area of the region.

2. y2:4+x,x+3y:() 3' x:yz’ X = 2_y

2

Il y=x*, y=3x
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4. y=2-x, y>=4x+4 5 r=asin30,a>0 6. r=acos50,a>0

7. r=4(14cos®) 8. rcos@d=1, r=2
In Exercise 9 to 14, use polar coordinates to find the volume of the given solid.
9. X*+y*=R’, ¥’ +2°=R’ 10. z=x"+y", z=x+y+10
11. x>+ y*=4x, 2z=x"+y*, z=0 12. 6z= x>+, x> +y*+2z8=27, z>|

13. z2=4-x*2x+y=4,x=0,y=0,z=0 14 2(x*+y’)—2z"=0, x’+y "~ z> =1

In Exercise 15 to 17, find the mass and the center of mass of<the lamina that
occupies the region D and has a given density function p(x, y).

15. D:{(x,y)|x+y=2,x=2,y: p(x,y)=1

16. D:{(x,y)|x2+y2—2x:0} p(x,y)=3,5

17. D:{(x,y)|y:x2,y=1} p(x,y)zx"p
Individual Tasks 4.3

1. Use a double integral to find the area of the region.

2. Use polar coordinates to find the volume.of the given solid.

3. Find the mass and the center of mass of the lamina that occupies the region D
and has a given density function p(x, y).
I
1. x=y>-2y, x+y=0.

2. z=x"+y*, y=x", y=102=0s
3. D:{(x,y)|y=cosx,x=0,x:7r/4},wherep(x,y):l.

II
. y=4x—-x*, y=2x" 5x.

2. x°+y°=9, X+ 2" =-9.

3. D:{(x,y)| y:sinx,x:O,xzﬁ/4},where p(x,y)=1.

4.4 Triple Integrals
Let /' be definedon a rectangular box:

B:{(x,y,z)eR3 |a£x£b,c£y£d,r£z£s}.
The fist step is to divide B into sub-boxes. We do this by dividing the
interval [a,b] into / subintervals [x, ,x,] of the equal width Ax, dividing[c,d] into m
subintervals [ Vit yj] of the width Ay, and dividing [r,s] into » subintervals [z, ,,z, ]

of the width Az . The planes through the endpoints of these subintervals parallel to the
coordinate planes divide the box B into /mn sub-boxes which are shown in Figure 39.
Each sub-box has the volume AV = AxAyAz . Then we form the triple Riemann sum
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Z/:iif(x;k,y;kazgk)w (1)

=l j=1 k=1

Definition The triple integral of f over the region B is

”jf(x y,z)dV— hm ZZZf( ,yj,zk)AV 2)

i=l j=1 k=1
if th1s limit exists.
Note The triple integral always exists if f is continuous.

Just as for double integrals, the practical method for evaluating triple integrals is
to express them as iterated integrals.
Fubini’s Theorem for triple integrals 1f fis continuous,on the rectangular

box B, then

jjjf(x v,z)dV jjjf(x v,z)dxdydz (3)

r c a

The iterated integral on the right side of Fubini’s Theorem means that first we
integrate with respect to x (keeping y and > fixed), then we integrate with respect

to y (keeping - fixed), and finally we integrate with respect to - .
7\

N
_!_L (i

~—

—

Figure 39

There are five other pessible orders in which we can integrate, all of which give the

same value. For instanceyif weintegrate with respect to y, then 2, and then x, we have
b s d

j j j POS, MY j j j £(x, v, 2)dydzdx )

a r ¢

Now we deﬁne the triple integral over a general bounded region E in three
dimensional space (a solid) by much the same procedure that we used for double
integrals./We enclose £ in a box B. Then we define a function F so that it agrees

with f/ omE, but is O for points that are outside £. By definition,
J-J- f(x,y,Z)dV :J‘j F(x,y,Z)dV.
B B

This integral exists if /' is continuous and the boundary of E is ‘“reasonably

smooth”. The triple integral has essentially the same properties as the double integral.
We restrict our attention to continuous functions f and to certain simple types of

regions. If the solid region E lies between the graphs of two continuous functions
of x and y, that is,
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E = {(X,y,Z) | (X,y) € Daul(xay) =z< uz(an’)}
where D is the projection of £ onto the xy-plane as shown in Figure 40, then

uy(x,y)
” f(x,y,2)dV =” J f(x,y,z)dz |dS ®
a D \ uj(x,y)
z Z =, (x, y)
| = _w z=ulx,y)
1 | ‘-/4'/
. __|__ 3 [ |
| pat
/ | ™) T
x !
Figure 40

In particular, if the projection D of E onto the xy'-plane is given by the following

plane region (as in Figure 41)

E ={(x,y,z)|a <x<b,g(x)< ySgz(x),ul(x,y)Szﬁuz(x,y)},

then Equation 5 becomes
b gz(X)uz(x,y)

j _[ f(x,y,z)dV:I _[ _[ £, 2)dedydx ()

a gi(x) uy(x,y)

If, on the other hand, D is givenrby. the-following plane region (as in Figure 41)
E = {(X,y,Z) | c=< y < dahl(y) SX<S hz(y)aul(xay) =z< uz(an’)} ’

then Equation 5 becomes
ol (y)us(x,y)

jj f(x,y,Z)dV :J. j j f(X,y,Z)dZdXdy (7)
E cthy(y) uy(x,y)
4 i Z=Uy(x,¥)
) =y 1{_‘.’ Y) »,,.1-«'"“{_/____ '_u:-l
Z_LE z=u,(x,Y)
o I ,| y.\ _lf.l '
i _ | I | x=hy(y)
ol |1 | | AT
¢ S iy o - | N y
b %) Ll J - . | D
x&” y=aqlx A
1 | Y =6:4%) x=h,(y)
Figure 41 Figure 42

87



Example 1 Evaluate HI zdV , where E is the solid tetrahedron bounded by the
E

four planes x=0, y=0, z=0 and x+ y+z=1.
Solution When we set up a triple integral, it is wise to draw two diagrams: one of
the solid region £ (see Figure 43) and one of its projection D on the xy-plane (see

Figure 44). The lower boundary of the tetrahedron is the plane z=0 and the upper
boundary is the planex+y+z=1 (orz=1-x—-y), so we usewm(x,y)=0
and u,(x,y)=1-x—y 1n Formula 6. Notice that the planes x+ y4z=1 andz=0
intersect in the line x+ y=1 (or y=1-x) in the xy-plane. So the projection of E is

the triangular region shown in Figure 44, and we have
E={(x,y,z)|0£x£1,0£ySl—x,OSle—x—y}.

This description of E as a type 1 region enables us to, evaluate the integral as

| 1- 1 1-x D) l-x—y 1 1 1—.x
szde I zdz:jj{z—} dy:—j (- x— y)dy=
2 2
E 0 0 0 0

:lj{_w dx:%v[(l—xfdx:%{—(l_xy _1

follows:

2 3 4 24
0 =0 0 -0
. VA
(0,0,1)
A z=1—x—
I / K y=1—x
) ¢ D
) S e (0, 1,0)
_.-//)j __?L__T
(1, 0, 0) SR ) 9
" : b == 0 0 y=10 1 X
Figure 43 Figure 44

If the solid region E is given by the following form
E={(x,7,2) | (2) € D,u,(y,2) < x S, (3,2)},
where this timey.D 1s the projection of E onto the yz-plane (see Figure 45), when the
back surfacedsi = u,(y,z), the front surface is x = u,(y,z), then we have

m F(xp,2)dV = I I (JZ) F(x,y,2)dx dS )
E D \ u(y,z)

Finally, if a region is of the form E ={(x,y,2)|(x,z) € D,u,(x,z) < y <u,(x,z)},
where D 1is the projection of £ onto the xz-plane, then y =u,(x,z) 1s the left surface,
and y =u,(x,z) 1s the right surface (see Figure 46). For this type of a region we have
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u,(x,z)

[[[revmar=[[| | fepaard ©)
E ~D uy(x,z)
ZA Zz

1 _ }*Zr.rl{_r,:}\

0l 7 D ) T T \

P |

T ‘im‘/ = -\:ﬂ_-%—"'a-,___h‘_ - D I'; I'I / Illl

/’ /z{" , . 4 # "-::_ ‘)"-',_:_’: /__I,-l- k, |

x /::;.n E /):f”f _.:/ ¥ E - h|'r““ - . __‘C »

P’ x=u,(y,2) T N
- \ _d , . O
N y=u(x,z) y
\‘".\' = U4(Yy, Z) e
Figure 45 Figure 46

Triple Integrals in Cylindrical Coordinates
In the cylindrical coordinate system, a point P m three-dimensional space is

represented by the ordered triple (»,0,z), wherey and @ are polar coordinates of the
projection of P onto the xy-plane and > is the_directed distance from the xy-plane
to P (See Figure 47).
To convert from cylindrical to rectangular coordinates, we use the equations
x=rcosl, y=rsinf, z=z, r>0, 0<0<2x,zeR.
Cylindrical coordinates are useful in problems that involve symmetry about an axis,
and the z-axis is chosen to coincide withithis.axis of symmetry. For instance, the axis of

the circular cylinder with Cartesian equation x* + y* =¢* is the z-axis. In cylindrical
coordinates this cylinder has a‘very, simple equation = ¢ (See Figure 48.) This is the
reason for the name “‘cylindrical™¢oordinates.

(c,0,0)—

-"7"

X4 =

(r,8,0)

Figure 47 Figure 48

Suppose that £ is a region whose projection D on the xy-plane is conveniently
described in polar coordinates (see Figure 49). In particular, suppose that f 1is
continuous and E ={(x,y,z)|(x,y) € D,u,(x,y) <z <u,(x,y)}, where D is given in
polar coordinates by D = {(r,0)|a <0 < B,h () <r < h,(0)}.
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| T T
| u(x. )|
r=h(0)_o| | | |
N B e
Tl 8=81 5
_ g=a| D I
X | :
r=h,{8)
Figure 49 Figute 50
We also know how to evaluate double integrals in polar coordinates. We obtain
h(9)  z(r0)
'”. f(rcos@,rsiné,z)rdrdfdz = jd¢ J. rdr I f(reos@,rsind,z)dz .
a O ()

The last formula is the formula for triple intégration in cylindrical coordinates. 1t
says that we convert a triple integral from rectangular to cylindrical coordinates by
writing x =rcosf, y=rsinf, leaving z as ityis, using the appropriate limits of
integration for z, r, and @, and replacing d¥. by rdrdfdz .

Example 2 Evaluate

2 \/E 2

j _[ j (2 + 7 )dzdydx .

Solution This iterated integral 1s'a triple integral over the solid region
:{(x,y,Z)I—ZSxSZ,— 4-x° SyS\/4—x2,\/x2 +y° SZSZ}
and the projection of £ onto the xy-plane is the disk x* + y*> <4. The lower surface

of E is the cone z=/x7+ y* and its upper surface is the plane z =2 (See Figure 50.)
This region has,a much simpler description in cylindrical coordinates:
={(r,0,2)|0<0<27,0<r<2,r<z<2}.

Therefore, we have

27 \d—x* 272 2

j I I (x> + y*)dzdydx = Ijjr rdzdrd@ = Idej (2—r)dr =
2 a2 el 00 r

Triple Integrals in Spherical Coordinates
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Another useful coordinate system in three dimensions is the spherical coordinate
system. It simplifies the evaluation of triple integrals over regions bounded by spheres
Or cones.

The spherical coordinates (r,6,¢) of a point P in space are shown in Figure 51,
where p:|0P| is the distance from the origin to P, & is the same angle as in
cylindrical coordinates, and ¢ is the angle between the positive 7 -axis and the line
segment OP .

The spherical coordinate system is especially useful in problems/where there is
symmetry about a point, and the origin is placed at this point.
The relationship between rectangular and spherical coordinateés can beiseen from
Figure 52. Triangles OQP and OPP' give r= psing, z = pcosd.
But x=rcos@ and y=rsinf, so to convert from spherical to rectangular
coordinates, we use the equations
X = psingcosl, y= psingsinfy4 z=pcose.

z) 0 S
: w
P(p. 8, ) ~

Pl(x,y,0)

Figure 51 Figure 52

We have obtained the following formula for triple integration in spherical
coordinates.

jj‘jf(x,y,z)dxdydz = Ijjpz sing- f(psingcosd, psingsind, pcosd)d pdOde.

Exercise Set 4.4
In Exercise. 1. to 4, define the limits of integration of the triple

integral _[ _[ _[ Ay Bydxdydz , where:
Vv

l. Vax+y+z=1,x=0,y=0,z=0. 2. Vix*+y" =4,z=5,2z=0.
2 2 2 1252 —

3 V:x_+y_:z_jzz3. 4 Viz=1-x"-y",z=0.
4 1 9

In Exercise 5 to 8, calculate:

X 1

1 1 1 d 1 1-
5. J.de.dyJ. o 6. Idx‘[ dy
JXx+y+z+1
0 0 0 0 0

y

J xyzdz
0
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bt e dz 2 2x V“%
2 e [ e | R SdedI
0 0 0 \/4_x -y -z ) o Y
0 0
In Exerc1se 9 to 14, evaluate the triple 1ntegra1
9. x’y’zdxdydz, V.{(x,y, )|0Sx£1,0£y£x,0£z£xy}.
..[/.
10. x*y*dxdydz, V:{(x,y,z)|z:x2+y2,x2+y2:l,z:O}.
..V.
11. 2x—y+4z)dV, V:{(x,y,z)|x+2y+z:2,x>0,y>0,z>0}.
..[/.
12. (2x—y)dV, V:{(x,y,z)|Z:x+y+4, y2:4x,x=4,2:0,y>0}.
..I/.
13. (x—y+2z2)dV, V:{(x,y,z)|y2:4x,z:4—x,z=0}.
..l/.
]4 xydxdydz, V:{(X,y,Z)|Z:_x2 -|-y2’ x2+y2 :4,220}.

In Exercise 15 to 17, write down the equations of given surfaces in cylindrical
coordinates:

Lz=2-x" =) Lz =X+ Lz=\R*—x" =)’

In Exercise 18 to 20, determine the<type of surfaces given in cylindrical
coordinates:

18.z=5 19. 9o =7l?3 20.p=2
2 4-x2 4
21. Change the .variables in the integral jdx I dy I
0 Py x? +y

cylindrical coordinates.
In Exercise 227to 24;"write down the equations of given surfaces in spherical
coordinates:

22.x* +9° + z%=81 23.z=x"+"° 24.y= \/_x>0

In Exercise 25 to 27, determine the type of surfaces given in spherical
cogrdinates:
WO =3r/4 . @=57/6 p=3
Individual Tasks 4.4
1-3. Evaluate the triple integral.

l—x2
2

1
1. J'dx I dy_[dz
0 717x
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2. Ijj(x—2y+6z)dV, V:{(x,y,z)|2x+3y+z:6,x>0,y>0,z>0}.
V

3. J.Ijx2y2dxdydz, V:{(x,y,z)| 72 = y? +y2’ 226} .
4
I

a X Xy
1. dxjdij3y3zdz-
.0 0 0

2 [z ¥ {(ep2)ixe 23226, x>0, >0, 25 O
Vv

3. .J‘szydxdydz, VZ{(X,)/,Z)|22 :x2+y2’x2+y2 :99220}.
V

4.5 Applications of Triple Integrals

1. Let’s begin with a special case where f(x,y,z) =1ufor all points in £. Then a

triple integral represents the volume of E : ”Id V =,
E

2. All the applications of double integralstin Section 4.3 can be immediately
extended to triple integrals. For example, if the density function of a solid object that
occupies the region E is p(x,y,z), in_@nits,of mass per unit volume, at any given

m= jjjp(x,y,z)dV

and its moments about the thtee coordinate planes are

= [[[zoeer. 20803 W, = [[[xo0er2av; . =[[[voter.2ar.

The center of mass is located at the point (x,y,z), where
M M M

X = yz , y= Xz , z = Xy .
m m m
If the density is constant, the center of mass of the solid is called the centroid

of E . The'moments of inertia about the three coordinate axes are

1= [[[+per.2ar:1, = [[[ o2+ 200002 ;

point (x, y,z), then its mass is

1= [[[o* +Ppeeyaar.

Example 1 A solid E lies within the cylinder x* + y*> =1, below the plane z =4,
and above the paraboloid z =1- x* — y* (See Figure 53.) The density at any point is
proportional to its distance from the axis of the cylinder. Find the mass of E.
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(0,0,1)

xX+y2+ 2=z

N oo 1
I
I
|
|
I
I~
|

|
|
| g
|
} 8 1
I 0,0,1) W R Ny |/
,|' =1 2 \ Y /‘__: '_\.2_,_\.2
— 2N AN 7
/,().m Ty / “-_—-)-‘
X x
Figure 53 Figure 54

Solution In cylindrical coordinates the cylinder is » =1¢ and the paraboloid
is z=1-r?, so we can write E:{(r,@,z)|0£¢9£27z,0£rSl,l—r2 st4}. Since
the density at (x,y,z) is proportional to the distance from the z-axis, the density
function is
f(x,y,z)=K\x*+ y* = Kr, where K is the proportionality constant.

Therefore, the mass of £ 1s
27 1 27 1

m= ” p(x,y,2)dV = ” K5 + 2V = _[ I J‘(Kr)rdzdrdé’ j _[ Kr*[4—(-r)]drd6 =
* 0.0 1~
2 7 1 1K

=K dﬁj(3r2+r4)dl’:27ﬂ({r3+r— _ X7
) 5|5

Example 2 Use spherical coordinates to'find the volume of the solid, that lies
above the cone z = /x* + y* and below the sphere x* + y*> + z* < z (See Figure 54.)
Solution Notice that the sphere passes through the origin and has the

1 : : : : :
center (0,0,5) We wirite ‘the equation of the sphere in spherical coordinates
as p> = pcose Or pre=icos@h

: : . . T
The equation of.the cone can be written as this gives sing =cos¢g, or go:Z.

Therefore the description of the solid £ in spherical coordinates is
={(p,(9,(p) |0< 932%,03(p£%,0§ p < cosgo}.

Figure 55 shows how E is swept out if we integrate first with respect to p,
then ¢, and then @ . The volume of E is
3 cos@
sin g{ } do=

27[ 4 cos@

H v - ”J'p sin pdod pd = J'd

o'—..;;\.\q
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T
4

3

0

p varies from 0 to cos ¢ ¢ varies from 0 to 77/4 HAvaries from 0 to 2.
while ¢ and # are constant. while # is constant.
Figure 55

Exercise Set 4.5
In Exercise 1 to 4, use a triple integral to” find, the volume of the given solid
bounded by given surfaces.

1. V:{(x,y,z)|x2+y2:10x, x2+y2:13x,2=\/x2+y2,Z:0,y20}

2. {(xy, )|z:x2—|-y2 y:xz,yzl,z:O}
3. {(x v,z )|x +z0 =4, y=— l,y:3}
4. {(xy, ) z=x" +y,x:y2,x:4,z=0}

In Exercise 5 to 7, find the mass and the center of mass of the solid I/ with the
given density function p(x, y,z)=1.

5. V:{(x,y,z)|228(x2+y2),Z£32}
6. V:{(x,y,z)|229\/x2+y2,z£36}
7. V:{(x,y,z)| y23x’ + 27, yS9}

Individual Tasks 4.5
IxUse a triple integral to find the volume of the given solid.

2. Use a triple integral to find the volume of the given solid bounded by given
surfaces.

3. Find the mass and the center of mass of the solid ' with the given density
function p(x,y,z)=1.
I
1. V:{(x,y,z)|x2 +y*+2° <1, 2’ 2x2+y2}.

2. z=x"+y*, y=x",y=1, z=0.
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3. V:{(x,y,z)| z22x"+y°, zSS}.

1T
1. V:{(x,y,z)| 222x2+y2,zﬁ6}.

2. xX*+y’=9, X*+y’-z"=-9.

3. V:{(x,y,z)| x> 44y’ +zz,x£16}

4.6 Line Integrals

In this section we define an integral that is similar to a single'integral except that
instead of integrating over an interval [a,b], we integrate over a curve C. Such

integrals are called line integrals, although “curve integrals” “would be better
terminology.

We start with a plane curve C given by the parametric equations
x=x(),y=y(),a<t<bh (1)

If we divide the parameter interval [a,b] into » subintefvals [¢_,z,] of the equal
width and we let x, = x(¢,) and y, = y(¢,), then the, corresponding points P(x,,y,)
divide C into » subarcs with the lengths As,,As, ,As, ..., As, (See Figure 56.)

We choose any point P'(x,",y,") in the i=th subarc. (This corresponds to a point #;

in [tl._l,tl.] .) Now if f is any function of“two variables whose domain includes the

curve C', we evaluate /' at the point P'(x, sy, "), multiply by the length As, of the

subarc, and form the sumz f (&, 9)As., which is similar to a Riemann sum. Then
i=1

we take the limit of these sums and'make the following definition by analogy with a

single integral.

y P P :ftl* ¥ f"
V-1
c "l
'II ||'I )
| P,
N |
B ||~ -
} l |I _““«: .
| 3
\ I N ¥
L > o fix, )
0 I| x 1 |
Vol (x,¥)
—_—
a 7 X b
t i—1 ‘t."
Figure 56 Figure 57

Definition 1f f 1s defined on a smooth curve C given by Equations 1, then the
line integral of f along C is
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[ Feepds=tim” rocanas 2)

if this limit exists.

b 2 2
We found that the length of C is L = j \/(?) + (%j dt .
t t

A similar type of argument can be used to show that if /' is a continuous function,

then the limit in definition always exists and the following formula can beaised to evaluate
the line integral:

[ reemas=[ f(x(t),y(t))\/( E1 (L] a G)

dr dt

The value of the line integral does not depend on the parameterization of the
curve, provided that the curve is traversed exactly once as ¢ inereases from 4 to b.

Just as for an ordinary single integral, we can<interpret, the, line integral of a

positive function as an area. In fact, if f(x,y)>0, I f(xy9)ds represents the area of
C

one side of the “fence” or “curtain” in Figure 57, whese base is C and whose height
above the point (x, y) is f(x,y).

Example 1 Evaluate I (2+x’y)ds, where'C “is the upper half of the unit
C

circle x* + y* =1.

Solution In order to use Formula 3,“we first need parametric equation to
represent C. Recall that the unit “circle can be parameterized by means of the
equations x =cosz,y =sint and the upper half of the circle is described by the
parameter interval 0 <7 <z (SeeFigure 58.)

Therefore Formula 3-gives

7 ) ) 7
I(Z +x’y)ds = I(Z 4¢os” tsint)\/(@) + (d_yj dt = J(Z + cos’ £sin£)/sin’ ¢ + cos® tdt =
0

dt dt

C 0
Va 3 VA
:j‘(2+cosztsint)dt:{2t— cos t} :27r+z.
3 3
0 0
¥4
K Ayi=1
| = 0)
—|1 0 I X
Figure 58
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Suppose now that C is a piecewise-smooth curve; that is, C is a union of a finite
number of smooth curves C,,C,,C,,...,C, where, as illustrated in Figure 59, the initial
point of C,,, is the terminal point of C,.

4

(}\ e —

N2

0 X (0,0

(L4

\

\
DII

=Y

Figure 59 Figure 60

Then we define the integral of f along C as the sum of the.integrals of f/ along
each of the smooth pieces of C':

L f(x,y)ds = J-C1 f(x,y)ds + Lz f(x,y)ds H...+ Lﬂ f(x,y)ds.

Example 2 Evaluatej 2xds, where G, consists of the arcC, of the
C

parabola y = x> from (0,0) to (1,1) followed by the vertical line segment C, from (1,1)
to (1,2).

Solution The curve C is shown in.Figure 60. C, is the graph of a function of x,
so we can choosex as _the parameter and the equations for C,
become x =x,y =x>,0<x<1.

Therefore

1 3 1
J‘ 2xds-j2x\/(ﬁ) (dyj dx = J2x 1+ 4x*dx = l 2(1+4x ) = 5\/5_1
c 1 dx dx 4 3 6

0

OncC, we, choose y as a parameter, so the equations ofC,
are x=1,y = y,1<y< 2 and

szdszjz-y\/[j—;j (zj dy = J.Zdy 2,

5\/__1+2
6

J' 2xds =\ 2xds+ | 2xds=
C

G c,
Any physical interpretation of a line integral I f(x,y)ds depends on the physical

C
interpretation of the function /. Suppose that p(x, y) represents the linear density at

a point (x, y) of a thin wire shaped like a curve C. Then the mass m of C is

98



m= |, px,y)ds.
C
The center of mass of the wire with a density function p(x,y) is located at the
point (x,y), where

_ 1 1
X = —_[w(x,y)ds 5 y= —Iyp(x, y)ds.
m C m C

Two other line integrals are obtained by replacing As, by eitheraw,=x — x,
or Ay, = y,— y,, 1n definition. They are called the line integrals of f' along C with
respectto x and y:

[ reeydr=timy" 7 ax:
(4)
| reepdy=tim reonay,

When we want to distinguish the original line integral I f(x,y)ds from those in
C

Equation 4, we call it the line integral with respect to arc length.
The following formulas say that line integrals with'respect to x and y can also be

evaluated by expressing everything in terms of z:
x=x(t),y = y(t),dx = x'(t),dy = y'(t) .
b
[ reemar= [ et (5)

It frequently happens that lifie integrals with respect to x and y occur together.
When this happens, it is customaryyto abbreviate by writing

| Peryax+ | aeepidy= | Pxyyae+ 0 )y ©)
Example 3 Evaluatej. ydx+xdy, where (@) C=C, is the line segment
c

from (-5,-3) to (0,2) and (b) C = C, is the arc of the parabola x =4 — y* from (-5,-3)
to (0,2) (See Figure 617)

=W

Figure 61 Figure 62
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Solution
(a) A parametric representation for the line segment
1Isx=5t-5,y=5t-3,0<¢t<1. Then dx =5dt, dy =5dt, and Formula 6 gives

1 1
Iy%h+qdy=I@t—gﬂﬁm)+6r—$6d0=sjaaﬂ—2ﬁ+4yh=
C
0 0

3 2 !
_[2se a5t
3 2

0
(b) Since the parabola is given as a function of y, let’s take asthe parameter and

write C, as x =4 -y, —3< y<2.Then dx =-2ydy and by Formulas 6 we'have

2 2
[ yarexdy= [y 2y +@=)ay =[ (20 = " + 4y =
C
-3 -3

vty 2
N R S A

In general, a given parameterization x = x(¢),. = y(¢), a <t <b, determines the

~402.
6

-3

orientation of a curve C, with the positive direction, corresponding to increasing
values of the parameter ¢. (See Figure 62, where. the initial point 4corresponds to the
parameter value ¢ and the terminal point B corresponds to b.)

If — C denotes the curve consisting 6f the same points as C but with the opposite
orientation (from initial point B to tezminal.point 4 in Figure 62), then we have

| renas | nds;
| repdss-[yena

But if we integrate withyrespect to the arc length, the value of the line integral
does not change (when we reverse the orientation of the curve:

[ rends=| g

We now suppose that C is a smooth space curve given by the parametric

(7)

equations
x=x(),y=y),z=z(),alt<bh.
If £ 1s,.a function of three variables that is continuous on some region
containing C, then we define the line integral of f along C (with respect to the arc
length) in a  manner  similar  to that for  plane curves:

[ revds=timy" e znas,.
C n—»0 rar)

We evaluate it using a formula similar to Formula 3:
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[ reev.2as = f(x(r),y(t),z(t»\/(%) n (d—y) n (d—j di ®)

dt dt
Therefore, as with line integrals in the plane, we evaluate the integrals of the form
I P(x,y,z)dx+ Q(x,y,z)dy + R(x,y,z)dz 9)
C

by expressing everything (x, y,z,dx,dy,dz) in terms of the parameter ¢.
Example 4 Evaluatej ysinzds, where C is the circular helix/given by the
C

equations x = cost,y =sint,z =¢,0 <t <27 (See Figure 63.)

-,
¥

471 N

21 A D

0 ki

_1\1\//_1 C

y 0 0 . 0 :‘
1l
Figure 63 Figure 64

Solution Formula 8 gives

2z

T’ &\ (Y (d=
J ysin zds = j(sin t)sint (— + (_y + (— dt = jsinz tsin’t +cos’ ¢ + 1dt =
c dt dt dt f

0

27r1 \/5 1 2
:\/EIE(I—COSZt)dt=—{t—gsin2t} =2z.
0 0

2

Exercise Set 4.6
In Exercise 1 tg 4, evaluate the line integral, where L is the given curve.

1. | xdl, if Lus the line segment from A4(0;0) to B(1,2).

i

2. %, if L 1s the line segment y = x + 2 from A4(2;4) to B(1,3).
X+y

5[ J2y i, if L is given by x=a(t=sin), (@>0).
y=a(l-cost),

h.

v
L

4. |(x+y)dl,if L is given by p* =a’cos’ 6.

L
In Exercise 5 to 12, find the mass of the curve C with the density p = p(x;y):

5. C:y=2Jx,0<x<l,p=y
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C:x’+y =6x, p=x
C:x=3t, y=3t",z=2¢ from 0(0;0;0) to 4(3;3;2), p=4
C:x=cost, y=sint,t e[0;z],p=y

O S0 NS

C:x=e"'cost,y=e"'sint,z=e",1€[0;+x),p=y

10. C:x=2cos’t, y=2sin’t,p=|xy]

11. C:r=3(1+cosh), p=24r

12. C:r>=4c0s26, p=2r

In Exercise 13 to 16, evaluate the line integral, where L is the given curve.
13. .(xz —2xy)a’x+(y2 —2xy)dy, if Lis y=x*from A(“11) to B(L1).
L
14. .2xydx—x2 dy, if L is given by OAB: 0(0,0),2B(250), A(2,1).
L

( e x=2cos’ ¢,
15. | xdy—ydx,if L is given by .. from4(2,0) to B(0,2).

’ y=2sin’t,
X =Cost,
16. J- 2xydx+y’dy+z°dz, ifL, is ‘given by <y=sint, from 4(1,0,0)
Lup z=2t.
to B(1,0,47).
Individual Tasks 4.6
1-3. Evaluate the line integral, where L is the given curve.

I
1.

f dl
(x—2y

, 1f L is theyline segment from A(2;1) to B(1,4).
)’

[ . . . — t_ t_ . Z‘ ;
2. m‘”’ if L/is given by {x a(c?s + s‘m ) |

y=a(sint —tsint).

h.

3. xydx+zx2dy+xyzdz, lfL iS glVeIl by x:et, y :e_[, z=t , O <t <1

L

. dl
- (2x+y)

, 1f L 1s the line segment from A4(-2;1) to B(1,-3).

x=acos3t

2. .(3x—23/a2 )dl,ifLisgivenby{ . " (a>0).

y=asmt,

> > x=2cos’t,
3. J X'dy—ydx if is given by { . from 4(2,0) to B(0,2).

\/74_ y y=2sin’t,
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4.7 Green’s Theorem

Green’s Theorem gives the relationship between a line integral around a simple
closed curve C and a double integral over the plane region D bounded by C (See

Figure 64.) We assume that D consists of all points inside C as well as all points on.)
VA VA
C

(a) Positive orientation (b) Negafive oriemtation

Figure 65
In stating Green’s Theorem we use the convention that the positive orientation of
a simple closed curve C refers to a single countérclockwise traversal of C. Thus if C

is given by the vector function 7(¢), a <t <b, then thewregion D is always on the left
as the point 7(¢) traverses C (See Figure 65.)

Green’s Theorem Let C be a positively oriented, piecewise-smooth, simple
closed curve in the plane and let D be'the region bounded by C. If P and Q have
continuous partial derivatives on an open tegion that contains D , then

j P(x, y)dx + O, P)dy— H(— ——yst ()
Then Green’s Theorem gives the following formulas for the area of D :
1
S:@)d:—@d:—cﬁd—d
xdy ydx=—Qoxdy - ydx )
C C C
Example 1 Find the area enclosed by the elhpse —+ y—2 =1.
b

Solution <, The» ellipse has  parametric equations X =acost,y=bsint,

where 0 <# <27 . Using the third Formula 2, we have
27[

3 —jxdy ydx =— I (acost)(bcost)dt — (bsint)(—asint)dt = — I dt =rmab.

0

Exercise Set 4.7
1. Does the integral j ydx + xdy depend on a form of the curve C?

2. What is the integral (j‘)xzdx +y’dy, y: x* +y* =4 equal to?
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In Exercise 3 to 4, find the area of the domain D bounded by the given curves
using the line integral:

3. D:y=x",y"=x,8xp=1

4. D:x=2cost—cos2t, y=2sint —sin2t

In Exercise 5 to 7, evaluate the line integrals for the given points:

5. (x+3y)dx+(y+3x)dy,A(1;1),B(2;3)

Lyp
]

6. (xy2—x3)dx+(yx2—y3)dy,A(—1;1),B(2;3)

Lyp

( X Y . .
| f—+)ﬂdx+ﬁdy,A(l,0),B(6’8)
Lyg N

In Exercise 8 to 10, evaluate the line integral, where L is‘the given curve.

8 QSydx—xdy, if L is given by {
L

7.

X =acost,

y =bsint.

9. CJ.)xdy,if L is the triangle bounded by y< x,x =2, y=0.
L

10. 4)()8 w3 )der (=) )dy, LSS the  triangle  with
L
vertices 4(0,0), B(1,0),C(0,1).
Individual Tasks 4.7

1-2. Evaluate the line integral, where L isthe given curve.

I

L. SB Yidx+(x+y) dvh if L is triangle with

L

vertices 4(3,0), B(3;3)=C(0,3).
2 95 y(1=x)des (14 )2 )dv, if L is positively oriented circlex” + y* = 4.
L

II
1. CJ‘)yzdx+(x+y)2 dy»if L is triangle with vertices 4(2,0), B(2,2), C(0,2).
L

: .. =3cost,
2. @(xzy—x)dx+(y2x—2y)dy, if L is givenby {* " 0>
d y =2sint.
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