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Abstract

Particle accelerator failures lead to unscheduled downtime and lower reliability.

Although simple to mitigate while they are actually happening such failures

are difficult to predict or identify beforehand. In this work we propose us-

ing machine learning approaches to predict machine failures via beam current

measurements before they actual occur. To demonstrate this technique in this

paper we examine beam pulses from the Oakridge Spallation Neutron Source

(SNS). By evaluating a pulse against a set of common classification techniques

we show that accelerator failure can be identified prior to actually failing with

almost 80% accuracy. We also show that tuning classifier parameters and using

pulse properties for refining datasets can further lead to almost 92% accuracy in

classification of bad pulses. Most importantly, in the paper we establish there

is information about the failure encoded in the pulses prior to it, so we also

present a list of feasible next steps for increasing pulse classification accuracy.

Keywords: particle accelerator, accelerator reliability, machine learning,

binary classifier, failure prediction

1. Introduction

Reliability analysis and reliability modeling have been widely applied in

many engineering disciplines, from civil engineering [1] to aerospace [2] and,
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in last two decades, to particle accelerators as part of an Accelerator Driven

System (ADS) [3, 4]. ADS require high reliability and availability which restrict

accelerator downtime to few seconds on a daily scale [5, 6]. Such requirements

are currently beyond the performance of existing machines today [7–13].

Historically, reliability analysis for accelerators was usually performed in the

design phase [14, 15]. Some of the methods in the first case include: Reliability

Block Diagrams (RBD) [4, 16], Fault Tree Analysis (FTA) [17–19], Failure Mode

and Effect Analysis (FMEA) [20] and other methods [21, 22]. The results of

these methods are later validated by analyzing machine operations data [9, 23].

Recently, more methods to actively address reliability have been proposed [24–

26]. Common to all methods is the dependency on underlying reliability data

which in accelerator field is sparse [3].

As a field, machine learning has evolved out of advances of artificial intel-

ligence research, especially computational learning theory and pattern recogni-

tion. The term was first established by IBM’s Arthur Samual in 1959 with the

idea to give computers the ability to learn without being explicitly programmed

[27]. The field itself contains a vast body of knowledge covered by many papers

and books, [28–31] being some of them.

Within the machine learning area the field of pattern recognition is the

one we are interested in. The area has been growing and advancing since the

1960s [32, 33] and seen increase in pace the last 20 years due to advances in

methods [34–38] and increase of computing power and data available [39–41].

Due to the nature of the data available to us we have focused specifically on two

classification techniques: k-Nearest Neighbors (kNN) and Decision Trees (DT).

The application of machine learning to particle accelerator was first applied

in the 1980s [42] with the first use of neural networks in 1989 [43] and the appli-

cation in 1991 [44] for a dynamic feedback system for beamline control. Recently

there is growing interest in the applications of machine learning techniques to

particle accelerators, e.g research into using machine learning techniques for par-

ticle accelerator control [45], RF gun temperature control [46], RF pulses shape

[47], LLRF feedforward control [48] and for predicting disruptions in operations
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of fusion reactors [26]. Most recent workshops include topics like predictive

control of particle accelerators [49], detecting faulty beam position monitors

[50, 51], tuning XFEL machine using machine learning [52] and predicting and

counteracting machine interlocks [53].

2. Classification problem description

2.1. Background

During the operation of the accelerator the machine protection system (MPS)

sometimes shuts down the machine to prevent damage. This happens when the

beam in the accelerator enters an off-normal state (e.g. the position is off by

more than a certain threshold) which leads to the MPS interlocks to stop the

generation of the particle pulses.

Such machine trips lead to the acquisition and storage of the beam current

in three different time positions relative to the machine trip. The first stored

pulse waveform is the last pulse that successfully passed through the accelerator,

namely the previous pulse to the trip one. The next measurement saved is

the actual trip pulse causing the interlock. The last pulse that is stored in

the collection is the first successive pulse that passes successfully through the

accelerator after it’s restarted, namely the next pulse. We consider the latter as

a signal that the accelerator has entered a normal state again.

Our research is focused on labeling next pulses with the label good - the

classified pulse will not lead to a machine trip and the accelerator will remain

in normal operating state and previous pulses with the label bad - the machine

will trip on the pulse following the bad pulse and normal operation will be

interrupted.

2.2. Changing accelerator and malfunctioning equipment

We need to note that the accelerator is in the process of changing all the time.

Most of bad pulses are caused by malfunctioning equipment, which leads to the

equipment being fixed or replaced, which leads to bad pulses being generated by

another malfunctioning equipment etc. This means the specific failure patterns
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of the waveforms in datasets are changing. For example, during the time in

2015 when the data in our dataset was acquired, SNS had between 200 to 1000

bad pulses per day, currently, in 2019, during a good day the number is around

20.

We should also note that more than one piece of equipment can be malfunc-

tioning at the same time. Such interleaved failure combinations can be very

specific for a certain point in time. They can also have very specific patterns

but are hard to map back to the source equipment.

The above means two things. First, that every waveform in the dataset

has a very specific underlying accelerator configuration signature at the acqui-

sition time. Therefore, the dataset is continuously changing with time. Second,

precursors have been found where a specific equipment malfunction caused spe-

cific failures. This means that specific failure patterns can be linked to specific

equipment failure.

For the purpose of the paper, we take a holistic approach to failure identifi-

cation not using any information about specific equipment failure. We also use

an uniform approach to the data not taking the above mentioned changes in

time into account. We acknowledge that both taking different system failures

into account and splitting the dataset further is feasible, but introduces too

many unknowns to serve as a solid starting point.

2.3. Dataset and problem

Our approach is based on observing the raw SNS beam current data. The

data is measured by a differential beam current monitor [54] that has sensors

at two locations (upstream - closer to the particle source and downstream -

further away from the particle source). The measured difference is used to abort

beam immediately if there is a difference between the upstream and downstream

measurement, to minimize the beam loss. Figure 1 shows a waveform for a beam

current measurement. We have run the analysis with data from both locations

and there was no significant difference in received results. Therefore, for the

purpose of this paper we use the samples acquired from the upstream beam

4



Figure 1: Single pulse beam current waveform
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The waveforms are composed of 25000 data points each and our dataset is

composed of 15 different days worth of measurements. The data used in this

study was collected on days of normal machine operation - the goal for the

machine was to maintain a steady power on target (as compared to beam study

operations where the purposes are studying various properties of the machine

under different operational parameters).

The dataset contains approximately 15000 waveforms, of which half are good

pulses and half are bad pulses. The ratio 50/50 comes from the limitations of the

data acquisition system (one pulse of each type acquired per machine trip). The

dataset itself is unique as SNS is the only facility today recording information

directly prior to the failure.

Within the classification problem there are two scenarios we might find our-

selves in: either we posses the full statistical knowledge of the statistical distri-

bution of the observation x and the category σ or we do not have any knowledge

of the underlying distribution and we must derive one from the samples that

are available to us.

We find ourselves in the first scenario when we look at our sample data -

we know exactly which distribution generated the sample and which category

it is: pretrip, trip or normal. This is because the classification was done by
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the MPS system after the event occurred. The MPS system, after accelerator

recovers, stores and labels the three pulses related to event. What our method

proposes to address is the second scenario - where we’re given a live pulse from

the accelerator without the correct classification (we do not know if the current,

the next or the nth pulse will trip the machine) and we can only derive it’s

category from the N samples we’ve already acquired and categorized.

The waveforms in our dataset are assigned labels based on how the data

acquisition system acquired and stored them: previous pulses are assigned a

bad label and next pulses are assigned a good label.

In this section we introduce a set of classifiers we’ve chosen for the evaluation.

The primary motivation for classifier selection was both applicability to our use

case (large feature set, a binary classifier) and availability of libraries. Therefore,

we have used python and scikit-learn libraries to perform classification and

benchmarking.

3. Methods

3.1. k Nearest Neighbors

In pattern recognition, the k-nearest neighbors algorithm (kNN) is a non-

parametric method used for classification introduced first in 1951 and developed

and researched in the later years [55–57].

The category of an un-classified sample s is determined as the most heavily

representative category among the previously classified k neighbors, which exist

as a subset in a much larger space of N previously classified samples. The

distance between samples si and sj of length n is calculated using the Euclidean

norm defined in equation 1.

d(si, sj) =

√√√√ n∑
k=1

(sik − sjk)2 (1)

In practice it turns out that adding weights [58] to sample distances improves

the classification precision and there have been many other improvements and

applications in the years since the first introduction of the algorithm [59–63].
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The most important tunable paremeter is k - the number of neighbours to

take into account when assigning the label to a sample. We explore different

values of k and the effects on classification performance in Section 4 and Figure

6.

3.2. Decision Tree classifiers and regressors, Random forests and Gradient Boost

Another method from the classification field is the Decision Tree (DT) clas-

sifier. Trees are directed graphs beginning with one node and branching to

many. They are fundamental to computer science as data structures and many

other fields. Decision tree method uses and traverses a tree-like data structure

to go from observations stored and represented in the branches to conclusions

about the target classification represented in the tree leaves [64–66]. We use

the tree type labeled classification trees [64], where the input is a discrete set

of variables. In these tree structures, leaves represent class labels and branches

represent the set of features and their values that lead to the chosen class labels.

Generalization of the decision tree method is an ensemble classifier named

Random forests classifier [67] where a set of decision tree classifiers is generated

and the classification is performed by each of the trees casting a vote.

Similar to a decision tree is a Regression tree [64], where instead of a discrete

output of the classification process (the sample predicted class) the desired

output is numeric or continuous, e.g. predicted future price of certain goods

as compared to input sample class.

Gradient boost is an ensemble classifier that uses sets of regression trees

together with majority voting for sample classification [68, 69].

Both Random Forest and Gradient boost are build on top of decision trees,

so the most relevant tunable hyperparameter is the number of classifiers (de-

cision trees) voting on the assigned label. Effects on using different values on

performance of classifiers are presented. in Section 4 and Figure 6

3.3. (Linear) support vector machines

Support Vector Machines (SVM) are a set of supervised learning methods

used for classification [70]. Training is performed by defining separation hyper-
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planes (e.g. lines on a 2D surface) between training samples to best classify the

training set. Classification is then performed by observing where the samples’

position is and which side of the hyperplane(s) it’s positioned at.

In code, the model is represented by a matrix (kernel) and the classification

is performed by multiplying the input sample vector with the kernel matrix, the

obtained result is a vector of predicted sample classes.

Linear support vector classifier is a version of the support vector machine

classifier where the classification kernel is linear.

3.4. Perceptrons and Neural networks

The perceptron [71] is a simple linear classifier that given an input sample,

using a threshold function, determines the sample classification. Training is

performed by tuning the function hyperparameters to best match the training

datasets sample classes.

A single perceptron is also considered a single layer neural network [72].

More complex neural networks are composed of multiple layers of perceptrons

with connected inputs and outputs.

3.5. Other

Logistic regression [73] classifier uses a logistic function as the model for

classification of samples.

Naive Bayes classifiers [74] are a set of supervised learning algorithms based

on Bayes’ theorem with the “naive” assumption of conditional independence

between every pair of sample features, given the value of the class variable.

4. Results

In this section we present the results of our analysis using the following four

metrics:

• Train precision - the ability to apply the correct label to the correct class

on the training data,
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• Test precision - the ability to apply the correct label to the correct class

on the test data,

• True positive - the ability to apply the good label the good pulse,

• True negative - the ability to apply the bad label the bad pulse.

The latter entity is the main focus of our research since identifying a bad

pulse has a higher success than identifying a good pulse. This is due to the fact

that a running accelerator machine will have many more good pulses in a given

time frame than bad pulses.

For example, the accelerator would ideally, without failures, generate about

5 × 106 pulses in a day (a 60 Hz machine running for 24 hours). Discounting

for average accelerator availability of 92% during years 2011-2013 [11] we can

estimate the the average number of pulses per day of operations to be around

4.7 × 106.

From our dataset we can observe that that the SNS accelerator can have

anything between 200 and more than 1000 bad pulses during a normal operating

day, so let’s average to 500 bad pulses on average per day. This means that the

number of False negatives (good pulses identified as bad) would be, assuming

80% classification success, around 9 × 105. Alternatively, same classification

success would yield only 100 False positives i.e. bad pulses identified as good.

First, we need to note that it is possible to abort beam 9 × 105 times per

day, but it would lead to users being disapointed with the reduced amount

of neutrons due to less power on target. Second, we also need to note that

currently, the MPS system has a rate of 100% False positives, since all bad

pulses are labeled good as SNS permits them.

We present all four values in our graphs because, although focused on TNs, a

classifiers performance cannot be evaluated only from that value. For example,

a very bad classifier that would just label all samples as bad would still have

100% precision for TN, but a 50% test precision, which would be a signal that

something might be off with the classifier. There is also other information one

can get from the other values, e.g. train precision compared to test precision
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Figure 2: Classifier performance for the whole dataset, ranked best to worse by test accuracy
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will tell us how much the model is overfitted - trained too closely and exact to

the trained data leading leading to poor test results.

As the first step we have evaluated the performance of a collection of clas-

sifiers available from the libraries. Most of the classifiers were configured using

default parameters (except k-nearest neighbors where the value k = 11 was used

instead of default k = 5). In the first iteration the complete dataset was used

(15000 samples) and a 5-fold exhaustive cross-validation was used to measure

results. All values are the mean of all five folds.

Additionally, we also measure train precision which is a measure of how

accurate are the trained models on the training data. This measure compared

to test precision will tell us how much the model is overfitted - trained too

closely and exact to the trained data leading leading to poor test results.

The results of the benchmark, sorted by descending test accuracy are pre-

sented in Figure 2. From the results we can observe the following:

• Logistic regression classifier is the best performing with 79.5% test preci-

sion
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Figure 3: Classifier test and train performance for the complete dataset and a subset of
randonly selected samples
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• Both Random forest and Decision tree are heavily overfitted on the test

data

• Neural network overall precision is hardly above the 50% threshold but

the True negative score is the best of all classifiers at 91.9%

With machine learning it’s common that the size of the dataset affects the

quality of classification, so the second evaluation measures the classification

scores as a function of dataset size. This is of our limitations since the pulses

are only acquired on machine trips and the number of those has been reducing

over the last few years. In addition, we are also limited by the computation time

needed to perform these classifications. We compared the classifier performance

on the complete dataset (15000 pulses) and a dataset of half the size (7500

randomly selected pulses).

Figure 3 shows test and train precision as mentioned before in Figure 2 but

split to the two datasets of different size. We can observe from the graphs:

• Both Random forest and decision tree are overfitted on the smaller dataset
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Figure 4: Performance of kNN as a function of k
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Figure 5: Performance of Gradient boost classifier as a function of number of estimators in
ensamble
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too

• Classifier performance does change (although not drastically) as the dataset

size doubles: best performing classifiers Linear regression and Gradient

boost (79,5% and 76,9% True Negative respectively) increase in perfor-

mance by 3,7% and 2,4% respectively as the dataset size doubles

• Neural network actually performs worse on the bigger dataset

Seeing that increase in dataset size will not lead to significant classification

improvements, we took the next step to tune the main classifier hyperparam-

eters. First, we looked at the number of k neighbors in the kNN classifier.

Results are presented in Figure 4 and are very typical for kNN classifier: the

larger the setting, the worse are the results due to too many neighbours taken

into account and blurring the line between the two classes. Second, we looked
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Figure 6: Performance of Random forest and Gradient boost classifiers as a function of number
of estimators in ensamble
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at the number of classifiers in the Random Forest and Gradien Boost classifier.

Results are shown in Figure 6; the figure tells us that the more estimators we

take, the better the classification results even if the classifiers were overfit on

the training set.

The top five best performing classifiers have different results when it comes

to precision so joining them together in a voting classifier could increase per-

formance. A majority rule was applied for the label votes. Figure 7 shows the

results of the benchmark where we can observe that no significant improvement

was achieved.

The last benchmark was performed splitting the dataset into 10 smaller

datasets using individual pulse raw data variance. We chose pulse variance as

a start since it is affected by many beam and accelerator parameters, most

relevant being: power on target (amplitude), bunch length (length of peaks in

the waveform) and bunch count (number of peaks in waveform). Figure 8 shows

how sample variance differs on different acqusition days.
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Figure 7: Performance of voting classifiers compiled of up to five top performing classifiers
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Figure 8: Minimum, average and maximum sample variance per acquisition day
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Figure 9: Performance of classifiers on data subset split by sample variance

This resulted in 10 datasets of 750 pulses on which the top 5 classifiers were

evaluated using the best performing hyperparameters from Figures 4 and 6 (10

k-neighbours and 300 estimators in enseble for RF and GB). The results of

the last benchmark are presented in Figure 9. The bin ranges were set so the

number of pulses in each bin would be approximately the same (about 1500 per

bin) so some bins are groupped closer than others.

The observation we can make from the results is the following: classifiers can

perform better or worse on the smaller datasets compared to the benchmark on

the complete dataset presented in Figure 2. Examining Logistic regression (LR)

and Gradient boost (GB) as the two best performing (benchmark of 79.5% and

76.9% True Negative respectively) we can observe that LR performs better than

benchmark on 2 buckets (87.2% and 80.7%), close to benchmark on 3 buckets

(78.7%, 78.8% and 75.0% and worse than benchmark on the remaining 5 buckets

(performance dropping almost to 50% on one of the buckets). The results for

GB are: 4 buckets outperform benchmark (91.2%, 84.7%, 80.2% and 78.7%),

3 are comparable to benchmark (75.1%, 74.5% and 73.9%) whereas remaining

three are lower than benchmark (worse being 65.5%). One also notes that the

over and under performing buckets are not the same for LR an GB.

5. Conclusions

In the paper we have presented that we can achieve solid (79.5% on a gen-

eralized dataset and up to 91.9% on a metadata grouped dataset) correct True

Negative (bad pulse labeled as bad) classification of pulses. Using the example
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from the beginning of section 4 the mentioned accuracy yields the following re-

sults: around 3, 8×105 False Negatives (good pulses labeled as bad) pulses (8%

of average daily pulse count) and around 40 False Positives (bad pulses labeled

as good) pulses on a daily basis.

Such high number of False Negatives mean the current model performance is

unsuitable for reliable implementation of a mitigation system. This is because

mitigating all the detected False Negatives would lower the beam power on

target. Regardless of current performance, most importantly, we have confirmed

there is distinct information about future failures present in non-failing pulses

prior to the actual failure and offer a solid reference for future research.

We have shown that an increase of the dataset size does lead to increased

classifier accuracy, although two orders of magnitude less than the actual dataset

size increase (doubling the dataset size leads to 3.7% and 2.4% increase in perfor-

mance for the two best performing classifiers. Therefore, increase of the dataset

size is the first proposed step for future research.

Although not directly addressed in the paper, we believe that dimensionality

reduction of samples (using e.g. Principal Component Analysis) should also be

investigated. We recommend using less but more representative information per

sample, compared to the current approach of using raw data (25000 datapoints

per sample).

Lastly, we have shown that focusing on grooming datasets based on sample

metadata (we explored sample variance) also leads to the best classifier perfor-

mance improvements (7.7% and 14.4% improvement for the two best classifiers

respectively). This point is very important when addressing the changes in the

accelerator configuration (see Section 2.2). To use historical data for future pre-

dictions, the current state of the accelerator at a given time must be described

with as much metadata as possible. Therefore, we believe more metadata (data

as beam power on target, machine uptime, pulse bunch count etc.) must be

acquired and included in the datasets.
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