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Abstract.Abstract. Coastal geomorphology and the stratigraphy of coastal geoarchives record past coastal and fl uc- Coastal geomorphology and the stratigraphy of coastal geoarchives record past coastal and fl uc-
tuations of coastal environments. In addition, these archives potentially store traces of past extreme events tuations of coastal environments. In addition, these archives potentially store traces of past extreme events 
such as earthquakes and tsunamis, severe storms, and major fl oodings of the coastal hinterland, e.g. due to such as earthquakes and tsunamis, severe storms, and major fl oodings of the coastal hinterland, e.g. due to 
El Niño conditions. Studying their characteristics may thus improve the knowledge of past frequency and El Niño conditions. Studying their characteristics may thus improve the knowledge of past frequency and 
magnitude patterns of such extreme events. For instance, large scaled spatial information about past earth-magnitude patterns of such extreme events. For instance, large scaled spatial information about past earth-
quakes is needed for the understanding and estimation of seismo-tectonic processes. Misinterpretations in quakes is needed for the understanding and estimation of seismo-tectonic processes. Misinterpretations in 
the size of preceding earthquakes may lead to incorrect strain balance estimations along megathrusts. Thus, the size of preceding earthquakes may lead to incorrect strain balance estimations along megathrusts. Thus, 
fundamental research on the occurrence of past earthquakes is needed, which can be refl ected in sudden or fundamental research on the occurrence of past earthquakes is needed, which can be refl ected in sudden or 
long-term coastal changes.long-term coastal changes.

Using sedimentological, geomorphological and microfaunal evidence, coeval geomorphodynamic and Using sedimentological, geomorphological and microfaunal evidence, coeval geomorphodynamic and 
palaeoenvironmental changes at four different locations between 29° 50′ and 32° 20′ S in Central Chile were palaeoenvironmental changes at four different locations between 29° 50′ and 32° 20′ S in Central Chile were 
identifi ed in estuary systems, coastal swamps and coastal plains. The results may represent possible indi-identifi ed in estuary systems, coastal swamps and coastal plains. The results may represent possible indi-
rect evidence for palaeoseismicity, affecting the coastal system by vertical tectonic movements. Changes rect evidence for palaeoseismicity, affecting the coastal system by vertical tectonic movements. Changes 
of coastline elevation, morphodynamic activity and/or coastal environments, as well as the formation of a of coastline elevation, morphodynamic activity and/or coastal environments, as well as the formation of a 
liquefaction layer took place during the last c. 400 years. Moreover, major fl ooding events related to strong liquefaction layer took place during the last c. 400 years. Moreover, major fl ooding events related to strong 
El Niño conditions are assumed to have infl uenced the coastal stratigraphy by depositing high energy fl uvial El Niño conditions are assumed to have infl uenced the coastal stratigraphy by depositing high energy fl uvial 
deposits. Our results suggest that the coastal environment, geomorphology and stratigraphy are considerably deposits. Our results suggest that the coastal environment, geomorphology and stratigraphy are considerably 
infl uenced by tectonic processes in the study area; a relation of the presented fi ndings to the 1730 Great Val-infl uenced by tectonic processes in the study area; a relation of the presented fi ndings to the 1730 Great Val-
paraíso Earthquake is assumed. In general, the fi ndings may encourage the implementation of comparable paraíso Earthquake is assumed. In general, the fi ndings may encourage the implementation of comparable 
detailed studies, which may ultimately contribute to a better understanding of the Holocene coastal evolu-detailed studies, which may ultimately contribute to a better understanding of the Holocene coastal evolu-
tion and its relation to palaeoseismicity in Central Chile.tion and its relation to palaeoseismicity in Central Chile.
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Zusammenfassung.Zusammenfassung. Küstennahe Geoarchive wie Ästuarsysteme und Küstensümpfe haben das Potential,  Küstennahe Geoarchive wie Ästuarsysteme und Küstensümpfe haben das Potential, 
Informationen über holozäne Küstenentwicklungen und paläoökologische Veränderungen zu speichern. Informationen über holozäne Küstenentwicklungen und paläoökologische Veränderungen zu speichern. 
Mit ihrer Hilfe können darüber hinaus wertvolle Rückschlüsse auf Frequenz und Magnitude vergangener Mit ihrer Hilfe können darüber hinaus wertvolle Rückschlüsse auf Frequenz und Magnitude vergangener 
Extremereignisse wie Erdbeben, Tsunamis, Sturmfl uten oder El Niño induzierte Überfl utungen gezogen Extremereignisse wie Erdbeben, Tsunamis, Sturmfl uten oder El Niño induzierte Überfl utungen gezogen 
werden. Beispielsweise sind Erkenntnisse über die räumlichen Ausmaße vergangener Erdbeben für das Ver-werden. Beispielsweise sind Erkenntnisse über die räumlichen Ausmaße vergangener Erdbeben für das Ver-
ständnis seismo-tektonischer Prozesse von großer Bedeutung. Fehlinterpretationen bezüglich der Größe ständnis seismo-tektonischer Prozesse von großer Bedeutung. Fehlinterpretationen bezüglich der Größe 
von Paläobeben können zur fehlerhaften Abschätzung von Krustendeformationsraten oder Spannungsbi-von Paläobeben können zur fehlerhaften Abschätzung von Krustendeformationsraten oder Spannungsbi-
lanzen entlang von Subduktionszonen und damit der unmittelbaren Erdbebengefahr führen. Nach wie vor lanzen entlang von Subduktionszonen und damit der unmittelbaren Erdbebengefahr führen. Nach wie vor 
werden aus diesem Grunde neue Erkenntnisse zum Auftreten vergangener Erdbeben benötigt, die sich in werden aus diesem Grunde neue Erkenntnisse zum Auftreten vergangener Erdbeben benötigt, die sich in 
plötzlichen oder langfristigen Küstenveränderungen widerspiegeln können.plötzlichen oder langfristigen Küstenveränderungen widerspiegeln können.

Basierend auf sedimentologischen, geomorphologischen und mikrofaunistischen Untersuchungen in Basierend auf sedimentologischen, geomorphologischen und mikrofaunistischen Untersuchungen in 
küstennahen Geoarchiven wurden geomorphodynamische und paläoökologische Veränderungen in vier küstennahen Geoarchiven wurden geomorphodynamische und paläoökologische Veränderungen in vier 
unterschiedlichen zentralchilenischen Küstengebieten zwischen 29° 50′ und 32° 20′ S identifi ziert. Die hier unterschiedlichen zentralchilenischen Küstengebieten zwischen 29° 50′ und 32° 20′ S identifi ziert. Die hier 
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vorgestellten Ergebnisse zeigen indirekte Belege für paläoseimische Ereignisse, die zu vertikalen Krusten-vorgestellten Ergebnisse zeigen indirekte Belege für paläoseimische Ereignisse, die zu vertikalen Krusten-
bewegungen in der untersuchten Küstenregion geführt haben. Sowohl Verlagerungen des Küstenverlaufs, bewegungen in der untersuchten Küstenregion geführt haben. Sowohl Verlagerungen des Küstenverlaufs, 
Veränderungen der morphodynamischen Aktivität und/oder der küstennahen ökologischen Bedingungen Veränderungen der morphodynamischen Aktivität und/oder der küstennahen ökologischen Bedingungen 
als auch die Entstehung einer möglichen Liquefaktionslage wurde auf eine Zeit innerhalb der letzten 400 als auch die Entstehung einer möglichen Liquefaktionslage wurde auf eine Zeit innerhalb der letzten 400 
Jahre datiert. Ein Zusammenhang mit dem großen Valparaíso Erdbeben im Jahre 1730 wird vermutet. Des Jahre datiert. Ein Zusammenhang mit dem großen Valparaíso Erdbeben im Jahre 1730 wird vermutet. Des 
Weiteren beeinfl ussten größere El Niño Ereignisse die Stratigraphie der küstennahen Sedimentsequenzen Weiteren beeinfl ussten größere El Niño Ereignisse die Stratigraphie der küstennahen Sedimentsequenzen 
in Form von hochenergetischen fl uvialen Ablagerungen in jüngerer Zeit. Unsere Ergebnisse deuten darauf in Form von hochenergetischen fl uvialen Ablagerungen in jüngerer Zeit. Unsere Ergebnisse deuten darauf 
hin, dass die ökologischen Bedingungen küstennaher Geoarchive sowie die küstennahe Geomorphologie hin, dass die ökologischen Bedingungen küstennaher Geoarchive sowie die küstennahe Geomorphologie 
und Stratigraphie im Arbeitsgebiet von tektonischen Prozessen gesteuert werden. Unsere Ergebnisse un-und Stratigraphie im Arbeitsgebiet von tektonischen Prozessen gesteuert werden. Unsere Ergebnisse un-
terstreichen den Nutzen ähnlicher, detaillierter Studien, die letztlich zu einem besseren Verständnis der terstreichen den Nutzen ähnlicher, detaillierter Studien, die letztlich zu einem besseren Verständnis der 
holozänen Küstenentwicklung und ihrer Beziehung zur paläoseismischen Vergangenheit in Zentralchile holozänen Küstenentwicklung und ihrer Beziehung zur paläoseismischen Vergangenheit in Zentralchile 
beitragen können.beitragen können.

1 Introduction Introduction

Coastal geomorphology and the stratigraphical succession of coastal geoarchives record past coast-Coastal geomorphology and the stratigraphical succession of coastal geoarchives record past coast-
al changes and fl uctuations of coastal environments. In addition, these archives have the potential al changes and fl uctuations of coastal environments. In addition, these archives have the potential 
to store traces of past extreme events such as earthquakes and tsunamis, severe storms, and major to store traces of past extreme events such as earthquakes and tsunamis, severe storms, and major 
fl oodings of the coastal hinterland, the latter occurring e.g. during strong El Niño conditions. fl oodings of the coastal hinterland, the latter occurring e.g. during strong El Niño conditions. 
By studying their sedimentological and ecological characteristics and their chronology, coastal By studying their sedimentological and ecological characteristics and their chronology, coastal 
changes throughout time can be reconstructed. Their use as recorders of past events may enlarge changes throughout time can be reconstructed. Their use as recorders of past events may enlarge 
the temporal frame of historical event records, improving the information on past frequency and the temporal frame of historical event records, improving the information on past frequency and 
magnitude of such extreme events.magnitude of such extreme events.

In the context of seismic events, the recent exceptional earthquakes and the following dev-In the context of seismic events, the recent exceptional earthquakes and the following dev-
astating tsunamis – in Southeast Asia (December 26astating tsunamis – in Southeast Asia (December 26thth, 2004, Sumatra–Andaman Earthquake), , 2004, Sumatra–Andaman Earthquake), 
in Chile (February 27in Chile (February 27thth, 2010, Maule Earthquake), and in Japan (March 11, 2010, Maule Earthquake), and in Japan (March 11thth, 2011, Tohoku-oki , 2011, Tohoku-oki 
Earthquake) – have demonstrated the high vulnerability of coastlines adjacent to plate boundaries. Earthquake) – have demonstrated the high vulnerability of coastlines adjacent to plate boundaries. 
These outstanding events generated new seismological information since they were the fi rst to be These outstanding events generated new seismological information since they were the fi rst to be 
studied by dense networks of geodetic observations (studied by dense networks of geodetic observations (HANSON HANSON 20052005, HEKI , HEKI 2011). However, the 2011). However, the 
recent observations also revealed knowledge gaps in earthquake sciences (Grecent observations also revealed knowledge gaps in earthquake sciences (GELLERELLER 2011). Misinter- 2011). Misinter-
pretations of the size of preceding historical earthquakes may lead to an overestimation of strain pretations of the size of preceding historical earthquakes may lead to an overestimation of strain 
release in megathrust segments and incorrect strain balance estimations. Resulting discrepancies release in megathrust segments and incorrect strain balance estimations. Resulting discrepancies 
in the calculation of strain accumulation and slip defi cits underline the imperative of fundamen-in the calculation of strain accumulation and slip defi cits underline the imperative of fundamen-
tal research on the occurrence of past earthquakes and tsunamis (e.g. tal research on the occurrence of past earthquakes and tsunamis (e.g. STEIN STEIN 2008). According to 2008). According to 
YEATS YEATS et al.et al. ( (1997), earthquake magnitudes may generally be related to the length of the associated 1997), earthquake magnitudes may generally be related to the length of the associated 
rupture zone. In Chile, the 2010 Maule event was related to a ~500 km rupture of the megathrust rupture zone. In Chile, the 2010 Maule event was related to a ~500 km rupture of the megathrust 
segment off Concepción and Constitución (segment off Concepción and Constitución (MORENO MORENO et al.et al. 20102010, LORITO , LORITO et al.et al. 2011), while the 1960 2011), while the 1960 
Valdivia megaquake ruptured a megathrust segment of more than 1000 km length directly to the Valdivia megaquake ruptured a megathrust segment of more than 1000 km length directly to the 
south (south (PLAFKER & SAVAGE PLAFKER & SAVAGE 19701970, CIFUENTES , CIFUENTES 19891989, MORENO , MORENO et al.et al. 2009) (Figs. 1 and 2).2009) (Figs. 1 and 2).

Although the theory of seismic gaps and their potential for the prediction of earthquakes Although the theory of seismic gaps and their potential for the prediction of earthquakes 
has been questioned during the last decades (has been questioned during the last decades (KAGAN & JACKSON KAGAN & JACKSON 19911991, STEIN , STEIN 20082008, GELLER , GELLER 2011), 2011), 
the 2010 Maule Earthquake (Mthe 2010 Maule Earthquake (Mw 8.8) in South Central Chile occurred in a since 1835 inactive  8.8) in South Central Chile occurred in a since 1835 inactive 
megathrust segment (megathrust segment (CAMPOSCAMPOS et al. 2002,  et al. 2002, MORENO MORENO et al.et al. 20102010, , 20112011, HEKI , HEKI 2011), i.e. a seismic gap, 2011), i.e. a seismic gap, 
where elastic strain has accumulated long enough to produce a large earthquake (see also where elastic strain has accumulated long enough to produce a large earthquake (see also DEWEY DEWEY 
& SPENCE& SPENCE 1979). In this regard, the differentiation of past great (M 1979). In this regard, the differentiation of past great (Mw 8 – 9) and giant earthquakes  8 – 9) and giant earthquakes 
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(M(Mw > 9) ( > 9) (HEATON & HARTZELL HEATON & HARTZELL 1987) is of particular importance, the latter having longer recur-1987) is of particular importance, the latter having longer recur-
rence rates (up to 500 years or similar scale) and releasing much larger energy (rence rates (up to 500 years or similar scale) and releasing much larger energy (SATAKE & ATWATER SATAKE & ATWATER 
2007), depending on the characteristics of the rupture zone. In many earthquake-prone areas, in 2007), depending on the characteristics of the rupture zone. In many earthquake-prone areas, in 
particular in the Americas, low population density hindered the compilation of reliable and contin-particular in the Americas, low population density hindered the compilation of reliable and contin-
uous reports earlier than the middle of the 19uous reports earlier than the middle of the 19ththcentury. Historical accounts (e.g., century. Historical accounts (e.g., BERNINGHAUSENBERNINGHAUSEN 
1962, 1962, LOCKRIDGELOCKRIDGE 1985,  1985, LOMNITZLOMNITZ 2004) thus possibly do not report on the occurrence of giant  2004) thus possibly do not report on the occurrence of giant 
earthquakes, although they may be part of the seismic cycle in the regarded area (earthquakes, although they may be part of the seismic cycle in the regarded area (STEIN STEIN 2006). 2006). 
Additionally, over- and/or understatements of earthquake effects must be considered, and strong Additionally, over- and/or understatements of earthquake effects must be considered, and strong 
earthquakes may still be hidden in historical archives (earthquakes may still be hidden in historical archives (LOMNITZLOMNITZ 2004,  2004, CISTERNAS CISTERNAS et al.et al. 2012). Thus, 2012). Thus, 
giant earthquakes may also occur where no comparable events were previously reported or have giant earthquakes may also occur where no comparable events were previously reported or have 
not been expected to date (not been expected to date (GELLERGELLER 2011,  2011, OZAWAOZAWA et al. 2011). However, for the understanding and  et al. 2011). However, for the understanding and 
estimation of seismo-tectonic processes, large scaled spatial information about past giant earth-estimation of seismo-tectonic processes, large scaled spatial information about past giant earth-
quakes is needed since these events particularly contribute to strain release along megathrusts.quakes is needed since these events particularly contribute to strain release along megathrusts.

In the case of shallow thrust earthquakes, rupture lengths and the spatial distribution of In the case of shallow thrust earthquakes, rupture lengths and the spatial distribution of 
their tsunami deposits or other palaeoseismological indications are closely related (their tsunami deposits or other palaeoseismological indications are closely related (LORITO LORITO et al.et al. 
2011). Several studies have underlined the importance of studies on coastal geo-archives during 2011). Several studies have underlined the importance of studies on coastal geo-archives during 
the last decades such as combined palaeoseismological and palaeotsunami research and detailed the last decades such as combined palaeoseismological and palaeotsunami research and detailed 
investigations on historical reports (investigations on historical reports (CLAGUE CLAGUE et al.et al. 20002000, SAWAI , SAWAI 20012001, CISTERNAS , CISTERNAS et al.et al. 20052005, KELSEY , KELSEY 
et al.et al. 20052005, JANKAEW , JANKAEW et al.et al. 20082008, FUJINO , FUJINO et al.et al. 20092009, BRILL , BRILL et al.et al. 2011), although the variability of 2011), although the variability of 
event deposits and the incompleteness of geological records may complicate a palaeoseismological event deposits and the incompleteness of geological records may complicate a palaeoseismological 
interpretation. Evidence for past seismic events may also be brought by the detection of liquefac-interpretation. Evidence for past seismic events may also be brought by the detection of liquefac-
tion structures in suitable geological archives (tion structures in suitable geological archives (KELSEY KELSEY et al.et al. 20022002, GUARNIERI , GUARNIERI et al.et al. 20092009, MARTIN , MARTIN 
& BOURGEOIS & BOURGEOIS 2012). Likewise, successions of brackish estuarine sediments and freshwater peat, 2012). Likewise, successions of brackish estuarine sediments and freshwater peat, 
refl ected by microfaunal assemblages, potentially reveal changes in the local relative sea level, re-refl ected by microfaunal assemblages, potentially reveal changes in the local relative sea level, re-
lated to uplift or subsidence of coastal areas during seismic events; they can be used for palaeoseis-lated to uplift or subsidence of coastal areas during seismic events; they can be used for palaeoseis-
mological interpretations (mological interpretations (ATWATER ATWATER 19871987, ATWATER , ATWATER et al.et al. 2004a, b2004a, b, SAWAI , SAWAI 20012001, SAWAI , SAWAI et al.et al. 20042004, , 
REINHARDT REINHARDT et al.et al. 2010).2010).

In northern Central Chile, the 1730 Great Valparaíso Earthquake is regarded as the most In northern Central Chile, the 1730 Great Valparaíso Earthquake is regarded as the most 
prominent historical event, though little is known about its impacts for large parts of the coastline prominent historical event, though little is known about its impacts for large parts of the coastline 
(NISHENKO NISHENKO 19851985, LOMNITZ , LOMNITZ 2004). For several further earthquakes, e.g. the 1647 Great Santiago 2004). For several further earthquakes, e.g. the 1647 Great Santiago 
Earthquake, co- and postseismic tectonic movements are known as well (Earthquake, co- and postseismic tectonic movements are known as well (ARANA ARANA 2009). In this 2009). In this 
area, sudden or long-term coastal change due to vertical tectonic movements is expected at least area, sudden or long-term coastal change due to vertical tectonic movements is expected at least 
on a local scale, involving environmental changes as well as fl uvial response (e.g., incision) in river on a local scale, involving environmental changes as well as fl uvial response (e.g., incision) in river 
mouth areas, which may be detected by palaeoenvironmental, sedimentological and geomorpho-mouth areas, which may be detected by palaeoenvironmental, sedimentological and geomorpho-
logical criteria (e.g., logical criteria (e.g., WELLS & GOFF WELLS & GOFF 20062006, MAY , MAY et al.et al. 2012). Against this background, this paper 2012). Against this background, this paper 
uses sedimentary archives from four coastal areas along the Central Chilean segment between uses sedimentary archives from four coastal areas along the Central Chilean segment between 
29° 50′ S and 32° 20′ S to detect traces of late Holocene coastal changes and extreme events by 29° 50′ S and 32° 20′ S to detect traces of late Holocene coastal changes and extreme events by 
means of geomorphological, sedimentological and microfaunal investigations (Fig. 1). Where pos-means of geomorphological, sedimentological and microfaunal investigations (Fig. 1). Where pos-
sible, a correlation to tectonic events will be discussed, providing (i) indirect implications for late sible, a correlation to tectonic events will be discussed, providing (i) indirect implications for late 
Holocene and/or historical palaeoseismicity in Central Chile, and (ii) a basis for further detailed Holocene and/or historical palaeoseismicity in Central Chile, and (ii) a basis for further detailed 
studies.studies.
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2 Study area Study area

2.12.1 Tectonic setting Tectonic setting

2.1.12.1.1 General tectonic setting General tectonic setting

Chile belongs to the most earthquake-prone areas worldwide as it experiences one great earth-Chile belongs to the most earthquake-prone areas worldwide as it experiences one great earth-
quake of Mquake of Mw > 8 every fi ve to ten years ( > 8 every fi ve to ten years (BARRIENTOS BARRIENTOS 20072007, VIGNY , VIGNY et al.et al. 2009). In each segment of 2009). In each segment of 
the Chile subduction zone (the Chile subduction zone (BECK BECK et al.et al. 1998), these events return every 80 –130 years (see Fig. 2, 1998), these events return every 80 –130 years (see Fig. 2, 
BARRIENTOS BARRIENTOS et al.et al. 2004). Earthquakes occur along the Andean (also South American) subduction 2004). Earthquakes occur along the Andean (also South American) subduction 
zone or megathrust, where the oceanic Nazca Plate subducts below the South American Plate (cf. zone or megathrust, where the oceanic Nazca Plate subducts below the South American Plate (cf. 
BARRIENTOS BARRIENTOS et al.et al. 20042004, MORENO , MORENO et al.et al. 2008). Along this zone, changes of the subduction character 2008). Along this zone, changes of the subduction character 
and the rupture behavior of related earthquakes are observed both on temporal and spatial scales, and the rupture behavior of related earthquakes are observed both on temporal and spatial scales, 
explained by the complexity of the subducting Nazca plate comprising seamounts, ridges, fracture explained by the complexity of the subducting Nazca plate comprising seamounts, ridges, fracture 
zones and trench sediments of varying thickness (zones and trench sediments of varying thickness (BILEKBILEK 2010). However, three general seismo- 2010). However, three general seismo-
genic zones can be recognized in Chile (genic zones can be recognized in Chile (BARRIENTOS BARRIENTOS et al.et al. 2004): (i) a zone of shallow (50 – 0 km), 2004): (i) a zone of shallow (50 – 0 km), 
large thrust events occurring along the coast (here, most tsunamigenic earthquakes are generated large thrust events occurring along the coast (here, most tsunamigenic earthquakes are generated 
between 18° S and 46° S); (ii) a zone of large earthquakes of intermediate depth (100 –70 km) in between 18° S and 46° S); (ii) a zone of large earthquakes of intermediate depth (100 –70 km) in 
the subducting Nazca Plate, both compressional and tensional; and (iii) a zone of very shallow the subducting Nazca Plate, both compressional and tensional; and (iii) a zone of very shallow 

Fig.Fig. 1. Overview and general setting of northern Central Chile. (A) Coquimbo Bay; core LSE 1 was carried  1. Overview and general setting of northern Central Chile. (A) Coquimbo Bay; core LSE 1 was carried 
out in the very northern part of the bay, at the estuary river mouth of the Quebrada Teatinos. (B) Bay of out in the very northern part of the bay, at the estuary river mouth of the Quebrada Teatinos. (B) Bay of 
Tongoy; coring site TON 1 is located in the coastal swamp in the river mouth of the Quebrada Pachingo. Tongoy; coring site TON 1 is located in the coastal swamp in the river mouth of the Quebrada Pachingo. 
(C) Sampling site LOV 6, south of Los Vilos. The coastal section is characterised by pocket-like beaches and (C) Sampling site LOV 6, south of Los Vilos. The coastal section is characterised by pocket-like beaches and 
~10 m high cliffs. (D) Pichicuy Bay with the location of profi le PCU 2 where a possible liquefaction unit was ~10 m high cliffs. (D) Pichicuy Bay with the location of profi le PCU 2 where a possible liquefaction unit was 
detected (map based on SRTM data; images of study sites from Google Earth).detected (map based on SRTM data; images of study sites from Google Earth).
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seismicity (20 – 0 km) which notably takes place under the Cordillera of Central Chile. In this lat-seismicity (20 – 0 km) which notably takes place under the Cordillera of Central Chile. In this lat-
ter region (between 28° S and 33° S, Fig. 2), the Nazca Plate is indeed subducted as a fl at slab; its ter region (between 28° S and 33° S, Fig. 2), the Nazca Plate is indeed subducted as a fl at slab; its 
dipping angle is below 10° and extends eastward almost horizontally for hundreds of kilometers at dipping angle is below 10° and extends eastward almost horizontally for hundreds of kilometers at 
intermediate depths (intermediate depths (CAHILL & ISACKS CAHILL & ISACKS 19921992, PARDO , PARDO et al.et al. 2002a). Seismic coupling is assumed for 2002a). Seismic coupling is assumed for 
the area (the area (GARDI GARDI et al.et al. 20062006, MÉTOIS , MÉTOIS et al.et al. 2012), which is part of the Coquimbo seismic gap (29.5° S 2012), which is part of the Coquimbo seismic gap (29.5° S 
– 32° S) gap as well (– 32° S) gap as well (VIGNY VIGNY et al.et al. 2009). Along the Central Chilean coastline, the difference in the 2009). Along the Central Chilean coastline, the difference in the 
angle of the subduction and/or the submarine Juan Fernandez ridge (32° S – 33° S) (angle of the subduction and/or the submarine Juan Fernandez ridge (32° S – 33° S) (NISHENKO NISHENKO 
19851985, FUENZALIDA , FUENZALIDA et al.et al. 19921992, RANERO , RANERO et al.et al. 2006) are supposed to limit the rupture length and 2006) are supposed to limit the rupture length and 
thus the size of possible earthquakes.thus the size of possible earthquakes.

Fig.Fig. 2. Rupture lengths and extent of main historical earthquakes between c. 28° S and 38° S, Central Chile  2. Rupture lengths and extent of main historical earthquakes between c. 28° S and 38° S, Central Chile 
(map based on SRTM data; rupture areas based on (map based on SRTM data; rupture areas based on KELLEHERKELLEHER 1972,  1972, NISHENKONISHENKO 1985,  1985, COMTECOMTE et al. 1986,  et al. 1986, LEM-LEM-
OINEOINE et al. 2001,  et al. 2001, CAMPOSCAMPOS et al. 2002,  et al. 2002, PARDOPARDO et al. 2002a, b,  et al. 2002a, b, GARDIGARDI et al. 2006,  et al. 2006, VIGNYVIGNY et al. 2009,  et al. 2009, MORENOMORENO et  et 
al. 2010, al. 2010, LORITOLORITO et al. 2011). et al. 2011).
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2.1.22.1.2 Pleistocene coastal uplift and marine terraces Pleistocene coastal uplift and marine terraces

Strong earthquakes in Chile are generally associated with vertical crustal movements, such as Strong earthquakes in Chile are generally associated with vertical crustal movements, such as 
coastal uplift and/or subsidence (e.g., coastal uplift and/or subsidence (e.g., PLAFKER & SAVAGE PLAFKER & SAVAGE 19701970, NELSON & MANLY , NELSON & MANLY 19921992, MELNICK , MELNICK et et 
al.al. 20062006, , 20122012, VARGAS , VARGAS et al.et al. 2011). On longer time scales, the high seismicity and tectonic activity 2011). On longer time scales, the high seismicity and tectonic activity 
is refl ected by elevated marine terraces or beach ridge sequences, which are gradually or suddenly is refl ected by elevated marine terraces or beach ridge sequences, which are gradually or suddenly 
isolated from the foreshore dynamics resulting in a prograding pattern of beach ridge systems (e.g., isolated from the foreshore dynamics resulting in a prograding pattern of beach ridge systems (e.g., 
OTVOSOTVOS 2000). Dating these features is crucial to gain insights into displacement rates of crustal  2000). Dating these features is crucial to gain insights into displacement rates of crustal 
segments (e.g., segments (e.g., PASKOFF PASKOFF 19701970, RADTKE , RADTKE 19871987, BOOKHAGEN , BOOKHAGEN et al.et al. 20062006, PFEIFER , PFEIFER et al.et al. 2011), though 2011), though 
other forming processes such as the infl uence of increased sediment pulses by El Niño events (e.g. other forming processes such as the infl uence of increased sediment pulses by El Niño events (e.g. 
SANDWEISSSANDWEISS 1986) have to be taken into account. 1986) have to be taken into account.

Within the southern part of the study area, little information about structural tectonic ele-Within the southern part of the study area, little information about structural tectonic ele-
ments, local tectonics and Pleistocene marine terraces is available. Recently, cosmogenic nuclide ments, local tectonics and Pleistocene marine terraces is available. Recently, cosmogenic nuclide 
ages (ages (1010Be and Be and 2626Al) performed on different landforms located at 31.5° S (pediment, marine and Al) performed on different landforms located at 31.5° S (pediment, marine and 
fl uvial terraces) highlighted (i) a period of relative tectonic stability during the 800 – 500 ka time fl uvial terraces) highlighted (i) a period of relative tectonic stability during the 800 – 500 ka time 
span, and (ii) a renewal of coastal uplift later than 500 ka (uplift rate of ~0,3 m/ka, span, and (ii) a renewal of coastal uplift later than 500 ka (uplift rate of ~0,3 m/ka, RODRÍGUEZ RODRÍGUEZ et et 
al.al. 2013). To the north,2013). To the north,1010Be surface exposure ages of wave-cut platforms in the Altos de Talinay, Be surface exposure ages of wave-cut platforms in the Altos de Talinay, 
a northwards stretching part of the Coastal Cordillera, revealed long-term averaged uplift rates a northwards stretching part of the Coastal Cordillera, revealed long-term averaged uplift rates 
varying between ~0.1 m/ka and ~1.2 m/ka for the last 700 ka (varying between ~0.1 m/ka and ~1.2 m/ka for the last 700 ka (SAILLARD SAILLARD et al.et al. 20092009, , 2012). The 2012). The 
fi ve abrasion platforms were correlated with Quaternary sea-level highstands (MIS 1, 5 e, 7 c or fi ve abrasion platforms were correlated with Quaternary sea-level highstands (MIS 1, 5 e, 7 c or 
e, 9 c and 17). Pleistocene marine terraces and beach ridges characterise the northern part of the e, 9 c and 17). Pleistocene marine terraces and beach ridges characterise the northern part of the 
so-called Tongoy Palaeobay Depression (TPD, so-called Tongoy Palaeobay Depression (TPD, LE ROUX LE ROUX et al.et al. 20052005, SAILLARD , SAILLARD et al.et al. 20092009, , 2012), 2012), 
facing the Bay of Tongoy (facing the Bay of Tongoy (PFEIFFER PFEIFFER et al.et al. 2011). The Puerto Aldea Fault, a steeply eastward dipping 2011). The Puerto Aldea Fault, a steeply eastward dipping 
normal fault, represents the contact zone between the TPD and the Altos de Talinay and is indi-normal fault, represents the contact zone between the TPD and the Altos de Talinay and is indi-
cated by a NNW-SSE orientation. According to U-Th dating of molluscs from the TPD palaeo-cated by a NNW-SSE orientation. According to U-Th dating of molluscs from the TPD palaeo-
beach ridges (beach ridges (SAILLARD SAILLARD et al.et al. 2012), the fault has been inactive at least since the middle Pleistocene 2012), the fault has been inactive at least since the middle Pleistocene 
(230 – 320 ka), resulting in a simultaneous uplift history of the two segments since then.(230 – 320 ka), resulting in a simultaneous uplift history of the two segments since then.

The 15 km long embayment of Coquimbo Bay and the southward lying smaller La Herradura The 15 km long embayment of Coquimbo Bay and the southward lying smaller La Herradura 
Bay are bordered by sequences of Pleistocene marine terraces, cut into the Neogene Coquimbo Bay are bordered by sequences of Pleistocene marine terraces, cut into the Neogene Coquimbo 
formation (e.g., formation (e.g., HERM & PASKOFF HERM & PASKOFF 19671967, PASKOFF , PASKOFF 19701970, RADTKE , RADTKE 19871987, , 19891989, LEONARD & WEHMILLER , LEONARD & WEHMILLER 
1992). Average uplift rates in this area are calculated to have been very low during the Pleistocene 1992). Average uplift rates in this area are calculated to have been very low during the Pleistocene 
(1.15-0.2 m/ka; (1.15-0.2 m/ka; LEONARD & WEHMILLER LEONARD & WEHMILLER 1992).1992).

Northwards of the Coquimbo region (Copiapo area, ~27° S), Northwards of the Coquimbo region (Copiapo area, ~27° S), 2121Ne surface exposure ages on Ne surface exposure ages on 
marine terraces provided an average uplift rate of ~0.3 m/ka (marine terraces provided an average uplift rate of ~0.3 m/ka (QUEZADA QUEZADA et al.et al. 2007). In South 2007). In South 
Central Chile (Isla Santa Maria, 37° S), a very high uplift trend of about 2 m/ka was detected for Central Chile (Isla Santa Maria, 37° S), a very high uplift trend of about 2 m/ka was detected for 
the late Quaternary (the late Quaternary (MELNICK MELNICK et al.et al. 2006), partly due to coseismic uplift during megathrust earth-2006), partly due to coseismic uplift during megathrust earth-
quakes such as the 1835 Concepción earthquake.quakes such as the 1835 Concepción earthquake.

2.22.2 Palaeoseismicity in Central Chile Palaeoseismicity in Central Chile

Within the area of Coquimbo (Central Chile, 29.5° S to 32° S), the most recent and well-studied Within the area of Coquimbo (Central Chile, 29.5° S to 32° S), the most recent and well-studied 
major earthquake (Mmajor earthquake (Mw 7.3) struck the Ovalle-Punitaqui area in October 1997 ( 7.3) struck the Ovalle-Punitaqui area in October 1997 (LEMOINE LEMOINE et al.et al. 20012001, , 
PARDO PARDO et al.et al. 2002b2002b, GARDI , GARDI et al.et al. 2006). The main shock occurred at intermediate depth (68 km) 2006). The main shock occurred at intermediate depth (68 km) 



207207Holocene coastal stratigraphy, coastal changes and potential palaeoseismological implicationsHolocene coastal stratigraphy, coastal changes and potential palaeoseismological implications

within the subducted Nazca Plate and had a subvertical rupture plane with an along-slab (down-within the subducted Nazca Plate and had a subvertical rupture plane with an along-slab (down-
dip) compressional mechanism; as such, it was a very rare event in Central Chile (dip) compressional mechanism; as such, it was a very rare event in Central Chile (LEMOINE LEMOINE et al.et al. 
20012001, GARDI , GARDI et al.et al. 2006). Since the resumption of earthquake activity in mid-1997, the segment 2006). Since the resumption of earthquake activity in mid-1997, the segment 
between 29.5° S and 32° S has been the site of a seismic swarm decade, with 12 earthquakes of between 29.5° S and 32° S has been the site of a seismic swarm decade, with 12 earthquakes of 
Mw > 6 during this time span ( > 6 during this time span (VIGNY VIGNY et al.et al. 2009).2009).

Before that time, three large events have been recorded in this area during early instrumental Before that time, three large events have been recorded in this area during early instrumental 
and historical periods: in 1943, 1880 and 1730. According to and historical periods: in 1943, 1880 and 1730. According to BECK BECK et al. (1998), the rupture distance et al. (1998), the rupture distance 
of the 1943 Illapel-earthquake (Mof the 1943 Illapel-earthquake (Mw w ~7.9), centered around 31° S, stretched over 100 km (Fig. 2). ~7.9), centered around 31° S, stretched over 100 km (Fig. 2). 
The two previous events of 1880 and 1730 are suggested to have ruptured this segment as well, The two previous events of 1880 and 1730 are suggested to have ruptured this segment as well, 
but the 1730 Great Valparaíso Earthquake (Mbut the 1730 Great Valparaíso Earthquake (Mw w ~8.5 – 9.0) extended over a longer segment of the ~8.5 – 9.0) extended over a longer segment of the 
megathrust. According to the distribution of related effects, and damages in the cities of La Ser-megathrust. According to the distribution of related effects, and damages in the cities of La Ser-
ena and Coquimbo (ena and Coquimbo (LOMNITZLOMNITZ 2004), its rupture probably affected at least a 550 km-long segment,  2004), its rupture probably affected at least a 550 km-long segment, 
stretching from 30.5° S to 36° S (stretching from 30.5° S to 36° S (COMTECOMTE et al. 1986). et al. 1986).

Southward of the Coquimbo segment, further major historical earthquakes struck the region Southward of the Coquimbo segment, further major historical earthquakes struck the region 
of Valparaíso (33° S) in 1906, 1822 and 1647. While the location of the 1647 Great Santiago Earth-of Valparaíso (33° S) in 1906, 1822 and 1647. While the location of the 1647 Great Santiago Earth-
quake (Mquake (Mw w ~8.0) epicenter remains ambiguous, coastal uplift is reported in historical documents ~8.0) epicenter remains ambiguous, coastal uplift is reported in historical documents 
(ARANAARANA 2009), and its ~365 km-long rupture zone was probably similar to the one engendered  2009), and its ~365 km-long rupture zone was probably similar to the one engendered 
by the 1906 Valparaíso Earthquake (Mby the 1906 Valparaíso Earthquake (Mw w ~8.6); the latter rupture stretched northwards into the ~8.6); the latter rupture stretched northwards into the 
southern part of the study area (southern part of the study area (COMTECOMTE et al. et al. 1986). Though probably of smaller rupture, the 1822 1986). Though probably of smaller rupture, the 1822 
event (Fig. 2; Mevent (Fig. 2; Mw w ~8.0-8.5) with a likely epicenter close to La Ligua also extended northwards up ~8.0-8.5) with a likely epicenter close to La Ligua also extended northwards up 
to Illapel (Fig. 2) and generated a ~3,5 m-high tsunami (to Illapel (Fig. 2) and generated a ~3,5 m-high tsunami (COMTE COMTE et al.et al. 19861986, LOMNITZ , LOMNITZ 2004). The 2004). The 
1730 Great Valparaíso Earthquake corresponds to the largest seismic event reported for the last 1730 Great Valparaíso Earthquake corresponds to the largest seismic event reported for the last 
fi ve centuries in whole Central Chile. However, as pointed out by fi ve centuries in whole Central Chile. However, as pointed out by NISHENKO (NISHENKO (1985), little is known 1985), little is known 
regarding the length of its rupture zone or the intensity of vertical displacements.regarding the length of its rupture zone or the intensity of vertical displacements.

In contrast to the 1997 earthquake (see aforementioned references), information on historic In contrast to the 1997 earthquake (see aforementioned references), information on historic 
– and all the more prehistoric – events and seismic parameters is limited. In South Central Chile, – and all the more prehistoric – events and seismic parameters is limited. In South Central Chile, 
CISTERNAS CISTERNAS et al.et al. ( (2005) gave valuable insights into the seismic cycle and fault behavior by examin-2005) gave valuable insights into the seismic cycle and fault behavior by examin-
ing a 2000 year stratigraphical record from the center of the 1960 fault zone (Río Maullín Estuary) ing a 2000 year stratigraphical record from the center of the 1960 fault zone (Río Maullín Estuary) 
based on the detection of palaeotsunami sediments. In contrast to previous calculations, they based on the detection of palaeotsunami sediments. In contrast to previous calculations, they 
showed that much of the energy released during the 1960 event resulted from seismic locking since showed that much of the energy released during the 1960 event resulted from seismic locking since 
the 1575 Valdivia earthquake (Mthe 1575 Valdivia earthquake (Mw 8 – 8.5). 8 – 8.5).

For northern Central Chile and notably for the segment between ~30° S and ~32° S, a lack of For northern Central Chile and notably for the segment between ~30° S and ~32° S, a lack of 
analogous studies about palaeoseismicity is evident. Consequently, underestimation of earthquake analogous studies about palaeoseismicity is evident. Consequently, underestimation of earthquake 
and related tsunami risk, similar to Sumatra or northeastern Japan in the recent past, may be true and related tsunami risk, similar to Sumatra or northeastern Japan in the recent past, may be true 
for northern Central Chile at present. Indeed, based on the available historical accounts and due to for northern Central Chile at present. Indeed, based on the available historical accounts and due to 
the seismo-tectonic setting, no giant earthquakes are supposed to occur in these densely populated the seismo-tectonic setting, no giant earthquakes are supposed to occur in these densely populated 
coastal zones of Chile.coastal zones of Chile.

2.32.3 Holocene sea level history Holocene sea level history

A higher sea level of less than 5 m a.s.l. (above mean sea level) was suggested for Central Chile dur-A higher sea level of less than 5 m a.s.l. (above mean sea level) was suggested for Central Chile dur-
ing the mid-Holocene (ing the mid-Holocene (OTA & PASKOFF OTA & PASKOFF 19931993, ISLA , ISLA et al.et al. 2012). However, considerable differences 2012). However, considerable differences 
in the tectonic behavior and relative sea level history between coastal segments on a local, regional in the tectonic behavior and relative sea level history between coastal segments on a local, regional 
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and supraregional scale must be expected (and supraregional scale must be expected (BOOKHAGEN BOOKHAGEN et al.et al. 20062006, see also see also VÖTT VÖTT 2007). The dif- 2007). The dif-
ferentiation of the effects of coseismic and/or postseismic tectonics (e.g. ferentiation of the effects of coseismic and/or postseismic tectonics (e.g. BARRIENTOSBARRIENTOS 1995), aseis- 1995), aseis-
mic crustal behavior and tsunami deposition as well as, in southern Chile, glacio-isostatic rebound mic crustal behavior and tsunami deposition as well as, in southern Chile, glacio-isostatic rebound 
on the one hand, and of purely eustatic changes on the other hand remains particularly diffi cult.on the one hand, and of purely eustatic changes on the other hand remains particularly diffi cult.

For the Bays of Tongoy and La Herradura, For the Bays of Tongoy and La Herradura, OTA & PASKOFFOTA & PASKOFF (1993) assume a higher (relative)  (1993) assume a higher (relative) 
mid-Holocene sea level and a maximum of the Holocene transgression at ~6000BP. Moreover, mid-Holocene sea level and a maximum of the Holocene transgression at ~6000BP. Moreover, 
slow coastal uplift during the Holocene is inferred based on 3000 – 2000 year old littoral sedi-slow coastal uplift during the Holocene is inferred based on 3000 – 2000 year old littoral sedi-
ments found at 3.5 – 5 m a.s.l. In the same area, ments found at 3.5 – 5 m a.s.l. In the same area, DARWINDARWIN (1846) as well as  (1846) as well as PASKOFFPASKOFF (1973) reported  (1973) reported 
on Holocene marine terrace levels below the last Interglacial terrace. Comparable conclusions are on Holocene marine terrace levels below the last Interglacial terrace. Comparable conclusions are 
made by made by ENCINASENCINAS et al. (2006) for the Estero San Jerónimo alluvial plain near Algarrobo, south  et al. (2006) for the Estero San Jerónimo alluvial plain near Algarrobo, south 
of Valparaíso. A summary of fi ndings relevant for Holocene sea level in Chile is given in of Valparaíso. A summary of fi ndings relevant for Holocene sea level in Chile is given in ISLA ISLA et et 
al. (2012).al. (2012).

As to the present conditions, the study area is characterized by a microtidal regime. Signifi -As to the present conditions, the study area is characterized by a microtidal regime. Signifi -
cant wave heights during storm events in the open Pacifi c off Chile and Peru may reach 5 – 6 m on cant wave heights during storm events in the open Pacifi c off Chile and Peru may reach 5 – 6 m on 
average; for instance, in the period 2007– 2011, a maximum signifi cant wave height of 5.81 m was average; for instance, in the period 2007– 2011, a maximum signifi cant wave height of 5.81 m was 
recorded (buoy 32012, National Data Buoy Center, http://www.ndbc.noaa.gov; see also recorded (buoy 32012, National Data Buoy Center, http://www.ndbc.noaa.gov; see also STOPASTOPA et  et 
al. 2012). For the Concón Bay, situated directly south of the study area of this study, near-shore al. 2012). For the Concón Bay, situated directly south of the study area of this study, near-shore 
maximum wave heights are reported to be 1– 3 m in general, originating from W, NW or SW wind maximum wave heights are reported to be 1– 3 m in general, originating from W, NW or SW wind 
directions (directions (MARTINEZMARTINEZ et al. 2011). et al. 2011).

3 Methods Methods

For the detection of late Holocene palaeogeographical changes and changes in coastal geomor-For the detection of late Holocene palaeogeographical changes and changes in coastal geomor-
phodynamics we performed sediment corings and used trenches to investigate the stratigraphical phodynamics we performed sediment corings and used trenches to investigate the stratigraphical 
succession of coastal geo-archives. To assess the archives’ geomorphological context, geomorpho-succession of coastal geo-archives. To assess the archives’ geomorphological context, geomorpho-
logical mapping in the fi eld (spring 2011) as well as the visual interpretation of the local geomor-logical mapping in the fi eld (spring 2011) as well as the visual interpretation of the local geomor-
phology and geomorphodynamics using satellite images from 1970 (Corona satellite image, United phology and geomorphodynamics using satellite images from 1970 (Corona satellite image, United 
States Geological Survey) and 2005 (Google Earth) were carried out. Elevation of cores and pro-States Geological Survey) and 2005 (Google Earth) were carried out. Elevation of cores and pro-
fi les was measured using a Topcon HiPer Pro differential global positioning system (DGPS, alti-fi les was measured using a Topcon HiPer Pro differential global positioning system (DGPS, alti-
metric accuracy of ~2 cm).metric accuracy of ~2 cm).

Coring LSE 1 was performed by means of an Atlas Copco Cobra mk 1 percussion corer with Coring LSE 1 was performed by means of an Atlas Copco Cobra mk 1 percussion corer with 
sediment cores of 5 and 6 cm in diameter. Additionally, in the Quebrada Pachingo coastal swamp sediment cores of 5 and 6 cm in diameter. Additionally, in the Quebrada Pachingo coastal swamp 
(Bay of Tongoy), one sediment core was obtained by pushing a plastic tube, 2 m long and 7.5 cm in (Bay of Tongoy), one sediment core was obtained by pushing a plastic tube, 2 m long and 7.5 cm in 
diameter, into the sediment by hand (core TON 1). Vibracores and push cores were documented diameter, into the sediment by hand (core TON 1). Vibracores and push cores were documented 
and sampled in the fi eld, grain size distribution estimated according to and sampled in the fi eld, grain size distribution estimated according to AD-HOC ARBEITSGRUPPE AD-HOC ARBEITSGRUPPE 
BODEN BODEN (2005). For the interpretation of the sedimentary fi ndings and to infer palaeoenvironmen-(2005). For the interpretation of the sedimentary fi ndings and to infer palaeoenvironmen-
tal and geomorphodynamic changes from the record, sedimentological, geochemical and macro- tal and geomorphodynamic changes from the record, sedimentological, geochemical and macro- 
and microfaunal analyses were undertaken in the laboratory. The air-dried and hand-pestled fi ne-and microfaunal analyses were undertaken in the laboratory. The air-dried and hand-pestled fi ne-
grained fraction (< 2 mm) of the samples was analyzed for Ca, Fe, Na and K concentrations using grained fraction (< 2 mm) of the samples was analyzed for Ca, Fe, Na and K concentrations using 
atomic absorption spectrometry (Perkin Elmer A-Analyst 300) after digestion with concentrated atomic absorption spectrometry (Perkin Elmer A-Analyst 300) after digestion with concentrated 
HCl (37 %). CaCOHCl (37 %). CaCO3 was measured applying the Scheibler method, loss on ignition (LOI) deter- was measured applying the Scheibler method, loss on ignition (LOI) deter-
mined by oven-drying at 105 °C for 12 h and ignition in a muffl e furnace at 550 °C for 4 h (mined by oven-drying at 105 °C for 12 h and ignition in a muffl e furnace at 550 °C for 4 h (BECK BECK 
et al.et al. 1993). For core profi le TON 1, the inorganic element composition was determined using 1993). For core profi le TON 1, the inorganic element composition was determined using 

http://www.ndbc.noaa.gov
http://www.ndbc.noaa.gov
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an ITRAX X-Ray fl uorescence (XRF) core scanner (Cox Analytical Systems). Semi-quantitative an ITRAX X-Ray fl uorescence (XRF) core scanner (Cox Analytical Systems). Semi-quantitative 
variations of elements from Al to U were analyzed by scanning at 1 mm resolution and an expo-variations of elements from Al to U were analyzed by scanning at 1 mm resolution and an expo-
sure time of 20 sec. Count rates (cr) represent element amounts and an estimation of the relative sure time of 20 sec. Count rates (cr) represent element amounts and an estimation of the relative 
concentrations in the sediment. Microfossil analysis was carried out for cores TON 1 and LSE 1 in concentrations in the sediment. Microfossil analysis was carried out for cores TON 1 and LSE 1 in 
order to support textural and geochemical results, to verify the provenance of distinct sedimentary order to support textural and geochemical results, to verify the provenance of distinct sedimentary 
units and to determine sediment source areas. Samples (10 cmunits and to determine sediment source areas. Samples (10 cm3) were pre-treated with H) were pre-treated with H2O2 (30 %)  (30 %) 
for dispersion and sieved to isolate fractions of > 100 and < 100 μm. The content of microfossils for dispersion and sieved to isolate fractions of > 100 and < 100 μm. The content of microfossils 
was investigated under a stereo light microscope and recorded quantitatively. Palaeoenvironmental was investigated under a stereo light microscope and recorded quantitatively. Palaeoenvironmental 
interpretations are mainly based on interpretations are mainly based on MEISCH MEISCH (2000).(2000).

For the geochronological framework of coastal stratigraphies, mollusc and plant remains were For the geochronological framework of coastal stratigraphies, mollusc and plant remains were 
dated by dated by 1414C-AMS. The dating results were calibrated with CALIB 6.01 (C-AMS. The dating results were calibrated with CALIB 6.01 (REIMER REIMER et al.et al. 2009) uti-2009) uti-
lizing the Terrestrial (SHCal04) Southern Hemisphere calibration curves. Marine carbonates were lizing the Terrestrial (SHCal04) Southern Hemisphere calibration curves. Marine carbonates were 
corrected for a reservoir effect of 400 years (corrected for a reservoir effect of 400 years (REIMER REIMER et al.et al. 2009) (Table 1).2009) (Table 1).

4 Results Results

4.14.1 Sediment core LSE 1 (Bay of Coquimbo) Sediment core LSE 1 (Bay of Coquimbo)

Back-barrier estuary environments presently exist in the very northern part of the Bay of Co-Back-barrier estuary environments presently exist in the very northern part of the Bay of Co-
quimbo (Fig. 1) in the river mouth of the Quebrada de Teatinos. The sedimentary succession quimbo (Fig. 1) in the river mouth of the Quebrada de Teatinos. The sedimentary succession 

Tab. 1. Tab. 1. 1414C-AMS dating results used for the geochronological interpretation. Notes: unid. plant remains – C-AMS dating results used for the geochronological interpretation. Notes: unid. plant remains – 
unidentifi ed plant remains; unid. m. fragments – unidentifi ed mollusc fragments. Lab. no. – Laboratory unidentifi ed plant remains; unid. m. fragments – unidentifi ed mollusc fragments. Lab. no. – Laboratory 
number, UGAMS = Center for Applied Isotope Studies, University of Georgia (USA). * – marine reservoir number, UGAMS = Center for Applied Isotope Studies, University of Georgia (USA). * – marine reservoir 
correction with 400 years. “#” – calibration yielded several possible age intervals because of multiple inter-correction with 400 years. “#” – calibration yielded several possible age intervals because of multiple inter-
sections with the calibration curve; the oldest and youngest possible ages are depicted.sections with the calibration curve; the oldest and youngest possible ages are depicted.

SampleSample DepthDepth
(m a.s.l.)(m a.s.l.) Lab. no.Lab. no. Sample descriptionSample description δ1313C

(ppm)(ppm)
1414C ageC age

(BP)(BP)
1σ max-min1σ max-min
(cal BC/AD)(cal BC/AD)

2σ max-min2σ max-min
(cal BC/AD)(cal BC/AD)

LOV 6/1LOV 6/1   3.50  3.50 UGAMS9017UGAMS9017 unid. m. fragmentsunid. m. fragments  – 0 – 0.4.4 1560 1560 ± ± 2020 *792-870 AD792-870 AD *#748; 905 AD748; 905 AD

LOV 6/3LOV 6/3   4.10  4.10 UGAMS9018UGAMS9018 unid. m. fragmentsunid. m. fragments    1.3   1.3 1370 1370 ± ± 2020 *1007-1055 AD1007-1055 AD *974-1103 AD974-1103 AD

LOV 6/5LOV 6/5   4.65  4.65 UGAMS9019UGAMS9019 unid. m. fragmentsunid. m. fragments    1.1   1.1  720  720 ± ± 2020 *1550-1629 AD1550-1629 AD #*1522; 1654 AD1522; 1654 AD

LSE 1/5LSE 1/5 – 1– 1.25.25 UGAMS9465UGAMS9465 unid. plant remainsunid. plant remains – 27– 27.4.4   70   70 ± ± 2020 #1819;1955 AD1819;1955 AD #1714; 1955 AD1714; 1955 AD

LSE 1/6LSE 1/6 – 1– 1.35.35 UGAMS9466UGAMS9466 unid. plant remainsunid. plant remains – 27– 27.2.2  120  120 ± ± 2020 #1711; 1952 AD1711; 1952 AD #1698; 1953 AD1698; 1953 AD

LSE 1/16LSE 1/16 – 2– 2.35.35 UGAMS9567UGAMS9567 unid. plant remainsunid. plant remains – 26– 26.0.0  280  280 ± ± 2020 #1639; 1664 AD1639; 1664 AD #1525; 1796 AD1525; 1796 AD

PCU 2/3PCU 2/3 – 0– 0.03.03 UGAMS9020UGAMS9020 organic matterorganic matter – 26– 26.5.5  300  300 ± ± 2020 #1526; 1655 AD1526; 1655 AD #1510; 1666 AD1510; 1666 AD

PCU 3/1PCU 3/1 – 0– 0.10.10 UGAMS9021UGAMS9021 unid. rhizome remainunid. rhizome remain – 26– 26.9.9  180  180 ± ± 2020 #1675; 1950 AD1675; 1950 AD #1671; 1951 AD1671; 1951 AD

PCU 3/2PCU 3/2 – 0– 0.10.10 UGAMS9022UGAMS9022 Cyprus californicusCyprus californicus – 27– 27.2.2  130  130 ± ± 2020 #1708; 1925 AD1708; 1925 AD #1697; 1952 AD1697; 1952 AD

TON 1/17TON 1/17 – 0– 0.17.17 UGAMS10625UGAMS10625 seedsseeds – 12– 12.5.5 2290 2290 ± ± 2525 377-211 BC377-211 BC 388-204 BC388-204 BC

TON 1/33TON 1/33 – 0– 0.33.33 UGAMS10625UGAMS10625 seedsseeds – 11– 11.7.7 1740 1740 ± ± 4545 259-420 AD259-420 AD 235-533 AD235-533 AD

TON 1/54TON 1/54 – 0– 0.54.54 UGAMS10625UGAMS10625 seedsseeds – 15– 15.0.0 1810 1810 ± ± 2525 240-333 AD240-333 AD 176-388 AD176-388 AD

TON 1/63TON 1/63 – 0– 0.63.63 UGAMS9464UGAMS9464 seedsseeds  – 7 – 7.1.1 1090 1090 ± ± 2525 991-1018 AD991-1018 AD #903; 1032 AD903; 1032 AD
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of core LSE 1 [4.00 – 3.70 m below surface (b.s.), Fig. 3] starts with relatively well-sorted fi ne to of core LSE 1 [4.00 – 3.70 m below surface (b.s.), Fig. 3] starts with relatively well-sorted fi ne to 
medium sand containing mollusc remains (mainly medium sand containing mollusc remains (mainly Mesodesma donaciumMesodesma donacium). Grain size increases to ). Grain size increases to 
brown medium sand and gravel in the subsequent stratum (3.70 – 2.39 m b.s.) overlain by a unit of brown medium sand and gravel in the subsequent stratum (3.70 – 2.39 m b.s.) overlain by a unit of 
fi ne-grained sediments (silty and clayey fi ne sand) and three peat-like units (1.78 –1.89, 1.62 –1.73 fi ne-grained sediments (silty and clayey fi ne sand) and three peat-like units (1.78 –1.89, 1.62 –1.73 
and 1.21–1.37 m b.s.). Plant remains from the lower part of this unit, directly above the medium and 1.21–1.37 m b.s.). Plant remains from the lower part of this unit, directly above the medium 
sand, were dated to 1525 –1796 cal AD (sample LSE 1/16, 2.35 m b.s., Table 1). In the lowermost sand, were dated to 1525 –1796 cal AD (sample LSE 1/16, 2.35 m b.s., Table 1). In the lowermost 
peat layer (c. 1.88 m b.s.), numerous specimen of the ostracods peat layer (c. 1.88 m b.s.), numerous specimen of the ostracods Cyprideis Cyprideis cf. cf. torosatorosa were found. While  were found. While 
only the intertidal foraminifera only the intertidal foraminifera TrochamminitaTrochamminita irregularis irregularis and one specimen of and one specimen of Cyprideis Cyprideis cfcf. torosa. torosa 
were detected in the sediments between 1.65 and 1.37 m b.s., the foraminifera were detected in the sediments between 1.65 and 1.37 m b.s., the foraminifera Trochammina infl ataTrochammina infl ata 
and freshwater ostracods (and freshwater ostracods (Darvinula stevensoniDarvinula stevensoni, Penthesilenula brasiliensis Penthesilenula brasiliensis, Heterocypris salina Heterocypris salina) addition-) addition-
ally occur in the subsequent sample LSE 1/6 (1.36 m b.s.). Above (sample LSE 1/5, 1.22 m b.s.), a ally occur in the subsequent sample LSE 1/6 (1.36 m b.s.). Above (sample LSE 1/5, 1.22 m b.s.), a 
considerable increase in microfaunal diversity is observed, comprising the intertidal foraminifers considerable increase in microfaunal diversity is observed, comprising the intertidal foraminifers 
Trochamminita irregularis Trochamminita irregularis and and Trochammina infl ataTrochammina infl ata, several freshwater ostracods (, several freshwater ostracods (Darwinula stevensoniDarwinula stevensoni, 
Penthesilenula brasiliensisPenthesilenula brasiliensis, Pseudocandona  Pseudocandona sp.,sp., Heterocypris salina Heterocypris salina, Sarscypridopsis aculeata Sarscypridopsis aculeata) as well as several ) as well as several 
marine ostracods (marine ostracods (Dolerocypris marinaDolerocypris marina, Cytherura portomonttensis Cytherura portomonttensis, Xestoleberis chilensis Xestoleberis chilensis, Ambocythere den- Ambocythere den-

Fig.Fig. 3. Sediment core LSE 1, northern part of the Coquimbo Bay. The stratigraphical succession refl ects the  3. Sediment core LSE 1, northern part of the Coquimbo Bay. The stratigraphical succession refl ects the 
formation of a back-barrier coastal wetland on top of former beach sediments and indicates coastal retreat of formation of a back-barrier coastal wetland on top of former beach sediments and indicates coastal retreat of 
~400 m during the last several hundred years (see Fig. 1). A possible historical event layer (tsunami/El Niño ~400 m during the last several hundred years (see Fig. 1). A possible historical event layer (tsunami/El Niño 
fl ooding event) is visible at the top. 1 – fl ooding event) is visible at the top. 1 – Trochammina infl ataTrochammina infl ata; 2 – 2 – Trochamminita irregulansTrochamminita irregulans; 3  3 – – Darwinula stevensoniDarwinula stevensoni; 
4 – 4 – Penthesilenula brasiliensisPenthesilenula brasiliensis; 5 – 5 – Pseudocandona Pseudocandona spsp.; 6 – 6 – Heterocypris salinaHeterocypris salina; 7 – ; 7 – Sarscypridopsis aculeataSarscypridopsis aculeata; 8 – 8 – Cyprideis Cyprideis 
cf.cf. torosa torosa; 9 – 9 – Dolerocypris marinaDolerocypris marina; 10 – 10 – Cytherura portomonttensisCytherura portomonttensis; 11 – ; 11 – Xestoleberis chilensisXestoleberis chilensis; 12 – ; 12 – Ambocythere dentataAmbocythere dentata; 
13 –ostracods and foraminifers (total sum)13 –ostracods and foraminifers (total sum). . Inlay (b) shows a detail of the boundary between the suggested Inlay (b) shows a detail of the boundary between the suggested 
event unit in the upper part of the core (above 1.21 b.s.l.) and the underlying peat.event unit in the upper part of the core (above 1.21 b.s.l.) and the underlying peat.
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tatatata). The uppermost peat layer (1.21–1.37 m b.s.) was dated to between 1698 –1953 cal AD (LSE ). The uppermost peat layer (1.21–1.37 m b.s.) was dated to between 1698 –1953 cal AD (LSE 
1/6) and 1714 –1955 cal AD (LSE 1/5) (Table 1). On top of the peat, a sandy unit occurs, consisting 1/6) and 1714 –1955 cal AD (LSE 1/5) (Table 1). On top of the peat, a sandy unit occurs, consisting 
of medium and coarse sand in its lower part, and medium and fi ne sand in its upper part. At its of medium and coarse sand in its lower part, and medium and fi ne sand in its upper part. At its 
base, well rounded gravel and mollusc remains, charcoal and slag fragments as well as mud clasts base, well rounded gravel and mollusc remains, charcoal and slag fragments as well as mud clasts 
were found. No microfauna were detected.were found. No microfauna were detected.

4.24.2 Sediment core TON 1 (Quebrada Pachingo, Bay of Tongoy) Sediment core TON 1 (Quebrada Pachingo, Bay of Tongoy)

In the Bay of Tongoy, ~50 km south of Coquimbo, back-barrier and partly swampy coastal low-In the Bay of Tongoy, ~50 km south of Coquimbo, back-barrier and partly swampy coastal low-
lands are present in three river mouth areas (Fig. 1). In the westernmost coastal swamp, the Que-lands are present in three river mouth areas (Fig. 1). In the westernmost coastal swamp, the Que-
brada Pachingo river mouth (Figs. 1 and 4), a push core (TON 1, Fig. 5) was obtained from its brada Pachingo river mouth (Figs. 1 and 4), a push core (TON 1, Fig. 5) was obtained from its 
eastern part, some 200 m from the present beach.eastern part, some 200 m from the present beach.

The lower Quebrada Pachingo river channel interrupts a system of beach ridges stretching The lower Quebrada Pachingo river channel interrupts a system of beach ridges stretching 
from the cliffs of the last Pleistocene marine terrace (elevation ~20 m a.s.l., from the cliffs of the last Pleistocene marine terrace (elevation ~20 m a.s.l., RADTKE RADTKE 1987) to the 1987) to the 
present coastline (elevation of youngest ridge ~2 – 3 m a.s.l., present coastline (elevation of youngest ridge ~2 – 3 m a.s.l., OTA & PASKOFF OTA & PASKOFF 1993). According to 1993). According to 
OTA & PASKOFF (OTA & PASKOFF (1993), beach ridges c. 300 m from the coast formed later than c. 2000 – 2200BP, 1993), beach ridges c. 300 m from the coast formed later than c. 2000 – 2200BP, 
and the most seaward ridge contains mollusc remains dating to c. 500 BP (recalibrated ages). Ac-and the most seaward ridge contains mollusc remains dating to c. 500 BP (recalibrated ages). Ac-
cording to the interpretation of satellite images, Aster DEM and SRTM data, channel incision and cording to the interpretation of satellite images, Aster DEM and SRTM data, channel incision and 
lateral erosion has formed oxbow-shaped structures at several places (Fig. 4). Different levels of lateral erosion has formed oxbow-shaped structures at several places (Fig. 4). Different levels of 
fl uvial terraces are distinguished, separated by the undercut slopes of the next, younger generation fl uvial terraces are distinguished, separated by the undercut slopes of the next, younger generation 
of channel incision.of channel incision.

Fig.Fig. 4. (A) Setting of the study site at Tongoy Bay, Quebrada Pachingo river mouth. Channel incision and  4. (A) Setting of the study site at Tongoy Bay, Quebrada Pachingo river mouth. Channel incision and 
lateral erosion have formed oxbow-shaped structures at several places (marked by dotted lines). Different lateral erosion have formed oxbow-shaped structures at several places (marked by dotted lines). Different 
terrace levels with different elevations can be distinguished, separated by the undercut slopes of the next, terrace levels with different elevations can be distinguished, separated by the undercut slopes of the next, 
younger generation of channel incision (image based on Google earth). (B) Panorama photo of coring site younger generation of channel incision (image based on Google earth). (B) Panorama photo of coring site 
TON 1 as seen from southward lying beach ridge remnants.TON 1 as seen from southward lying beach ridge remnants.
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Fig.Fig. 5. Sediment core TON 1 with dating results. The sequence of 120 cm is indicated by an alternation of  5. Sediment core TON 1 with dating results. The sequence of 120 cm is indicated by an alternation of 
silty and sandy units. Microfaunal analyses document a trisection, beginning with a brackish environment silty and sandy units. Microfaunal analyses document a trisection, beginning with a brackish environment 
at the base, a subsequent sudden occurrence of freshwater conditions (grey shaded section) and a follow-at the base, a subsequent sudden occurrence of freshwater conditions (grey shaded section) and a follow-
ing gradual transition to recurrent brackish environments. 1 – ing gradual transition to recurrent brackish environments. 1 – Cyprideis cf. torosaCyprideis cf. torosa, 2 – , 2 – Cyprideis cf. torosaCyprideis cf. torosa juv.,  juv., 
3 – 3 – Sarscypridopsis aculeataSarscypridopsis aculeata, 4 – , 4 – Sarscypridopsis aculeataSarscypridopsis aculeata juv., 5 –  juv., 5 – Heterocypris salinaHeterocypris salina, 6 – , 6 – Heterocypris salinaHeterocypris salina juv., 7 –  juv., 7 – 
IlyocyprisIlyocypris sp., 8 –  sp., 8 – IlyocyprisIlyocypris sp. juv., 9 –  sp. juv., 9 – Dawinula stevensoniDawinula stevensoni, 10 – , 10 – HerpetocyprisHerpetocypris sp., 11 –  sp., 11 – Potamocypris unicaudataPotamocypris unicaudata, 12 , 12 
– – CypridopsisCypridopsis sp., 13 –  sp., 13 – LeptocythereLeptocythere sp., 14 – ostracods (total sum). sp., 14 – ostracods (total sum).
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Tab. 2. Ostracod and foraminifera species found within this study and their environmental characteristics.Tab. 2. Ostracod and foraminifera species found within this study and their environmental characteristics.

Ostracods

Species
Nr. 
(Figs. 3, 5)

Description Environment

Ambocythere dentataAmbocythere dentata 12 (3)12 (3) HARTMANNHARTMANN 1962 1962 marinemarine

Cyprideis Cyprideis cfcf. torosa. torosa  1, 2 (5) 1, 2 (5)
 8 (3) 8 (3) JONESJONES 1850 1850

Brackish waters, fl uctuating salinity, broad range Brackish waters, fl uctuating salinity, broad range 
of  salinity, optimum at 2–16 ‰, generally in of  salinity, optimum at 2–16 ‰, generally in 
brackish water bodiesbrackish water bodies

Cypridopsis Cypridopsis sp.sp. 12 (5)12 (5) FreshwaterFreshwater

Darwinula stevensoniDarwinula stevensoni  9 (5) 9 (5)
 3 (3) 3 (3)

BRADYBRADY &  & ROBERTSONROBERTSON 
18701870

Freshwater to slightly saline standing water Freshwater to slightly saline standing water 
bodies, lakes and slow fl owing waters; salinity up bodies, lakes and slow fl owing waters; salinity up 
to 15 ‰to 15 ‰

Cytherura portomonttensisCytherura portomonttensis 10 (3)10 (3) HARTMANNHARTMANN 1962 1962 Marine, littoral Marine, littoral 
Dolerocypris marinaDolerocypris marina  9 (3) 9 (3) HARTMANNHARTMANN 1965 1965 Marine, sandy siltMarine, sandy silt
HerpetocyprisHerpetocypris sp. sp. 10 (5)10 (5) FreshwaterFreshwater

Heterocypris salinaHeterocypris salina  5, 6 (5) 5, 6 (5)
 6 (3) 6 (3) BRADYBRADY 1868 1868

Freshwater to slightly saline water bodies, also in Freshwater to slightly saline water bodies, also in 
freshwater; common in coastal waters, optimum freshwater; common in coastal waters, optimum 
at 5–10 ‰ and 15 °C (Ganning, 1967); often at 5–10 ‰ and 15 °C (Ganning, 1967); often 
together with other halophylic ostracods, e.g. together with other halophylic ostracods, e.g. 
Sarscypridopsis aculeataSarscypridopsis aculeata, , Potamocypris unicaudataPotamocypris unicaudata

IlyocyprisIlyocypris sp. sp.  7, 8 (5) 7, 8 (5) Freshwater to slightly saline water bodiesFreshwater to slightly saline water bodies

Leptocythere Leptocythere sp.sp. 13 (5)13 (5) Marine, also migration to brackish coastal water Marine, also migration to brackish coastal water 
bodies (Horne et al. 2001)bodies (Horne et al. 2001)

Penthesilenula brasiliensisPenthesilenula brasiliensis  4 (3) 4 (3) PINTOPINTO &  & KOTZIANKOTZIAN 
19611961 FreshwaterFreshwater

Potamocypris unicaudataPotamocypris unicaudata 11 (5)11 (5) SCHÄFERSCHÄFER 1943 1943

Freshwater and slightly brackish standing and Freshwater and slightly brackish standing and 
fl owing water bodies; salinity 0,1–4,2 ‰; fl owing water bodies; salinity 0,1–4,2 ‰; 
common in slightly brackish coastal waters; common in slightly brackish coastal waters; 
together with together with Heterocypris salina Heterocypris salina and/or and/or 
Sarscypridopsis aculeataSarscypridopsis aculeata

Pseudocandona Pseudocandona sp.sp.  5 (3) 5 (3) FreshwaterFreshwater

Sarscypridopsis aculeataSarscypridopsis aculeata  3, 4 (5) 3, 4 (5)
 7 (3) 7 (3) COSTACOSTA 1847 1847

Mainly in freshwater to slightly brackish water Mainly in freshwater to slightly brackish water 
bodies, permanent and temporary/periodical bodies, permanent and temporary/periodical 
water bodies, lower salinity tolerant than water bodies, lower salinity tolerant than C. torosaC. torosa; ; 
optimum at 5 and 10 ‰; often together with optimum at 5 and 10 ‰; often together with 
Heterocypris salinaHeterocypris salina

Xestoleberis chilensisXestoleberis chilensis 11 (3)11 (3) HARTMANNHARTMANN 1962 1962 MarineMarine

Foraminifers

Species Nr. (Fig. 3) Description Environment

Trochammina infl ataTrochammina infl ata  1 (3) 1 (3) MONTAGUMONTAGU 1808 1808 Intertidal foraminiferIntertidal foraminifer

Trochamminita irregularisTrochamminita irregularis  2 (3) 2 (3) CUSHMANCUSHMAN &  & 
BRÖNNIMANNBRÖNNIMANN 1948 1948 Intertidal foraminiferIntertidal foraminifer
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At coring site TON 1, taken approximately from the elevation of the present estuary, the At coring site TON 1, taken approximately from the elevation of the present estuary, the 
sedimentary record of the upper 120 cm is a sequence of alternating silty and sandy deposits. The sedimentary record of the upper 120 cm is a sequence of alternating silty and sandy deposits. The 
sand unit at the base of the sedimentary succession (1.20 –1.03 m b.s.) is void of ostracods. Macro-sand unit at the base of the sedimentary succession (1.20 –1.03 m b.s.) is void of ostracods. Macro-
scopic mollusc remains comprise scopic mollusc remains comprise ProtothacaProtothaca sp. and  sp. and MactraMactra sp. Subsequently, silty to clayey deposits  sp. Subsequently, silty to clayey deposits 
accumulated at site TON 1. Here, numerous specimens of accumulated at site TON 1. Here, numerous specimens of Cyprideis Cyprideis cfcf. torosa. torosa are present, showing  are present, showing 
large numbers of juvenile individuals in several sections. Few individuals of large numbers of juvenile individuals in several sections. Few individuals of Heterocypris salinaHeterocypris salina were  were 
found as well. Above 0.81 m b.s., a slight lamination of the deposit is visible, refl ecting alternating found as well. Above 0.81 m b.s., a slight lamination of the deposit is visible, refl ecting alternating 
thin layers of clayey and fi ne sandy silt. Generally, grain size slightly increases upwards and mica thin layers of clayey and fi ne sandy silt. Generally, grain size slightly increases upwards and mica 
minerals are visible, the latter corresponding to high Si values (refl ected in Si/K, Si/Zn and Si/minerals are visible, the latter corresponding to high Si values (refl ected in Si/K, Si/Zn and Si/
Ca ratios). Between 0.75 and 0.72 m b.s., a well-defi ned fi ne sand layer occurs. Together with the Ca ratios). Between 0.75 and 0.72 m b.s., a well-defi ned fi ne sand layer occurs. Together with the 
sedimentary changes (lamination), the ostracod assemblage changes as well (Fig. 5). While only sedimentary changes (lamination), the ostracod assemblage changes as well (Fig. 5). While only 
very few or no individuals of very few or no individuals of Cyprideis Cyprideis cfcf. torosa . torosa are present, different species (are present, different species (Heterocypris salinaHeterocypris salina, , Ili-Ili-
ocypris ocypris sp., sp., Dawinula stevensoniDawinula stevensoni, , Herpetocypris Herpetocypris sp., sp., Potamocypris unicaudataPotamocypris unicaudata; see also Table 2) characterise ; see also Table 2) characterise 
the different sedimentary units up to c. 0.54 m b.s., generally refl ecting a higher diversity. With the different sedimentary units up to c. 0.54 m b.s., generally refl ecting a higher diversity. With 
the beginning of the unit of fi ne to medium sand at 0.54 m b.s., diversity again decreases between the beginning of the unit of fi ne to medium sand at 0.54 m b.s., diversity again decreases between 
0.54 and 0.30 m b.s.; here, 0.54 and 0.30 m b.s.; here, Cyprideis Cyprideis cfcf. torosa . torosa is present in low numbers, and the species is present in low numbers, and the species Iliocypris Iliocypris 
sp., sp., Dawinula stevensoniDawinula stevensoni, , Herpetocypris Herpetocypris sp. and sp. and Potamocypris unicaudataPotamocypris unicaudata disappear above c. 45 cm b.s.  disappear above c. 45 cm b.s. 
Subsequently, comparable to the sediments between 1.03 and 0.81 m b.s., the amount of Subsequently, comparable to the sediments between 1.03 and 0.81 m b.s., the amount of Cyprideis Cyprideis 
cfcf. torosa . torosa increases, but high numbers of increases, but high numbers of Sarscypridopsis aculeataSarscypridopsis aculeata are present as well; the latter species  are present as well; the latter species 
is dominant for the upper 30 cm of the core, and several sections are indicated by high numbers is dominant for the upper 30 cm of the core, and several sections are indicated by high numbers 
of juvenile species.of juvenile species.

As Fig. 5 shows, high Sr and low Fe values characterise the lowermost sand unit. In the subse-As Fig. 5 shows, high Sr and low Fe values characterise the lowermost sand unit. In the subse-
quent sedimentary units, several units are indicated by high, others by a low Fe/Sr ratio, resulting quent sedimentary units, several units are indicated by high, others by a low Fe/Sr ratio, resulting 

Fig.Fig. 6. Panorama photo of the setting of study sites at Pichicuy and Los Vilos. (A) The Bay of Pichicuy as  6. Panorama photo of the setting of study sites at Pichicuy and Los Vilos. (A) The Bay of Pichicuy as 
seen from the Panamerican Highway (Panamericana at Puente Huaquén). Trench PCU 2 (Fig. 8) is located seen from the Panamerican Highway (Panamericana at Puente Huaquén). Trench PCU 2 (Fig. 8) is located 
on a low-lying terrace, formed by subrecent channel incision. (B) Coastal setting at sampling site LOV 6; the on a low-lying terrace, formed by subrecent channel incision. (B) Coastal setting at sampling site LOV 6; the 
profi le is situated c. 50 m from the present beach (see Fig. 7). The natural outcrop formed due to lateral ero-profi le is situated c. 50 m from the present beach (see Fig. 7). The natural outcrop formed due to lateral ero-
sion of the depositional beach sediment sequence.sion of the depositional beach sediment sequence.
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from generally inverted Fe and Sr contents in the sediment. These fl uctuations seem not to be from generally inverted Fe and Sr contents in the sediment. These fl uctuations seem not to be 
related to grain size changes only, since these are observed between units of similar grain size as related to grain size changes only, since these are observed between units of similar grain size as 
well (e.g. in the upper core part at 0 – 22 cm b.s.). In the middle part of the core (81– 22 cm b.s.), well (e.g. in the upper core part at 0 – 22 cm b.s.). In the middle part of the core (81– 22 cm b.s.), 
remarkable fl uctuations are absent, but the Fe content decreases between 54 and 40 cm.remarkable fl uctuations are absent, but the Fe content decreases between 54 and 40 cm.

Larger fl uctuations are shown by the Br values; while the lowermost sand is indicated by rela-Larger fl uctuations are shown by the Br values; while the lowermost sand is indicated by rela-
tively low contents, higher values were measured in the overlying fi ne grained sediments. Above tively low contents, higher values were measured in the overlying fi ne grained sediments. Above 
81 cm b.s., lower values characterise the middle part of the core, but values gradually increase 81 cm b.s., lower values characterise the middle part of the core, but values gradually increase 
above 40 cm b.s. and stay relatively high in the upper part of the core. In the fi ne sand layer at above 40 cm b.s. and stay relatively high in the upper part of the core. In the fi ne sand layer at 
51– 48 cm b.s., Br contents are remarkably high. Again, no distinct correlation with grain size is 51– 48 cm b.s., Br contents are remarkably high. Again, no distinct correlation with grain size is 
observed.observed.

For the Ca values, a correlation with the total abundance of ostracods is inferred; where micro-For the Ca values, a correlation with the total abundance of ostracods is inferred; where micro-
fossil content is high, Ca values also increase (Fig. 5). In contrast, S values show increasing values fossil content is high, Ca values also increase (Fig. 5). In contrast, S values show increasing values 
between 1.03 and 0.81 m b.s.; sediments above 81 cm b.s. are indicated by lower contents, but, between 1.03 and 0.81 m b.s.; sediments above 81 cm b.s. are indicated by lower contents, but, 
similar to the Br values, a gradual increase is observed between 0.54 – 0.30 cm b.s. In the upper part similar to the Br values, a gradual increase is observed between 0.54 – 0.30 cm b.s. In the upper part 
of the core, S values again decrease above 0.30 cm b.s., before increasing to the top.of the core, S values again decrease above 0.30 cm b.s., before increasing to the top.

Fig.Fig. 7. Sediment profi le LOV 6 and  7. Sediment profi le LOV 6 and 1414C-AMS ages. The stratigraphy of LOV 6 consists of more than 14 layers C-AMS ages. The stratigraphy of LOV 6 consists of more than 14 layers 
of shell debris, gravel and sand. Accumulation of shell material terminated at around or later than 1522 –1654 of shell debris, gravel and sand. Accumulation of shell material terminated at around or later than 1522 –1654 
cal AD.cal AD.
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Four Four 1414C-AMS datings of seed remains yielded – from bottom to top – ages of 903 –1032 cal C-AMS datings of seed remains yielded – from bottom to top – ages of 903 –1032 cal 
AD (TON 1/63), 176 – 388 cal AD (TON 1/54), 235 – 533 cal AD (TON 1/33) and 388 – 204 cal BC AD (TON 1/63), 176 – 388 cal AD (TON 1/54), 235 – 533 cal AD (TON 1/33) and 388 – 204 cal BC 
(TON 1/17), documenting an apparent age inversion (see Table 1).(TON 1/17), documenting an apparent age inversion (see Table 1).

4.34.3 Sediment profi le LOV 6 (Los Vilos) Sediment profi le LOV 6 (Los Vilos)

Sediment profi le LOV 6 (Fig. 7, see also Figs. 1 and 6) is situated some 2.6 km south of Los Vilos Sediment profi le LOV 6 (Fig. 7, see also Figs. 1 and 6) is situated some 2.6 km south of Los Vilos 
and some 500 m south of the Quebrada Quereo (see and some 500 m south of the Quebrada Quereo (see VILLAGRÁN & VARELA VILLAGRÁN & VARELA 19901990, NUÑEZ , NUÑEZ et al.et al. 
1994). The coastal setting is characterised by narrow pocket beaches, laterally separated by cliff 1994). The coastal setting is characterised by narrow pocket beaches, laterally separated by cliff 
remnants and landwards bordered by a ~10 m high cliff (Figs. 1 and 7).remnants and landwards bordered by a ~10 m high cliff (Figs. 1 and 7).

The profi le consists of a sequence of at least 14 sedimentary layers, mainly composed of shell The profi le consists of a sequence of at least 14 sedimentary layers, mainly composed of shell 
debris, sand and gravel. The majority of the shell content appears to be subangular, but angular debris, sand and gravel. The majority of the shell content appears to be subangular, but angular 
fragments occur as well. Some of the stratigraphical layers contain coarser material up to the size fragments occur as well. Some of the stratigraphical layers contain coarser material up to the size 
of boulders (maximum size about 40 cm) – this is particularly the case for the lowermost layer of of boulders (maximum size about 40 cm) – this is particularly the case for the lowermost layer of 
the profi le, where large clasts are incorporated in the horizon. Most of these coarse components the profi le, where large clasts are incorporated in the horizon. Most of these coarse components 
are well rounded, though, in some layers, and in particular on top of the uppermost horizon, are well rounded, though, in some layers, and in particular on top of the uppermost horizon, 
angular fragments of the adjacent cliff are present. On top of the uppermost horizon, a weak soil angular fragments of the adjacent cliff are present. On top of the uppermost horizon, a weak soil 
has developed, indicated by organic components as well as a darker colour in the fi rst centimetres has developed, indicated by organic components as well as a darker colour in the fi rst centimetres 
below the surface.below the surface.

Three mollusc samples from three different shell debris layers were Three mollusc samples from three different shell debris layers were 1414C-dated, all of them be-C-dated, all of them be-
ing characterised by angular edges in order to avoid age inversions due to reworking. The results ing characterised by angular edges in order to avoid age inversions due to reworking. The results 
are consistent with the stratigraphic sequence: 748 – 905 cal AD (LOV 6/1 M), 974 –1103 cal AD are consistent with the stratigraphic sequence: 748 – 905 cal AD (LOV 6/1 M), 974 –1103 cal AD 
(LOV 6/3 M) and 1522 –1654 cal AD (LOV 6/5 M).(LOV 6/3 M) and 1522 –1654 cal AD (LOV 6/5 M).

Fig.Fig. 8. Sediment profi le PCU 2 with  8. Sediment profi le PCU 2 with 1414C-dated samples. The assumed liquefaction layer shows interfi ngering C-dated samples. The assumed liquefaction layer shows interfi ngering 
with the surrounding mud unit and is younger than ~1697AD.with the surrounding mud unit and is younger than ~1697AD.
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At present, the deposits building up the sedimentary succession of profi le LOV 6 are being At present, the deposits building up the sedimentary succession of profi le LOV 6 are being 
eroded; no accumulation of further shell debris layers takes place at this site.eroded; no accumulation of further shell debris layers takes place at this site.

4.44.4 Sediment profi le PCU 2 (Bay of Pichicuy) Sediment profi le PCU 2 (Bay of Pichicuy)

Sediment profi le PCU 2 (Fig. 8, see also Figs. 1 and 6) was performed in an artifi cial well-like Sediment profi le PCU 2 (Fig. 8, see also Figs. 1 and 6) was performed in an artifi cial well-like 
excavation and is located in the Bay of Pichicuy, some 20 km northwest of the city of La Ligua. excavation and is located in the Bay of Pichicuy, some 20 km northwest of the city of La Ligua. 
The profi le’s surface is situated at ~1.80 m a.s.l. on top of the lowest fl uvial terrace level, resulting The profi le’s surface is situated at ~1.80 m a.s.l. on top of the lowest fl uvial terrace level, resulting 
from incision of the Quebrada Pichicuy. At the very base, below the visible part of the outcrops, from incision of the Quebrada Pichicuy. At the very base, below the visible part of the outcrops, 
heterogeneous, poorly sorted sand was found. On top of the sand, a fi ne-grained unit of clayey heterogeneous, poorly sorted sand was found. On top of the sand, a fi ne-grained unit of clayey 
to sandy silt is present all along the outcropping sediments in the trench indicating a quiescent, to sandy silt is present all along the outcropping sediments in the trench indicating a quiescent, 
swampy depositional environment. Several root and other plant remains of, for instance, swampy depositional environment. Several root and other plant remains of, for instance, Cyprus Cyprus 
californicuscalifornicus occur in this unit. Intercalating the mud facies, at a depth of c. 1.90 m b.s., a sandy layer  occur in this unit. Intercalating the mud facies, at a depth of c. 1.90 m b.s., a sandy layer 
was found, showing a remarkable variability in thickness and an undulating topography. At some was found, showing a remarkable variability in thickness and an undulating topography. At some 
places, the sand layer splits into several thin sand layers interfi ngering with the surrounding mud. places, the sand layer splits into several thin sand layers interfi ngering with the surrounding mud. 
Its grain size is similar to the unit underlying the mud.Its grain size is similar to the unit underlying the mud.

On top of the silty mud unit, a sand layer is present, characterised by a sharp erosional contact On top of the silty mud unit, a sand layer is present, characterised by a sharp erosional contact 
at its base. Alternating layers of sand and silt follow towards the top of the profi le. From the basal at its base. Alternating layers of sand and silt follow towards the top of the profi le. From the basal 
mud unit, three mud unit, three 1414C-AMS datings gave ages between 1515 and 1953 cal AD (PCU 2/3: 1510 –1666; C-AMS datings gave ages between 1515 and 1953 cal AD (PCU 2/3: 1510 –1666; 
PCU 3/1: 1671–1951; PCU 3/2: 1697–1952) (Table 1).PCU 3/1: 1671–1951; PCU 3/2: 1697–1952) (Table 1).

5 Discussion – coastal changes and palaeoseismological implications Discussion – coastal changes and palaeoseismological implications

5.15.1 Coastal changes in the N Coquimbo Bay Coastal changes in the N Coquimbo Bay

5.1.15.1.1 Environmental changes inferred from sedimentological and microfaunal fi ndings Environmental changes inferred from sedimentological and microfaunal fi ndings

Beach aggradation is inferred from sublittoral and littoral sediments [well sorted medium to grav-Beach aggradation is inferred from sublittoral and littoral sediments [well sorted medium to grav-
elly medium sand, mollusc remains of littoral origin (elly medium sand, mollusc remains of littoral origin (Mesodesma donaciumMesodesma donacium)] found in the lower part )] found in the lower part 
of core LSE 1. Silty and clayey strata as well as peat sequences covering the littoral sediments docu-of core LSE 1. Silty and clayey strata as well as peat sequences covering the littoral sediments docu-
ment the onset of back-barrier depositional environments at around 1600 –1800AD (LSE 1/16, ment the onset of back-barrier depositional environments at around 1600 –1800AD (LSE 1/16, 
1525; 1796 cal AD). Two peat samples taken from the upper part of this sequence show slightly 1525; 1796 cal AD). Two peat samples taken from the upper part of this sequence show slightly 
younger ages and refl ect prevailing back-barrier environments, possibly until the 19younger ages and refl ect prevailing back-barrier environments, possibly until the 19thth or even 20 or even 20thth 
century (LSE 1/5 PR, LSE 1/6 PR).century (LSE 1/5 PR, LSE 1/6 PR).

The microfaunal analyses suggest brackish, intertidal environmental conditions (The microfaunal analyses suggest brackish, intertidal environmental conditions (Trochamm-Trochamm-
inita irregularisinita irregularis, , Cyprideis Cyprideis cfcf. torosa) . torosa) during deposition of these sediments, but increased freshwater during deposition of these sediments, but increased freshwater 
infl uence in the upper part of the sequence is attested by the ostracods (Fig. 3). However, the mi-infl uence in the upper part of the sequence is attested by the ostracods (Fig. 3). However, the mi-
crofaunal assemblage shows both marine and freshwater indicators in the uppermost part of the crofaunal assemblage shows both marine and freshwater indicators in the uppermost part of the 
back-barrier sediments (LSE 1/5), pointing to increased saltwater infl uence in the estuary system. back-barrier sediments (LSE 1/5), pointing to increased saltwater infl uence in the estuary system. 
Since no changes of the depositional environment can be inferred from the sedimentary fi ndings, Since no changes of the depositional environment can be inferred from the sedimentary fi ndings, 
this microfaunal assemblage may have been induced by an intermittent opening of the sand barrier this microfaunal assemblage may have been induced by an intermittent opening of the sand barrier 
closing the estuary, or by altered circumstances of the groundwater zonation (e.g. by local tecton-closing the estuary, or by altered circumstances of the groundwater zonation (e.g. by local tecton-
ics), rather than by an extreme wave event.ics), rather than by an extreme wave event.
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5.1.25.1.2 A (sub) recent event layer in N Coquimbo Bay A (sub) recent event layer in N Coquimbo Bay

According to the characteristics of the following sand unit in profi le LSE 1, indicated by an erosive According to the characteristics of the following sand unit in profi le LSE 1, indicated by an erosive 
contact to the underlying mud, mud clasts, and basal gravel components, the interruption of back-contact to the underlying mud, mud clasts, and basal gravel components, the interruption of back-
barrier depositional conditions by sandy deposits suggests a high-energy fl ooding event which barrier depositional conditions by sandy deposits suggests a high-energy fl ooding event which 
seems to have affected the coastal marsh along the lower Quebrada Teatinos. No microfaunal seems to have affected the coastal marsh along the lower Quebrada Teatinos. No microfaunal 
remains were found in this sandy unit and the poor preservation of the few macrofaunal remains remains were found in this sandy unit and the poor preservation of the few macrofaunal remains 
hindered the determination of species.hindered the determination of species.

Given its sedimentological characteristics, the deposition of this stratum may result either Given its sedimentological characteristics, the deposition of this stratum may result either 
from (i) a remarkable fl ood event of the Teatinos River, or from (ii) a tsunami event, assuming from (i) a remarkable fl ood event of the Teatinos River, or from (ii) a tsunami event, assuming 
that the source of the sediment (in this case probably sublittoral to littoral sediments) is poor in that the source of the sediment (in this case probably sublittoral to littoral sediments) is poor in 
microfauna. The dating results are unable to accurately determine the age of the suggested event microfauna. The dating results are unable to accurately determine the age of the suggested event 
due to due to 1414C age plateau problems (C age plateau problems (REIMER REIMER et al.et al. 20092009, WILLIAMS , WILLIAMS 2012) and related multiple possible 2012) and related multiple possible 
age ranges of the calibrated age ranges of the calibrated 1414C results. Deposition may have taken place shortly after 1714AD, C results. Deposition may have taken place shortly after 1714AD, 
but also shortly after 1955AD. Historical records point to a major fl ooding of the Teatinos River, but also shortly after 1955AD. Historical records point to a major fl ooding of the Teatinos River, 
such as the one in March 1856 (such as the one in March 1856 (VICUÑA-MACKENNA VICUÑA-MACKENNA 18771877: : 315315, BAHRE , BAHRE 1979) or other large discharge 1979) or other large discharge 
events, probably linked to strong El Niño conditions in the area (e.g., events, probably linked to strong El Niño conditions in the area (e.g., GERGIS & FOWLER GERGIS & FOWLER 20092009, , 
ORTEGA ORTEGA et al.et al. 2012). This assumption is supported by high Fe content at the base of the event 2012). This assumption is supported by high Fe content at the base of the event 
deposit (Fig. 3) that contrasts with the low Fe content of the inferred littoral deposits at the base deposit (Fig. 3) that contrasts with the low Fe content of the inferred littoral deposits at the base 
of the core. Indeed, the high Fe values probably refl ect the infl uence of the iron mine El Romeral of the core. Indeed, the high Fe values probably refl ect the infl uence of the iron mine El Romeral 
located upstream of the coring site, which was established at the beginning of the 20located upstream of the coring site, which was established at the beginning of the 20thth century.  century. 
Fe-rich particles, transported from upstream by fl uvial discharge, were re-deposited by the event Fe-rich particles, transported from upstream by fl uvial discharge, were re-deposited by the event 
and particularly accumulated in the lower part of the event’s deposit due to density segregation.and particularly accumulated in the lower part of the event’s deposit due to density segregation.

Besides major fl ooding of the river mouth area by exceptional discharge events, several tsu-Besides major fl ooding of the river mouth area by exceptional discharge events, several tsu-
nami events may be considered as potential triggers for the deposition of the upper sandy unit nami events may be considered as potential triggers for the deposition of the upper sandy unit 
as well. First, the 1730 Great Valparaíso Earthquake is reported to have caused a strong tsunami as well. First, the 1730 Great Valparaíso Earthquake is reported to have caused a strong tsunami 
along the Central Chilean coast (along the Central Chilean coast (LOMNITZ LOMNITZ 2004). Second, a further strong tsunami took place in 2004). Second, a further strong tsunami took place in 
1922, following a magnitude 8.4 earthquake near Copiapo (epicenter off Huasco-Vallenar). During 1922, following a magnitude 8.4 earthquake near Copiapo (epicenter off Huasco-Vallenar). During 
this tsunami, run-up is reported to have exceeded 7 m at Coquimbo in the southern part of the bay. this tsunami, run-up is reported to have exceeded 7 m at Coquimbo in the southern part of the bay. 
Further possible tsunamis occurred in relation to earthquakes in 1819 (MFurther possible tsunamis occurred in relation to earthquakes in 1819 (Mw 8.5, Copiapo), 1849 (M 8.5, Copiapo), 1849 (Mw 
7.5, Coquimbo; ~5 m above high water mark in Coquimbo bay) and in 1868 (M7.5, Coquimbo; ~5 m above high water mark in Coquimbo bay) and in 1868 (Mw 8.5, Arica). The  8.5, Arica). The 
1414C age of sample LSE 1/16 (1525; 1796 cal AD) determines the beginning of back-barrier envi-C age of sample LSE 1/16 (1525; 1796 cal AD) determines the beginning of back-barrier envi-
ronments at site LSE 1 to sometime before or during 1525 –1796 cal AD. Based on the subsequent ronments at site LSE 1 to sometime before or during 1525 –1796 cal AD. Based on the subsequent 
accumulation of more than one meter of fi ne grained, muddy sediments and three peaty layers accumulation of more than one meter of fi ne grained, muddy sediments and three peaty layers 
during back-barrier conditions, we assume that the suggested event is rather related to a younger during back-barrier conditions, we assume that the suggested event is rather related to a younger 
event – such as the 1922 tsunami or, more likely, a large fl ooding event during El Niño conditions event – such as the 1922 tsunami or, more likely, a large fl ooding event during El Niño conditions 
such as in 1856 (such as in 1856 (GERGIS & FOWLER GERGIS & FOWLER 2009).2009).

5.1.35.1.3 Potential tectonic infl uence during historical times? Potential tectonic infl uence during historical times?

In general, the sedimentary sequence of LSE 1 clearly indicates remarkable coastal changes in the In general, the sedimentary sequence of LSE 1 clearly indicates remarkable coastal changes in the 
northern part of the Bay of Coquimbo during the last ~400 years. Beach aggradation resulted in northern part of the Bay of Coquimbo during the last ~400 years. Beach aggradation resulted in 
a seaward coastal progradation of ~400 m during this relatively short period of time. As a conse-a seaward coastal progradation of ~400 m during this relatively short period of time. As a conse-
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quence, several beach and dune ridges to the south of LSE 1 must have formed during that time quence, several beach and dune ridges to the south of LSE 1 must have formed during that time 
as well (see Fig. 1). These fi ndings point to high coastal dynamics and a general adjustment to new as well (see Fig. 1). These fi ndings point to high coastal dynamics and a general adjustment to new 
geomorphodynamic conditions. Moreover, in contrast to the long-term uplift trend documented geomorphodynamic conditions. Moreover, in contrast to the long-term uplift trend documented 
by the fl ight of Pleistocene marine terraces (and late Holocene marine sediments at 3 – 5 m a.s.l.) by the fl ight of Pleistocene marine terraces (and late Holocene marine sediments at 3 – 5 m a.s.l.) 
in the adjacent areas (in the adjacent areas (LEONARD & WEHMILLER LEONARD & WEHMILLER 19921992, OTA & PASKOFF , OTA & PASKOFF 1993), tectonic subsidence 1993), tectonic subsidence 
may be inferred from the elevation of the back-barrier swamp in core LSE 1 (~1.20 m b.s.l.; below may be inferred from the elevation of the back-barrier swamp in core LSE 1 (~1.20 m b.s.l.; below 
mean sea level) dated younger than 300 yrs. According to the age range of the lowermost sample mean sea level) dated younger than 300 yrs. According to the age range of the lowermost sample 
(LSE 1/16: 1525; 1796 cal AD), core LSE 1 records remarkable coastal changes during the last (LSE 1/16: 1525; 1796 cal AD), core LSE 1 records remarkable coastal changes during the last 
~400 years, potentially triggered by accompanied vertical tectonics. Thus, a relation to the Great ~400 years, potentially triggered by accompanied vertical tectonics. Thus, a relation to the Great 
Valparaíso Earthquake in 1730 may be suggested.Valparaíso Earthquake in 1730 may be suggested.

5.25.2 Geomorphodynamic changes in the Bay of Tongoy Geomorphodynamic changes in the Bay of Tongoy

5.2.15.2.1 Environmental changes as derived from ostracod taxa and geochemistry Environmental changes as derived from ostracod taxa and geochemistry

At the base of core TON 1, the sandy unit between 1.20 and 1.03 m b.s. is interpreted to represent At the base of core TON 1, the sandy unit between 1.20 and 1.03 m b.s. is interpreted to represent 
sublittoral deposits. Relatively high Sr values in relation to Ca support this interpretation since sublittoral deposits. Relatively high Sr values in relation to Ca support this interpretation since 
integration of Sr and Mg in calcareous mollusc tests is favored in the marine realm (integration of Sr and Mg in calcareous mollusc tests is favored in the marine realm (BORREMANS BORREMANS et et 
al.al. 20092009, DUEÑAS-BOHÓRQUEZ , DUEÑAS-BOHÓRQUEZ et al.et al. 2009). According to the fi ndings from 2009). According to the fi ndings from OTA & PASKOFF (OTA & PASKOFF (1993), 1993), 
presenting presenting 1414C ages from the most seaward beach ridge to the west of the coring site (Fig. 4), a C ages from the most seaward beach ridge to the west of the coring site (Fig. 4), a 
seaward coastal shift of ~100 m took place later than ~1450 cal AD (~500 cal BP; recalibrated seaward coastal shift of ~100 m took place later than ~1450 cal AD (~500 cal BP; recalibrated 1414C C 
age). This is in accordance with the fi ndings from core TON 1, where back-barrier conditions are age). This is in accordance with the fi ndings from core TON 1, where back-barrier conditions are 
assumed to have started later than ~1000BP (TON 1/63, 903; 1032 cal AD). Given that the avail-assumed to have started later than ~1000BP (TON 1/63, 903; 1032 cal AD). Given that the avail-
able dating results from TON 1 refl ect an apparent age inversion (Fig. 5), reworking of the dated able dating results from TON 1 refl ect an apparent age inversion (Fig. 5), reworking of the dated 
seed remains has to be considered. This is also true for the youngest and lowermost sample. How-seed remains has to be considered. This is also true for the youngest and lowermost sample. How-
ever, this youngest age from the base determines the maximum age of the subsequent sedimentary ever, this youngest age from the base determines the maximum age of the subsequent sedimentary 
sequence. The overlying strata are thus suggested to be younger than ~1000BP, resulting from a sequence. The overlying strata are thus suggested to be younger than ~1000BP, resulting from a 
local retreat of the sea to the coastline’s present position.local retreat of the sea to the coastline’s present position.

Based on variations in the occurrence of ostracod taxa as well as geochemical and sedimentary Based on variations in the occurrence of ostracod taxa as well as geochemical and sedimentary 
evidence (Fig. 5), fl uctuations of environmental conditions are inferred from the following sedi-evidence (Fig. 5), fl uctuations of environmental conditions are inferred from the following sedi-
mentary sequence at coring site TON 1. During that time, a coastal brackish water body charac-mentary sequence at coring site TON 1. During that time, a coastal brackish water body charac-
terised the river mouth of the Quebrada Pachingo, infl uenced by both fl uctuating marine (saltwa-terised the river mouth of the Quebrada Pachingo, infl uenced by both fl uctuating marine (saltwa-
ter) and fl uvial (freshwater) input. Although the ostracod assemblage generally refl ects a brackish ter) and fl uvial (freshwater) input. Although the ostracod assemblage generally refl ects a brackish 
environment until 81 cm b.s., variations in the geochemical composition (e.g. S, Fe, Sr) point to a environment until 81 cm b.s., variations in the geochemical composition (e.g. S, Fe, Sr) point to a 
changing chemistry of the water body or the sediment composition. Elevated S and Fe values sug-changing chemistry of the water body or the sediment composition. Elevated S and Fe values sug-
gest anoxic conditions, favorable to pyrite formation (at 103 – 95 cm b.s.). Due to elevated amounts gest anoxic conditions, favorable to pyrite formation (at 103 – 95 cm b.s.). Due to elevated amounts 
of siliciclastic components at the base of the laminated section at 91– 86 cm b.s., subsequent fl uvial of siliciclastic components at the base of the laminated section at 91– 86 cm b.s., subsequent fl uvial 
deposition may be inferred. Increasing Fe contents towards the top of this layer in turn may refl ect deposition may be inferred. Increasing Fe contents towards the top of this layer in turn may refl ect 
subaerial conditions. Locally, distinct peaks in Br point to a high organic content, i.e. swamp-like subaerial conditions. Locally, distinct peaks in Br point to a high organic content, i.e. swamp-like 
conditions.conditions.

At some time after ~900 –1000AD a freshwater habitat established. The ostracod assemblage At some time after ~900 –1000AD a freshwater habitat established. The ostracod assemblage 
above 81 cm b.s. consists of above 81 cm b.s. consists of Heterocypris salinaHeterocypris salina, , Ilyocypris Ilyocypris sp., sp., Dawinula stevensoniDawinula stevensoni, , Herpetocypris Herpetocypris sp. and sp. and 
Potamocypris unicaudataPotamocypris unicaudata, suggesting a rapid alteration of environmental conditions. This freshwater-, suggesting a rapid alteration of environmental conditions. This freshwater-



220220 Simon Matthias May et al.Simon Matthias May et al.

infl uenced section clearly shows increased Fe/S values, pointing to reduced S as an effect of weak-infl uenced section clearly shows increased Fe/S values, pointing to reduced S as an effect of weak-
ened saltwater infl uence. In particular, the sandy section above 48 cm b.s. points to a temporarily ened saltwater infl uence. In particular, the sandy section above 48 cm b.s. points to a temporarily 
increased siliciclastic input. Elevated S values towards the top of this unit may reveal gradually increased siliciclastic input. Elevated S values towards the top of this unit may reveal gradually 
increasing salinity, culminating in the re-establishment of brackish conditions (represented by increasing salinity, culminating in the re-establishment of brackish conditions (represented by 
Cyprideis Cyprideis cfcf. torosa. torosa and  and Sarscypridopsis aculeataSarscypridopsis aculeata).).

Fluctuating environmental conditions are refl ected by ostracods and geochemistry in the up-Fluctuating environmental conditions are refl ected by ostracods and geochemistry in the up-
permost part of the core as well (0.30 – 0 m b.s.). Although no distinct fl uvial input is evidenced by permost part of the core as well (0.30 – 0 m b.s.). Although no distinct fl uvial input is evidenced by 
grain size or geochemical characteristics, the period of overall brackish conditions was interrupted grain size or geochemical characteristics, the period of overall brackish conditions was interrupted 
twice, at c. 22 –14 cm and 8 – 5 cm b.s. In addition to inappropriate conditions for brackish ostracod twice, at c. 22 –14 cm and 8 – 5 cm b.s. In addition to inappropriate conditions for brackish ostracod 
assemblages, low S and high Fe contents to the top rather indicate here a temporary increase of assemblages, low S and high Fe contents to the top rather indicate here a temporary increase of 
freshwater infl uence and a temporary subaerial exposure than anoxic conditions and pyrite pro-freshwater infl uence and a temporary subaerial exposure than anoxic conditions and pyrite pro-
duction. Similar conditions prevail at the present surface.duction. Similar conditions prevail at the present surface.

In summary, cycles of changing environmental conditions have occurred at coring site TON In summary, cycles of changing environmental conditions have occurred at coring site TON 
1 throughout the past several hundred years. Temporary subaerial (no water coverage, oxidation) 1 throughout the past several hundred years. Temporary subaerial (no water coverage, oxidation) 
and/or freshwater dominance is indeed deduced for parts of the upper and middle core section. and/or freshwater dominance is indeed deduced for parts of the upper and middle core section. 
Possible causes for the environmental changes in the coastal marsh of the Quebrada Pachingo are Possible causes for the environmental changes in the coastal marsh of the Quebrada Pachingo are 
(i) coseismic coastal uplift and the sudden reduction of saline groundwater input to the coring site; (i) coseismic coastal uplift and the sudden reduction of saline groundwater input to the coring site; 
(ii) fl uvial input due to fl ooding events or channel shifting; or (iii) climatically-induced lowering (ii) fl uvial input due to fl ooding events or channel shifting; or (iii) climatically-induced lowering 
of the water table, at least for the fl uctuations in the upper core section (dry conditions, increased of the water table, at least for the fl uctuations in the upper core section (dry conditions, increased 
evaporation).evaporation).

5.2.25.2.2 Indications for tectonic infl uence in the recent past Indications for tectonic infl uence in the recent past

As for the distinct shift of the ostracod assemblage to freshwater-preferring species in the middle As for the distinct shift of the ostracod assemblage to freshwater-preferring species in the middle 
core part (81– 54 cm b.s.), comparable fi ndings are reported from the Cascadia subduction zone core part (81– 54 cm b.s.), comparable fi ndings are reported from the Cascadia subduction zone 
(NW America) and from Japan ((NW America) and from Japan (SAWAI SAWAI 20012001, HAWKES , HAWKES et al.et al. 20052005, , 2011). In these cases, the micro-2011). In these cases, the micro-
faunal change is related to tectonic subsidence. Tectonic uplift of the coastal plain may thus be faunal change is related to tectonic subsidence. Tectonic uplift of the coastal plain may thus be 
inferred from the change of brackish to freshwater-dominated conditions in the middle part of inferred from the change of brackish to freshwater-dominated conditions in the middle part of 
the core. While vertical tectonic movements generally were highlighted in the study area (the core. While vertical tectonic movements generally were highlighted in the study area (RADTKE RADTKE 
19871987, SAILLARD , SAILLARD et al.et al. 20092009, PFEIFFER , PFEIFFER et al.et al. 2011), the overall uplift trend during the Holocene is 2011), the overall uplift trend during the Holocene is 
estimated to be relatively low (1.6 m/ka, estimated to be relatively low (1.6 m/ka, SAILLARD SAILLARD et al.et al. 2009; 0.1– 0.2 m/ka, 2009; 0.1– 0.2 m/ka, OTA & PASKOFF OTA & PASKOFF 1993) 1993) 
when compared to other coastal sections in Central Chile.when compared to other coastal sections in Central Chile.

However, the observed environmental changes in the middle part of the core may also be However, the observed environmental changes in the middle part of the core may also be 
explained by the onset of fl uvial activity at coring site TON 1, accompanied by a temporary shift explained by the onset of fl uvial activity at coring site TON 1, accompanied by a temporary shift 
of the main river channel. This interpretation is supported by the ostracod assemblage, pointing to of the main river channel. This interpretation is supported by the ostracod assemblage, pointing to 
a freshwater-dominated environment and low fl ow velocity (a freshwater-dominated environment and low fl ow velocity (Heterocypris salinaHeterocypris salina, , Darwinula stevensoniDarwinula stevensoni, , 
Potamocypris unicaudataPotamocypris unicaudata; Table 2). The presence of visible mica minerals and siliciclastic material in ; Table 2). The presence of visible mica minerals and siliciclastic material in 
the related sediments (Fig. 5) refl ects the clastic input from the Quebrada Pachingo’s catchment.the related sediments (Fig. 5) refl ects the clastic input from the Quebrada Pachingo’s catchment.

Different terrace levels in the lower Quebrada Pachingo area are evidence of several incision Different terrace levels in the lower Quebrada Pachingo area are evidence of several incision 
periods of the torrential Pachingo river into its own sediments and beach ridge sequences of, ac-periods of the torrential Pachingo river into its own sediments and beach ridge sequences of, ac-
cording to the mollusc age presented by cording to the mollusc age presented by OTA & PASKOFF (OTA & PASKOFF (1993), mid- to late Holocene age. We thus 1993), mid- to late Holocene age. We thus 
suggest that repeated tectonic uplift of the coastal segment during the Holocene, inducing almost suggest that repeated tectonic uplift of the coastal segment during the Holocene, inducing almost 
continuous channel adjustment to base level changes, triggered these incision events, in most continuous channel adjustment to base level changes, triggered these incision events, in most 
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cases accompanied by lateral channel migration. Indeed, cases accompanied by lateral channel migration. Indeed, OTA & PASKOFF OTA & PASKOFF (1993) infer a slow uplift (1993) infer a slow uplift 
in the Bays of Tongoy and La Herradura during the Holocene from 3000 – 2000 year old littoral in the Bays of Tongoy and La Herradura during the Holocene from 3000 – 2000 year old littoral 
sediments (i.e. 3000 years younger than the inferred sea level high stand/transgression maximum) sediments (i.e. 3000 years younger than the inferred sea level high stand/transgression maximum) 
found at 3.5 – 5 m a.s.l., corroborating the observations of repeated river incision and the inferred found at 3.5 – 5 m a.s.l., corroborating the observations of repeated river incision and the inferred 
uplift presented in this study. The inferred shift of the main estuary river channel to coring site uplift presented in this study. The inferred shift of the main estuary river channel to coring site 
TON 1 thus may have been induced by vertical tectonics as well, with the consequence of channel TON 1 thus may have been induced by vertical tectonics as well, with the consequence of channel 
adjustment to different base levels in the lower Quebrada area.adjustment to different base levels in the lower Quebrada area.

In the given case, the dating results may suggest the infl uence of a seismic event later than c. In the given case, the dating results may suggest the infl uence of a seismic event later than c. 
1000AD, related to coastal uplift. However, all 1000AD, related to coastal uplift. However, all 1414C ages above the sediment layer of sample TON C ages above the sediment layer of sample TON 
1/63, for which a maximum age of ~1000AD may be deduced, are older. This suggests a remark-1/63, for which a maximum age of ~1000AD may be deduced, are older. This suggests a remark-
ably long reworking time of the dated seeds. Thus, historical seismic events may have been respon-ably long reworking time of the dated seeds. Thus, historical seismic events may have been respon-
sible for either the distinct shift to freshwater-dominated conditions in the middle part of the core sible for either the distinct shift to freshwater-dominated conditions in the middle part of the core 
or for the inferred temporarily subaerial conditions in the upper part of the core. Whether these or for the inferred temporarily subaerial conditions in the upper part of the core. Whether these 
changes were due to post- or coseismic tectonics remains an open question.changes were due to post- or coseismic tectonics remains an open question.

5.35.3 Geomorphodynamic changes south of Los Vilos Geomorphodynamic changes south of Los Vilos

According to the fi ndings from sediment profi le LOV 6 (Los Vilos) in the southern part of the According to the fi ndings from sediment profi le LOV 6 (Los Vilos) in the southern part of the 
study area, the accumulation of shell debris layers and well-rounded gravel and boulders suggests study area, the accumulation of shell debris layers and well-rounded gravel and boulders suggests 
a dynamic and stepwise deposition of beach sediments at least throughout a dynamic and stepwise deposition of beach sediments at least throughout 850 years (Table 1, 850 years (Table 1, 
Fig. 7). Assuming that we reached the base of these deposits, these conditions started at ~1200BP Fig. 7). Assuming that we reached the base of these deposits, these conditions started at ~1200BP 
(LOV 6/1 M, 748 – 905 cal AD; Table 1, Fig. 7). On the top of the sequence, in the uppermost (LOV 6/1 M, 748 – 905 cal AD; Table 1, Fig. 7). On the top of the sequence, in the uppermost 
shell-debris layer, we note the development of an initial soil and the accumulation of scattered cliff shell-debris layer, we note the development of an initial soil and the accumulation of scattered cliff 
material. According to these results, we interpret the sequence as beach environments affected by material. According to these results, we interpret the sequence as beach environments affected by 
persistent storm conditions until 1522 –1654 cal AD (LOV 6/5 M), when suddenly littoral dynam-persistent storm conditions until 1522 –1654 cal AD (LOV 6/5 M), when suddenly littoral dynam-
ics and accumulation of shell material and well-rounded pebbles ceased.ics and accumulation of shell material and well-rounded pebbles ceased.

Again, we observe a considerable change in coastal geomorphodynamics possibly around the Again, we observe a considerable change in coastal geomorphodynamics possibly around the 
beginning of the 17beginning of the 17thth century, associated to a shift from accumulation to erosion. This shift may  century, associated to a shift from accumulation to erosion. This shift may 
indeed be explained by sudden uplift of the sedimentary sequence, which stopped the accumula-indeed be explained by sudden uplift of the sedimentary sequence, which stopped the accumula-
tion of well-rounded littoral pebbles and shell debris.tion of well-rounded littoral pebbles and shell debris.

5.45.4 Possible liquefaction and historical coastal uplift in the coastal plain of Pichicuy Bay Possible liquefaction and historical coastal uplift in the coastal plain of Pichicuy Bay

The sand layer intercalating the basal mud sediments of profi le PCU 2 between 0.03 m b.s.l. and The sand layer intercalating the basal mud sediments of profi le PCU 2 between 0.03 m b.s.l. and 
0.02 m a.s.l. (Fig. 8) may be interpreted as a liquefaction feature, based on its (i) undulating topog-0.02 m a.s.l. (Fig. 8) may be interpreted as a liquefaction feature, based on its (i) undulating topog-
raphy; (ii) similar grain size compared to underlying strata; (iii) distinct interfi ngering with mud, raphy; (ii) similar grain size compared to underlying strata; (iii) distinct interfi ngering with mud, 
although no dikes or volcanoes were detected along the outcrop. Liquefaction occurs during earth-although no dikes or volcanoes were detected along the outcrop. Liquefaction occurs during earth-
quakes of considerable magnitude, depending on the distance to the epicenter and earthquake quakes of considerable magnitude, depending on the distance to the epicenter and earthquake 
parameters such as shaking duration or frequency wave trains (parameters such as shaking duration or frequency wave trains (GALLI GALLI 2000). The ground shaking 2000). The ground shaking 
effects can lead to the injection of underlying sand into the overlying mud sediments, caused by effects can lead to the injection of underlying sand into the overlying mud sediments, caused by 
increased pore-water pressure and following liquefaction of the saturated cohesionless sediment increased pore-water pressure and following liquefaction of the saturated cohesionless sediment 
(YOUD YOUD 19771977, GUARNIERI , GUARNIERI et al.et al. 2009). However, sand dikes or sand volcanoes, reported to be reli-2009). However, sand dikes or sand volcanoes, reported to be reli-
able criteria for this interpretation (able criteria for this interpretation (MARTIN & BOURGEOISMARTIN & BOURGEOIS 2012), were not found in the investigated  2012), were not found in the investigated 
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trench PCU 2. Likewise, tsunami events may deposit thin sand sheets in coastal swamp deposits, trench PCU 2. Likewise, tsunami events may deposit thin sand sheets in coastal swamp deposits, 
leaving comparable sand layers in mud stratigraphies. However, a marine fl ooding origin of the leaving comparable sand layers in mud stratigraphies. However, a marine fl ooding origin of the 
sand sheet remains ambiguous, since no carbonate contents, i.e. marine faunal elements, or typical sand sheet remains ambiguous, since no carbonate contents, i.e. marine faunal elements, or typical 
sediment structures such as fi ning-up sequences or erosive contacts were detected.sediment structures such as fi ning-up sequences or erosive contacts were detected.

The stratigraphy and chronology from sediment profi le PCU 2 furthermore reminds of the The stratigraphy and chronology from sediment profi le PCU 2 furthermore reminds of the 
previously discussed scenario at Coquimbo Bay. We observe the deposition of organic-rich mud previously discussed scenario at Coquimbo Bay. We observe the deposition of organic-rich mud 
sediments, subsequently eroded during the deposition of the younger fl uvial sandy unit (Fig. 8). sediments, subsequently eroded during the deposition of the younger fl uvial sandy unit (Fig. 8). 
Similar to the fi ndings at LSE 1, a major discharge event related to strong El Niño conditions may Similar to the fi ndings at LSE 1, a major discharge event related to strong El Niño conditions may 
have triggered the deposition of this sand unit (have triggered the deposition of this sand unit (GERGIS & FOWLER GERGIS & FOWLER 2009).2009).

As for the age of the assumed liquefaction unit, it is not clear whether the sand injection oc-As for the age of the assumed liquefaction unit, it is not clear whether the sand injection oc-
curred during the existence of the swamp and prior to the deposition of the overlying sand unit, curred during the existence of the swamp and prior to the deposition of the overlying sand unit, 
or subsequent to the deposition of the fl uvial deposits found above 0.07 m a.s.l. (Fig. 8). Also, the or subsequent to the deposition of the fl uvial deposits found above 0.07 m a.s.l. (Fig. 8). Also, the 
1414C age plateau once again hinders a precise age determination (C age plateau once again hinders a precise age determination (REIMER REIMER et al.et al. 2009). At 1666 cal 2009). At 1666 cal 
AD (minimum age; PCU 2/3), a coastal swamp existed at location PCU 2. Sample PCU 3/2 gives AD (minimum age; PCU 2/3), a coastal swamp existed at location PCU 2. Sample PCU 3/2 gives 
a maximum age of 1697 cal AD (i) for the assumed liquefaction unit, and (ii) for the deposition of a maximum age of 1697 cal AD (i) for the assumed liquefaction unit, and (ii) for the deposition of 
the overlying fl uvial sediments and the subsequent fl uvial incision (cf. Figs. 6 and 8). If the sand the overlying fl uvial sediments and the subsequent fl uvial incision (cf. Figs. 6 and 8). If the sand 
injection took place subsequent to the deposition of the fl uvial sequence, one single main seismic injection took place subsequent to the deposition of the fl uvial sequence, one single main seismic 
event could be responsible for (i) the formation of the assumed liquefaction unit, (ii) the coastal event could be responsible for (i) the formation of the assumed liquefaction unit, (ii) the coastal 
uplift and (iii) the subsequent river incision. However, between 1700 and 1950AD, numerous uplift and (iii) the subsequent river incision. However, between 1700 and 1950AD, numerous 
strong earthquakes are reported and may have been responsible for this sequence of processes. A strong earthquakes are reported and may have been responsible for this sequence of processes. A 
possible candidate is the 1730 Great Valparaíso Earthquake that affected a long segment or several possible candidate is the 1730 Great Valparaíso Earthquake that affected a long segment or several 
segments of the megathrust. Other candidates are events reported to have affected smaller seg-segments of the megathrust. Other candidates are events reported to have affected smaller seg-
ments of the subduction zone than the 1730 earthquake, such as in 1822 (Mments of the subduction zone than the 1730 earthquake, such as in 1822 (Mw w 8 – 8.5, Valparaíso/La 8 – 8.5, Valparaíso/La 
Ligua; coastal uplift 1– 2 m), 1847 (MLigua; coastal uplift 1– 2 m), 1847 (Mw w 7, La Ligua), 1850 (M7, La Ligua), 1850 (Mw w 7.5, Casablanca), 1880 (M7.5, Casablanca), 1880 (Mw w 7.5, Illapel 7.5, Illapel 
and Petorca), 1906 (Mand Petorca), 1906 (Mw w 8.6, Valparaíso; coastal uplift up to 80 cm) and 1943 (M8.6, Valparaíso; coastal uplift up to 80 cm) and 1943 (Mw w 8.3, Illapel). It is, 8.3, Illapel). It is, 
however, still possible that our fi ndings entail two or more events.however, still possible that our fi ndings entail two or more events.

6 Conclusions Conclusions

The presented fi ndings refl ect different aspects of coastal changes along the Central Chilean The presented fi ndings refl ect different aspects of coastal changes along the Central Chilean 
coast. At four different locations between La Serena and Papudo/La Ligua (29° 50 ′ – 32° 20′ S), a coast. At four different locations between La Serena and Papudo/La Ligua (29° 50′ – 32° 20′ S), a 
~300 km-long coastal segment, coeval geomorphodynamic (Coquimbo Bay) and palaeoenviron-~300 km-long coastal segment, coeval geomorphodynamic (Coquimbo Bay) and palaeoenviron-
mental (Bay of Tongoy) changes were identifi ed in estuary systems, coastal swamps and coastal mental (Bay of Tongoy) changes were identifi ed in estuary systems, coastal swamps and coastal 
plains. These fi ndings are interpreted to represent indirect evidence for palaeoseismicity affecting plains. These fi ndings are interpreted to represent indirect evidence for palaeoseismicity affecting 
the coastal system by vertical tectonic movement on a regional scale.the coastal system by vertical tectonic movement on a regional scale.

Direct evidence for mid- to late Holocene tectonics is inferred from (i) the uplifted pocket Direct evidence for mid- to late Holocene tectonics is inferred from (i) the uplifted pocket 
beach (South of Los Vilos), and (ii) estuary terraces and river incision (Bay of Tongoy, Pichicuy). beach (South of Los Vilos), and (ii) estuary terraces and river incision (Bay of Tongoy, Pichicuy). 
Moreover, a sand sheet intercalating organic mud sediments in the coastal stratigraphy at Pichicuy Moreover, a sand sheet intercalating organic mud sediments in the coastal stratigraphy at Pichicuy 
is assumed to represent a liquefaction unit rather than a tsunami deposit, refl ecting a strong seis-is assumed to represent a liquefaction unit rather than a tsunami deposit, refl ecting a strong seis-
mic event in the area.mic event in the area.

Although the interpretation of existingAlthough the interpretation of existing1414C age estimates and a linking to certain events is hin-C age estimates and a linking to certain events is hin-
dered by radiocarbon dating plateau problems, all presented ages suggest a change of coastline el-dered by radiocarbon dating plateau problems, all presented ages suggest a change of coastline el-
evation, morphodynamic activity and/or coastal environments during the last 300 years. Similarly, evation, morphodynamic activity and/or coastal environments during the last 300 years. Similarly, 
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the potential liquefaction sand layer dates to the same time period. The Bay of Tongoy represents the potential liquefaction sand layer dates to the same time period. The Bay of Tongoy represents 
the only study area where the presented dating results may allow a relation to older events, but the only study area where the presented dating results may allow a relation to older events, but 
uncertainties remain due to probable reworking of the dated seed remains.uncertainties remain due to probable reworking of the dated seed remains.

Moreover, the back-barrier stratigraphies recorded in core LSE 1 and profi le PCU 2 refl ect Moreover, the back-barrier stratigraphies recorded in core LSE 1 and profi le PCU 2 refl ect 
the deposition of high-energy event deposits eroding basal organic mud sediments since the 18the deposition of high-energy event deposits eroding basal organic mud sediments since the 18thth 
century. Major fl ooding events related to strong El Niño conditions are assumed to be the most century. Major fl ooding events related to strong El Niño conditions are assumed to be the most 
plausible triggering process in both cases, illustrating the potential of coastal archives for studying plausible triggering process in both cases, illustrating the potential of coastal archives for studying 
historic El Niño occurrence in Central Chile.historic El Niño occurrence in Central Chile.

Based on the results presented here, we additionally assume that the coastal environment, Based on the results presented here, we additionally assume that the coastal environment, 
geomorphology and stratigraphy are strongly infl uenced by tectonic processes in the study area, geomorphology and stratigraphy are strongly infl uenced by tectonic processes in the study area, 
considerably affecting coastal or near-coastal processes and environments. However, it remains considerably affecting coastal or near-coastal processes and environments. However, it remains 
unclear whether one event or several events are responsible for the detected changes. We assume a unclear whether one event or several events are responsible for the detected changes. We assume a 
relation to the 1730 Great Valparaíso Earthquake. If this can be confi rmed – especially the relation relation to the 1730 Great Valparaíso Earthquake. If this can be confi rmed – especially the relation 
between the 1730 event and the results from Coquimbo Bay and the Bay of Tongoy – our fi ndings between the 1730 event and the results from Coquimbo Bay and the Bay of Tongoy – our fi ndings 
may contribute to a better understanding of the palaeoseismicity of Central Chile, and in particular may contribute to a better understanding of the palaeoseismicity of Central Chile, and in particular 
the size of the ruptured segment during the 1730 Great Valparaíso Earthquake.the size of the ruptured segment during the 1730 Great Valparaíso Earthquake.

In general, more detailed follow-up studies on geomorphological, palaeoenvironmental and In general, more detailed follow-up studies on geomorphological, palaeoenvironmental and 
coastal dynamic changes, combined with sedimentological studies on palaeoevent deposits, may coastal dynamic changes, combined with sedimentological studies on palaeoevent deposits, may 
allow for estimating earthquake magnitudes, notably by providing information about the length allow for estimating earthquake magnitudes, notably by providing information about the length 
of rupture zones.of rupture zones.
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