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a b s t r a c t 

The Duran-Grossmann model can deal with heat integration problems with variable process streams. 

Work and Heat Exchange Networks (WHENs) represent an extension of Heat Exchange Networks. In 

WHEN problems, the identities of streams (hot/cold) are regarded as variables. The original Duran- 

Grossmann model has been extended and applied to WHENs without knowing the identity of streams 

a priori. In the original Duran-Grossmann model, the max operator is a challenge for solving the model. 

This paper analyzes four ways to reformulate the Duran-Grossmann model. Smooth Approximation, Ex- 

plicit Disjunctions, Direct Disjunctions and Intermediate Temperature strategy are reviewed and com- 

pared. The Extended Duran-Grossmann model for WHEN problems consists of both binary variables and 

non-smooth functions. The Extended Duran-Grossmann model can be reformulated in similar ways. In 

this study, the performance of different reformulations of the Extended Duran-Grossmann model for 

WHEN problems are compared based on a small case study in this paper. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Heat integration has been widely used to save hot/cold utili-

ies because thermal energy contributes significantly to the total

ost of a process ( Huang and Karimi, 2013 ). The classical heat in-

egration techniques, such as pinch technology ( Klemeš and Kra-

anja, 2013 ), can only deal with the heat integration problem

ith known stream data. If heat integration and process optimiza-

ion are performed simultaneously, i.e. heat integration consider-

ng variable process streams, more benefits can be achieved. Du-

an and Grossmann proposed a mathematical model for simulta-

eous process optimization and heat integration ( Duran and Gross-

ann, 1986 ). The Duran-Grossmann model is a powerful tool to

olve the heat integration problem with variable process streams.

his paper has been cited more than 350 times by the end of 2018.

heir model has been successfully applied to organic Rankine cycle

ystems recovering low-temperature waste heat ( Yu et al., 2017a ),

rocesses for liquefaction of natural gas ( Wechsung et al., 2011 ),

ptimal reactor network synthesis ( Lakshmanan and Biegler, 1996 ),

nd fuel cell systems ( Marechal et al., 2005 ). To improve the per-

ormance of the model, several reformulations are proposed in pre-

ious studies, which will be reviewed and compared in this study. 
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The new topic (see e.g. Yu et al., 2018a ) referred to as Work

nd Heat Exchange Networks (WHENs) arise if pressure manipu-

ations are considered while designing Heat Exchanger Networks

HENs). There are many potential applications of WHENs the-

ry, such as a novel process for offshore liquefaction of natu-

al gas ( Aspelund and Gundersen, 2009 ), effluent gas recovery

 Liao et al., 2017 ), process integration in carbon capture processes

 Fu and Gundersen, 2016 ), and optimal distillation column inte-

ration ( Nair et al., 2018 ). More applications can be found in the

iterature ( Yu et al., 2018b ). More generally speaking, not only

emperatures but also pressures have to meet some specifica-

ions in a system. Pressure specifications for process streams make

he problem more challenging compared with conventional HENs.

oliastos and Manousiouthakis (2002) proposed a mathemati-

al model minimizing hot/cold/work utility cost for HENs. Here

work utility” refers to the generation or consumption of work.

spelund et al. (2007) proposed a manual methodology referred to

s Extended Pinch Analysis and Design (ExPAnD), where traditional

inch Analysis is extended with pressure considerations and Ex-

rgy Analysis. Marmolejo-Correa and Gundersen (2012) proposed

 methodology combining Exergy and Pinch Analyses to design a

everse Brayton cycle for the liquefaction of natural gas. Based on

his study, Marmolejo-Correa and Gundersen (2013) developed a

ovel diagram for exergy and energy targeting for a heat recov-

ry system subject to changes in both temperature and pressure.

his method is particularly suitable for low temperature systems
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Nomenclature 

CC Composite Curve 

C Cold Stream Set 

cu Cold Utility 

def Heat deficit 

DG Duran-Grossmann Model 

EDG Extended Duran-Grossmann Model 

ExPAnD Extended Pinch Analysis and Design 

FCp Heat Capacity Flowrate 

GAMS General Algebraic Modeling System 

GCC Grand Composite Curve 

H Enthalpy/Hot Stream Set 

HEN Heat Exchange Network 

HRAT Heat Recovery Approach Temperature 

hu Hot utility 

i Hot Streams 

IT Intermediate Temperature 

j Cold Streams 

LogMIP Logic-based disjunctive model solver 

MINLP Mixed Integer Non-Linear Programming 

NLP Non-Linear Programming 

ORC Organic Rankine Cycle 

P Pressure 

p Pinch candidate 

PC Pinch candidate set 

PSE Process System Engineering 

QSOA Heat load of hot streams above pinch candidates 

QSIA Heat load of cold streams above pinch candidates 

R A large number used in the explicit disjunction re- 

formulation 

S Entropy/Stream set 

SA Smooth Approximation 

sup Supply state 

tar Target state 

T Temperature 

WHEN Work and Heat Exchange Network 

WSK Work sink stream 

WSR Work source stream 

Y Boolean variables 

y Binary variables 

γ Specific heat capacity ratio 

ω Process variables 

such as LNG processes. Fu and Gundersen (2015a) presented a sys-

tematic graphical design procedure for the integration of compres-

sors in HENs above ambient temperature. Similarly, Fu and Gun-

dersen (2015b) integrated compressors into heat exchanger net-

works below ambient temperature. Four theorems were proposed

and used as the basis for the design methodology. Fu and Gun-

dersen also integrated expanders into heat exchanger networks

above ( Fu and Gundersen, 2015c ) and below ( Fu and Gundersen,

2015d ) ambient temperature. Wechsung et al. (2011) combined

Pinch Analysis, Exergy Analysis, and Mathematical Programming

to synthesize HENs below ambient temperature with compression

and expansion of process streams. 

The WHENs problem involves both heat integration and work

integration. The Duran-Grossmann model can be extended to solve

WHEN problems. Since the thermodynamic path and the identity

(hot/cold) of process streams are unknown in WHENs, classical

heat integration methods cannot be applied. In addition, the iden-

tity of streams can also temporarily change in WHENs. This paper

is a more comprehensive version of Yu et al. (2018c) that extended

the Duran-Grossmann model to WHEN problems, where the iden-
ities of streams are unknown a priori. The present paper adds yet

nother reformulation based on a so-called Intermediate Temper-

ture strategy. The various reformulations of the original Duran-

rossmann model are applied to the Extended Duran-Grossmann

odel for WHEN synthesis problems. There are four different re-

ormulations for the Extended Duran-Grossmann model presented

n the literature. This study investigates the different reformula-

ions and their computational expenses. 

. Original Duran-Grossmann model and reformulations 

The original Duran-Grossmann model can consider the utility

ost and other economic indicators simultaneously, and it can be

ritten in a compact way as follows: 

in ob j = F ( ω, x ) + C hu Q hu + C cu Q cu 

s.t. ( DG . 1) h ( ω, x ) = 0 

( DG . 2) g ( ω, x ) ≤ 0 

( DG . 3) T p 
i 

= T in i ∀ i ∈ H 

( DG . 4) T p 
j 

= T in j + HRAT ∀ j ∈ C 

( DG . 5) QSOA (x ) p = 

∑ 

i ∈ H 
F C p i 

[
max 

{
0 , T in i − T p 

}
− max 

{
0 , T out 

i − T p 
}] ∀ p ∈ P C 

( DG . 6) QSIA (x ) p = 

∑ 

j∈ C 
F C p j 

[
max 

{
0 , T out 

j − ( T p − HRAT ) 
}

− max 
{

0 , T in j − ( T p − HRAT ) 
}] ∀ p ∈ P

( DG . 7) Z p 
de f 

(x ) = Q SIA (x ) p − Q SOA (x ) p 

( DG . 8) Z p 
de f 

(x ) ≤ Q hu 

( DG . 9)�(x ) + Q hu − Q cu = 0 

( DG . 10)�(x ) = 

∑ 

i ∈ H 
F C p i (T in i − T out 

i ) −
∑ 

j∈ C 
F C p j (T out 

j − T in j ) 

( DG . 11) Q hu ≥ 0 , Q cu ≥ 0 

DG.1 and DG.2 are the equality and inequality constraints for

he industrial process. The vector ω denotes process parameters

uch as pressure, temperature, or parameters in cost correlations.

G.3 and DG.4 are used to assign the inlet temperature of each

tream to potential pinch candidates. It should be noticed that only

old stream inlet temperatures are modified to consider the ef-

ect of the Heat Recovery Approach Temperature (HRAT). DG.5 and

G.6 denote the total hot stream heat load and total cold stream

eat load above each pinch candidate temperature. DG.7 and DG.8

im at identifying the correct pinch point, which features the max-

mum heat deficit among all the pinch candidates. DG.9 and DG.10

re energy balances for the system. 

The Duran-Grossmann model incorporates max operators,

hich result in non-differentiabilities at T p . Max operators are

hallenging for deterministic solvers and have to be removed be-

ore solving the model. The original Duran-Grossmann model has

roven to be powerful in process design. Thus, interest has in-

reased in the Process System Engineering (PSE) field to find ways

o reformulate the model. Four different reformulations have been

ound in the literature, and these are presented and used in the

xtended Duran-Grossmann model for WHEN synthesis. The four

eformulations are the following: (1) Smooth Approximation, (2)

xplicit Disjunction, (3) Direct Disjunction, and (4) an Intermedi-

te Temperature strategy. 

.1. Smooth approximation for the heat integration model 

The max operator in the Duran-Grossmann model was

eformulated by using smooth approximations proposed by
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a

alakrishna and Biegler (1992) . This reformulation has been ap-

lied to heat integration problems considering organic Rankine cy-

les ( Yu et al., 2017b ) and carbon capture processes considering

aste heat recovery ( Yu et al., 2018d ). The max operator in the

riginal Duran-Grossmann model can be reformulated by using the

quation shown in Eq. (1) to modify DG.5 and DG.6. 

ax { 0 , x } ∼= 

1 

2 

(
x + 

√ 

x 2 + ε 
)

(1) 

Here, ɛ is a small constant, typically between 10 −3 and 10 −6 . 

However, this reformulation may encounter problems when

ealing with isothermal streams. In addition, the performance of

he approximation depends on the value of the small constant,

hich may cause numerical conditioning problem if chosen im-

roperly ( Grossmann et al., 1998 ). The small parameter is close

o zero, and the Smooth Approximation can sometimes be ill-

onditioned. 

.2. Explicit disjunction for the heat integration model 

To remove the max operator in the original Duran-Grossmann

odel, Grossmann et al. (1998) proposed a disjunctive reformula-

ion. This reformulation can even handle isothermal streams in a

ystem. The key idea of the disjunctive formulation is the explicit

reatment of three possibilities for process stream temperatures: a

rocess stream is totally above, totally below or across the pinch

andidate temperature, as shown in Fig. 1 . When a stream is to-

ally above the pinch candidate temperature, both the inlet and

utlet temperatures are greater than the pinch candidate tempera-

ure. When a stream is totally below the pinch candidate temper-

ture, both the inlet and outlet temperatures are below the pinch

andidate temperature. These two statements are valid regardless

f the streams being hot or cold. However, if the stream is across a

inch candidate temperature, the constraints are different for hot

nd cold streams. For hot streams, the inlet temperature is greater

han the pinch candidate temperature, and the outlet temperature

s less than the pinch candidate temperature. In contrast, different

onstraints apply to cold streams. To avoid the use of max opera-

ors, intermediate variables are introduced to calculate the correct

eat load of hot and cold streams respectively, as shown in the

q. (2) . 

Then the max operators in the original Duran-Grossmann

odel can be replaced by the disjunctions shown in Eq. (2) . In
Fig. 1. Relationship between pinch candidate tempe
ur study, we refer to this disjunctive reformulation as Explicit Dis-

unction. ⎡ 

⎢ ⎢ ⎢ ⎣ 

Y 1 

p 
i 

T in 
i 

≥ T p 

T out 
i 

≥ T p 

T in,p 
i 

= T in 
i 

− T p 

T out,p 
i 

= T out 
i 

− T p 

⎤ 

⎥ ⎥ ⎥ ⎦ 

∨ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

Y 2 

p 
i 

T in 
i 

≥ T p 

T out 
i 

≤ T p 

T in,p 
i 

= T in 
i 

− T p 

T out,p 
i 

= 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

∨ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

Y 3 

p 
i 

T in s ≤ T p 

T out 
s ≤ T p 

T in,p 
s = 0 

T out,p 
s = 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

Y 1 

p 
j 

T in 
j 

≥ T p 

T out 
j 

≥ T p 

T in,p 
j 

= T in 
j 

− T p 

T out,p 
j 

= T out 
j 

− T p 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

∨ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

Y 2 

p 
j 

T in 
j 

≤ T p 

T out 
j 

≥ T p 

T in,p 
j 

= 0 

T out,p 
j 

= T out 
j 

− T p 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

∨ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

Y 3 

p 
j 

T in 
j 

≤ T p 

T out 
j 

≤ T p 

T in,p 
j 

= 0 

T out,p 
j 

= 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

QSOA (x ) p = 

∑ 

i ∈ H 
F C p s (T in,p 

i 
− T out,p 

i 
) 

QSIA (x ) p = 

∑ 

j∈ C 
−F C p j (T in,p 

j 
− T out,p 

j 
) (2) 

.3. Direct disjunction for the heat integration model 

Recently, Quirante et al. (2017) proposed another novel and ro-

ust disjunctive reformulation. This method reformulates the max

perator from a pure mathematical point of view without any

hysical insight regarding the heat integration background. We re-

er to this reformulation as Direct Disjunction in this study. This

eformulation has fewer Boolean variables compared with the Ex-

licit Disjunction ( Grossmann et al., 1998 ), thus shows better re-

axation gaps and reduced number of equations. 

The max operator is expressed as follows: 

= max (0 , c T x ) (3) 

Based on mathematical analysis, the max operator can be either

 or a positive number. Therefore, a direct disjunction is proposed

s shown in Eq. (4) . 

Y ¬ Y [
c T x ≥ 0 

φ = c T x 

]
∨ 

[
c T x ≤ 0 

φ = 0 

]
Y ∈ { T rue, F alse } (4) 
rature and process streams ( Yu et al., 2018e ). 
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Using this formulation, the max operator in Eqs. DG.4 and DG.5

can be replaced by the disjunctions as shown in Eq. (5) . [ 

Y in 
i 

T in 
i 

− T p ≥ 0 

φin 
i 

= T in 
i 

− T p 

] 

∨ 

[ ¬ Y in 
i 

T in 
i 

− T p ≤ 0 

φin 
i 

= 0 

] 

[ 

Y out 
i 

T out 
i 

− T p ≥ 0 

φout 
i 

= T out 
i 

− T p 

] 

∨ 

[ ¬ Y out 
i 

T out 
i 

− T p ≤ 0 

φout 
i 

= 0 

] 

⎡ 

⎣ 

Y in 
j 

T in 
j 

+ HRAT − T p ≥ 0 

φin 
j 

= T in 
j 

+ HRAT − T p 

⎤ 

⎦ ∨ 

⎡ 

⎣ 

¬ Y in 
j 

T in 
j 

+ HRAT − T p ≤ 0 

φin 
j 

= 0 

⎤ 

⎦ 

⎡ 

⎣ 

Y out 
j 

T out 
j 

+ HRAT − T p ≥ 0 

φout 
j 

= T out 
j 

+ HRAT − T p 

⎤ 

⎦ ∨ 

⎡ 

⎣ 

¬ Y out 
j 

T out 
j 

+ HRAT − T p ≤ 0 

φout 
j 

= 0 

⎤ 

⎦ 

QSOA (x ) p = 

∑ 

i ∈ H 
F C p i (φ

in 
i − φout 

i ) 

QSIA (x ) p = 

∑ 

j∈ C 
−F C p j (φ

in 
j − φout 

j ) (5)

2.4. Intermediate temperature strategy for the Heat Integration Model

Anantharaman et al. (2014) revisited the Duran-Grossmann

model to improve the solution of the formulation. They pointed

out that the Explicit Disjunction reformulation has the drawback of

introducing a large number of binary variables. The novel idea in

this study is to introduce a new variable named intermediate tem-

perature, to represent the pinch candidate temperature and avoid

using max operators. We refer to this reformulation as the In-

termediate Temperature (IT) strategy in this study. The key idea

of the three reformulations discussed in Sections 2.1 –2.3 is how

to reformulate the max operators in the Duran-Grossmann model.

The Intermediate Temperature strategy, however, is different from

the three previous reformulations. Eqs. DG.5-DG.8 in the original

Duran-Grossmann model can be written in one single compact

equation as shown in Eq. (6) . 

Q hu ≥
∑ 

j∈ C 
(T out 

j − t M 

j,p ) · F C p j −
∑ 

i ∈ H 
(T in i − t M 

i,p ) · F C p i (6)

In Eq. (6) , intermediate temperatures ( t M 

i,p 
and t M 

j,p 
) are intro-

duced. Hot utility consumption is determined by the heat deficit

between hot and cold streams above each potential pinch tem-

perature. To determine the correct intermediate temperature cor-

responding to the correct pinch temperature, more constraints

are incorporated in the model. More detailed and updated in-

formation about this model can be found in the updated notes

( Anantharaman, 2018 ). In this reformulation, max operators are

avoided but binary variables are introduced. The reformulated

Duran-Grossmann model with the IT strategy is as follows: 

min ob j = F ( ω, x ) + C hu Q hu + C cu Q cu 

s.t. ( IT . 1 ) h ( ω, x ) = 0 

( IT . 2 ) g ( ω, x ) ≤ 0 

( IT . 3 ) T p 
i 

= T in i ∀ i ∈ H 

( IT . 4 ) T p 
j 

= T in j + HRAT ∀ j ∈ C 

( IT . 5 ) Q hu ≥
∑ 

j∈ C 
F C p j 

(
T out 

j − T M 

j,p 

)
−

∑ 

i ∈ H 
F C p i 

(
T in i − T M 

i,p 

) ∀ p ∈ P C 

( IT . 6 ) T M 

i,p ≥ T out 
i ∀ i ∈ H, p ∈ P C 
p  
( IT . 7 ) T M 

i,p ≥ T p − M i,p · y i,p ∀ i ∈ H, p ∈ P C 

( IT . 8 ) T M 

i,p ≥ T p − U i,p ·
(
1 − y i,p 

) ∀ i ∈ H, p ∈ P C 

( IT . 9 ) T M 

j,p ≤ T out 
i ∀ j ∈ C, p ∈ P C 

( IT . 10 ) T M 

j,p ≤ T p + M j,p ·
(
1 − y j,p 

) ∀ j ∈ C, p ∈ P C 

( IT . 11 ) T M 

j,p ≤ T in j + U j,p · y j,p ∀ j ∈ C, p ∈ P C 

( IT . 12 )�(x ) + Q hu − Q cu = 0 

( IT . 13 )�(x ) = 

∑ 

i ∈ H 
F C p i (T in i − T out 

i ) −
∑ 

j∈ C 
F C p j (T out 

j − T in j ) 

( IT . 14 ) Q hu ≥ 0 , Q cu ≥ 0 

Here, y i, p and y j, p are binary variables indicating whether a

tream is above or below a pinch candidate. The case where a

tream is across the pinch candidate temperature is not treated

eparately. For hot streams, y i,p = 1 corresponds to the case where

tream i is below the pinch candidate temperature and y i,p = 0 cor-

esponds to the case where stream i is above or across the pinch

andidate temperature. For cold streams, y j,p = 1 corresponds to

he case where stream j is across or below the pinch candidate

emperature and y j,p = 0 corresponds to the case where stream j

s above the pinch candidate temperature. M and U are valid upper

ounds associated with binary variables y i, p and y j, p . 

.5. Model complexity 

The four reformulations are proposed in the following

hronological order: Smooth Approximation ( Balakrishna and

iegler, 1992 ), Explicit Disjunction ( Grossmann et al., 1998 ), Inter-

ediate Temperature strategy ( Anantharaman et al., 2014 ) and Di-

ect Disjunction ( Quirante et al., 2017 ). Smooth Approximation has

he following advantages: no binary variables are needed, and it

s computationally efficient. However, the reformulation has diffi-

ulty when handling isothermal streams and intermediate utilities.

n addition, the Smooth Approximation parameter has to be chosen

roperly, otherwise numerical issues could arise. To overcome the

imitations of Smooth Approximation, Explicit Disjunction, which

s capable of handling isothermal streams and multiple utilities,

s proposed. However, 3 Boolean variables are introduced for each

air of streams and pinch candidates. The number of binaries are

ncreasing rapidly with the scale of the problem. Therefore, it be-

omes challenging to solve the model if the problem size is large.

otivated by this challenge, Direct Disjunction, which only needs

 Boolean variables for each pair of streams and pinch candidates,

rovides a better reformulation of the original Duran-Grossmann

odel. Direct Disjunction should perform much better than Ex-

licit Disjunction, especially for medium or large-scale problems.

he Intermediate Temperature strategy introduces a new contin-

ous variable to avoid using max operators. One binary variable

o activate/deactivate the corresponding constraints has to be in-

roduced. The different reformulations are subject to the trade-off

etween continuous variables and binary variables. 

. Extended Duran-Grossmann model for work and heat 

ntegration 

In this study, we mainly focus on the application of the

uran-Grossmann model for Work and Heat Exchange Networks

WHENs). The Duran-Grossmann model has been successfully ex-

ended to WHEN problems ( Yu et al., 2018e ). A brief introduction

o the WHENs problem is presented here. The WHENs problem can

e stated as follows: Given a set of process streams with supply

nd target state (temperature, pressure), as well as hot, cold and

ower utilities; the objective is to design a network consisting of
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Fig. 2. Superstructure for streams belonging to WSK ( Yu et al., 2018e ). 
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eat transfer equipment such as heat exchangers, heaters and cool-

rs, and pressure manipulation equipment such as expanders, com-

ressors, pumps and valves with minimum Exergy Consumption or

inimum Total Annualized Cost. 

In the WHENs problem, a process stream whose target pressure

s greater than the supply pressure is called a work sink stream

WSK). Opposite, a work source stream (WSR) can be defined as

 process stream whose target pressure is less than the supply

ressure. Any process stream can be heated, cooled or simply not

hanged before pressure manipulation. Fig. 2 illustrates the super-

tructure of a stream in the category of WSK. Detailed information

bout the superstructure is available in Yu et al. (2018e) . 

Since the identity of streams in the WHEN is unknown a priori,

he Duran-Grossmann model cannot be applied directly and has

o be extended to a new model using binary variables to denote

he identity of streams. In the Extended Duran-Grossmann (EDG)

odel, separate sets of hot and cold streams do no longer exist.

inary variables are used to automatically distinguish the hot and

old streams in the model. The Extended Duran-Grossmann model

an be formulated as follows: 

in ob j = Exergy Consumption 

s.t. ( EDG . 1 ) h ( ω, x ) = 0 

( EDG . 2 ) g ( ω, x ) ≤ 0 

( EDG . 3 ) T 
p 

s = T in s + y s · HRAT ∀ s ∈ S 

( EDG . 4 ) QSOA (x ) p = 

∑ 

s ∈ S 
(1 − y s ) F C p s 

[
max 

{
0 , T in s 

+ y s · HRAT − T p } − max 
{

0 , T out 
s 

+ y s · HRAT − T p } ] ∀ p ∈ P C 

( EDG . 5 ) QSIA (x ) p = 

∑ 

s ∈ S 
y s · F C p s 

[
max 

{
0 , T out 

s 

+ y s · HRAT − T p } − max 
{

0 , T in s 

+ y s · HRAT − T p } ] ∀ p ∈ P C 

( EDG . 6 ) Z 
p 

de f 
(x ) = Q SIA (x ) p − Q SOA (x ) p ∀ p ∈ P C 

( EDG . 7 ) Z 
p 

de f 
(x ) ≤ Q hu ∀ p ∈ P C 

( EDG . 8 ) �(x ) + Q hu − Q cu = 0 

( EDG . 9 ) �(x ) = 

∑ 

s ∈ S 
( 1 − y s ) F C p s (T in s − T out 

s ) 

−
∑ 

s ∈ S 
y s · F C p s (T out 

s − T in s ) 

( EDG . 10 ) Q hu ≥ 0 , Q cu ≥ 0 

Here, x represents the flow rates and temperatures of the

treams involved in heat integration. ω represents all the other

rocess variables. Eqs. EDG.1 and EDG.2 denote the process equal-
ty and inequality constraints as those in the original Duran-

rossmann model. y s is a binary variable to denote the identity

f a process stream. In this study, y s = 1 means stream s is a cold

tream. QSOA and QSIA denote the total heat load of hot and cold

treams above each pinch candidate p ∈ PC . Z 
p 

de f 
(x ) is heat deficit

bove each pinch candidate. �( x ) is the heat load difference be-

ween hot and cold streams. HRAT denotes the heat recovery ap-

roach temperature. The objective function is minimizing the ex-

rgy consumption of the system, which is related to the use of

hermal utilities and shaft work consumed in the system. In the

ext sections, the previously reviewed reformulations for the orig-

nal Duran-Grossmann model are applied to the Extended Duran-

rossmann model. Since the identity of the streams are unknown

 priori, these reformulations have to be revised accordingly. The

eformulations for the extended Duran-Grossmann model are pre-

ented as follows. 

.1. Smooth approximation for the work and heat integration model 

For the Extended Duran-Grossmann model, the max operators

an be replaced by Smooth Approximations as well. It is similar

o the reformulation for the original Duran-Grossmann model as

iscussed in Section 2.1 . However, binary variables are involved in

he Smooth Approximation reformulation in this case. The detailed

odel is omitted in this section since it is straightforward. 

.2. Explicit disjunction for the work and heat integration model 

For the explicit disjunction reformulation, it is not neces-
ary to distinguish between hot and cold streams in the Ex-
ended Duran-Grossmann model. In contrast to the reformulation
n Section 2.2 , only three disjunctions are needed in the Extended
uran-Grossmann model. However, more constraints are needed to

ake the identity of streams into account in the disjunction. Espe-
ially for the case where a stream operates across the pinch can-
idate temperature, the constraints are different for hot and cold
treams. Therefore, there are 3 more constraints in the second dis-
unction as shown in Eq. (7) compared with the Explicit Disjunc-
ion reformulation for the original Duran-Grossmann model. 

⎡ 

⎢ ⎢ ⎢ ⎣ 

Y 1 p s 

T in s + y s · HRAT ≥ T p 

T out 
s + y s · HRAT ≥ T p 

T in,p 
s = T in s + y s · HRAT − T p 

T out,p 
s = T out 

s + y s · HRAT − T p 

⎤ 

⎥ ⎥ ⎥ ⎦ 

∨ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Y 2 p s 

T in s + y s · HRAT ≥ T p − y s · R 

T out 
s + y s · HRAT ≥ T p − (1 − y s ) · R 

T in s + y s · HRAT ≤ T p + (1 − y s ) · R 

T out 
s + y s · HRAT ≤ T p + y s · R 

T in,p 
s = (1 − y s ) T 

in 
s − (1 − y s ) T 

p 

T out,p 
s = y s · T out 

s + y s · HRAT − y s · T p 

⎤
⎥⎥⎥⎥⎥⎥⎦

∨ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

Y 3 p s 

T in s + y s · HRAT ≤ T p 

T out 
s + y s · HRAT ≤ T p 

T in,p 
s = 0 

T out,p 
s = 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 
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Table 1 

Stream data for the case study. 

Stream 

T sup 

( ◦C ) 

T tar 

( ◦C ) 

F Cp 

( kW / ◦C ) 

�H 

( kW ) 

P sup 

( kPa ) 

P tar 

( kPa ) 

H1 300 50 4 1000 – –

H2 120 40 4 320 – –

C1 70 380 3 930 100 300 

C2 30 180 3 450 – –

Hot utility 400 400 – – – –

Cold utility 15 15 – – – –
QSOA (x ) p = 

∑ 

s ∈ S 
(1 − y s ) F C p s (T in,p 

s − T out,p 
s ) 

QSIA (x ) p = 

∑ 

s ∈ S 
−y s · F C p s (T in,p 

s − T out,p 
s ) (7)

Here, R is a valid upper bound to relax the constraints for the

binary variables denoting stream identities. The value of R can be

estimated based on temperatures of the process streams. 

After the reformulation, the Extended Duran-Grossmann model

becomes a disjunctive model, which can be transformed into

a Mixed Integer Non-Linear Programming (MINLP) problem by

the Big-M method or the convex hull method ( Türkay and

Grossmann, 1996 ). In this study, LogMIP ( Vecchietti and Gross-

mann, 2004 ), a specially designed program for disjunctive pro-

gramming, is adopted as the solver. Users can freely choose the

Big-M method or convex hull method in the GAMS environment,

which facilities the modeling and solution substantially. 

3.3. Direct disjunction for the work and heat integration model 

Recently, Quirante et al. (2018) proposed a disjunctive model

considering unclassified streams and area estimation. In their

study, the stream identity is expressed as a disjunction. This is

in contrast to our study, where the stream identity is denoted

by using binary variables. Based on the reformulation presented

in Section 2.4 , the direct disjunction reformulation can be ap-

plied to the Extended Duran-Grossmann model in a similar way.

However, only two disjunctions are necessary since the Extended

Duran-Grossmann model only has one common set for the process

streams and does not distinguish between hot and cold streams.

The direct disjunction can replace the max operator in Eqs. EDG.4

and 5. The resulting disjunctions are shown in Eq. (8) . Intermedi-

ate variables φin and φout are introduced in the direct disjunction

reformulation. [ 

Y in 
T in s + y s · HRAT − T p ≥ 0 

φin = T in s + y s · HRAT − T p 

] 

∨ 

[ ¬ Y in 
T in s + y s · HRAT − T p ≤ 0 

φin = 0 

] 

[ 

Y out 

T out 
s + y s · HRAT − T p ≥ 0 

φout = T out 
s + y s · HRAT − T p 

] 

∨ 

[ ¬ Y out 

T out 
s + y s · HRAT − T p ≤ 0 

φout = 0 

] 

QSOA (x ) p = 

∑ 

s ∈ S 
(1 − y s ) F C p s ( φin − φout ) 

QSIA (x ) p = 

∑ 

s ∈ S 
−y s · F C p s ( φin − φout ) (8)

Compared with Explicit Disjunction, only two Boolean variables

are needed for each pair of streams and pinch candidates. With

the above disjunctions, the model can easily be implemented in

the GAMS environment along with other equations related to the

process. 

3.4. Intermediate temperature strategy for the work and heat 

integration model 

For the Intermediate Temperature strategy, the reformulation is

very different from that for the original Duran-Grossmann model.

In the Extended Duran-Grossmann model, there is only one set in-

cluding both hot and cold streams. Therefore, all the equations are

defined based on a single stream set. To activate the corresponding

constraints for a stream changing from hot stream to cold stream,

a big-M relaxation strategy is adopted. The Intermediate Temper-

ature reformulation for work and heat integration model can be

expressed as follows: 

min ob j = F ( ω, x ) + C hu Q hu + C cu Q cu 

s.t. ( EDG − IT . 1 ) h ( ω, x ) = 0 
( EDG − IT . 2 ) g ( ω, x ) ≤ 0 

( EDG − IT . 3 ) T p s = T in s + y s · HRAT ∀ s ∈ S 

( EDG − IT . 4 ) Q hu ≥
∑ 

s ∈ S 
y s · F C p s 

(
T out 

s − T M 

s,p 

)
−

∑ 

s ∈ S 
( 1 − y s ) F C p s 

(
T in s − T M 

s,p 

) ∀ p ∈ P C 

( EDG − IT . 5 ) T M 

s,p ≥ T out 
s − M s · y s ∀ s ∈ S, p ∈ P C 

( EDG − IT . 6 ) T M 

s,p ≥ T p − M s,p · y s,p 

− M s · y s ∀ s ∈ S, p ∈ P C 

( EDG − IT . 7 ) T M 

s,p ≥ T p − U s,p · ( 1 − y s,p ) 

− M s · y s ∀ s ∈ S, p ∈ P C 

( EDG − IT . 8 ) T M 

s,p ≤ T out 
s + M s · ( 1 − y s ) ∀ s ∈ S, p ∈ P C 

( EDG − IT . 9 ) T M 

s,p ≤ T p + M s,p · ( 1 − y s,p ) 

+ M s · ( 1 − y s ) ∀ s ∈ S, p ∈ P C 

( EDG − IT . 10 ) T M 

s,p ≤ T in s + U s,p · y s,p 

+ M s · ( 1 − y s ) ∀ s ∈ S, p ∈ P C 

( EDG − IT . 11 )�(x ) + Q hu − Q cu = 0 

( EDG − IT . 12 )�(x ) = 

∑ 

i ∈ H 
F C p i (T in i − T out 

i ) 

−
∑ 

j∈ C 
F C p j (T out 

j − T in j ) 

( EDG − IT . 13 ) Q hu ≥ 0 , Q cu ≥ 0 

It should be noticed that y s is a binary variable to denote the

tream identity, while y s, p is a binary variable to denote the rela-

ionship between the intermediate temperature and the pinch can-

idate temperature. If the stream identity is a hot stream (i.e. y s =
 ), then constraints EDG-IT.5-7 are active and constraints EDG-IT.8-

0 are relaxed. If the stream identity is a cold stream (i.e. y s = 1 ),

hen constraints EDG-IT.8-10 are active and constraints EDG-IT.5-7

re relaxed. M s are valid upper bounds for temperatures to relax

he constraints related to binary variables y s . Similarly, M s, p and

 s, p are valid upper bounds associated with binary variables y s, p .

t should be noted that the value of these parameters will affect

he computational time of the model. 

. Case study 

This case study is taken from the study by Fu and Gunder-

en (2015a) . The stream data are listed in Table 1 . There are 4 pro-

ess streams. Stream C1 is subject to pressure change and needs

o be compressed from 100 kPa to 300 kPa. The hot and cold utili-

ies are supplied at 400 °C and 15 °C respectively. The problem is to

etermine if stream C1 needs to be split into sub-streams, and to

nd the optimal inlet temperature(s) for the compressor(s). Since

his is a small-scale problem, C1 is split only into two sub-streams

n the superstructure to reduce the model size. The HRAT is set

o be 20 °C. The ambient temperature is assumed to be 15 °C, thus

he exergy of cold utility (at 15 °C) is zero in this case. The fluids to
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Fig. 3. The optimized superstructure of C1. 

Table 2 

Optimal stream data for C1 for all reformulations. 

Stream T sup ( ◦C) T tar ( ◦C) FCp (kW/ ◦C) �H (kW) P sup (kPa) P tar (kPa) 

C1_S1 70 280 1.47 308.7 100 100 

C1_S2 484 380 1.47 152.9 300 300 

C1_S3 70 35 1.53 53.6 100 100 

C1_S4 148.6 380 1.53 354 300 300 
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Table 3 

System performance under the optimal configuration. 

Items Value 

Hot utility (kW) 0 

Cold utility (kW) 413.9 

Pinch temperature ( °C) 290 

Compression work (kW) 473.8 

Exergy consumption (kW) 473.8 

Original Pinch compression flowrate (kW/ °C) 0 

New Pinch compression flowrate (kW/ °C) 1.47 

Ambient compression flowrate (kW/ °C) 1.53 

Compression at T sup flowrate (kW/ °C) 0 
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e compressed are assumed to behave like ideal gas with constant

pecific heat capacity ratio γ = 1 . 4 . 

The Extended Duran-Grossmann model can determine the op-

imal split ratio of stream C2 and the optimal temperature(s) of

tream C1 before compression. For this case study, all the refor-

ulations are able to find the global optimum. The detailed re-

ults concerning stream C1 are listed in Table 2 . Without consid-

ring pressure manipulation, the original pinch temperatures are

20/100 °C for hot and cold streams respectively. In the optimal

onfiguration, stream C1 is split into two sub-streams with heat

apacity flowrates being 1.47 kW/ °C and 1.53 kW/ °C respectively. A

ew pinch is created and located at 300/280 °C. It can be seen that

art of C1 (sub-stream C1_S1) is heated to the new pinch temper-

ture 280 °C before compression. The other part is cooled down

o ambient temperature before compression. The optimized super-

tructure of C1 is shown in Fig. 3 . The results are consistent with

he study by Fu and Gundersen (2015a) . 

The overall system performance under optimal conditions are

ummarized in Table 3 . The Composite Curves and the Grand Com-

osite Curve are shown in Fig. 4 . The hot utility demand is zero be-

ause the compression heat of C1_S2 can be fully utilized to heat

old streams in the system above the pinch. Stream C1 is com-

ressed at the new pinch temperature and at ambient temperature.

n contrast, compression at the original pinch temperature or the

upply temperature are not good options from the perspective of

xergy consumption. The compression of C1_S1 has the similar ef-

ect as a heat pump. After compression, the sub-stream C1_S2 be-

omes a hot stream in the system that will reduce hot utility. The

ot and cold Composite Curves are closer to each other and there

re two pinch points in the GCC. This demonstrates that an effi-
Table 4 

Computational results for the case study. 

Items SA IT Ex

strategy Big

Disjunctions – – 49

Continuous variables 161 146 41

Binary variables 4 53 15

Equations 171 339 76

CPU time (s) 17.5 4000 20

Objective function (kW) 473.8 473.8 a 47

a Upper bound obtained with the maximum compu
ient heat exchanger network can be derived with the optimized

uperstructure for stream C1. 

Even though all the reformulations can reach the same global

ptimum as discussed above, the computational expense shows big

ifferences for the different reformulations. For the Explicit Dis-

unction and the Direct Disjunction reformulations, the disjunc-

ive programming models can be reformulated into MINLP models

y the Big-M or convex hull methods with LogMIP as the solver.

n essence, the LogMIP solver calls other MINLP algorithms to

olve the disjunctive model. For this small-sized problem, BARON

 Tawarmalani and Sahinidis, 2004 ) is adopted as the MINLP solver.

Table 4 shows the computational performance of each re-

ormulation. It is clear that Smooth Approximation performs

uch better than the other reformulations for this case study.

he Smooth Approximation reformulation has fewer continuous

ariables and significantly fewer binary variables. The computation

ime is also considerably less than for the other three reformu-

ations. The Direct Disjunction model has more disjunctions and

ontinuous variables but fewer binary variables compared with the

xplicit Disjunction model. The advantage of the Direct Disjunc-

ion reformulation is that it can easily be extended to cases with

sothermal streams and multiple utilities. However, in the WHENs

roblem, phase change process streams are difficult to handle in a

eneral way. Such streams need special attention in WHEN prob-

ems. The convex hull reformulation performs slightly better than

he Big-M method for both Explicit and Direct Disjunction. It is

lear that the intermediate temperature strategy has much fewer
plicit disjunction Direct disjunction 

-M Convex hull Big-M Convex hull 

 49 98 98 

1 908 462 994 

1 151 102 102 

2 1448 467 663 

7.3 196.3 76.6 61.2 

3.8 473.8 473.8 473.8 

tational time being 40 0 0 s. 
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Fig. 4. Composite curves and grand composite curve under optimal conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

b  

a  

s

 

G  

p  

m  

l  

f  

b  

t

A

 

e  

g  

C  

s  

f

R

A  

A  

 

A  

 

A  

 

B  

 

D  

F  

F  
binary variables compared with the other two disjunctive refor-

mulations. However, the performance of intermediate the temper-

ature strategy is not satisfactory. This reformulation can only find

an upper bound of the objective function within the CPU time lim-

itation of 40 0 0 s. The optimality gap is still very large when the

solver terminates. The Intermediate Temperature strategy shows

slow convergence properties. This case study is a simple and small

size problem and only non-isothermal streams are considered. For

large-scale problems, the intermediate temperature strategy may

fail to get the optimal results using global solvers, such as BARON.

It has been reported that the Smooth Approximation might cause

numerical problems when isothermal streams or multiple utilities

are involved. For cases without isothermal streams, Smooth Ap-

proximation performs better than other reformulations, as shown

in this study. Each reformulation has its own merits and flaws.

Which reformulation is better depends on the problem size and

the stream properties involved in the system. For large-scale prob-

lems, BARON could be unable to reach the global optimum within

rational time. Decomposition algorithms are likely to improve the

computational efficiency of the Extended Duran-Grossmann model.

5. Conclusions 

In this paper, the Duran-Grossmann model for heat integra-

tion is extended to solve Work and Heat Exchange Network prob-

lems. To solve the model efficiently, four reformulations of the

original Duran-Grossmann model are reviewed and applied to the

WHENs problem. In the Extended Duran-Grossmann model, even

stream identities are variables in addition to temperature and heat

capacity flowrate for the process streams. The Extended Duran-

Grossmann model can get the same results as a manual proce-

dure for WHENs based on Pinch Analysis and Thermodynamics.

Each reformulation has its own advantages and disadvantages. For

small-scale WHEN problems, all the reformulations can find the

global optimum. However, the computational efforts and results of

different reformulations have been compared. For the case study,

the results show that the Smooth Approximation outperforms the

other three reformulations. However, this case study represents a

small size problem. Large-scale problems should be tested in future
ork. Isothermal process streams and multiple utilities should also

e considered. The small parameter ɛ in the Smooth Approximation

nd the Big-M value in the disjunctive programming models have

ignificant influence on the solution of the problems. 

In summary, the reformulations of the Extended Duran-

rossmann model can only deal with small to moderate scale

roblems. Since there is a large number of binary variables in the

odel, it is quite computationally expensive for large-scale prob-

ems with the four reformulations evaluated in this study. In the

uture, other reformulations or decomposition algorithms should

e developed for the Extended Duran-Grossmann model in order

o solve more complex WHEN problems in PSE field. 
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