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Abstract

This paper studies the investment decisions by oil and gas companies oper-

ating on the Norwegian Continental Shelf. We account for the heterogeneity

across the fields by including field-specific variables, including geological and

geographical variables. We find that the most important factors influencing

the investment decisions are the size of the oil and gas reserves, geological

variables, and the price of oil. The effect of oil price volatility is insignificant.
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1 Introduction

Oil and gas exploration and field development have been subject to economic re-

search for decades. In the existing literature, the main focus has been on the US

and UK oil and gas data sets, because international data sets provide much less

detailed information (Bøe et al., 2018). In this paper, we investigate the relation be-

tween investment activity and economic and field-specific variables on the Norwegian

Continental Shelf from 1967 to 2015.

The decision to develop a natural resource asset such as oil and gas fields can be

considered to be an irreversible investment. The process involves three separate but

closely interrelated activities: exploration, development, and extraction. From a real

options point of view, having a license for exploration drilling may be seen as owning

an option. When a drilling decision is made, the exploration option is exercised and

a development option is acquired. In most cases, the development decision requires

a large investment, which makes this decision particularly interesting to investigate.

Hurn and Wright (1994) argue that once the exploration stage is completed, eco-

nomic factors are the main determinants of the development decision. Since new

information should continuously affect an investment decision, we allow economic

variables to vary over the appraisal time. The aim of this paper is to examine how

the investment decision is influenced by the oil price and the oil price uncertainty

while also accounting for field-specific variables such as the size of the oil and gas

reserves. We study the appraisal lag (the time elapsed from discovery to develop-
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ment approval) for this purpose, using it as a proxy for the time spent waiting before

investing.

Extensive empirical literature examining the uncertainty-investment relationship

exists and a large proportion of these studies focus on natural resource industries.

Moel and Tufano (2002) examine the impact of resource price volatility on gold mine

openings and closings and find that real options models are useful for describing the

decisions of mines by incorporating the effect of uncertainty, but claim such models

fail to capture aspects of firm-level decision making. Dunne and Mu (2010) report

the impact of price uncertainty on petroleum refinery investments and provide evi-

dence of the wait-and-see response of investment to a rise in uncertainty, conforming

to the standard predictions of the real options theory. Kellogg (2014) investigates

well-level data on onshore drilling activity in Texas and find that firms reduce drilling

activity under increased expected volatility. His findings agree with the predictions

of the basic real options theory. However, Bar-Ilan and Strange (1996) provide a

real options model in which the effect of price uncertainty on investment is weakened

or even reversed in some cases. Similarly, Sarkar (2000) develops a model in order

to demonstrate that an increase in uncertainty does not always have an inhibiting

effect on investment. In some cases, particularly for low-risk and low-growth firms,

he argues a higher level of uncertainty might actually have a positive effect on in-

vestment. Altogether, the real options theory provides mixed predictions regarding

the impact of uncertainty on investments.

Duration analysis has become increasingly popular for testing the predictions of

the real options theory and to generally analyze investment behavior empirically.
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Dunne and Mu (2010) apply hazard models in their study on petroleum refineries.

The framework has also been applied to analyze oil and gas field developments.

Using duration analysis, Favero et al. (1994) examine empirically how oil price and

oil price uncertainty affect the decision process on the United Kingdom Continental

Shelf. They find that both oil price and volatility are significant determinants of

the development decision. Hurn and Wright (1994) extend the work of Favero et al.

(1994) by including monthly observations for each field. Hence, the oil price and

volatility vary from discovery to approval in their study. Furthermore, their data set

is extended to include assets discovered but not yet approved by the end of the study

period. They conclude that the larger the known oil reserves and the higher the oil

price – the shorter the period before oil companies decide to invest. However, they

do not find a significant impact of the oil price volatility demonstrated by Favero

et al. (1994).

A set of papers also examine the technical complexities of the offshore oil and gas

industry. Aadnoy (2010) provides a qualitative evaluation of the relation between

physical well characteristics and drilling speed. According to his study, considerable

improvement has been made in equipment and technology in recent decades, but at

the same time, operators are facing wells that are more difficult to drill. Osmundsen

et al. (2012) complement Aadnoy (2010) by using an econometric approach on a large

data set of individual exploration wells on the Norwegian Continental Shelf (NCS) to

analyze the effect of different types of learning and experience. Data set utilized in

this paper, based on a detailed database from the Norwegian Petroleum Directorate

covering the 40-year history of the Norwegian Continental Shelf, was first employed
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in Mohn and Osmundsen (2008) to investigate exploration behavior.

We apply duration analysis on this data set in order to investigate the relation

between the investment decision and economic and field-specific variables. We find

that the size of oil and gas reserves are the most important explanatory factors of

the investment activity on the Norwegian Continental Shelf. Oil companies are more

likely to invest earlier when the estimated reserves of a discovery are larger and the

oil price is high. We do not find any significant effect of oil price volatility on the

investment decision.

The remainder of this paper is organized as follows. Section 2 describes the

data, section 3 outlines the methodology used in our analysis, and section 4 presents

our results and discusses the empirical findings. The last section summarizes and

concludes.

2 Data

The data used in this paper is compiled from two sources. The primary source is

a global upstream oil and gas database called UCube, owned and operated by the

Norwegian oil and gas consultancy and research firm Rystad Energy. The data con-

sists of 337 assets on the Norwegian Continental Shelf. From this total, 90 fields are

currently producing, 18 have been producing but are now abandoned, 16 are under

development, and the remaining 213 are discoveries not yet approved for develop-

ment. The study period extends from the first recorded discovery on the Norwegian

Continental Shelf in July 1967, when oil was found in the Balder field, to October
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2015. The data is proprietary and have been released only for the purposes of this

paper.

Our second source of data is the petroleum databases of the Norwegian Petroleum

Directorate. This database consists of data on all wells drilled on the Norwegian Con-

tinental Shelf since the first wells were drilled in the late 1960s. This well level data

has been aggregated to the field level in the Rystad Energy database by matching

the well identifiers to the internal asset identifiers used by Rystad Energy. This has

enabled us to calculate the number of appraisal wells within a field, as well as to

obtain the geological age of the different fields.1

The final data set consists of 280 assets, 107 approved fields, and 172 discoveries.

We have eliminated 57 assets, all discoveries, due to missing data on variables. This

is particularly the case for discoveries having a highly uncertain resource size, hence

Rystad does not provide a resource estimate. The field data together with the crude

oil time series and oil price volatility constitutes our data set.

2.1 Crude oil price and volatility

The price of crude oil depends on its quality, which varies across the producing

regions. Norwegian oils are mainly light, sweet blends as measured by the gravity

and the sulphur level, respectively2. The most important blend is Ekofisk, which has

1The wells in the Norwegian Petroleum Directorate database are recorded with the oldest pen-
etrated geological age of the rock. These have been grouped into four different categories according
to closeness in age. When aggregated to field level, the final geological category assigned to the
field has been the most frequently recorded category among the included wells.

2Gravity is a measure of how heavy or light a petroleum liquid is compared to water: if the
gravity is greater than 10, it is lighter and floats on water; if less than 10, it is heavier and sinks.
Furthermore, when the total sulfur level in the oil is more than 0.5% the oil is called ”sour”, and is
generally sold with a discount.
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a gravity of 37.8 and 0.3% sulfur content and is very similar to the UK’s Brent. Brent

Crude is a major trading classification of sweet light crude oil that serves as a major

benchmark price for purchases of oil worldwide. Brent is the leading global oil price

benchmark for Atlantic basin crude oils, which comprise all Norwegian reserves.

The Brent Crude price data used in our analysis are retrieved from Reuter’s

EcoWin Pro database. The data series covers the period from 1970 to 2015. For

the years prior to 1970, we assume the 1970 Brent Crude price. Oil was not actively

traded before the end of the 1970s. Prior to this, prices were based on tariffs set

by the Organization of Petroleum Exporting Countries (OPEC). Hence, there are

periods spanning several months prior to 1978 over which the price remains constant.

Between 1978 and 1986, prices are available only on a monthly basis but since 1987

onward, prices have been recorded daily. The Brent Crude price over the studied

period is plotted in Figure 1. Note that several price shocks occurred, with the

oversupply in 2014 and the financial crisis in 2008 being the most recent.

The relevant oil price in the field development decision is the future expected oil

price. Oil futures prices could be used as a predictor for the future spot price of oil.

However, Alquist and Kilian (2010) show that oil futures prices tend to be a less

accurate predictor than the current spot price. Additionally, they consider the use

of long-term futures prices and conclude that the low liquidity limits the practical

use of these contracts as a predictor for the long-term spot price. As the spot price

is an adequate predictor for the expected future oil price and is easily obtained, it is

often used in practice. Moreover, oil futures prices are not available for a large part

of the period we study. Therefore, we use the oil spot price in our analysis.

7



 Electronic copy available at: https://ssrn.com/abstract=3120666 

 

0

20

40

60

80

100

120

140

160

1967 1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015

U
S

D
/b

a
rr

e
l

YearNominal oil price Real oil price

Figure 1: The Brent Crude price

A moving average of the squared returns from the last twelve months is used as

a proxy for the historical volatility. The resulting monthly time series is plotted in

Figure 2. Ideally, a measure of the expected future volatility, such as implied volatility

calculated from the prices of options on oil futures, would have been used. However,

such data are not available for the complete time period under consideration.

2.2 Field variables

The Norwegian Continental Shelf is a relatively mature hydrocarbon province with

the first discovery made in 1967. A number of discoveries were made in subsequent

years, which laid the foundations for a new industry in Norway. In 2014, total
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Figure 2: Oil price volatility

petroleum production was approximately four million barrels of oil equivalents per

day (mmboepd), making Norway one of the largest oil exporting countries in the

international oil market. All of Norway’s reserves are located offshore on the Norwe-

gian Continental Shelf, which can be divided into three main areas; the North Sea,

the Norwegian Sea, and the Barents Sea. Most of the current Norwegian production

is located in the central and northern areas of the North Sea. The data set used in

our study includes the following field specific variables:

• Discovery date is the date that the field was discovered.
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• Approval date is the date that the field received its approval.3

• Location is the area in which the field is located; North Sea, Norwegian Sea,

or Barents Sea.

• Oil reserves is the recoverable crude oil reserves measured in mmboe.

• Gas reserves is recoverable gas reserves. In addition, natural gas liquids and

condensates are included in this variable, all measured in mmboe.

• Reservoir pressure is the average recorded pressure in the reservoir measured

in bar.

• Reservoir depth is the depth from the sea bottom to the reservoir measured in

meters.

• Appraisal wells is the number of wells drilled in order to evaluate a discovery,

between the time of discovery to the time of approval.

• Block extension indicates whether a field is located within one block or extends

into several blocks.4 This variable gives the number of blocks a field extends

into.

3Before oil companies can develop a discovered field, the Norwegian authorities must approve
a Plan for Development and Operation of the petroleum deposit. Ideally, the date on which the
decision to develop a field would have been used. However, this date is not available. The approach
in this study, as in previous studies, is to use the date that an oil company receives approval from
the government to develop a field. The time lag from the discovery date to the approval date is
an approximation of the time oil companies spend considering whether to invest. This includes
the time spent by the government reviewing the development application although we assume this
additional time lag is approximately the same for all applications in such a way that it cancels out
across different appraisal lags.

4An exploration block is a large area of land awarded to drilling and exploration companies by
a country’s government.
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• Geological age is the main geological age of the rock penetrated in the devel-

opment of the field.

The approval date and discovery date are used to calculate the appraisal lag,

which is simply the time difference between them, denoted in months. The appraisal

lags in the data set range from 6 months to 498 months (42 years) for approved

assets, while for discovered but unapproved assets, the appraisal lags vary from 4

months to 518 months (43 years). A large part of the assets is approved less than

200 months (17 years) after discovery. Figure 3 shows the distribution of the time lag

from discovery to development for the assets that have been approved. For the assets

not yet approved, the figure shows the distribution of the time lag from discovery

until October 2015.
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Figure 3: Appraisal lag for approved (dark) and censored (light) assets
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The data set has a larger number of discovered fields than approved fields; for

some of the discovered assets, development has not yet commenced, while others will

probably never be developed. There has been a substantial increase in the number

of discoveries on the Norwegian Continental Shelf during the last decade as well as

in the number of approvals. This can be seen in Figure 4. Researchers and industry

experts attribute this evolvement to an increasing oil price and a favorable regulatory

environment5 (Mohn and Osmundsen, 2008).
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Figure 4: Number of assets discovered and approved annually

The distribution of total reserves including both crude oil, gas, and other reserves,

5All exploration costs are deductible and may be offset against profits from production, and
any net losses may be carried forward. From the fiscal year 2005 onward, companies have been
able to claim an annual cash refund of the tax value of direct and indirect exploration costs before
ordinary petroleum tax and special tax, amounting to 78% of such costs.
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is highly right-skewed, meaning that most of the assets in the data set are relatively

small. This can be seen in Figure 5, also noting that a large part of the reserves with

resources less than 100 mmboe has not been approved for development while larger

fields have mostly been approved for development.
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Figure 5: Number of assets discovered and approved annually from 1969 to October 2015

2.3 Model variables and descriptive statistics

We separate the variables into two main categories; economic variables and field-

specific variables. Economic variables include the real price of Brent Crude oil and

the oil price volatility as described in the previous section. The Oil price variable
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is the nominal price of oil adjusted for inflation.6 The historical volatility measure,

Volatility, is also included. Both Oil price and Volatility are recorded at a monthly

frequency.

Field-specific variables are included in an effort to eliminate heterogeneity across

the assets. The approach is similar to that of Hurn and Wright (1994), who empha-

size that the different characteristics of the assets should be modeled as unobserved

heterogeneity inherent in the investment problem. Both numerical and categorical

variables are included. The set of numerical variables contains Oil reserves, Gas re-

serves, Reservoir pressure, Nearby approvals and Block extension. To obtain results

comparable to those of Hurn and Wright (1994), we also include Appraisal wells.

The set of categorical variables include Location and Geological age.

In measuring the size of the reserves, we use the two variables Oil reserves and

Gas reserves. These variables are the natural logarithm of the recoverable resources

in mmboe. Readers are referred to Appendix A for the mathematical derivation of

the best fitting functional form of the reserve variables.

By using Reservoir pressure we seek to capture the differences in technological

complexity. Extracting oil and gas under higher pressure often requires more ad-

vanced and robust equipment.

The variable Nearby approvals is time-varying and includes the number of ap-

provals in a nearby area within a window of three years. Developed fields in prox-

imity to discoveries are known to improve field economics as existing infrastructure

may be exploited, and thus contribute to a shorter appraisal lag.

6This adjustment has been made using the approach employed by the US Energy Information
Agency in which the price is adjusted with respect to the American Consumer Price Index.
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The Block extension variable gives the number of blocks a field extends into. This

is included in order to capture extra costs and complexities that may be induced if

a field spans into several blocks.7

There are three categories represented in the Location variable; the North Sea,

the Norwegian Sea, and the Barents Sea. Petroleum activities on the Norwegian

Continental Shelf began in the North Sea and have gradually expanded northwards.

Since 1980, there has also been activity in the Norwegian Sea and the Barents Sea.

The North Sea is still the main area for Norwegian petroleum extraction, with 64

fields producing in 2015. Additionally, there are 16 producing fields in the Norwegian

Sea, and 2 (Snohvit and Goliat) in the Barents Sea. The Norwegian Sea has large

gas reserves, and is less mature and less thoroughly explored than the North Sea.

The Barents Sea has a rougher climate than the North Sea and Norwegian Sea, has

large unexplored areas, and limited existing infrastructure. We include Location to

account for the differences between the three areas.

The variable Geological age includes the following categories: Paleogene and Neo-

gene (Category 1), Cretaceous (Category 2), Triassic and Jurassic (Category 3), and

Silurian, Devonian, Carboniferous, and Permian (Category 4). This is included in

order to capture differences in complexity for oil and gas extraction due to differences

in the rock type from the different geological ages. Approximately 60% of the assets

7Blocks may be owned by different companies, which has been shown to introduce additional
frictions in the development stage of oil and gas projects on the Norwegian Continental Shelf.
The firms owning the rights to each block must negotiate the share of the production that will
be attributed to each company when the field comes on stream. If the companies are not able to
agree, additional regulatory authorities must be involved, therefore contributing to further costs
and duration. The development of the Johan Sverdrup field is a recent example. The field consists
of multiple discoveries owned by Statoil, Maersk, Det Norske Oljeselskap and Petoro.
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fall into the categories of Triassic and Jurassic (Category 3), while Paleogene and

Neogene (Category 1) have the largest ratio of approvals to discoveries.

Table 1 provides a summary of all model variables included in our analysis. De-

scriptive statistics for the numerical variables are reported in Table 2 from which we

can observe a mean reserve estimate for oil and gas of approximately 135 mmboe and

118 mmboe, respectively. These numbers are considerably smaller than the size of

the largest reservoir, which is the result of having a data set containing many small

fields. The high standard deviation, compared to the mean, certifies this.

Table 1: Model variables summary

Variable name Variable type Description
Oil price Numerical The real time-varying oil price
Volatility Numerical The time-varying oil price volatility
Oil reserves Numerical The logarithm of the estimated oil reserves
Gas reserves Numerical The logarithm of the estimated gas reserves,

including natural gas liquids and condensates
Reservoir pressure Numerical The pressure of the reservoir
Nearby approvals Numerical The number of approvals in a nearby area within

a window of three years
Block extension Numerical The number of blocks a field extends into
Location Categorical The area in which the field is located:

North Sea, Norwegian Sea or Barents Sea
Geological age Categorical The main geological age of the rock penetrated

in the development of the field:
Paleogene and Neogene (Category 1),
Cretaceous (Category 2),
Triassic and Jurassic (Category 3),
Silurian, Devonian, Carboniferous
and Permian (Category 4)
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Table 2: Summary statistics

Variable Mean SD Min. Max.

Oil reserves 2.67 2.10 -0.24 8.20
Gas reserves 2.37 2.28 -4.99 9.14
Appraisal wells 1.47 3.50 0.00 29.00
Block extension 1.82 1.10 1.00 6.00
Reservoir pressure 350.79 161.45 30.00 911.00
Nominal oil price 33.17 31.03 2.23 138.29
Real oil price 52.99 32.12 13.68 152.90

3 Methodology

In this section, the procedures and models applied to analyze and explain the in-

vestment decision for oil companies on the NCS are presented. Duration analysis is

the main framework applied. Duration analysis was developed for investigating data

from a well-defined time origin until an end point at which a particular event occurs.

In duration regression, the dependent variable is a period of time: a duration.

We will present the theoretical framework of duration analysis in a way adapted

to our study in which the study time is the calendar time during which a firm

decides to develop an asset or not. There are several reasons why duration data

are not amenable to standard statistical procedures. Firstly, the data are generally

not symmetrically distributed. A normal distribution is thus not a fair assumption.

Secondly, survival times are frequently censored, meaning that the event of interest,

the end-point, may not be observed. Right-censored data is the most common type

of censored data. In our study, right censoring means that a firm has not invested in

the development of a field by the end of the study time in that the event of interest

has not occurred. It is the only type of censoring relevant to our study. When
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censoring is present, the basic analyses of finding standard mean and median time

to event occurrence using traditional methods fail. In these cases, the failure time is

known only to be greater than the end time, which makes the estimate of the mean

biased downward. For the median, the standard method for calculation is to order

the observations and report the middle data point. In the presence of censoring, this

ordering is impossible to obtain and therefore, duration analysis procedures must be

applied (Collett, 2015).

Duration analysis can be non-parametric, semi-parametric or parametric, de-

pending on assumptions about the survival function. We apply semi-parametric and

non-parametric procedures in our analysis.

3.1 Non-parametric analysis

In duration analysis, the initial step is to present numerical or graphical summaries

of the durations of objects. The survival function and the hazard function are of par-

ticular interest when summarizing and analyzing as they do not require any specific

assumptions about the underlying distribution of the durations. We will now define

these, and also review methods for estimating them from the duration data.

The dependent variable in duration analysis, the duration, is assumed to have a

continuous probability density function f(t). We denote the associated cumulative

distribution function as F(t). The probability that the duration time will be less

than t is given by

F (t) = Prob(T ≤ t) =

∫ t

0

f(u)du. (1)

The survival function is defined as the probability that the duration will be at least

18



 Electronic copy available at: https://ssrn.com/abstract=3120666 

t :

S(t) = 1− F (t) = Prob(T ≥ t). (2)

The Kaplan-Meier estimate is the most important and widely used estimate of

the survival function (Collett, 2015). One assumes that the event of interest occurs

independently over the sample. Then, the estimated survival function at any time

in the interval from tk to tk+1, will be the estimated probability of surviving beyond

tk. This is the same as the probability of surviving through the interval from tk to

tk+1, and all preceding intervals.

The Kaplan-Meier estimate of the survival function is specified as

Ŝ(t) =
k∏
j=1

(
nj − dj
nj

). (3)

The Kaplan-Meier estimate can be used to calculate the median of duration data.

The median is defined as the time t at which 50% of subjects are expected to survive,

that is having S(µ̃T ) = 0.5.

The hazard rate is the probability that an object will experience the event of

interest at time t conditional on not having experienced the event already. In our

case, it is the probability that a firm will invest at time t given that it has not yet

invested. The hazard rate is thus the instantaneous rate of experiencing an event for

an object surviving to time t.

To express this more formally, consider the probability that the random variable

associated with an object’s survival time T, lies between t and t + δt, conditional

on T being greater than or equal to t. The hazard function h(t) is then the limiting
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value of this probability divided by the time interval δt, as δt tends to zero. The

hazard rate can be defined as

h(t) =
f(t)

S(t)
(4)

. It may be estimated from ungrouped data by taking the ratio of the number of

events at a given time to the number of objects at risk at that time. If there are dj

events occurring at the j th event time, the hazard function on the interval from tj

to tj+1 can be estimated by

ĥ(t) =
dj
njτj

. (5)

The log-rank test is useful for comparing the survival experience of different

groups in categorical variables. The null hypothesis is that there is no difference in

the survival rate between them. Consider r groups, and assume that in all groups

combined, there are k distinct failure times. At failure time tj one assumes that

there are nj subjects at risk, of which dj fail and nj − dj survive. The log-rank test

is then computed by constructing, at each of the k distinct failure times, an r x 2

contingency table and then combining the results from these k tables. The expected

number of failures in group i at time tj is Eij = nijdj/nj. The chi-squared test

statistic with r − 1 degrees of freedom is calculated as

uTV −1u (6)

using the row vector

20



 Electronic copy available at: https://ssrn.com/abstract=3120666 

uT =
k∑
j=1

(d1j − E1j, ..., drj − Erj) (7)

and the variance of the log-rank statistic V , where the individual elements are cal-

culated as the following:

Vil =
k∑
j=1

nijdj(nj − dj)
nj(nj − 1)

. (8)

In (8), i = 1, . . . , r; l = 1, . . . , r; and δi · l = 1 if i = l and 0 otherwise.

3.2 Semi-parametric analysis: Cox hazard model

The fairly simple non-parametric procedures above are not able to analyze the effect

of different explanatory variables on the duration. For this purpose, we will use the

Cox (1992) regression model with several covariates. This model has the following

form

h(t, x, β) = h0(t)r(x, β), (9)

in which the hazard is the product of two functions. Such models are often referred

to as proportional hazard models because they are multiplicatively related, i.e. their

ratio is constant over the survival time. In (9), the function h0(t) characterizes how

the hazard function changes as a function of the duration time, and is often called the

baseline hazard. The other function, r(x, β) characterizes how the hazard function

changes as a function of the subject covariates.
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Duration models that have a fully parametric regression structure but leave their

dependence on time (the baseline hazard) unspecified are called semi-parametric

regression models. The Cox proportional hazard model is the most widely used

semi-parametric model. By using this model, there is no need to assume a particular

probability distribution for the survival times. As a result, the hazard function is not

restricted to a specific functional form and the model has flexibility and widespread

applicability. The model may be extended to include time-dependent variables as

well as variables that are constant over the time period. Time-dependent variables

are simply defined as variables whose value change over time. There are two types of

time-dependent variables; internal variables and external variables. While internal

variables relate to a particular subject in the study, and can therefore only be mea-

sured before the asset experiences an event, external variables may still be recorded

after an event and may be totally independent of any particular asset. In our study,

we only encounter external time-varying covariates. In the case where time-varying

covariates are encountered, the hazard ratio also becomes a function of time. The log

hazard ratio is no longer constant and we, therefore, no longer have a proportional

hazard model (Collett, 2015).

Cox (1992) was the first to propose a parametrization in (9) of r(x, β) = exβ so

that the cox proportional hazard model is defined as

h(t, x, β) = h0(t)e
xβ, (10)

where x is a vector of covariates and β is a vector of parameters. This parametrization

may be used because the relative hazard cannot be negative. Furthermore, it is easy
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to use for the cases where we are only interested in how the covariates shift the

hazard function. Then the estimation of h0 is no longer necessary and with cox, a

partial likelihood estimator for β may be obtained that does not require estimating

h0.

The model may be generalized to the situation in which some of the explanatory

variables are time-varying. We let xji(t) denote the value of the jth explanatory

variable at time t, in the ith asset. The adjusted model is specified as follows:

hi(t) = exp

{
p∑
j=1

βjxji(t)

}
ho(t), (11)

where the values of the variables xji(t) depend on the time t, therefore the relative

hazard hi(t)h0(t) is also time-dependent. The interpretation of the β-parameters in

this model, considering the ratio of the hazard functions at time t for two assets, say

the rth and the sth asset, is given by

hr(t)

hs(t)
= exp

[
β1
{
xr1(t)− xs1(t) + ...+ βp{xrp(t)− xsp(t)

}]
. (12)

The coefficient βj, j = 1, 2, ..., p, can be interpreted as the log hazard ratio for two

assets whose value of the jth explanatory variable at time t differs by one unit, with

the assets having the same values as all the other variables at the time (Collett,

2015).

23



 Electronic copy available at: https://ssrn.com/abstract=3120666 

4 Results

Our results are presented and discussed in this section. Duration analysis is the

main framework applied and is used to find determinants of the appraisal lag. This

enables us to incorporate variations over time in the explanatory variables.

4.1 Nonparametric duration analysis

Figure 6 displays the estimated Kaplan-Meier curve. The graph shows the estimated

survival rate at each time t, which can be interpreted as the proportion of discovered

fields that is unapproved from discovery (time 0) until time t. Since none of the dis-

covered fields have been approved immediately after the discovery, the curve begins

at 1.00. The survival rate decreases as a stepwise function.

Looking at Figure 6 we can observe that at time t = 240 months, approximately

50% of the assets have been approved. Therefore, this point is the median of the

data set and its exact value is 242 months. The estimated mean is 288 months, but

since the largest observed duration is censored, the mean is underestimated.

To compare the survival time of the different categories in Location and Geological

age we calculate the Kaplan-Meier estimate for each variable grouping by these

categories. Looking at Figure 7a, we observe that North Sea assets generally have

been approved faster than both the Norwegian Sea and the Barents Sea assets.

The Barents Sea has clearly had the slowest development. The likely reasons for

this observation are the high costs of developing the required infrastructure, as well

as the rough climate and the political aspects involved. From Figure 7b we can
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Figure 6: Kaplan-Meier estimate

observe that Silurian, Devonian, Carboniferous, and Permian (SDCP), the oldest

of the four geological age categories, have a higher survival rate than the other

categories meaning that oil companies wait longer before deciding to develop the

fields dominated by this particular rock.

(a) Assets split on geographic area (b) Assets split on geologic time age

Figure 7: Kaplan-Meier estimates for categorical variables
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The smoothed hazard estimate is displayed in Figure 8.8 Hess et al. (1999) found

that the kernel-based hazard function estimators usually perform poorly if there are

fewer than 10 subjects at risk. We limit the graphing range to t = 350 months as

this seems to be the most appropriate cut off for our data set. The hazard rate is

approximately 0.26% at t = 50 months and increases to 0.29% at t = 100 months.

After this point of time, the hazard rate decreases towards 0.125% at t = 350, which

is the end point of time. From these results, we conclude that the decision to develop

an asset or not is mostly made within the first 200 months (17 years) after discovery.

Figure 8: Hazard rate of the Norwegian continental shelf data

8Gaussian kernel smoothing with a width of 45 months is used to obtain these results, which
requires averaging values over a moving data window. At the endpoints of the plotting range, these
windows contain insufficient data for accurate estimation, and so these results are said to contain
boundary bias and are therefore not plotted in the graph.

26



 Electronic copy available at: https://ssrn.com/abstract=3120666 

4.2 Cox proportional hazard regression

In order to build a complete Cox proportional hazard regression model, it is common

practice to start by performing univariate regressions. This involves regressing the

duration of each of the suggested continuous explanatory variables separately, in

order to see whether they are significant. The results of the univariate analyses are

displayed in the first column of Table 3.

Both oil and gas resource variables are significant, but it is conspicuous that

neither the oil price nor the volatility appear to be so. Since economic theory suggests

the oil price should play an essential role in these kinds of investment decisions,

and also because several related empirical studies conclude this is the case, we do,

however, keep this variable for further testing. Looking at the investment decision

from the real options point of view, the price uncertainty could also play a role, as an

increase in volatility would increase the value of the investment option. The initial

test fails to confirm this.

Estimated Cox hazard rates models, both univariate and multivariate, are pre-

sented in Table 3. Table 3 displays the hazard ratios for the variables included.

When larger than one, the hazard ratio indicates a positive effect of the covariate on

the probability of a field being developed.

Overall, the model estimations indicate a significant positive effect of oil price

on the hazard rate. As an example, an interpretation of the hazard rate in Model

5 yields that for a $1 increase in the price of oil, there is a 0.67% increase in the

probability of investing from one month to the next. Assuming a linear relationship

between the price of oil and the hazard rate, a $10 increase in the price of oil makes
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Table 3: Proportional Cox hazard estimates of appraisal duration, in which ** indicates
1% significance and * indicates 5% significance. The first column presents estimates from
several univariate specifications.

Univariate Multivariate specification
Numerical variables Model 1 Model 2 Model 3 Model 4 Model 5
Oil price 1.002 1.025* 1.006 1.006* 1.006 1.007**
Volatility 0.727 1.302 1.305

Oil reserves 1.426** 1.423** 1.314** 1.370** 1.364** 1.370**
Gas reserves 1.232** 1.224** 1.177** 1.258** 1.261** 1.260**
Appraisal wells 1.073** 0.952 0.954 0.952
Block extension 0.876 0.814 0.821 0.816
Reservior pressure 0.999* 0.998** 0.998** 0.998**
Nearby approvals 1.096 1.050

Categorical variables
Location 1 - - - - -

2 0.725 0.805 0.823 0.811 0.813
3 0.197 0.341 0.326 0.336 0.323

Geological age 1 - - - - -
2 0.612 0.454* 0.402* 0.396* 0.406
3 0.847 0.621 0.498* 0.493* 0.498
4 0.304** 0.299** 0.204** 0.205** 0.204**

it 6.7% more likely the decision to develop a field in a given month will be made.

Model 1 suggests a particularly high impact from the oil price on the investment

decision as it indicates a 24.8% probability increase from one month to the next

based on a $10 oil price increase during the same month. However, Model 1 is a

particularly simple model, in which it may be reasonable to believe that much of the

heterogeneity between the assets is left unaccounted for. This is also reflected by

a likelihood ratio test supporting the inclusion of the additional variables in Model

2. Considering only the models that account for differences in both location and

geological age, the range of oil price impact varies considerably less; from 5.6% to
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6.7%.9

None of the models are able to confirm the significance of oil price volatility. In

addition, bearing the real options theory in mind, the hazard ratios corresponding

to the volatility are not in accordance with the predictions from this theory. This is

interesting in the light of the discussion by Bar-Ilan and Strange (1996), who explain

that an increase in volatility may increase the probability of investing. It is also

particularly interesting that industry experts (Rystad Energy, 2015) state that, to

their knowledge, oil price volatility is typically not considered by oil companies when

evaluating an investment. This contradicts the way volatility is emphasized in the

traditional real options way of thinking. One possible explanation is the particularly

long horizon for offshore oil and gas field development and production. Current price

uncertainty may not be essential for a development decision, as long as the oil price

is mean-reverting over a longer horizon.10

The sizes of crude oil and gas reserves have the most stable, significant positive

effects on the hazard rates across all models. It is reasonable that larger assets are

more likely to justify large start-up investment, which is required to develop a field.

Both oil and gas reserves impact the hazard rate positively. The estimate of the oil

reserves matters more in the decision to invest than the estimate of the gas reserves.

Industry experts attribute this to the higher historical profitability of oil extraction

compared to gas extraction on the Norwegian Continental Shelf (Rystad Energy,

2015). Interpretation of the hazard ratios corresponding to the reserves variables

9Also including Model 2 and Model 5 in which the oil price is insignificant at conventional levels.
10Bessembinder et al. (1995) and Smith and McCardle (1999) find the oil price to be mean-

reverting over longer periods of time.
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is slightly more complicated, due to the logarithm transformation. Increasing the

log of crude oil resources by one increases the hazard rate by a proportion between

31.3% and 42.3% according to the different models. Thus, if the crude oil resources

estimate increases by e (≈ 2.72) times, for instance from 100 million barrels to 272

million barrels, the effect on the investment decision would be as suggested by this

percentage range. Therefore, the size of the oil and gas reserves is important when

considering whether to develop a field. However, caution should be exercised to

rely on the magnitude of the model estimates as a resource estimate at the time of

discovery is not available and hence Rystad Energy’s current resource estimates have

been used. Time-varying resource estimates could provide more reliable results, if

available, as also pointed out by Hurn and Wright (1994).

The covariates Appraisal wells and Block extension are not significant at conven-

tional levels in any of the models, but contribute to the overall fit of the model.11

Appraisal wells provides weak evidence that an increase in the number of appraisal

wells drilled is associated with a longer approval lag. This may be caused by the time

elapsed during drilling in addition to the fact that larger and more complex fields

require more appraisal wells in order to determine their resource potential. If so, one

may, however, debate whether this variable actually adds any new information or if

it is a result of the time required to obtain sufficient field data. Tests of correlation

between Appraisal wells and the size of resources indicate a positive relation. Hence,

some of the variation in this variable is explained by the need to drill more appraisal

wells when fields are large. In interpreting the Block extension variable, we see weak

11A likelihood ratio test does not reject the null hypothesis that the smaller specification fits the
data better, hence we keep both variables in the model.
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evidence that an increase in the number of blocks spanned by a field is associated

with increased approval duration. This may be due to the reasons discussed in sec-

tion 2.3; increasing bureaucracy and disputes when several operators must come to

an agreement concerning several blocks.

The reservoir pressure is significant both in the univariate analysis and in Model

3-5 in which it is included. As argued in section 2.3, the pressure is important

when deciding which equipment is needed for extracting resources. Advanced high-

pressure equipment may be more expensive or even unavailable, and as a result, one

may hesitate for a longer time before investing or decide not to invest at all. For

instance, equipment sufficiently robust for extracting resources from high pressure,

high-temperature reservoirs was not invented until recently (Rystad Energy, 2015).

As discussed in section 2.2, discoveries made in areas near existing fields may

benefit from better field economics due to the possibility of utilizing existing infras-

tructure. We have included Nearby approvals to measure the effect this may have

on the appraisal lag. However, this variable does not have a significant impact on

investment decisions.

For the two categorical variables, Location and Geological age, the interpretation

of the hazard rate differs somewhat from the continuous variables reviewed so far.

In both cases, the first category is used as a reference. The hazard rate estimate for

the other categories is the probability of event occurrence, relative to the reference

category.12 Hence, the results indicate a longer appraisal duration for assets located

in the Norwegian Sea and the Barents Sea, compared to assets in the North Sea.

12As a result, it does not make sense to interpret the magnitude of this ratio on its own.
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Although Location loses its significance at conventional levels when included with

the other variables, this relation is consistent across all models. Hence, there is some

evidence for what was argued in section 2.3. Also, despite the weak significance, it

seems Location still contributes to the overall fit of considered models13 and may,

therefore, be helpful when accounting for heterogeneity across assets. Considering

Geological age, there are consistent results across all models indicating that assets in

the Silurian, Devonian, Carboniferous, and Permian (Category 4) category are more

likely to have a longer duration compared to the other categories. The difference

between Triassic and Jurassic (Category 3) and Cretaceous (Category 2) is small

but they both indicate a higher probability of investment compared to Paleogene

and Neogene (Category 1).

5 Conclusion

This paper studies how economic and field-specific variables influence the decision

to develop a field made by oil companies operating on the Norwegian Continental

Shelf. To investigate how the explanatory variables affect the length of the appraisal

lag; the time from discovery to approval, we apply a duration analysis. This method

is favourable because it enables us to include unapproved fields in our analysis. Eco-

nomic variables are incorporated as time-varying to capture the effect of variations

in the oil price and volatility over the appraisal lag. We account for heterogeneity

across the fields by including the field-specific variables, namely the size of the oil

reserves, the size of the gas reserves, and the geographic and geological variables.

13A likelihood ratio test supports the inclusion of the variable.
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We find that the size of the oil and gas resources are the most important ex-

planatory factors of the investment activity on the Norwegian Continental Shelf. Oil

companies are more likely to invest earlier when the estimated reserves size of a dis-

covery is larger. Furthermore, the results indicate a positive impact of the oil price

on the investment decision. However, none of our models confirm any significance of

volatility on the appraisal lag.

This paper supports the results of previous studies suggesting that oil price and

the size of reserves are crucial determinants in the investment decision. Our findings

concerning volatility agree with those of Hurn and Wright (1994), thereby contra-

dicting the findings of Favero et al. (1994). We believe these results are interesting

in light of what Bar-Ilan and Strange (1996) argue; there are scenarios in which

increasing volatility may, in fact, increase investment probability. After discussions

with industry experts, we consider it probable that oil price uncertainty itself is not

an important factor for oil companies when making offshore investment decisions.
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Appendix: functional form of the resources vari-

ables

In survival analysis, the relation between the predictor and the log hazard does not

have to be linear. We particularly investigate the crude oil and gas reserves variables

as their spans of values are particularly large and the economic interpretation suggests

a nonlinear relationship. For instance, an increase in reserve estimates of 100 million

barrels may be significant for a field believed to contain 50 million barrels, but have

very little significance for a field with an estimated size larger than 1 billion barrels.

The simplest method for investigating the linear effect is to replace the covariate

with design variables formed from its quartiles. The estimated coefficients for the

design variables are plotted with the midpoints of the intervals defined by the cut

points. At the midpoint of the first interval, a point is plotted at zero. If the

correct scale is linear in the log hazard, the polygon connecting the points should be

approximately a straight line. The results are displayed in Figure 9a and Figure 9b.
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The effect of the resources on the log hazard appears to be approximately logarith-
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mic in Figure 9a. This is confirmed by transforming the variable into its logarithmic

equivalent, shown in Figure 9b, as the points form an approximately straight line.

Applying the method of fractional polynomials further confirms the logarithmic

transformation proposed in the last section. Stata compares a range of different

specifications for the variable examined, in this case Oil reserves. Since economic

intuition suggests that the function should be monotonic, we consider only the frac-

tional polynomials of the first degree. The results are displayed in table 4. The best

fitting model is the approach where Oil reserves are included using a log transforma-

tion (power of 0), which is significant for all relevant significance levels. The same

transformation results apply for the variable Gas reserves. The results are similar to

what we find using the graphical model.

Table 4: Results from comparing different first degree transformation of the Oil reserves
variable. The best fitting transformation is obtained by a log transformation. P-value is
the significance of the deviance difference comparing the reported model with m = 1 model.

Oil reserves DF Deviance Dev. dif. p-value Powers
Not in model 0 999.92 28.28 0.00 0
Linear 1 988.18 16.54 0.00 1
m = 1 2 971.65 - - 0
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