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Abstract. The article presents issues concerning construction, adjustment and implementation of mass spectrometry mathematical model based  
on Gaussians and Mixture Models and the mean spectrum. This task is essential to the analysis and it needs specification of many parameters of the model. 
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KONSTRUKCJA I WERYFIKACJA MATEMATYCZNEGO MODELU DANYCH  
WIDM MASOWYCH 

Streszczenie. Artykuł przedstawia kwestie związane z konstrukcją, dopasowaniem i implementacją modelu matematycznego widm masowych opartego 
o rozkłady normalne i mieszaniny rozkładów oraz o widmo średnie. To zadanie jest kluczowe dla analizy, wymaga też określenia wielu parametrów 
modelu. 

Słowa kluczowe: spektrometria masowa Maldi-Tof, rozkłady Gaussa, mieszaniny rozkładów Gaussa, klasyfikacja SVM-RFE 
Introduction 

Mass spectrometry is popular, widely used technique of 
determination of complex data composition. It is essential 
technique used in proteomic, applied to identification of proteins 
and their dependencies in biological tissues [9, 10]. Proteomic 
approaches to interpretation of biological phenomenon on the 
level of proteins constitutes opportunities for development and 
advancement of medical diagnosis in many diseases area. In 
particular the proteomic analysis offers great promise to 
understanding the process of tumor development in human 
organism and its response to the therapy. Proteomics gives hope to 
the oncology development through better understanding, 
improvement diagnosis and development of new more efficient 
drugs. 

The most important proteomic branches are: identification of 
proteins in the analysed sample, proteins features characteristic, 
specification of the proteins number in the sample and comparison 
of the proteins features. 

Proteomic methods [22] must be able to deal with huge 
amount of data and information. High-bandwidth mass 
spectrometry, identification of protein complexes, studies of 
protein mixtures and evaluation of proteins expression requires 
advanced techniques. The development of proteomic techniques 
and tools gives opportunities of detection and analysis of proteins 
primarily in terms of medical diagnosis and new methods of 
treatments. Also statistical analysis, especially classification plays 
an important role in the process of the analysis of large data sets. 
There are still ongoing search for efficient methods of 
classification fulfilling the high requirements for high sensitivity 
and specificity. Moreover, the identification of proteins is a hard 
task which needs to consider many factors [34] (not always unique 
amino acid sequences, possible several different coding genes, 
existence of polymorphism genes resulting in different proteins 
variants, posttranslational modifications, etc). Today proteomics 
examines the complex protein interactions and modifications in 
terms of simultaneous analysis of thousands of data. Proteins 
identification is usually carried out by comparing the measured 
properties of the protein to those known and documented, 
available in biological (proteomic) data bases. The mass of protein 
derived in the mass spectrometric studies is one of the most 
commonly used properties. It enables low or non-invasive study of 
protein profiles in blood, plasma or urine. 

Mass spectrometry is an analytical technique that allows 
accurate measurement of mass to charge ratio of the proteins. Is 
used to identify chemical compounds and to determine their 
structure and elemental composition. In proteomics, this method is 
used primarily to determine the composition of complex mixtures, 
in particular the identification of proteins. The spectrometer work 
consists of three stages: ionization of molecules, the selection of 
charged particles and their detection.  

One of the most popular mass spectrometry used  
in the proteomic research is Maldi-Tof. It is based on using of 
matrix absorbing the laser beam. Sputtered and spared in the 
electric field ions hit the detector which determines the mass  
of ions on the basic of their velocities and time of flight through 
the spectrometer [26]. 

Result of spectrometric studies is presented in the form of the 
mass spectrum. The spectrum presents the dependence of mass-to-
charge ratio (M/Z) and intensity. Intensity determines the number 
of ions that hit the detector in a small, fixed time interval. This 
interval is determined is the time resolution of the instrument and 
usually varies in the range 1 - 4 nanoseconds. Examples of mass 
spectra are presented in Fig 1. 

 

Fig. 1.  Examples of mass spectra 

1. Models of mass spectra analysis 

A model is mathematical data representation used to present  
a process or phenomenon in a simplified manner. This way  
of the process description allows better understanding  
of its characteristics. For example, the model can be created 
through the construction of the classifier using a specific learning 
set and data set. 

In the case of high-bandwidth mass spectrometry data 
important issue is to determine the purpose and tasks of the 
analysis. The next step is to select appropriate methods and tools 
for the data exploration. The analysis is performed to answer 
questions about patterns and the most important features in the test 
dataset. The phases of this analysis are presented in Fig 2.  

The analysis of data groups may be based on different kind  
of method such as clusterization (unsupervised learning method), 
classification and regression. Proteomic, data are often analysed 
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 with support vector machines (SVM [4, 35, 36]). Highly 
multidimensional data need also dimension reduction techniques 
like PCA (Principal Component Analysis) [35], PLS (Partial Least 
Squares) [38], ICA (Independent Component Analysis [11, 19] or 
MDS (multidimensional scaling) [34]. They enable to choose the 
most significant features from the classifier point of view. 
However, most of dimension reduction methods have limitations, 
like independence of the analyzed variables, or necessity of the 
normal distribution. 
 

Research design

Preliminary data processing
(data transformation, missing values handling)

Visual data representation
(histogram, point charts)

Classes dicovery
Classes comparison 

(discriminating features 
discovery)

Classes discriminant
(classifier construction)

Evaluation
(statistical hypothesis testing, cross-validation)

Results interpretation
(new hypothesis, new knowledge)

 
Fig. 2.  Typical for proteomics construction and the data model analysis scheme 

Before mass spectrometry classification analysis data need to 
be pre-processed and prepared. It is of great importance for the 
process of the further analysis and quality of obtained results.  

Pre-processing steps may vary depending on the specific type 
of data and proposed exploration method. In the case of proteomic 
data coming from mass spectrometry studies noise correction, 
baseline correction, normalisation, spectra alignment are usually 
required [26, 27]. Sometimes also missing data are handled. Noise 
removal and baseline correction is usually necessary due to matrix 
noise, other sample contamination and instability. Amount of 
noise in the spectrum is a determinant of the spectrum quality. 
Noise and baseline corrections can be performed with multiple 
shifted windows with defined width, discrete-wavelet 
transformation (especially undecimated discrete-wavelet 
transformation, UDWT [16, 20, 21]), the least-squares digital 
polynomial filter (Savitzky and Golay filters) or nonparametric 
smoothing (locally-weighted linear regression with specified 
window size and type of kernel). There are also methods 
considering peaks shape and localization, based on the rule the 
higher the weight, the wider and lower peaks. The important issue 
is also resolution of the device. Resolution is determined the 
percentage of the weight. While the weight increases, the device 
resolution worsens. That is why spectra of low molecular mass 
have better resolution and their peaks are more separable. The 
shape of the peaks, however, varies along with the spectrum.  
The higher the M / Z is, the lower and wider peaks may become. 
The most popular method of normalization consists in scaling all 
spectra to total ion current (TIC) value or to constant noise. 
Sometimes also trimming, binning and the mean spectrum 
calculation is performed. 

The primary source of information about proteins, their 
sequences and the genes encoding them constitutes biological 
databases. Data contained in such databases come from research 
experiments and their interpretation, publications and other 
databases. Research centres which undertake the construction and 
maintenance of biological databases often cooperate and exchange 
data. The problem of biological databases are huge growth of 

information and the associated need of standardization and 
structuring of stored information. Biological data, in particular 
protein data, are difficult to manage because of the continuous 
flow of information and lack of uniform standards and methods of 
naming classification. Continuous exchange of data contained in 
different databases enable frequent updates. On the other hand, 
there is a need of continuous control of data quality and 
consistency. There are conducted works on  automation of this 
process and developed of new comparison and integration 
methods. The best-known biological databases are: UniProt, 
NBCI, KEGG, EXPASY, HPRD, EPO-KB. 

However, before the classification and proteins searching one 
need to find peaks of the spectrum. There are different models 
used to perform this task. The most popular one is based on local 
maxima and minima chosen from the mass spectrum [26, 33, 39]. 
The real peaks can be chosen only among local maxima which are 
higher than a the signal to noise ratio (S/N) [15, 23, 24]. It enables 
detection of peaks with the highest values of intensity [1, 37]. 
Other methods try to distinguish between noise and the real peaks 
considering the shape of peaks [17, 18].  

A model proposed by K. Coombes, K. Baggerly, J. Morris et 
al [10, 26] defines distribution of the mass spectrum of the signal 
in accordance with eq. 1. 
 (t) e + (t) S  N + (t) B = (t) f ⋅  (1) 
where f(t) is the observed signal, B(t) – Baseline, 
N – normalization ratio, e(t) – noise. Correct signal is defined as 
S(t). It can be modeled as a sum of independent, sometimes 
overlapped peaks, each of which corresponds to a single protein. 
Peak shapes can be estimated empirically on the based on physical 
simulation of the ToF analyzer process. The noise e(t)  is defined 
as white noise [14]. Baggerly et al. [2] considering the inclusion of 
the additional noise model time-dependent factor. The method 
assumes using of the mean spectrum, undecimated discrete 
wavelet transformation (UDWT) denoising and local minima and 
maxima analysis. 

There is also a group of methods modeling spectra with a set 
of member functions. Decomposition may be based on the wavelet 
transformations [13, 30] or composition of Levy processes [8].  

Mixture models are a good way of large data sets modeling. 
They are usually used to model natural phenomena and biological 
processes. They can be also applied in image processing and 
clustering. Mixture models are often complex, they consist of 
many individual probability distributions. Mixture models allow 
interpret the whole population as a composite of an adequate 
number of sub-populations, which enable to perform detailed 
analysis and obtain better estimation. In practice, the most 
commonly used mixture models are based on Gaussian 
distributions. Such mixtures are known as Gaussian Mixture 
Models (GMM).  

The main task associated with mixture models is to determine 
their parameters. The number of unknown parameters is 3k-1, 
where k is the number of Gaussian mixture’s components. 
For each mixture component one need to estimate both its 
Gaussian parameters and its weight. The parameters estimation 
task may occur to be complex. The more components are included 
in the mixture, the harder and more time consuming is the 
estimation task.  

The task of mixture models parameters solving can be treated 
as a missing data problem. It can be formulated as a task of 
determining the membership of a group of data points to one of 
the distributions in the mixture. This membership is unknown and 
must be estimated. Parameters of the model should therefore be 
chosen so that the data points were represented by their 
membership to the individual components of the mixture. 

2. Expectation-Maximization Algorithm 

The parameters of the mixture model need be estimated with a 
method, which is able to handle the missing values. In case of 
complex problems where the number of parameters to estimate is 
large, typical estimation methods, like the maximum likelihood, 
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are not appropriate to solve this tasks. An additional difficulty is 
the existence of many local likelihood function extremes. 
Therefore, likelihood maximisation of the data fit to the Gaussian 
mixture model can be performed with Expectation-Maximization 
algorithm (EM) [12]. The EM method assumes the existence of 
hidden variables. In the case of mixture models the hidden 
variables represent variables defining affiliation of the each 
observation to one of the Gaussian components. 

EM algorithm is an iterative method, consisting of a repeated 
measures (E and M). Diagram of its operation is shown in Figure 
3. E and M steps are executed in a loop until the accuracy is 
reached. In each subsequent step new parameters values are 
calculated. If the number of components is known, the initiation 
step of the algorithm is to determine the initial conditions.  

The use of GMM for spectra modeling is based on the 
assumption that one peak is represented by a single Gaussian 
distribution. Each Gaussian defines and models one component of 
the spectrum. To calculate the model parameters one need to use a 
modified version of the algorithm Expectation-Maximization. This 
version is adjusted to the nature of spectrometry data. 

Application of the EM algorithm requires adjustment of input 
data, because the standard version of EM requires a one-
dimensional input vector. For the purposes of spectrometric data a 
weighted version of the algorithm was implemented. It considers 
the intensity of the spectrum characterizing the repetition number 
of the corresponding M / Z values. 

 

Fig. 3.  The flow diagram of the EM algorithm 

3. Mass spectra modeling using Gaussians 
and GMM 

The protein mass spectra decomposition methodology might 
be based on Gaussian Mixture Models. This way of mass spectra 
processing is possible and gives good results, which has been 
confirmed by the results of the analysis of real data (presented 
later in this paper). 

This mass spectral analysis method is based on peaks 
modelling with Gaussian distributions. Such modelling involves 
the appropriate choice of distributions’ parameters. It enable to 
represent peak shapes and to model the spectra in the easy way. 

Using of Gaussian distributions to model peaks allows to 
consider measurement errors which also can be modelled using 
Gaussian distributions. In most of the known methods these errors 
must be corrected by the difficult process of alignment of the 
peaks in different spectra collections. Gaussian distributions 
modelling does not need the aligning process, because when 
probability distributions are used, measurement ambiguities are 
allowed for a single spectrum. 

A single Gaussian distributions may be applied, however, only 
in the case of spectra with a perfectly separable peaks. In practice, 
the spectra analysis is done using mixtures of distributions instead 
of single distributions.  

Moreover, the possibility of modelling mass spectra using 
mixtures justifies the idea of spectra modelling with single 
Gaussian distributions. GMM spectra modelling is based on the 

assumption that the individual peaks are modelled by Gaussian 
distributions. However, the use of the mixture instead of single 
Gaussians considers the additional interaction between closely 
located peaks. Mass spectra reflect the number of processes 
occurring in the human body. These processes are often correlated 
and it has its reflection in a spectrum and in the lack ofseparability  
between the individual peaks. This fact should be upheld, as it 
brings information together. Application of mixtures enables 
considering the dependences between peaks and modelling of 
overlapped measurement errors present in adjacent regions of the 
spectrum. Separate peak identification could lead to incorrect 
variance estimation of  individual Gaussians, since it is impossible 
to make their total separation. Simultaneous peak modelling can 
solve this problem. The measurement inaccuracy correction 
conducted in this manner allows to increase the quality of the 
assessment model. Solving the parameters of the mixture, 
however, needs to define many properties, such as the number of 
model components, the initial parameters values, the convergence 
criterion, calculations accuracy or the use of the mean spectrum. 

4. Problems of the model implementation 

Expectation-Maximization algorithm is efficient method of 
GMM estimation. However, to obtain repeatable, reliable results 
one needs to appropriately chose all parameters, such as the model 
parameters, its correctness, number of the model parameters, 
initial values, stop criterions, calculation accuracy and quality 
assurance. 

Parameters of the pre-processing can be adjusted to the 
specific data before the main procedure of analysis. The order of 
these operations is fixed and includes: averaging technical 
repetition, outliers detection, baseline correction, normalization, 
interpolation, calculation of the mean spectrum. This order is a 
standard which has been developed over the last few years 
of research in this field. The most important parameters of the pre-
processing are: the window size of the baseline correction and 
using (or not) the mean spectrum. 

The important element of the analysis is appropriate choice 
of the mixture options, in particular the number of components. 
There is a possibility to use different methods of number 
of components estimating such as the BIC criterion, the basic 
functions of peak detection, statistical methods determining the 
density distribution of the parameters.  

What is more, the characteristic of the EM algorithm is of 
great importance for the analysis. The level of the estimation task 
depends on the number of components and the sample size. 

The EM algorithm generates some specific types of errors. 
The most frequent one is merging of distributions. This 
phenomenon occurs when at least two distributions with similar 
means value occurs. The merging probability is greater, if also 
standard deviations are similar. When the number of components 
is fixed, this join results in generation of additional distributions, 
which usually have small weight. Another type of error is 
generation of distributions with large standard deviation and low 
weight. In practice it results in long, flat distributions. Sometimes 
additional distributions with small standard deviation are also 
formed.  

Another important feature of the EM algorithm is that the 
better and quicker adjustment are  usually obtained for the 
components with the larger weights. This is a desirable feature, 
when the goal of the analysis is to find main elements of the 
modelled process. But it can be problematic in the case of high 
requirements concerning parameters fitting. 

EM algorithm is an iterative, non-linear algorithm. 
Its convergence is fast only in the initial phase of operation 
(Figure 4). After a dozen of iterations the speed of approach 
significantly decreases and the results of successive iterations 
differ very little. This feature of the algorithm might longer the 
duration of the whole method, especially in the case of a high 
accuracy specified. The algorithm has also high computational 
complexity, especially the M step. 
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Despite the relatively slow convergence, premature 

interruption of the algorithm can cause errors. The most common 
problem is to find a local maximum. This situation illustrates the 
Figure 4. The method cannot find the parameters fulfilling the 
criterion of the maximum likelihood method and it remains at the 
point where the estimation satisfies the conditions of insufficient 
local maximum. 

 

Fig. 4.  The example of convergence of the EM algorithm   

The local maximum problem is usually caused by improper 
initial values of the algorithm. To improve the method results the 
multiple repetitions technique can be used. It involves multiple 
runs of the algorithm with the initial values changed. This solution 
enables to choose the estimation with the maximum value of the 
likelihood function. This method gives good results and it 
effectively improves the estimation level. However, it causes 
extending of the duration time and higher calculation complexity. 

The problem of the local maximum might be improved with 
careful selection of the input parameters.  

The most obvious and quickest way to obtain initial 
parameters is the random selection. However, such a choice can be 
made in several ways. One is the random distribution of data into 
specified number of elements (this number is usually equal to the 
number of mixture components) [25]. The is also possibility to use 
one of the clustering algorithms, such as k-means or hierarchical 
clustering. However, using this methods might be costly, 
especially when it has to cover a large group of data. That is why 
there solutions which are based on a randomly selected samples. 
An alternative method of the input parameters determination is 
generation based on the primary peak detection method based on 
local extremes. Obtained results, with Gaussian arousals added, 
allows quick setting of the input parameters localized around the 
relevant procedures results. 

The task of mixture’s parameters estimation requires known 
number of components. Obtaining this number of components is 
important and hard task, especially in case of complicated 
mixtures with overlapped peaks. 

One of the most efficient methods of the components number 
are information criteria.  

Figure 5 shows a comparison of selected criteria for estimation 
of the components number of an example model. All criteria are 
based on the value of the likelihood function. They are: BIC 
(Bayesian Information Criterion) [32], AIC (Akaike’s Information 
Criterion) [1], ICOMP (Information Complexity Criterion) [5, 6], 
NEC (Normalized Entropy Ctriterion) [7], AWE (Approximate 
Weight of Evidence) [3], AMIR and MIR (Minimum Information 
Ratio) [37].  

The most stable of the analyzed criteria occurred criteria: BIC, 
AIC, AWE and NEC. The results presented on the graph are very 
similar, because the important factor in their formula is the value 
of likelihood function. It makes those criteria to be monotonic. 
Too small values of components result in significantly increase 
criteria values. The point there the graph is stabilizing should be 
treated as the optimal value. Using of the likelihood function 
makes the criteria value continuously growing, it is slight increase. 
Implementation of AWE and NEC criteria enforce maximization 

of the AWE criterion and minimization of the NEC criterion. 
AMIR and ICOMP criteria do not show so clear upward trend 
with an increase of the components number.  

The last important issue is identify the type of convergence 
criterion and its accuracy [29]. The most commonly used criterion 
is are based on the maximum likelihood method. There are, 
however, other criteria like the difference between two successive 
values of likelihood function or different distance metrics between 
two successive values of the likelihood function or between 
successive estimates of parameters. According our simulations all 
tested criteria give similar results of parameters values. However, 
some of them run faster and require a smaller number of iterations 
[30]. The best results were obtained for the chi2 distance between 
the two constituent values of the likelihood function. Chi2 
distance calculated for constituent values of parameters also gave 
good results in a relatively small number of steps compared. The 
worst results gave the distance between successive values of the 
parameters based on the sums of gradients between successive 
values of the parameters. 

 

Fig. 5.  Comparison of criterions of components number estimation  

According our simulations all tested criteria give similar 
results of parameters values. However, some of them run faster 
and require a smaller number of iterations [30]. The best results 
were obtained for the chi2 distance between the two constituent 
values of the likelihood function. Chi2 distance calculated for 
constituent values of parameters also gave good results in a 
relatively small number of steps compared. The worst results gave 
the distance between successive values of the parameters based on 
the sums of gradients between successive values of the 
parameters. 

The important aspect is also determination of calculation 
accuracy. Too low accuracy can cause the local maximum 
problem. Too high value will lead to an excessive increase of the 
computation time length. 
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Besides the mathematical analysis, the significant aim is 
identification of proteins or peptides present in the sample. 
Implementation of classification enables initial determination 
of predictive model power that allows for performing the 
functional analysis of identified peaks. Data classification is 
difficult because of a strong correlation of data combined with its 
high dimensionality. Row spectra, composed of many thousands 
of features and dozens of objects require a two-stage 
dimensionality reduction. The first stage is decomposition with 
Gaussian mask put on all spectra. This operation enable to reduce 
the dimensionality to several hundred of features. The second step 
was the selection of the most informative features in the process of 
dimension reduction performed with such methods like T-test, 
SVM-RFE or PLS. Due to the high level of correlation it is 
necessary to the implement classification based on features. 
Prepared in this way data set can be subjected to SVM learning 
and classifying. Appropriate adjustment of the classifier and 
features choice enable efficient peaks discriminatory. Selection 
of classification parameters and the proper number of features can 
be performed with Multiple Random Validation. Results 
performed on a medical dataset have shown that classification 
conducted in this way is possible and effective. Total error 
obtained at the level of 18% without the information leak confirms 
the effectiveness of the classification method.  

GMM based spectra modelling, preprocessing and 
classification could be supplemented with biological interpretation 
based on dedicated databases. Integration of identification process 
with biological databases can be used to verify the results from the 
biological point of view. This verification is essential because 
of I type error (False Discovery Rate), typical classification task 
error. It is important to minimize this error, but it is impossible 
to do it using classification methods only. Therefore, the 
opportunity to conduct biological verification gives another point 
of view. The analysis helps to improve explaining of the  
processes occurring in living organisms.  

5. Results 

The method was tested with the set containing mice subjected 
to irradiation. This data set was selected due to the specificity 
of data. The relevant aspects are the large number of biological 
and technical repetitions and the possibility of treating samples as 
if they came from a single organism. The analyzed data set 
contains twelve repetitions: six biological and two technical 
repeats performed on five mice from one litter. The analysis 
conducted on this set is primarily a comparison of results obtained 
using two methods: with the mean spectrum and without it. 

The analysis with the mean spectrum involves standard, 
described earlier steps: 
• baseline correction – the operation is necessary due to typical 

character of the spectrum, 
• interpolation – standardisation of points on the independent 

axis, 
• normalization – reduction of all spectra to one common area 

under the curve, 
• the mean spectrum calculation. 

The second method used in the analysis does not require the 
calculation of the spectrum average. In this case the mandatory 
pre-processing procedure consists of only baseline correction. 
Normalization and interpolation, however, were also perform 
to standardise the data. 

The graphs presented in Figure 6 illustrates the results of the 
decomposition analysis.  Illustrative. Figure 7 shows the 
placement of individual spectral peaks in the confidence intervals 
designated for spectrum average. The graph illustrates that the 
medium of individual peaks in the spectra belong to the respective 
confidence intervals. This analysis was conducted to test the 
method and check its repeatability. 

Figure 8 shows the box graph describing errors (differences) 
derived from multiple runs of a decomposition procedure for the 

same data set for methods based on the mean spectrum. Distances 
between the obtained M / Z values were considered. 

 

Fig. 6.  Decomposition using the mean spectrum (b,d) or without it (a,c) 

 

 

Fig. 7.  Confidence intervals analysis 

 

 

Fig. 8.  Distance analysis for the method using the mean spectrum 

 

 

Fig. 9.  Using of an alternative peaks detection method 
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6. Summary 

Comparative analysis of methods using the mean spectrum 
and without it indicates that the use of the mean spectrum allows 
for increase efficiency and speeding up the analysis. However, 
results obtained for both types of analysis are similar. It indicates, 
that the method is reliable. Analysis also proved a high degree 
of reproducibility. Results of the decomposition analysis 
are comparable to the results obtained with other methods [28]. 
Moreover, in case of low level of separability it proved to be more 
flexible than other method. It also handle the complexity of the 
spectra. 

Presented mass spectra processing method can be used not 
only for the spectra, whose peaks are narrow and do not overlap. 
The method also allows modeling of spectrum with a more 
complex structure with overlapped peaks characterized by a large 
variance. For these spectra, the methods based on local maxima 
and minima may fail. This problem is exemplified in the Figure 9. 
It presents using of mspeaks method (available in Matlab 
Bioinformatic Toolbox).  

This method is based on the local maxima and minima as well 
as the height of the potential peaks. Those values are used to find 
the center point of individual peaks. Fig 9a,b present the result of 
the method for spectra with narrow peaks. Identification of such 
peaks runs smoothly and well-chosen parameters enable fast and 
efficient identification of peaks. Fig 9c,d,e shows the use of 
various configuration options for the problem of the broader 
spectrum with overlapping peaks. It can be seen that results are 
characterized with considerable redundancy of the number of 
identified peaks. 
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