
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2017 29

artykuł recenzowany/revised paper IAPGOS, 3/2017, 29–32

DOI: 10.5604/01.3001.0010.5210

OPTIMISATION ANALYSIS OF TRANSACT-SQL QUERIES BASED

ON INDEXES

Dominika Hodun, Maria Skublewska-Paszkowska
Lublin University of Technology, Institute of Computer Science

Abstract. The article presents a discussion of the optimisation methods involving the modification of query syntax on the example of the use of indexes that

served for the application of the methods in practice, and the presentation and analysis of the test results and their comparison. All the queries were made
in a Microsoft SQL Server Management Studio 2014 environment, using the AdventureWorksDW2012 test database provided by Microsoft. The object

of the research were SELECT queries, which consequently returned the desired set of output data.

Keywords: Transact-SQL, optimization, queries

ANALIZA OPTYMALIZACJI KWEREND JĘZYKA TRANSACT-SQL OPARTYCH O INDEKSY

Streszczenie. Artykuł obejmuje omówienie metod optymalizacji polegających na modyfikacji składni zapytań na przykładzie wykorzystania indeksów, które

posłużyły do zastosowania metod w praktyce, a także przedstawienie i analizę otrzymanych wyników badań i ich porównanie. Wszystkie zapytania zostały
wykonane w środowisku Microsoft SQL Server Management Studio 2014 przy użyciu bazy testowej, udostępnionej przez firmę Microsoft,

AdventureWorksDW2012. Obiektem badań były zapytania SELECT, które w rezultacie zwracały pożądany zbiór danych wynikowych.

Słowa kluczowe: Transact-SQL, optymalizacja, zapytania

Introduction

Optimisation techniques involving the modification of query

syntax are based on two types of methods: universal ones,

independent of the type of database used, and ones specific to

individual database providers, described in detail in the

documentation supplied by the manufacturers of the software [1].

Their application allows, among other things, the use of

appropriate indexes, transmission of relevant data to the cost-

based optimiser, as well as determination of the optimal order of

joins, executions of subqueries and outer queries. Prior

determination of the proper execution plan makes it easier to

practise in order to achieve it, and allows the use of the simplest

tools. The aim of the article is to present the query optimisation

in the Transact-SQL language, based on selected queries

using indexes. The optimisation analysis was performed

in Microsoft SQL Server Management Studio 2014 using

the AdventureWorks2012 test database provided by Microsoft.

1. Optimisation methods

There are two types of method classification for optimising

queries in Transact-SQL. The first of these divides optimisation

methods into static and dynamic ones. Static optimisation aims at

establishing a "most favourable" execution plan for the query

before the start of its implementation. The plan does not have to

change during the execution of the query – hence its name.

Dynamic optimisation consists in finding the "most favourable"

execution plan for the query before the query execution, but in the

course of its implementation the plan may change. Currently,

database systems provide only static optimisation, although its

effectiveness is generally lower compared to that of dynamic

optimisation, which is much more expensive [4].

The second type of classification distinguished divides

optimisation methods into single query one, and simultaneous

optimisation of multiple queries. In the case of single query

optimisation, only one query is optimised at the same time. In

simultaneous optimisation of multiple queries, the partial results

of a single query can be used by other queries, leading to

a reduction in the execution time of a set of queries.

Current database systems offer only single query optimisation.

2. Indexes

Indexes are database structures enabling faster data references,

with a high impact on system performance, but not increasing its

correct operation. Some indexes are created automatically, e.g.

while creating a primary key. If the table does not have an index,

its data form a pile – a disordered collection of pages that belong

to the table. Table scan operations are very expensive and require

frequent references to the data on the disk, because they rely on

searching all sides – it is impossible to tell whether all the records

with specified search conditions have been found until the last row

of the table is reached [2]. This mechanism is extremely

suboptimal. Table scans can be avoided thanks to indexes, which

provide quick access to data while searching the table. Indications

for the use of the indexing mechanism are cases of receiving as a

result of a query execution repeatably less than 15% of the records

from a large size table, or the presence of columns used to join

multiple tables, as shown in figures 1 to 7.

3. Research methodology

Analysis of optimisation was performed in the Microsoft SQL

Server Management Studio 2014 environment, using the

AdventureWorks2012 test base. Database queries were tested that

used indexes. The tests were conducted using a clustered and a

nonclustered index. The analysis involved queries without an

index on the table-joining columns and with indexes, as well as

using the leading, other than the leading and all the columns of an

index as a selection condition.

Query time was measured using the command SET

STATISTICS TIME ON [5]. The values that can be read from the

returned statistics are parsing and compilation time and execution

time.

Comparing the two queries, the desired action is to measure

the full time of their execution – from making an inquiry to

obtaining the result, not just another call from the cache of already

processed requests. Thus, an important element is clearing the

cache and Microsoft SQL Server Management Studio buffers. To

prepare the environment for meaningful tests, two procedures

should be used: DBCC FREEPROCACHE and DBCC

DROPCLEANBUFFERS [2], to do with cleaning the cache of

plans and buffers.

The time and readings statistics are switched directly in the

connection session using the commands SET STATISTICS IO

ON and SET STATISTICS TIME ON [5]. Automatic updating is

performed during query optimisation by the query optimiser when

the option Auto update statistics is switched on. A manual update

can be called by the command UPDATE STATISTICS [5]. It

must be carried out, among other things, when creating a new

index, before inserting data into a table if the table was truncated

or when inserted a large number of records is inserted into the

table (especially with a small amount of data) directly used in

queries. Statistics can be viewed using the DBCC

SHOW_STATISTICS command.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lublin University of Technology Journals

https://core.ac.uk/display/287361434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

30 IAPGOŚ 3/2017 p-ISSN 2083-0157, e-ISSN 2391-6761

3.1. Analysis of query execution with clustered

and nonclustered indexes

Listing 1 shows the query that returns all records with the

place name "Monroe". The query plan is illustrated in figure 1.

Listing 1. Query with a clustered index

SELECT * FROM dbo.DimGeography WHERE City='Monroe'

Fig. 1. Plan of query execution shown in Listing 1 using a clustered index

Listing 2. Statistics of query execution using a clustered index

Table 'DimGeography'. Scan count 1, logical reads

27.

CPU time = 0 ms, elapsed time = 49 ms.

With the command CREATE INDEX ON IX_Geography

dbo.DimGeography (City) a nonclustered index was created,

containing one column. The execution of the query shown in

Listing 1, using the newly created index, allows to get the results

shown in figure 2.

Fig. 2. Plan of query execution shown in Listing 1 using a nonclustered index

Listing 3. Statistics of query execution using a clustered and a nonclustered index

Table 'DimGeography'. Scan count 1, logical reads

6.

CPU time = 0 ms, elapsed time = 36 ms.

 Table 1. Comparison of the statistics of query execution using a nonclustered index

Type of query

Number

of scans

(jointly)

Number of

readings

from

memory

(jointly)

Time of using

the processor

[ms]

Time of

query

execution

[ms]

Query with

a clustered index
1 27 0 49

Query with

a nonclustered

index

1 6 0 36

Analysis of the statistics of query execution using a clustered

and nonclustered index shows that, for reading data from a table

containing disordered values, the more favourable was the use of a

nonclustered index referring to individual records (Table 1). The

nonclustered index does not transfer data between the sides of the

data heap, which results in a smaller number of readings from

memory, and hence, shorter query execution.

3.2. Analysis of query execution with and without

an index on the table-joining columns

Listing 4 shows the query that returns all records from the

table DimEmployee, for which the value SalesTerritoryKey occurs

in the table DimSalesTerritory. The query plan is illustrated in

figure 3.

Listing 4. Zapytanie bez wykorzystania indeksu na kolumnach łączenia tabel

SELECT * FROM dbo.DimEmployee de

INNER JOIN dbo.DimSalesTerritory dst ON

dst.SalesTerritoryKey =

de.SalesTerritoryKey

Fig. 3. Plan of query execution shown in Listing 4 without using an index on the

table-joining columns

Listing 5. Statistics of query execution without using an index on the table-joining

columns

Table 'DimEmployee'. Scan count 1, logical reads

49.

Table 'DimSalesTerritory'. Scan count 1, logical

reads 3.

CPU time = 15 ms, elapsed time = 502 ms.

With the command CREATE INDEX

IX_DimEmployee_SalesTerritoryKeyON dbo.Dim Employee

(SalesTerritoryKey) a nonclustered index was created, containing

one column. The execution of a simplified query using the newly

created index allows to get the results shown in figure 4.

Listing 6. Query using an index on the table-joining columns

SELECT * FROM dbo.DimEmployee de WITH

(INDEX(IX_DimEmployee_SalesTerritoryKey))

INNER JOIN dbo.DimSalesTerritory dst ON

dst.SalesTerritoryKey = de.SalesTerritoryKey

Fig. 4. Plan of query execution shown in Listing 6 using an index on the table-joining

columns

Listing 7. Statistics of query execution using an index on the table-joining columns

Table 'DimEmployee'. Scan count 11, logical reads

641.

Table 'DimSalesTerritory'. Scan count 1, logical

reads 3.

CPU time = 0 ms, elapsed time = 332 ms.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2017 31

 Analysis of query execution statistics using an index estab-

lished on the table-joining columns and without using it, shown in

Listings 4 and 6, illustrates the benefits of setting up such an

index, allowing acceleration of the joining operations (Table 2).

The time to execute the query using the index on the table-joining

columns is almost twice as low as without the use of an index.

Lack of indexes on table-joining columns can lead to less efficient

algorithms for the implementation of the joining.

Table 2. Comparison of the statistics of query execution using an index on the table-

joining columns and without using an index on the table-joining columns

Type of query

Number

of scans

(jointly)

Number of

readings from

memory

(jointly)

Time of using

the processor

[ms]

Time of

query

execution

[ms]

Query without an

index on the table-

joining columns

2 52 15 502

Query with an

index on the table-

joining columns

12 644 0 332

For the use of the index to be effective, it is necessary to define

a sufficiently selective condition for the first (or only) index col-

umn. The condition must be expressed in such a way that the

database might determine a suitably narrow range of index values.

If the range is too large, the optimiser may consider that it is not

worth using the index and appoint another path to accessing the

data.

There are two most commonly used types of indexes:

clustered and nonclustered [2]. A clustered index stores data in

ascending order, according to the index key (an indicated column

or columns), while the nonclustered index is a separate object of

the database, indicating individual records in the table, but without

regard to how they are stored. This means that the creation of

clustered indexes is important for columns on the basis of which

the data read from the table are sorted or data sets are returned. On

the other hand, creating nonclustered indexes matters for tables

with various values, used to connect or search for data. An

important issue when deciding whether to create a clustered index

is the choice of the appropriate column or columns, as well as

their sequence [2].

3.3. Analysis of queries using the leading, some

other than the leading, and all the columns

of the index as a selection condition

With the command CREATE INDEX ON IX_Geography

dbo.DimGeography (City, PostalCode) a nonclustered index was

created, containing two columns. Implementation of a simplified

query using the newly created index allows to get the results

presented in figure 5.

Listing 8. Query using the leading column of the index as a selection condition

SELECT * FROM dbo.DimGeography WITH (INDEX

(IX_Geography))

WHERE City = 'Monroe'

Fig. 5. Plan of query execution shown in Listing 8 using the leading column

of the index as a selection condition

Listing 9. Statistics of query execution using the leading column of the index

as a selection condition

Table 'DimGeography'. Scan count 1, logical reads

30.

CPU time = 0 ms, elapsed time = 87 ms.

The query result derives significant benefits from the use

of the leading column of the index in a table search operation.

If instead of the leading column another column of the index

is used, the results obtained deteriorate.

Listing 10 shows a query that returns all the records where the

postal code is "98272". The query plan is illustrated in figure 6.

Listing 10. Query using some other than the leading column of the index

as a selection condition

SELECT * FROM dbo.DimGeography WITH (INDEX

(IX_Geography))

WHERE PostalCode = '98272'

Fig. 6. Plan of query execution shown in Listing 10 using some other than the leading

column of the index as a selection condition

Listing 11. Statistics of query execution using some other than the leading column

of the index as a selection condition

Table 'DimGeography'. Scan count 1, logical reads

10.

CPU time = 0 ms, elapsed time = 40 ms.

Listing 11 shows a query that returns all the records where the

postal code is "98272", but with forcing the use of the index

created. The query plan is illustrated in figure 7.

Listing 12. Query using all the columns of the index as a selection condition

SELECT * FROM DimGeography WITH (INDEX

(IX_Geography))

WHERE City = 'Monroe'

AND PostalCode = '98272'

Fig. 7. Plan of query execution shown in Listing 12 using all the columns of the index

as a selection condition

Listing 13. Statistics of query execution using all the columns of the index

as a selection condition

Table 'DimGeography'. Scan count 1, logical reads

6.

CPU time = 15 ms, elapsed time = 35 ms.

32 IAPGOŚ 3/2017 p-ISSN 2083-0157, e-ISSN 2391-6761

Table 3. Comparison of the statistics of query execution using the leading, some other

than the leading, and all the columns of the index as a selection condition

Type of query

Number

of scans

(jointly)

Number of

readings from

memory

(jointly)

Time of

using the

processor

[ms]

Time of

query

execution

[ms]

Query using

the leading column

of the index as a

selection condition

1 30 0 87

Query using other

than the leading

column of the index

as a selection

condition

1 10 0 40

Query using all

the columns of the

index as a selection

condition

1 6 15 35

Analysis of the statistics of query execution with the leading

column of the index, some other than the leading column of the

index, and all the columns of the index as a condition of selection,

illustrated in Listings 8, 10 and 12, shows how important the order

of the columns is in the index (Table 3). Results of implementa-

tion of the first query are slightly worse than the results of the

second question, it should however be noted that the first query

returned 14 rows, and the second just 2. The best results can be

obtained using the column index in the order they were placed in

the declaration of the index, as shown in the last of the queries.

The key index should be as short as possible, which will allow

placing a greater number of index entries on a single page, which

in turn reduces the number of pages of the whole index. One

should also take into account the fact that it should not be allowed

to modify the columns of the clustered index key, because this

results also in the modification of the index pages and forces a re-

ordering of the data pages.

4. Conclusions

The aim of the article was to present the query optimisation in

the Transact-SQL language on the example of selected queries

using indexes.

Before using the index one should estimate its utility as part of

a specific inquiry. Evaluation of usability can be carried out on the

basis of index statistics in conjunction with information about the

number of records in the table and on the distribution of instances

of individual values or their ranges contained in the indexed

column. Statistics play an important role in obtaining high-

performance queries. Indexes to accelerate the search and scaling

of database systems will be used properly only when the query

optimiser has current statistics on the data in tables and their

distribution. One should remember to update the statistics. This is

important, because with outdated data the query optimiser may

operate suboptimally.

Analysis of the statistics of query execution using a clustered

and nonclustered index revealed that for reading data from a table

containing disordered values the more favourable was the use of a

nonclustered index referring to individual records (Table 1).

A nonclustered index does not transfer data between the sides

of the data heap, which results in a smaller number of readings

from memory, and hence, shorter query execution.

Analysis of the statistics of query execution using an index es-

tablished on the table-joining columns and without using such an

index, shown in Listings 4 and 6, illustrated the benefits of setting

up the index, allowing acceleration of the joining operations (Ta-

ble 2). The query execution time using an index is almost twice as

low as that without the use of an index. Lack of indexes on the

table-joining columns can lead to less efficient algorithms for the

implementation of the joining.

Analysis of the statistics of query execution from the leading

column, some other than the leading column, and all the columns

of the index as a selection condition, shown in Listings 8, 10 and

12, showed how important the order of the columns is in the index

(Table 3). The best results can be obtained using the index col-

umns in the order they were placed in the declaration of the index.

Bibliography

[1] Ben-Gan I.: Microsoft SQL Server 2012. Podstawy języka T-SQL. APN Solid,

2012.

[2] Bertrand A., Stellato E., Berry G., Hall J., Sack J., Kehayias J., Kline K.,

Randal P., White P.: High performance techniques for Microsoft SQL Server.

SQL Sentry. , Tom 1-5, 2013.

[3] Morzy T.: Optymalizacja zapytań.

http://wazniak.mimuw.edu.pl/images/c/c7/BD-2st-1.2-w12.tresc-1.1.pdf

[4] Nevarez B.: Microsoft SQL Server 2014. Optymalizacja zapytań. Helion, 2014.

[5] Ptasznik A.: Optymalizacja zapytań SQL. Warszawska Wyższa Szkoła

Informatyki, 2009.

[6] Tow D.: SQL Optymalizacja. Helion, 2014.

[7] Wojciechowski M., Zakrzewicz M.: Kosztowy optymalizator zapytań.

http://www.cs.put.poznan.pl/mzakrzewicz/pubs/plsem02.pdf

M.Sc. Eng. Dominika Hodun

e-mail: dominikahodun@gmail.com

In 2016 she graduated from the Institute of Computer

Science at the Faculty of Electrical Engineering and

Computer Science at the Lublin University of

Technology with an M.Sc. degree in engineering.

Areas of interest: SQL, and in particular Transact-SQL

and its optimisation, business issues in computing and

ERP systems.

Ph.D. Eng. Maria Skublewska-Paszkowska

e-mail: maria.paszkowska@pollub.pl

Researcher-lecturer in the Institute of Computer

Science at the Faculty of Electrical Engineering and

Computer Science of the Lublin University of

Technology, where she received her MSc. She

obtained her PhD at the Silesian University of

Technology. Her research activity is connected with:

motion acquisition methods, 3D motion data analysis,

3D algorithms, mobile programming.

otrzymano/received: 14.09.2016 przyjęto do druku/accepted: 14.08.2017

