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Abstract. The paper concerns a numerical method that deals with the computations of the fractional derivative in Caputo and Riemann-Liouville 

definitions. The method can be applied in time stepping processes of initial value problems. The name of the method is SubIval, which is an acronym of its 
previous name – the subinterval-based method. Its application in solving systems of fractional order state equations is presented. The method has been 

implemented into an ActiveX DLL. Exemplary MATLAB and Mathematica codes are given, which provide guidance on how the DLL can be used. 
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OBLICZENIA NUMERYCZNE POCHODNEJ UŁAMKOWEGO RZĘDU W ZAGADNIENIACH 

POCZĄTKOWYCH, PRZYKŁADY W PROGRAMACH MATLAB I MATHEMATICA 

Streszczenie. Artykuł dotyczy numerycznej metody, którą wykorzystać można do obliczeń pochodnej ułamkowego rzędu w definicji Caputo 

i Riemanna-Liouville’a. Metoda ta może być wykorzystana przy rozwiązywaniu zagadnień początkowych. Metoda nosi nazwę SubIval, co jest akronimem 

jej poprzedniej, anglojęzycznej nazwy „subinterval-based method” (metoda podprzedziałów). Przedstawiono jej zastosowanie w rozwiązywaniu równań 
stanu ułamkowego rzędu. Metoda została zaimplementowana w bibliotece DLL z obsługą ActiveX. Przedstawiono przykładowe kody obliczeniowe 

(w oprogramowaniach MATLAB i Mathematica), które zawierają wskazówki dotyczące zastosowania biblioteki. 

Słowa kluczowe: pochodna ułamkowego rzędu, analiza numeryczna, analiza obwodów, równania całkowo-różniczkowe 

Introduction 

The increasing popularity of fractional calculus in science is 

owed to its many applications e.g. in circuit theory [8, 19, 20], 

control theory [16], fractional order filter design [10], 

electromagnetic field analysis [6] and temperature field 

computations [3]. Fractional calculus introduces the concept 

of a fractional order derivative and integral (or, in general, 

an integro-derivative). Among the many definitions that can be 

found in literature [9], the paper concerns the application of the 

most commonly used fractional derivatives, which are the 

Riemann-Liouville definition [14] and that of Caputo [4]. The 

first, for   (0, 1), is: 
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For that same range Caputo’s definition of the fractional 

derivative is defined by: 
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 Moreover, in the most common occurrence – the fractional 

derivative appears as a derivative in time, expressing a component 

with memory. 

 The various successes in attempts to apply the fractional time 

derivative are not the only reason why its study has been very 

popular of late. The appearance of the fractional time derivative 

introduces a component, which adds some additional 

computational problems. Recently, however, many methods have 

been introduced, which allow to deal with the computations of the 

fractional derivative. Lead researchers mention: 

 the Adomian decomposition method [13], 

 the CAS wavelet method [18], 

 the differential transform method [2], 

 the Taylor expansion method [7], 

 the collocation method [17], 

 in general – Fractional Linear Multistep Methods [12], 

 methods that base on the fractional difference operator [5, 11]. 

The development of clearly described methods dealing with 

fractional derivative computations allows to conveniently study 

the application of the fractional derivative. 

The current paper concerns the application of a method called 

SubIval, which originates from it being called the 

subinterval-based method in its first introduction in [21]. It is a 

numerical method, generally dealing with the computation of the 

fractional derivative in time stepping processes of initial value 

problems. 

1. Method overview 

To better describe the fundamentals of SubIval – the following 

notation is used for Caputo’s fractional derivative: 
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while for the Riemann-Liouville fractional derivative: 
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where instead of the integration bounds ta and tb the integration 

interval  = [ta, tb] is referenced. For equations that are valid for 

both fractional derivative definitions one can then use the notation 

),(d tx


 skipping the left side indices. 

 When dealing with an IVP, in a computed time step, the total 

integration interval tot = [t0, tnow] is divided into M = S + 1 

consecutive subintervals s: 

   ,:1],,[ end,1start,end,start,  sssss ttstt  (5) 

with s = 1, 2, … S + 1, M. The partition into subintervals yields: 
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For each of the subintervals an interpolation is performed on the 

nodes ts,1, ts,2, … ts,ns
 of other subintervals denoted by s (such that  

s  s) resulting in local polynomials .~
sx  Equation (6) then 

yields: 

   ),(~d)(~d)(d
1

tot
txtxtx M

S

s

s Ms








 



 (7) 

where: 
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with Ls,i being Lagrange basis polynomials: 
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defined on axes of local variables s (introduced in order to avoid 

numerical errors), with cs being the normalizing coefficient: 
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 An assumption is made that only M contains the rightmost 

time node t = tnow (whose variables are treated implicitly). This 
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allows to separate the unknown value x(tnow) = xM,nM
 from the 

terms dependent on known, previous values of x: 
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When extracting the node values from the integrodifferentiations 

one obtains the relation: 
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where: 

   

,))((d

))((d

1

1

1,,,

1 1

1,,,



 




 





M

M

s

s

n

i

MMiMiM

S

s

n

i

ssisis

ttcLx

ttcLxb







  (13) 

and: 
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Finally, when knowing the Lagrange polynomial coefficients one 

can use the formula for monomial integrodifferentiation: 
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for Caputo’s fractional derivative, where the auxiliary variables: 

   ,Δ start,end,,loc sss ttt   (16) 

and: 

   ,Δ start,ss ttT   (17) 

while the incomplete beta function can be computed according to 

the formula: 
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If the Riemann-Liouville definition is used then the above 

formulae can also be used with the difference that the following 

coefficient needs to be added: 
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connecting both of the fractional derivative definitions [20]. In 

conclusion – when for Caputo’s derivative one obtains: 
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then for the Riemann-Liouville fractional derivative: 
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 So far it has been explained how to obtain the approximation 

(12) in each considered time step, after the subintervals had been 

established. The manner in which the subintervals are established 

is determined by the algorithm presented in figure 1. It considers 

the following types of subinterval pairs: 

 moving subinterval pair (or simply the moving subinterval, 

since M = M) is the rightmost interval, which occupies nM = 

pmov + 1 solution nodes (along with the implicit node t = tnow; 

pmov is the polynomial order), 

 built subinterval pair – appears when the ones existing are not 

enough to cover all the solution nodes (i.e. if a maximum 

polynomial order ps had been reached) then a new subinterval 

pair is built on the left side of the moving subinterval on the 

time axis, 

 the subinterval pair is classified as a closed subinterval pair  

when its s can no longer be expanded, yet s  s, 

 sealed is the final state of each newly built subinterval pair, a 

closed subinterval pair becomes a sealed pair when finally s 

= s. 

Typically the maximum polynomial order ps can be the same for 

all subinterval pairs. It’s variability (through adaptivity) has not 

yet been discussed and is a subject for future research. 

 

 

Fig. 1. The algorithm by which the subinterval pairs are established in SubIval 

An example of how the subinterval dynamics are performed for a 

fixed maximum polynomial order p (which applies for all built 

subinterval pairs and the moving subinterval) is presented in 

figure 2. 

 

 

Fig. 2. Subinterval dynamics for a fixed maximum polynomial order p = 3, valid for 

all built subintervals and the moving subinterval 

A time stepping solver does not need to contain only one 

subinterval dynamics process – e.g. it is possible to perform two 

of them in cooperation, leading to a predictor-corrector method 

[21]. 

2. Relation to state equations 

This chapter gives directions on how SubIval can be applied to 

solve fractional order state equations. The following system is 

considered: 

 ),()()( ttt BvAxx
α d  (22) 

where the left-hand side contains a vector of the fractional 

derivatives of the state variables: 
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When SubIval is applied, for a currently computed state vector xj, 

in the time instance tj, the left-hand side turns equation (22) into: 

 ),(diag jjj tBvAxbxa   (24) 

where adiag is a diagonal matrix filled with the a coefficients 

obtained for each respective state variable; b on the other hand is a 

vector containing the b coefficients (i.e. bC for Caputo’s definition, 

bC + bRL for the Riemann-Liouville fractional derivative). 

Therefore, in a computed time step the state vector values can be 

obtained by solving the following system of equations: 

 ).()( diag jj tBvbxaA   (25) 

3. Example 

The simple circuit problem given in figure 3 is considered. 
 

 

Fig. 3. Fractional order circuit example – RLC circuit with fractional order 

capacitor and coil 

The circuit contains both a fractional order coil and a 

fractional order capacitor. Both are of the order . 

The circuit equations can be given in a matrix form: 
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where the state vector is: 
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y(t) is a vector of the remaining useful variables: 

 ,)]()()()([)( T
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and v(t) is generally a vector of source time functions – in this 

case, however, represented by a single function: 
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hence: 
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while the state vector multipliers: 
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and the source multipliers: 
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As for the second equation of (26): 
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The system of equations (25) can be brought to the form of state 

equations. With respect to the notations in (22) one obtains: 
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4. ActiveX SubIval DLL 

The ActiveX DLL has been built in such a way as to support 

standard integer, double and string operations between the higher 

level program and the DLL. This allows it to be used in a larger 

variety of computational programs even in their older versions.  

The DLL has been written in C# and even though nowadays 

many programs allow the usage of external .NET libraries older 

software did not support such functionality. For example, 

MATLAB has had this functionality introduced in version 7.8 

(2009a) [15]. 

The code applying SubIval should have an order as suggested 

by the following guidelines (assuming an application in 

MATLAB): 

– first a COM object (in here named hSubIval) needs to be 

obtained by creating a COM object (note that the SubIval DLL 

needs to be registered first): 
 hSubIval =  

actxserver('SubIvalNS.SubIvalLauncher'); 

– now from this moment on all functions are run as methods of 

the hSubIval object, 

– one can define how many independent subinterval dynamics 

processes will be run independently by executing the first 

function, e.g. here one initializes one process: 
 hSubIval.Initialize(1); 

– subsequently – each process needs to be initialized by 

referring to it through its zero based index p_id; the number 

of variables under fractional derivatives n needs to be given, 

along with the polynomial order p, the initial time instance t0 

and the type of subinterval dynamics process (0 stands for 

constant step, which is the only one discussed in this paper): 
  hSubIval. 

InitializeComputer(p_id, n, p, t0, 0); 

– each of the fractional derivative orders needs to be given by 

entering its zero based index j and value alfaj: 

 hSubIval.InitAlpha(p_id, alfaj, j); 

– then the initial values need to be entered, also through a zero 

based index entry: 
 hSubIval.Putxi(p_id, x0j, j); 

– at this point the initialization is complete and the time stepping 

process can begin; in every new time instance tnext one 

needs to run: 
 hSubIval.newt(p_id, tnext); 

– to perform the core SubIval computations one needs to 

execute: 
 hSubIval.ComputeSimple(p_id); 

– in the case of a predictor-corrector scheme – the functions are 

different, this, however, will not be discussed in this paper, 

– after the computations had been performed the a and b 

coefficients are available; to obtain them one can run: 
 hSubIval.getab(p_id, j); 

  for the variable with the zero based index j, 

– after a solution has been obtained then each state variable 

value can be entered also with Putxi. 

Exemplary codes in both MATLAB and Mathematica, which 

allow to perform computations for the discussed problem, are 

presented in table 1. Both code fragments start from the stage 

where the matrices MI, MII, MIII, MIV (representing MI, MII, 

MIII and MIV) and Tsrc (representing T) have already been filled 

with the proper values according to equations (30) to (34). 
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Table 1. Code fragments for solving fractional order state equations 

MATLAB Mathematica 
 

Bstate=MIV*(MI\T); 

Astate=MIII-MIV*(MI\MII); 

n=2; (*number of x variables*) 

iL0 = 0; uC0 = 0; 

nt = 400; t0 = 0; tmax = 1e-2; 

dt = (tmax-t0)/(nt-1); 

t=0:dt:tmax; 

 
x=zeros(n, nt); 

 

(*the ActiveX DLL needs to be 

registered first!*) 

 

p = 3; (*method order*) 

solverType = 0; 

 

hSubIval = actxserver 

 

('SubIvalNS.SubIvalLauncher'); 

hSubIval.Initialize(1); 

hSubIval.InitializeComputer 

 (0, n, p, t0, solverType); 

hSubIval. 

 InitAlpha(0, alpha, 0); 

hSubIval. 

 InitAlpha(0, alpha, 1); 

hSubIval.Putxi(0, iL0, 0); 

hSubIval.Putxi(0, uC0, 1); 

i1 = 2; 

x(1, 1) = iL0; 

x(2, 1) = uC0; 

while i1<=nt 

  hSubIval.newt(0, t(i1)); 

  hSubIval.ComputeSimple(0); 

  aa = zeros(n,1); 

  bb = zeros(n,1); 

  for in=1:n 

   Composite = 

    hSubIval.getab(0, in-1) 

   aa(in) = Composite(2); 

   bb(in) = Composite(3); 

  end 

 

  A = Astate – diag(aa); 

  b = bb – 

Bstate*vFunc(t(i1)); 

  x(:,i1)=A\b; 

 

  for i_n = 1:n 

   hSubIval. 

    Putxi(0, x0(in, i1), in-

1); 

  end 

  i1=i1+1; 

end 

 

IMI = Inverse[MI]; 

BState = MIV.IMI.T; 

AState = MIII-MIV.IMI.MII; 

n=2; (*number of x variables*) 

iL0 = 0; uC0 = 0; 

nt = 400; t0 = 0; tmax = 10^-2; 

dt = (tmax-t0)/(nt-1); 

t = Table[(t0 + dt*i)*1.0, 

 {i, 0, nt - 1}]; 

x = ConstantArray[0, {n, nt}]; 

Needs["NETLink`"] 

InstallNET[] 

p = 3; (*method order*) 

solverType = 0; 

ThePath = NotebookDirectory[]  

          <> "SubIval.dll"; 

SubIval =  

      LoadNETAssembly[ThePath] 

SIL = NETNew 

["SubIval_NS.SubIvalLauncher"]; 

SIL@Initialize[1] 

SIL@ 

 InitializeComputer 

  [0, n, p, t0, solverType] 

SIL@InitAlpha[0, alpha, 0] 

SIL@InitAlpha[0, alpha, 1] 

SIL@Putxi[0, iL0, 0] 

SIL@Putxi[0, uC0, 1] 

i1 = 2; 

x[[1, 1]] = iL0; 

x[[2, 1]] = uC0; 

While[i1 <= nt, 

  SIL@newt[0, t[[i1]]]; 

  SIL@ComputeSimple[0]; 

  aa = ConstantArray[0, n]; 

  bb = ConstantArray[0, n]; 

  For[in = 1, in <= n, in++, 

   Composite =  

    SIL@getab[0, in - 1]; 

    aa[[in]] = Composite[[2]]; 

    bb[[in]] = Composite[[3]]; 

  ]; 

  A =  

   AState - DiagonalMatrix[aa]; 

  bv =  

   bb - BState*vFunc[t[[i1]]]; 

  xtemp = LinearSolve[A, bv]; 

  For[in = 1, in <= n, in++, 

   x[[in, i1]] =  

    xtemp[[in]][[1]]; 

    SIL@Putxi 

    [0, 1.0*x[[in, i1]], 

     in - 1]; 

  ]; 

  i1++; 

]; 

 

The obtained time functions for the state variables are 

presented in figure 4. The results obtained by means of SubIval 

have been compared with an analytical solution (basing on the 

Mittag-Leffler function) found in literature [22]. 

 

Fig. 4. Comparison of the computation results 

The obtained results present a close resemblance to the 

referential, analytical solution. 

5. Summary 

A numerical method for the computation of the fractional 

derivative in initial value problems has been discussed. The 

method is now known as SubIval. Its brief explanation has been 

given in section 2. In section 3 a simple circuit example has been 

introduced, which requires dealing with the fractional derivative. 

The state equations have been formulated through a matrix 

method. A short introduction has been given to the functions that 

need to be executed from the SubIval DLL through MATLAB. 

Exemplary scripts have been presented in both MATLAB and 

Mathematica. These scripts allow to obtain the time functions for 

the state variables of the discussed problem. In this paper only a 

constant step variant of SubIval has been used. An adaptive time 

step predictor-corrector scheme cooperating with the SubIval DLL 

will be discussed in a future paper. 
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