
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2017 19

artykuł recenzowany/revised paper IAPGOS, 2/2017, 19–23

DOI: 10.5604/01.3001.0010.4829

WEB SERVER LATENCY REDUCTION STUDY

Fatma Mbarek, Volodymyr Mosorov, Rafał Wojciechowski
Lodz University of Technology, Institute of Applied Computer Science

Abstract. This paper investigates the characteristics of web server response delay in order to understand and analyze the optimization techniques

of reducing latency. The analysis of the latency behavior for multi-process Apache HTTP server with different thread count and various workloads,
was made. It was indicated, that the insufficient number of threads used by the server handling the concurrent requests of clients, is responsible

for increasing latency under various loads. The problem can be solved by using a modified web server configuration allowing to reduce the response time.

Keywords: web server, latency, thread

BADANIA REDUKCJI OPÓŹNIEŃ SERWERA WWW

Streszczenie. W artykule opisano badania charakterystyk czasowych serwera WWW w celu zrozumienia i analizy technik optymalizacyjnych powodujących

redukcję opóźnienia. Dokonano analizy czasów opóźnień dla wieloprocesowego serwera Apache dla różnej liczby wątków i obciążeń. Wskazano,

że niewystarczająca liczba wątków wykorzystywanych przez serwer, obsługujących jednoczesne żądania klientów, wpływa znacząco na zwiększenie

opóźnień dla różnych obciążeń. Problem może być rozwiązany za pomocą modyfikacji ustawień serwera WWW, pozwalających na skrócenie czasu reakcji.

Słowa kluczowe: web server, opóźnienie, wątek

Introduction

The World-Wide Web (WWW or Web) is an information

space that is used by many people. Variety of information can be

accessed quickly and easily from different remote locations. With

the explosive growth of the World-Wilde Web, in both of clients’

numbers and the volume of information, a heavy workload

is placed on servers [5]. As a result, users observe long retrieval

times for web pages and they complain about web latency

(or response time).

Latency is the time that it takes to set up a connection between

two endpoints and transmit a request to the server for providing

services. It comes from various sources such as client or server

slowness, as well as network bottlenecks. When the web servers

are overloaded or have insufficient resources, they can take long

time to handle a request. Furthermore, the web retrieval delay

causes can be resolved by using faster computers, modifying

request, handling algorithms or providing cache mechanisms [1].

Considerable efforts of previous researches conclude that web

servers spend more time in kernel. Hu et al. [6] studied the

behavior of popular Apache web server performance. They found

that Apache reported about 30-50% of execution time on kernel

system and 20-25% of total CPU time on user code. Almeida et al.

[5] found that up to 90% of time is spent in the kernel for handling

HTTP requests in the case of saturated web server. In addition, the

work of Boyed-Wickizer et al. [19] studied Linux scalability and

it reported about 60% of execution time of Apache process in the

kernel. Based on these above results, we are interested to

understand causes of network latencies and we focus on the

research of finding a proposition that can improve server

performance. Basic goal of this study is to provide capability of

multi-processing WWW server to handle a large amount of

concurrent connections in Linux [16].

To understand network server latency, we have simulated

Apache Web Server v2.4.10 depending on its Multi-Process

architecture which uses multiple processes with multiple threads

in each one to treat incoming HTTP requests [14]. We have

examined server response time in term of various data sizes and

numbers of threads. This means, we must avoid network latency

through augmentation of the number of worker threads in each

server process. As a result, server performance is improved

whatever the resources size and our measured results confirm the

significant reduction of response time. The rest of this paper is

organized as follows. Section 1 gives a review of previous work.

Section 2 describes web components. Section 3 explains latency

measurement methodology for a web page. Section 4 explains the

role of threads in Apache Server architecture. In section 5, we

evaluate the experimental setup and its results. Finally, Section 6

provides concluding remarks and future works.

1. Related work

Several researches have enhanced many works for optimizing

network servers, particularly in regard to communication protocols

handling such as HTTP and TCP protocols. Faber et al. [7]

discussed the overloading of busy web servers and proposed a

modification to HTTP and TCP that shifts the TIME-WAIT state

to clients. In [1], simple modifications to the HTTP protocol were

proposed which consist in eliminating unnecessary network

round-trip time (RTT) in order to improve web server latency.

Chandranmenon et al. [12] proposed a paradigm to reduce round

trip time (RTT) using reference points caching of documents.

Other research proposed by Dodge et al. [4] consists caching

technique in conjunction with prefetching to decrease user

perceived response time.

These considerable studies have been interested in improving

server performance. However, replication and caching techniques

may make a busy web server because a big number of requests

still charge the original web server. Furthermore, dynamic web

pages cannot be cached, they must fetched from original servers

[19].

In addition, Nahum et al. [3], Aron et al. [18] have proposed

implementation optimizations for web servers in regards to reduce

system overhead. While Ruan et al. [13] found that the origin of

network server latency has come from the negative interactions

between the server application and the locking and blocking in the

operating system. They proposed web server optimization in

regards to request scheduling.

Our approach focuses on studying and avoiding the latencies

from server side. Thus, with modifying server configuration, the

number of worker threads is increased which allows to handle

more and more requests.

2. Web components

As shown in Fig. 1a, the main web components are clients,

network communication and server. Formally, a client is a

requester of services that initiates the network communication,

while server is a provider of services and which passively waits

for contact.

A typical web access identifies the requested HTML

document by Uniform Resource Locator (URL). A given URL

contains a host name and a file name on that machine [12].

An URL indicates the HTTP protocol that allows for exchange

of hypertext information using GET method. HTTP is a native

client-server protocol for the web [8], which functions as a

request-response protocol. For accessing to the web, a client

browser establishes a TCP connection to the server using its IP

address and exchanges SYN packets of TCP’s three-way

handshake procedure [1]. According to Fig.1 b, a web server

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lublin University of Technology Journals

https://core.ac.uk/display/287361406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

20 IAPGOŚ 2/2017 p-ISSN 2083-0157, e-ISSN 2391-6761

follows six steps of processing client request [20]. Its first step is

accepting the client connection. Then, the client submits a HTTP

request message to the server. The web server reads the incoming

request of client and checks its file system in order to find the

requested file. When it finds the file, it sends a response header to

the client. Next step of processing request is reading the file from

file system or memory cache. In the last step, the server replies to

the client by sending data as response message. Furthermore, the

server may repeat the read file and send data steps for larger files

until it is has transmitted all of the requested document. This

operation is shown in Fig. 1b by the self-loop.

To display a web page, a client browser needs to launch many

HTTP transactions to fetch different web components (images,

HTML sources, and links) of the page [9].

a) Client/Server Model

b) Request processing steps for web server

Fig. 1. Typical web access

3. Methodology for measurement of latency

Latency or response time is the amount of time required by

a packet to traverse the transmission endpoints. The response time

is measured by calculating the difference between the time

of sending the request by the client and the time of receiving the

last byte of server response. We define L to be latency and Tr, Ts

to be respectively receiving time and sending time. The general

formula of web latency could be defined as:

 L = Tr – Ts (1)

Web response time comes from several sources such as

network bottlenecks, big payloads, insufficient bandwidth and

weak client (low or busy CPU).

 It depends on six following parameters [20]:

 Page Size (resource size): is measured in Kbytes or Mbytes.

Its impact is obvious and is illustrated in our results.

 Minimum Bandwidth: is defined as bit-rate of consumed

information capacity between two end points.

 Round-Trip Time (RTT): is the time required for a packet to

travel from source to destination and back again. In the

context of a web page, the source is user’s browser and the

destination is web server.

 Turns: a web page contains an additional objects such as

several graphics or applets which are not transmitted with the

base HTML page. These objects need an additional connection

between the web server and the user. So, turns are considered

as the fair number of communication cycle between two

endpoints for the web page objects.

 Server processing time: the processing time required by the

server itself. That means the time required in the kernel to

handle incoming requests. This time can vary for different

types of web pages, for example creating dynamic web pages

needs more server effort, computing time and introduces delay

while pages with static content need negligible processing

time.

 Client processing time: it is insignificant time. For example, if

the requested page contains a Java applet, the client’s browser

can take several seconds to load and run the Java interpreter.

Considering the above latency parameters, the total response

time of web page can be defined as:

 ()

 (1)

To simplify the equation, we define L to be the total latency of

web page, RTT to be round trip time, T to the number of turns, P

to be page size, B to be bandwidth, Cc to be the client processing

time and Cs to be server processing time.

The implicit formula of web page response time is:

 () (3)

4. Threads

As part of the validation stage of web latency evaluation

study, we needed to understand the implications of web server

configurations. For this study, we used the most common web

server on the Internet - Apache. Apache web server is a free open

source code that has been ported over to many platforms such

as Linux and allows anyone to make modification to the server

[2, 14].

With its multi-process architecture, Apache may several

processes working simultaneously and in each process may be

made up of multiple threads [16].

Fig. 2. Apache Web Server Architecture (Multi-Process Model)

In figure 2, a multi-process paradigm is based on two

independent concepts: a process and a thread. Process is used to

group related resources together. These resources include child

processes, signal handlers, open files and much more of other

information. Putting resources in the form of a process may ease

their management.

Thread is the entity scheduled for execution on the CPU. The

threads allow various executions to take pace in the same process.

That means having multiple threads running in parallel in one

process [15].

In table 1, we can see the properties for each process and

thread. A thread has its registers that hold the current running

variables. It has a program counter which gives information about

next executing instruction while its stack allows to store the

execution history.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2017 21

Table 1. Process and Thread properties

Items per process Items per thread

Address space Registers

Global variables Program counter

Open files Stack

Child processes

State
Pending alarms

Accounting information

Signals and signal handlers

Although these properties are private for each thread, the

process properties are shared among the existing threads in one

process. For example, if one thread opens a file, the other threads

that belong to the same process can see, read and write this file.

Furthermore, the decomposition of application into several

threads working in parallel makes the programming model simple

and optimizes system performance.

There are many reasons for having threads. First, the time

needed for creating a new thread is less than for a process because

the new thread shares the same address spare with other threads.

Second, the time of terminating a thread is less than of a process.

Third, the communication between threads of one process is

simple and which causes less communication overheads [10].

Apache HTTP server is based on threads that have direct

impact on server performance. In our study, we evaluated the

number of threads and its impact on web latency. So, Apache

server configuration module allows us to alter on server’s

behavior using the following factors presented in table 2 [2, 17].

Table 2. Apache server configuration factors

Factor Description

StartServers Initial number of server processes to start

MinSpareThreads Minimum idle server processes

MaxSpareThreads Maximum idle server processes

ThreadLimit
The upper limit of the configurable number

of threads per child process

ThreadsPerChild Number of worker threads per server process

MaxRequestWorkers Maximum simultaneous requests in service

5. Experimental evaluation

In this section, we describe our Local Area Network (LAN)

environment testbed including the hardware and software used.

Then we present our results with discussion.

5.1. Testbed description

Our experiments are carried out on 71 virtual machines using

Oracle VM VirtualBox. One virtual machine is acting as the

server, and 70 others as clients connected to the server via 100

Mbits/s Ethernet switch. Each machine has a single 2.2 GHz Intel

processor with 1GB of RAM and running under Ubuntu v15.04.

The client machines generate workload as HTTP requests by

executing a bash script code. We use Apache HTTP server v2.4.10

listening on port 80 and that uses a separate process to handle the

incoming clients’ requests.

The goal of our study is to improve web server performance

through reducing web latency and to understand the implications

of different server’s configuration on the latency profiles. We

examine the performance characteristics of web server under

varying number of clients various workloads, different number

of threads used by the Apache server and. Our tests are focused

on two key metrics: Load size and Number of threads. Loads

are categorized into small (11 KB), medium (28 MB) and big

(389 MB) sizes of resources. Our purpose of choosing load size

is to simulate the connection behavior and to trace a tractable

analysis.

5.2. Experimental results

In this subsection, we present our results. These results show

the impact of such factors as load size and the used number of

threads on latency characteristics.

A. Latency vs Load

Varying size of workload can measure the capacity of our

server and studies how latency profiles change under load. Figure

3 shows that server latency increases when the size of resources

increases. Conserving the same server configuration, Apache

server spends more time submitting a large resource to clients.

The causes of this latency depend on repetition of reading file and

sending data steps until receiving the last byte of requested file by

clients.

Fig. 3. Apache Server latency for handling requests for different size of resources

(♦ – 11 KB, ■ – 28 MB, – 389 MB)

B. Latency vs Threads

Fig. 4. Apache Server latency for handling requests for different number of threads

(– 30 threads, ■ – 50 threads, ♦ – 150 threads)

To understand the implications of Apache server’s

configurations on the latency profiles, we used 30, 50 and 150

threads in each small file size (11 KB) -test as shown in Figure 4.

The experiment demonstrates that the web latency decreased when

the number of threads increased.

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80

A
V

ER
A

G
E

D
EL

A
Y

[S
]

CLIENTS AMOUNT

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 10 20 30 40 50 60 70 80

A
V

ER
A

G
E

D
EL

A
Y

[S
]

CLIENTS AMOUNT

22 IAPGOŚ 2/2017 p-ISSN 2083-0157, e-ISSN 2391-6761

C. Latency vs Load vs Threads

Apache Server latency for handling requests for small size resource – standard text

file, size 11 KB (■ – 30 threads, ♦ – 150 threads)

Apache Server latency for handling requests for meduim size resource – binary file,

size 28 MB (■ – 30 threads, ♦ – 150 threads)

Apache Server latency for handling requests for big size resource – binary file, size

389 MB (■ – 30 threads, ♦ – 150 threads)

Fig. 5. Response time of workloads sizes vs. threads’ number

Figure 5 displays the average of observed latencies for an

Apache web server with 30 and 150 threads according to

workloads category. Fig. 5 a, b present the server response time in

case of handling requests for small and medium size resources.

The average delay is increasing with the growth of client count.

The web server latency depends on the number of threads used.

Increasing the number of threads that are used by the multi-

process server can improve the overall performance and decrease

latency. However it is limited by requests load / client amount. In

Fig. 5 c the average delay for handling requests for big size

resource, is shown. As expected, the delay is related to network

bandwidth / capacity. The improvement requires, in that case, a

change of the network connection.

5.3. Discussion

We summarize our observations study as follows:

 Web latency depends on two key metrics: load size and

number of worker threads in the kernel.

 The optimization of Apache features is possible.

 Apache HTTP server is efficient at creating additional

processes if needed.

 Misconfiguration of a server may have an impact on its

performance.

 Web server latency is reduced when we use a large number of

threads.

For different number of threads assigning configurations,

latency profiles are changed. A server can handle many concurrent

connections in the same time by increasing the amount of its

worker threads. That provides the availability of services. In our

experiments, we used small amount of threads because our LAN

network is smaller. However, in the case of wide area network

(WAN), the server needs numerous threads to process many

thousands of requests.

6. Conclusion

To improve web servers’ performance, many techniques were

explored in both web applications and servers’ kernels. This paper

explores a performance study of web server at LAN network. In

fact, we focused to increase network server availability through

reducing web latency on server kernel. We experimentally studied

Apache web server behavior under several loads and with

different server configurations and we observed their impact on

the server response time. To optimize web latency, the

modification of web server configuration in process / threads

handling module, was made. For the same conditions, the

improvement of the server performance and the change of the

latency profiles were obtained.

This research is made to evaluate performance of one web

server. In the future, we are going to analyze the performance of

web servers’ cluster and to understand their behavior issues. We

plan also to analyze load balancing system which is responsible

for dispatching requests to servers following certain load

balancing algorithms.

Acknowledgement

Work partially funded by the European Commission under the

Erasmus Mundus E-GOV-TN project (Open Government data in

Tunisia for service innovation and transparency) - EMA2; Grant

Agreement nº 2013-2434/001-001.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 10 20 30 40 50 60 70 80

A
V

ER
A

G
E

D
EL

A
Y

[S
]

CLIENTS AMOUNT

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80

A
V

ER
A

G
E

D
EL

A
Y

[S
]

CLIENTS AMOUNT

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80

A
V

ER
A

G
E

D
EL

A
Y

[S
]

CLIENTS AMOUNT

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2017 23

References

[1] Aaqib S. M., Sharma L.: Analysis of Delivery of Web Contents for Kernel-mode

and User-mode Web Servers. International Journal of Computer Applications,

1/2011.

[2] Almeida J. M., Almeida V., Yates D. J.: Measuring the behavior of

 a World Wide Web server. High Performance Networking Conference, New

York 1997.

[3] Apache Software Foundation 2016. Apache HTTP server version 2.4,

https://httpd.apache.org/docs/2.4/mpm.html.

[4] Apache Software Foundation 2016. Apache MPM Event. Available from

https://httpd.apache.org/docs/2.4/mod/event.html.

[5] Arlitt M., Williamson C.: Understanding Web server configuration issues.

Software: Practice and Experience 34(2)/2004, 163–186, [DOI:

10.1002/spe.575].

[6] Aron M., Druschel P.: TCP implementation enhancements for improving Web

server performance. Technical Report TR99-335, Rice University, July 1999.

[7] Banga G., Druschel P.: Measuring the capacity of a Web server under realistic

loads. Baltzer Science Publishers BV, 1999, 69–83.

[8] Boyed-Wickizer S., Clements A. T., Mao Y., Pesterev A., Frans-Kaashoek M.,

Morris R., Zeldovich N.: An Analysis of Linux Scalability to Many Cores.

OSDI'10 Proceedings of the 9th USENIX conference on Operating systems

design and implementation, 2010, 1–16.

[9] Chandranmenon G. P., Varghese G.: Reducing Web Latency Using Reference

Point Caching. In proceeding of IEEE INFOCOM 2001.

[10] Choi G. S., Kim J., Ersoz D., Das C. R.: A Multi-threaded Pipelined Web

Server Architecture for SMP/SoC Machines. International World Wide Web

Conference Committee (IW3C2), Chiba, Japan, 2005, 730–739.

[11] Dodge R., Menascé D. A.: Prefetching inlines to improve web server latency.

Published in the Proc. of the Computer Measurement Group Conference,

Anaheim, CA, 1998.

[12] Faber T., Touch J., Jue W.: The Time-Wait state in TCP and its Effect on Busy

Servers. In Proceedings of IEEE INFOCOM ’99, March 1999.

[13] Hu Y., Nanda A., Yang Q.: Measurement, analysis, and performance

improvement of the Apache Web server. The 18th IEEE International

Performance, Computing, and Communications Conference

(IPCCC’99), Phoenix/Scottsdale, Arizona 1999.

[14] Marshall D.: Threads: Basic Theory and Libraries. 5/1999. Available from

https://www.cs.cf.ac.uk/Dave/C/node29.html.

[15] Nahum E., Barzilai T., Kandlur D.: Performance Issues in WWW Servers.

IEEE/ACM Transactions on Networking Conference, 2/2002.

[16] Padmanabhan V. N., Mogul J. C.: Improving HTTP Latency. Computer

Networks and ISDN Systems 12/1995, 25–35.

[17] Ruan Y., Pai V. S.: The Origins of Network Server Latency & the Myth of

Connection Scheduling. SIGMETRICS/Performance’04, New York, NY, USA,

2004, [ACM 1-58113-664-1/04/0006].

[18] Savoia A.: Web Page Response Time 101. The software testing and quality

engineering magazine STQE, July/August 2001, 48–53.

[19] Tanenbaum A. S.: Modern Operating Systems, 2nd Edition, Jan 25, 2002,

81–100. Available from http://www.cs.vu.nl/~ast/books/mos2/sample-2.pdf.

[20] Viles C. L., French J. C.: Availability and Latency of World Wide Web

Information Servers. The USENIX Association, Computing Systems 8(1)/1995,

61–91.

M.Sc. Fatma Mbarek

e-mail: fmbarek@iis.p.lodz.pl

She received her bachelor degree in Computer Science

in 2012 and her M.Sc. degree in Computer Systems

and Network Security in 2014 from Faculty

of Sciences of Gabes, Tunisia.

She is currently a Ph.D. student at Institute of Applied

Computer Science of Lodz University of Technology

under Erasmus Mundus EGOV-TN Project.

Her research focus on Network Security, Network

and Server performance.

D.Sc. Eng. Volodymyr Mosorov

e-mail: w.mosorow@kis.p.lodz.pl

He received the M.Sc. and the Ph.D. degrees in

telecommunication from the Lviv Polytechnic

National University, Ukraine in 1983 and 1998,

respectively. In 2009 he received the DSc. Degree

(Habilitation) in Computer Science from AGH

University of Science and Technology in Cracow,

Poland.

He has been working in the Institute of Applied

Computer Science (previously the Computer

Engineering Department), at the Faculty of Electrical,

Electronic, Computer and Control Engineering, TUL

since 2000, currently as a Professor of Lodz

University of Technology.

Ph.D. Eng. Rafał Wojciechowski

e-mail: r.wojciechowski@kis.p.lodz.pl

In 2001, he received the M.Sc. degree in Software

Engineering and Networking Systems from the Lodz

University of Technology. In 2008, he received the

Ph.D. degree in Computer Science from the Lodz

University of Technology.

He is working as an Assistant Professor at Institute

of Applied Computer Science of Lodz University

of Technology.

otrzymano/received: 30.09.2016 przyjęto do druku/accepted: 01.06.2017

https://httpd.apache.org/docs/2.4/mpm.html
https://httpd.apache.org/docs/2.4/mod/event.html
http://www.informit.com/store/modern-operating-systems-9780130313584?w_ptgrevartcl=Operating+System+Threads_25075
http://www.cs.vu.nl/~ast/books/mos2/sample-2.pdf
mailto:fmbarek@iis.p.lodz.pl
mailto:w.mosorow@kis.p.lodz.pl
mailto:r.wojciechowski@kis.p.lodz.pl

