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Abstract In this paper, we investigate the inverse problem for the electric field so-called copper mine problem. In general, this task assumes detection of all 

air gaps. Gaps are localised above ceiling in a copper mine. Such task can be considered as application of the electrical impedance tomography. In order 
to solve forward problem there was used the boundary element method or the finite element method. The inverse problem is based on the level set method. 

There was considered extension of boundary element method (BEM). For simplicity zero order approximation has been chosen. The BEM has been 

connected with the infinite boundary elements. Hence, open domain problems with infinite boundary curves can be analysed. For such domain, we have 
solved the Dirichlet problem for two-dimensional Laplace’s equation. The proposed numerical model has been verified.  
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WYKRYWANIE SZCZELIN POWIETRZNYCH W CHODNIKU KOPALNI MIEDZI  

ZA POMOCĄ ELEKTRYCZNEJ TOMOGRAFII IMPEDANCYJNEJ 

Streszczenie W tym artykule przyjrzymy się problemowi odwrotnemu dla pola elektrycznego na tak zwanym problemie kopalni miedzi. Głównym zadaniem 

w tym zagadnieniu jest wykrycie szczelin powietrznych, które są zlokalizowane w stropie kopalni. Takie zadanie można rozwiązać za pomocą elektrycznej 

tomografii impedancyjnej. W celu rozwiązania zagadnienia prostego można użyć metody elementów brzegowych (MEB) lub metody elementów 
skończonych. Zagadnienie odwrotne zostało oparte na metodzie zbiorów poziomicowych. Dla uproszczenia zostały zastosowane elementy zerowego rzędu. 

Metoda elementów brzegowych została rozszerzona o elementy nieskończone. Stąd problemy otwarte domeny z nieskończonymi brzegami mogą być 

analizowane. Dla takiej domeny, musimy rozwiązać zagadnienie Dirichleta dla równania dwuwymiarowy Laplace'a. Zaproponowany model numeryczny 
został zweryfikowany. 

Słowa kluczowe: zagadnienie odwrotne, metoda elementów brzegowych, tomografia impedancyjna 

Introduction 

In this paper, we propose algorithm based on the combination 

of the boundary element method (or the finite element method) 

and the level set method to solve the inverse problem arising from 

electrical impedance tomography (EIT) [11–14]. The 

representation of the boundary shape and its evolution during an 

iterative reconstruction process is achieved by the level set method 

[2, 5–8, 15]. In our numerical algorithm we have used the gradient 

technique in order to calculate the velocity. This idea has been 

applied successfully in the context of inverse problem [3, 12, 16].  

We focus our attention on so-called copper mine problem. 

Generally, this problem involves the detection of all air gaps are 

located above the roof of the copper mine (see Fig. 1). This task is 

very important for safety reasons. It could be done EIT. 

 

Fig. 1. Cross section of a copper mine, green and red circles denotes current and 

voltage electrodes, respectively, the boundary of air gap have to be localised as the 

final solution of the inverse problem 

The electrical impedance tomography is very important field 

of research nowadays. It possesses many applications, for example 

this technique may be used in medical imaging, geophysics and 

other scientific areas. However, EIT is not easy to use due to 

necessity of solving the inverse problem during calculations. In 

three dimensional cases this requires a lot of computational effort. 

Using the level set method and the finite element method coupled 

together is proper way to solve the inverse problem. In particular 

all gaps in copper-mine ceiling can be localized. 

1. Boundary element method 

Physical phenomena are described usually by sets of 

differential equations. Numerical techniques give us opportunity 

to find approximate solutions of differential equations which 

cannot be solved by means of analytical ones. Among various 

numerical tools let us concentrate our attention on the boundary 

element method. BEM can be effectively employed on condition 

that partial differential equation can be transformed to integral 

form. Additionally, the Green’s function has to be calculated. The 

explicit form of this one is desired. Often BEM can be easy 

coupled with other numerical methods or even analytical ones 

[1, 4]. Application of infinite boundary elements (IBEs) in BEM is 

rather less common because of difficulties with accurate numerical 

calculations of integrals with infinite limits of integration. In this 

paper we propose the generalisation of classical BEM with 

constant element interpolation for field function and its normal 

derivative by coupling with IBEs. For simplicity we consider 

Laplace’s equation in two spatial dimensions. 

Exterior domain with open boundary curve cannot be 

completely discretised by standard boundary elements with finite 

length. Hence, in the numerical model the IBEs should be 

introduced. So far several kinds of such boundary elements have 

been researched [9, 10, 17]. In case of IBEs one have to select 

interpolation functions which carry out appropriate conditions. In 

this paper we propose utilisation of the interpolation functions 

with exponential decay. This approach assumes that along IBEs 

the solution of differential equation and its normal derivative tend 

exponentially to zero. Speed of decay is described by one positive 

parameter. 

It is clear that in realistic technical problems domains are 

usually finite. However, some engineering phenomena can be 

considered as unbounded domain problems and they are 

effectively solved using infinite elements.  

Section 3 is the heart of this work and contains explanation of 

the theoretical model. The third section is devoted to numerical 

results and conclusions. 

Let us consider the Laplace’s equation in two-dimensional 

Cartesian coordinate system: 

 
   (   )

   
 
   (   )

   
   (1) 
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where (   )  . We assume that   is homogeneous open set 

in general. Additionally electrical potential (u) or its normal 

derivative (q) is known for all boundary points. The differential 

problem defined in described manner may be regarded as forward 

problem for the electric field. Starting point for our research is 

typical for BEM integral equation, where the boundary curve is 

divided into N elements: 

 (  ⃗⃗ ) (  ⃗⃗ )  ∑∫  (  )
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Only three values of function c are possible for constant 

boundary elements. If a given point belongs to boundary of 

domain  , then the value equals 0.5. The value of function c 

equals 1, when a given point lies inside of   and equals 0 in other 

cases. The Green’s function u* may be obtained by solving the 

fundamental equation and is given by the following formula: 
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where A is a positive constant. Function q* represents derivative 

of the Green’s function in normal direction appointed by unit 

vector  ⃗ (  ). After elementary calculations we get: 
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The vector formula for j-th constant boundary element is given by: 
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In order to extend our theoretical formalism into cases of open 

domain problems with infinite boundary curves, we have to 

introduce some modifications. Those modifications are 

attributable to infinite elements, which must be added to the set 

containing all finite boundary elements. If both quantities u and q 

are constant along given IBE, then some integrals appearing in 

BEM will be divergent. This difficulty disappears if we assume 

that quantities u and q tend asymptotically to zero.  

The key step in our generalisation is proper choice of 

interpolation of u and q along IBE. If the boundary element is 

finite and we have three values for each quantity (three nodes), 

then the interpolation can be defined in the following way: 
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where,   〈    〉,   ( ) are so-called interpolation functions: 
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One should notice that the function   ( ) takes value 1 for his 

“own” node and it takes value 0 for all other nodes. First of all, in 

order to expand the theory on IBEs we should multiply equations 

(7) by appropriate exponential factors. Every factor not have to 

modify the value of the interpolation function for her “own” node 

and it have to tends to zero for asymptotical values of the 

parameter  . For subsequent considerations let us assume 

  〈     〉. This conditions are satisfy when: 
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Positive and dimensionless parameter    is responsible for speed 

of decay of electrical potential and its normal derivative along 

IBEs. Since for constant elements we have          and 

        , so after changing   ( ) to   ( ) formulas (6) 

becomes: 

 ( )      ( ) 
  ( )      ( ) (9) 

where: 

   ( )  ∑   ( )
 
        (10) 

is the sum of the interpolation functions providing exponential 

decay. Generally, the sum (10) can be expressed as follows: 
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In above expression we assume that       when the set of 

admissible values for parameter representing the IBE takes form 

   〈     〉, and       when    〈     〉. Let us notice 

from formula (11) that in case of discussed elements the sum of 

interpolation functions is not equal one. The graph of the function 

  ( ) for several selected parameters    is shown in Figure 2. 

This figure shows unequivocal oscillations for small values of   . 

Therefore, during numerical calculations the condition       

should be satisfied. One can notice that the amplitude of 

unphysical oscillations decreases when    is larger and larger. 

On this stage of consideration it is possible to write down the 

new version of integral equation (2). Collecting previous 

modifications and making discretization we obtain: 
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It is natural that the first and the last element of the boundary are 

infinite. The other N – 2 boundary elements have finite length. 

Equation (12) represents model in which area   is described by 

one open curve only. However, generalisation of the formula (12) 

is easy and may be done by adding appropriate terms. 

 

Fig. 2. The sum of the interpolation functions for IBEs defined by equation (11) 

(where s0 = +1) versus the curve parameter ξ for selected coefficients ξe 

2. Electrical Impedance Tomography 

Efficient algorithms for solving forward and inverse problem 

in electrical impedance tomography have to be developed in order 

to use this approach for practical tasks. Moreover, it is necessity to 

improve performance of selected numerical methods. Typical 

problem in EIT requires identification of unknown internal area 

from near-boundary measurements of the electrical potential. It is 

assumed that the value of the conductivity is known in 

subdomains whose boundaries are unknown. Geometrical 

structure of the problem researched in this paper is shown in 

Figure 7. Boundary element method is well known and effective 

numerical technique used to solve partial differential equations. 

Infinite boundary elements give us possibility to solve equations 

with boundaries described by open curves. Proposed model 

consists of several numerical methods. The optimisation 

algorithm, which minimalizes the objective function is shown in 

Figure 3.  
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Fig. 3. Block diagram of the optimisation algorithm 

3. Numerical results 

The definite integrals present in equation (12) have been 

calculated by means of Gauss-Legendre quadrature, Gauss-

Laguerre quadrature and Gauss quadrature with logarithmic 

weight function. Some diagonal integrals have been calculated 

analytically. The appropriate method has been chosen according to 

existence of singularity and type of domain of integration 

(finiteness or infiniteness). In numerical experiments we set 

                 . Let us introduce open domain, where 

unit of length is the meter. The sketch of geometrical structure is 

given in Figure 4. One can notice that our geometry contains four 

IBEs. Whole boundary of the domain   is divided into forty 

elements (N = 40). Exact boundary conditions are expressed as: 

  (   )  {
         
         

 (13) 

In case of Laplace’s equation (1), Dirichlet problem (13) has 

analytical solution. Normal derivative q is trivial to obtain and it 

takes following form on the boundary of the domain  : 

  (   )  {
             

             
 (14) 

However, one should remember that electrical potential tends 

exponentially to zero along IBEs. Therefore, parameter     should 

be large enough in order to create good approximation of 

conditions (13). Fig. 5a shows electrical potential for all nodes. 

 

Fig. 4. The boundary problem: unit normal vectors are always outward pointing, 

positions of infinite elements are indicated 

 

Fig. 5. The left graph a) presents the boundary conditions imposed on Laplace’s 

equation, whereas the right graph b) shows the numerical solution 

The solution of considered problem is given in Fig. 5b. From 

Fig. 6 we can see that percent errors are less than 0.7%. Good 

agreement of the numerical result with exact solution (14) is 

demonstrated. As we expected, reflectional symmetry exists in 

Fig. 6. Additionally, percent errors are the same for each straight 

line (x = 0; x = m). The numerical results show that our theoretical 

formalism gives appropriate approach to forward problem 

described by open boundary curves.  

 

Fig. 6. The percent error obtained for the numerical solution of the Dirichlet problem 

 

Fig. 7. Boundary problem: normal vectors and nodes on boundary elements are 

indicated 

The definition of the boundary problem is shown in Figure 7. 

Normal vectors and nodes on boundary elements are indicated 

here. Figure 8 presents the image reconstruction of the copper-

mine ceiling using BEM. The picture shows different object and 

the reconstructed image. The original object is noted by the blue 

line and the final figure is red. Figure 9 presents the image 

reconstruction in EIT obtained through the finite element method. 

The final contour represents the zero value of the level set 

function. The process of reconstruction is good, because the 

region borders are located nearly the object edges. 
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a) 

 

b) 

 

Fig. 8. Reconstruction by BEM and the level set method for the square area of the 

ceiling: a) the zero level set function and the searched object. b) the final 

reconstruction 

 

 

Fig. 9. Reconstruction by the finite element method and the level set method for the 

square area of the ceiling: a) the zero level set function and the searched object, 

b) the final reconstruction 

4. Conclusion 

In this paper, there was presented the method to solve the 

inverse problem for the electric field so-called copper mine 

problem. The level set idea is the good tool to the topological 

changes of the interface and gives the good quality reconstruction 

of unknown areas with one or many objects. All gaps in copper-

mine ceiling were properly localized. This problem was motivated 

by electrical impedance tomography. Gaps were localised above 

ceiling in a copper mine. The applications were depended on a 

specially built model. There were used the boundary element 

method or the finite element method with the level set method to 

solve this problem. The level set function techniques were shown 

to be useful in this system. The boundary (finite) element method 

with the level set method gave the successfully results to identify 

the unknown properties of the object. 
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