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Abstract 200 words

Full-scale field tests of dynamic rockfall have been performed on a flexible SPIDER Avalanche System to study the dynamic 

force distribution along the foundations under dynamic loading. Therefore, an anchor to measure dynamic tensile forces and 

a pile to measure dynamic compressive forces were each equipped with strain gauges. Furthermore, a static pull loading test 

with load steps of one-minute duration was performed on the anchor to highlight the difference between dynamic and static 

loading. Effective kinetic energies applied on the net of the SPIDER Avalanche System range from 25 to 492 kJ with impact 

velocities between 17 and 25 m/s. The results show that the dynamic forces close to the pile- and anchor head are higher and 

that they are decreasing with increasing distance of pile and anchor. However, the dynamic tensile force distribution is non-

linear over the length of the anchor, whereas the dynamic compressive force distribution is linear along the pile length. The 

comparison of static and dynamic tensile forces shows that dynamic tensile forces are depleted within a shorter distance of 

the anchor compared to the static tensile forces. Dynamic tensile forces present 25% less in value than the static tensile 

forces. 

Keywords 4-6

Dynamic force, rockfall, field test, static pull loading test, kinetic energy, strain gauge 

1. Introduction

Foundations are an essential part of protection structures as they transmit the occurring loads from the 

upper structure into the soil. Such structures are able to withstand static snow pressure as well as 

dynamic rockfall or debris flow impacts. In the last decades, a lot of effort has been invested to improve 

and strengthen the upper structure to stop rockfall successfully, achieving kinetic energies of 10’000 kJ 

for flexible rockfall protection structures and 500 kJ for flexible avalanche protection structures. Field 

measurements of rope forces due to rockfall impacts are used to dimension the foundations. However, 

the dimensioning of anchors and piles is calculated considering the forces to be only static. So far, no 

effort has been made to improve the dimensioning of the foundations due to dynamic impacts and to 

investigate a more appropriate load transfer concept. Even in the Guideline for European Technical 

Approval of Falling Rock Protection Kits, also known as ETAG 027 (EOTA 2013), which outlines the 

testing procedures for rockfall barrier systems, the foundation is excluded, since it is not considered part 

of the system. Therefore, a general lack of understanding regarding load transfer between foundations 

and soil, as well as system capacity, remains a fundamental obstacle for design. First aspects of a kind 

of safety concept on the anchor design are given in the ONR 24810 (ONR 2017), where the forces of 

the upslope anchors are summarized as a scalar. Hence, there is a need to quantify the different 

behaviour between static and dynamic load transfer along anchors and piles. 

Anchors, typically frictional bolts, and flexible rope anchors are used as foundation part of a flexible 

avalanche prevention structure, made from high-tensile spiral rope nets (SPIDER® Avalanche, 

company Geobrugg AG). During winter, those prevention structures are subjected to static loads from 

the snow cover preventing the initiation of snow avalanches on steep slopes. Once snow cover has 

melted away, the flexible avalanche prevention structures are able to provide efficient protection against 

rockfall. A significant difference between a flexible SPIDER Avalanche System and a flexible rockfall 

barrier is the absence of braking elements. Due to the elasticity of the constructed net, the SPIDER 

Avalanche System can withstand highly dynamic rockfall events without damage. However, 

measurements of forces within these types of foundations during dynamic loading as well as the 

distribution into the soil are still missing. Although, there is an increasing amount of studies on energy-
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absorbing rockbolts (Li et al. 2014; Kabwe and Wang 2015) which focus on dynamic solicitations, only 

few studies are reported on conventional frictional anchors. Many studies performed until now have 

been conducted in laboratory (Ansell 2005; Li 2012) or analysed with numerical methods (Mortazavi et 

al. 2013; Tong-bin Zhao et al. 2015; St.-Pierre et al. 2009; Ivandić 2003) as in situ experiments with 

dynamic loadings are cost expensive and present restrictions. Tests performed with Distributed Optical 

Sensing to measure static axial loading of a fully grouted rock bolt reveal that the measured axial strain 

along the rock bolt is exponential in form (Hyett 2013). Arndt (2014) and Turner (2009) performed 

vertical drop tests on various barrier fence systems, as well as post and post foundation direct impact 

tests, where the forces on the base of the posts were recorded. Ostermayer (1977) performed static pull 

out tests on anchors, which were instrumented with strain gauges and described the time dependent 

redistribution of friction forces along the anchor showing that forces change due to the rheological 

properties of soil. Shu (2005) performed field tests with different anchor types and found that the 

deformation of anchor heads under vertical tensile loading is non-linear. The authors state that the 

overall stability of a protection system is critically dependent on the performance of the anchors. 

Furthermore, it is pointed out that present knowledge of anchors is limited to pullout failure and 

empirical guidelines. Therefore, the study of in situ behaviour of frictional anchors under dynamic 

loading is necessary. With this knowledge, the elaboration of a new dimensioning concept, which 

considers the force distribution along anchors under dynamic loading in combination with a 

probabilistic model to reduce the anchor dimensions, as well as a safety design for dynamically loaded 

anchors, will lead to a more economical design of anchors. The objective of this research is to 

investigate the load distribution along the anchors of a flexible structure due to dynamic loading from 

rockfall in field tests.  The study focuses on the fundamental issue related to the comparison of dynamic 

and static loading behaviour of the foundations, independently from the type of upper structure. 

2. Experimental setup, instrumentation and analysis

The field tests were performed at the DTC Dynamic Test Centre AG in Vauffelin (Switzerland) 

following the Guideline for European Technical Approval of Falling Rock Protection Kits (ETAG027 

2013). A flexible avalanche protection structure, the SPIDER Avalanche System, was set up. It has a 

modular design and consists of swivel posts, pressure plates, guy ropes, anchors and SPIDER spiral 

rope nets as the supporting flexible surface. Four posts were set up with a horizontal distance of 3.5 m 

between each of them.  The posts are placed on pressure plates. The top of the posts are anchored via  

guy ropes downhill to ground anchors. The SPIDER spiral rope net is fixed on the top of the posts and 

anchored uphill to ground anchors. The overall height of the protection structure is 3.5 m. As the 

SPIDER Avalanche System is initially designed to prevent the initiation of an avalanche, it is not 

equipped with dissipating devices. An overview of the flexible avalanche prevention structure and its 

foundations is given in Figure 1. 

Figure 1 Schematic side view of a SPIDER Avalanche System. The arrows mark the directions of loading along the 
instrumented pile (compression) and anchor (tension). a) shows the front view of the experiment.
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Due to the structural behaviour of the SPIDER avalanche system, a dynamic impact into the net invokes 

compressive forces along the swivel posts and the pressure piles underneath and tensile forces along the 

guy ropes and its anchors underneath. 

The pressure pile and anchor of the impact zone of the SPIDER Avalanche System were built as micro 

piles. They consist of a hollow round steel bar with a ribbed steel tube, which is grouted over its whole 

length. Therefore, it guarantees a mechanical interlocking with the surrounding soil. In its hollow area 

of 26 mm diameter, a thin steel bar was implemented. On the thin steel bar four strain gauges were 

glued and protected with a special kit. The outer diameter of the round steel bar is 52 mm and after 

grouting the diameter of the cased micro pile was d = 100 mm. The cross-section of the micro piles is 

shown in Figure 2. Note that only under one of the posts of the impact zone of the SPIDER Avalanche 

System the foundation was performed as pile. This pile was set to get measurements of dynamic 

compressive forces. The other posts have ground plates to distribute the forces into the soil.

Concerning the pressure pile, the effective cross-sectional area consists of the area of the steel rod and 

the area of the circumfluent grout (Ac = 7854 mm2).  For the anchor instead, which is loaded under 

tension, only the steel parts were considered and not the area of grout. Therefore, the cross-sectional 

area consists of the circular cross-sectional area of the steel bolt At and the small steel profile with the 

rectangular area As of 1274 mm2, where the strain gauges are glued on. The modulus of elasticity for 

steel is given as Es = 210 000 N/mm2 and for the injection grout is Ec = 37 000 N/mm2. The granularity 

of the injection grout is given as 0-0.5 mm. To calculate the forces from the strain gauges 

measurements, the cross section of grout area Ac is calculated as

 

Ac  r2  At  As 

 

where r is the radius of the anchor’s and pile’s cross section.

With the relation of moduli of elasticity between steel and grout of n = Es/Ec and 

 

f 
Ac

n
 At  As

 
 
 

 
 
 * E s *103

we calculate the tensile or compressive force F [kN] 

 

F  f * *106

where  is the recorded elongation of the strain gauge.

One of the posts of the impact zone of the SPIDER Avalanche System was equipped with a strain gauge 

full bridge, located ca. 60 cm above the ground. The post was built as a swivel support and placed on 

the squared ground plate with a side length of 250 mm. In order to record the dynamic behaviour of 

forces under compression, in the elongation of the post a pressure pile with 75° of inclination and a 

length of 5.215 m was set into the soil (see Figure 1).  The pile was dimensioned after the technical 

guideline of avalanche supporting structures in the starting zone due to static snow loads (Margreth 
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2007). The pile was equipped with four strain gauges along its length. The positions of strain gauges 

(DMS 1 to DMS 4) are seen in Figure 2. The instrument cables of the strain gauges were led through 

the centre of the pressure pile into the anchor head and then out of the ground plate laterally.

Additionally, the forces in the downhill rope, which anchors the SPIDER Avalanche System from the 

top of the swivel support to the ground, was recorded with a force cell. The force cell is placed between 

the end of the rope and the head of the anchor. In elongation of the rope, an anchor with 45° of 

inclination to the horizontal and a length of 5.105 m was set and equipped with four strain gauges 

(positions see Figure 2).

All dynamic load experiments were recorded with a high-speed camera, taking 500 frames per second. 

Normed EOTA (European Organization for Technical Assessment) blocks with a mass from 335 kg to 

3238 kg were accelerated with a modern sledge installation and then thrown into the net. Through 

retarding the sledge with a bending iron brake, the block falls off its mounting and topples in a free fall 

over a distance of about six meters into the centre of the net. By analysing the high-speed movies, the 

impact height and impact speed were established. To determine the trajectory, the forces and the energy 

absorption, the accelerations of the EOTA-block in its centre of gravity were measured, using two 

three-axis accelerometers (2000 g) and an angular velocity sensor (9000 °/s). The measurement 

frequency was performed with 20 kHz. 

Figure 2 Left: Schematic picture of the pressure pile with specification of the positions of the strain gauges. The total length 
of the pile is 5215 mm. Upper Right: schematic cross-section of pressure pile and anchor. The steel rod with the strain 
gauges glued on it, is placed in the centre. Lower Right: Photo of grouted anchor with the measurement cables coming out at 
the anchor head.

The sampling rate of the force measurements was recorded with 4.8 kHz using a special software and a 

measurement amplifier (HBM Spider 8). 

Furthermore, a static pull loading test was performed on the same instrumented anchor of the SPIDER 

Avalanche System, which was monitored during the dynamic tests. Seven force loading steps ranging 

between 50 kN and 250 kN were applied to the anchor head with a hydraulic pull load press for a 

duration of one minute each. Along the anchor, the applied static forces were recorded with the same 

setup of instrumentation and positions of strain gauges as for the dynamic tests. The results of static 

loading are compared with the dynamic forces in section 3 “Results and Discussion”.

Soil properties were determined in the laboratory with probes taken from the field. A grain size 

distribution analysis after USCS classification was performed to get the characteristic soil properties. 

The soil material is characterized as fine to coarse gravel, silty sandy with an internal angle of friction 

of 42°, cohesionless. The soil density was investigated with two Standard Penetration Tests (SPT, 63kg 

hammer weight and 75 cm falling height of the weight). The SPT values are shown in the appendix 

(Figure A1). The soil was homogenous within depths from 1 to 6 meters with a number of 5 hits per 10 

cm penetration depth. Over the whole depth no groundwater was apparent.
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Note that within the full-scale field tests the focus was put on the dynamic load transfer per se along the 

anchor and pressure pile and not on the symmetry of load transfer based on the impact zone of the 

SPIDER avalanche net nor on the load transfer behaviour of the SPIDER Avalanche System.

The mean force Fmean acting on the net was determined from the effective kinetic energy absorbed of 

the net and the maximum deflection of the net due to the impact of the block where Fmean = E/s. Fmean is 

used to compare the overall impact energy of each experiment to the forces measured in the anchor and 

pile. E is the kinetic energy [kJ] and s is the maximum deflection of the net in [m]. The effective 

absorbed kinetic energy of the net [kJ] is calculated from the product of the dynamic force Fa in x-

direction and the dynamic deformation s in x-direction. Thereby the dynamic force Fa is calculated by 

the product of the acceleration a of the block in x-direction times the mass m of the block. The dynamic 

deformation s is calculated from the integral over the acceleration ax. In case the net broke (experiments 

3, 4 and 7), the maximum dynamic deformation is taken at the position of the maximum acceleration of 

the block.

3. Results and Discussion

3.1. General overview of the experiments

In total seven experiments have been performed in the field, wherein the applied kinetic energies of the 

block on the SPIDER Avalanche System ranged from 56 kJ to 518 kJ (Murri and Uhr 2011a; Murri and 

Haldimann 2011b; Murri and Uhr 2011c; Murri and Uhr 2012). As the SPIDER Avalanche System did 

not always withstand the kinetic impacts of the block, the effective kinetic energies absorbed of the net 

ranged between 25 kJ and 492 kJ (see Table 1 and Table 2). Impact velocities of the EOTA block ranged 

between 17 and 25 m/s.   

Experiment 1, 2 and 3 were performed during the same day in May 2011. Experiment 1 was charged 

with 56 kJ and experiment 2 with a kinetic energy of 108 kJ. During both experiments the Avalanche 

System could hold back the block without being destroyed. Within the third experiment the SPIDER 

Avalanche System was charged with an applied kinetic energy of 165 kJ, which resulted in an effective 

kinetic energy of only 25 kJ to the System as the net broke. For experiment 4, a new SPIDER 

Avalanche System was set up with a modified net and tested in September 2011 with an applied kinetic 

energy of 203 kJ. There, the net broke but could hold an effective kinetic energy of 141 kJ. Again, a 

new System with a modified net was set up in November 2011, which held the block of experiment 5 

with an effective kinetic energy of 202 kJ. Within the second impact of experiment 6 the effective 

kinetic energy was 298 kJ and the flexible net held the block. In April 2012 a SPIDER Avalanche 

System was set up for experiment 7 and was charged with an applied kinetic energy of 518 kJ, which 

resulted in an effective kinetic energy of 492 kJ on the System as the net broke. Note that the SPIDER 

Avalanche System was subjected to multiple impacts in the experiments Nr. 2, 3 and 6, which means 

that the net has already been deflected before. In order to be able to compare the deflections of the net 

from all experiments, the deflections are analysed from theoretical first contact with the uninfluenced 

net. 

All four strain gauge measurements (DMS) along the pile worked well for the first three experiments. 
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From experiment 4 on, strain gauge number 3 stopped working and from experiment 5 on, strain gauge 

number 2 ceased. The cables of strain gauges 2 and 3 were cut by the ground plate of the post during 

demounting and remounting of the SPIDER Avalanche System, explaining the loss of signal of these 

two strain gauges. In the case of the strain gauge measurement along the anchor, strain gauge number 2 

did not work during any experiments. We attribute this loss of signal to the fact that during the 

installation of the steel bar into the micro pile or during grouting the strain gauge must have been 

damaged.  From experiment 7 on, strain gauge 1 stopped working. Note that all strain gauges in the 

anchor and pressure pile remained outside for one year and were subjected to harsh weather conditions. 

Due to the dynamic impact of the block into the SPIDER Avalanche System the strains in the downhill 

rope, in the pile and along the anchor as well as the pile were recorded over time and then converted 

into forces. Table 1 gives an overview of the measured impact energies and maximum dynamic forces 

for the post and the pile. The negative values represent compressive forces. Table 2 gives an overview of the 

measured impact energies and maximum dynamic forces for the rope and the anchor. 

Figure 3 Time history of the measured dynamic compressive force distribution for the post and along the pile for experiment 
2 with an effective absorbed kinetic energy of 108 kJ.

Figure 3 shows the force distribution over time for Experiment 2 with a kinetic impact energy of 108 kJ 

on the net. The force in the post is depicted over time and underneath the strain gauges DMS 1 to DMS 

4 along the pile. The decrease of force with increasing depth along the pile can clearly be seen. The 

impact of the block to the net lasts about 0.3 ms, then the block gets thrown back from the elastic net. 

The second peak, which lasts about 0.6 ms is due to the elastic reaction of the SPIDER Avalanche 

System. The same behaviour is visible in case of the tensile forces in the downhill rope and along the 

anchor (see Figure A3 in the appendix) and is consistent for all measurements. 

3.2. Force distribution along the pile under compression

The distribution of dynamic forces is investigated as compression loading along the pile. Figure 4 

shows the measured dynamic forces under compression for the post, as well as along the length of the 

pile, for the seven experiments (56 kJ to 492 kJ). The distribution of axial dynamic forces along the pile 

shows a linear decrease of forces with increasing distance along the pile. Close to the pile head the 

dynamic compressive forces are highest and they are decreasing gradually with increasing distance 

along the pile. By increasing the kinetic energy, the increase of forces close to the pile head is much 

bigger compared to the increase of forces towards the end of the pile. With the increase of kinetic 

energy, the slope line of the linear regression becomes steeper. The ground plate, which is situated 

under the post, depletes around 50% of compressive force (for impact energies between 56 and 200 kJ) 

and around 35 % of compressive force for the experiments with kinetic energies between 300 and 490 

kJ. Those measurements (see Table 1, Figure 4 and Figure 6) reveal that the ground plate, which is 

situated at the lower end of the post, namely at the soil surface, transfers a certain amount of applied 

forces from the post via its contact area into the soil. Therefore, the values of dynamic compressive 

forces are disproportionally smaller in the pile head compared to the values in the post. With impact 

energies up to 492 kJ the dynamic compressive forces are already depleted at two third of the pile 
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length.

Figure 4 Measured maximum dynamic compressive forces on the foot of the post and along the pile for seven experiments 
with effective absorbed kinetic energies of the net. m’ and m’’ indicate that those experiments are multiple impacts of the 
setup of experiment m. n’ indicates that the experiment is a multiple impact of the setup of experiment n.

In Figure 5 the percentagewise load distribution for compressive loads is depicted versus the distance 

along the pile. The measured forces on the post correspond to 100% each and the forces along the pile 

are set in relation to the measured force in the post. On the position of DMS 4 the dynamic compressive 

forces of all experiments are less than 3% of the maximum force measured in the post.  

The percentagewise load transfer from the pile to the soil is, for all experiments, consistent due to the 

difference of the E moduli of the pile and the soil and due to the bonded friction of the injection grout 

with the soil. Therefore, the major part of forces is getting depleted close to the pile head and the 

activated friction between pile and soil along the whole length of the pile is proportional to the applied 

load. This shows that a length of effective anchorage is evident.

Figure 5 Percentage of the maximum compressive force along the length of the pile for effective absorbed kinetic energies of 
the net. The reference value, where the 100 percent are attributed to, is the force measured in the post. m’ and m’’ indicate 
that those experiments are multiple impacts of the setup of experiment m.  n’ indicates that the experiment is a multiple 
impact of the setup of experiment n. A linear regression is calculated for the measurements with minimum three points and 
the multiple R squared values are shown in the legend. 

Figure 6 Maximum dynamic compressive forces of the post and the pile over the kinetic impact energy. A linear regression is 
calculated for the measurements with minimum three points and the multiple R squared values are shown in the legend.  

For the dimensioning of piles, it is important to know how much force is transferred from the net into 

the foundations during an impact. Figure 6 shows the change of the maximum dynamic compressive 

forces under different input kinetic energies. With increasing kinetic energy, the dynamic forces in the 

post as well as in the pile increase linearly. Within the same kinetic energy, the forces at the end of the 

pile are lowest and they are increasing towards the pile head. As shown above, the forces measured on 

the post are higher than along the pile. Although the measurements in the post are close together for 

experiment 4 with a kinetic energy Ekin of 141 kJ and experiment 5 with Ekin of 200 kJ respectively, the 

force on DMS 1 is much smaller for the higher input kinetic energy of experiment 5 than of experiment 

4. We attribute this fact to the setup of the SPIDER Avalanche System, which provides slightly 

different boundary conditions after each new setup. As only one of the impact zone posts is equipped 

with measurement devices we cannot guarantee a symmetric loading of both impact zone posts. In 

experiment 4 the equipped post was obviously loaded with comparatively higher forces than during the 

other experiments. This fact can also be confirmed by the video analysis, where the more tensioned 
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downhill rope on the side of the equipped swivel post in comparison to the other side of the unequipped 

post is visible.

The force Fmean acting on the net was determined from the effective energy absorbed from the net and 

the maximum deflection of the net due to the impact of the block with Fmean = E/s, where E means the 

kinetic energy [kJ] and s the maximum deflection of the net in [m]. 

3.3. Force distribution along the anchor under tension

In this section we analyse the distribution of dynamic tensile forces along the anchor. Figure 7 shows 

the measured dynamic tensile forces along the distance of the anchor. The dynamic tensile force 

distribution shows a non-linear behaviour. Whereas close to the anchor head the forces are highest, they 

are decreasing non-linearly over the distance of the anchor. Towards the anchor head, the increase of 

forces due to an increase in impact energy is more pronounced than towards the end of the anchor. The 

dynamic forces of an impact less than 56 kJ are depleted completely within the first 3.5 m of the 

anchor. With a kinetic impact of 492 kJ at the end of the anchor a dynamic tensile force of 10 kN is still 

present. Expressed in percentage, about 20% of the forces remain at the end of the anchor for a kinetic 

energy of 492 kJ. Zhao 2015 has measured a similar behaviour of the distribution of the dynamic tensile 

forces along an anchor. 

Figure 7 Measured maximum dynamic tensile forces on the rope and along the anchor for seven experiments with effective 
absorbed kinetic energies of the net. m’ and m’’ indicate that those experiments are multiple impacts of the setup of 
experiment m.  n’ indicates that the experiment is a multiple impact of the setup of experiment n.

In Figure 8 the percentagewise load distribution for tensile loads is depicted versus the distance of the 

anchor. The measured forces in the downhill rope correspond to 100% each and the forces along the 

anchor are set in relation to the measured force in the downhill rope. On the position of DMS 4 the 

dynamic tensile forces of all experiments range between 1-20% of the maximum force measured in the 

downhill rope.  Although data from the strain gauge DMS 2 are missing, we see a non- linearly 

decreasing force distribution over the length of the anchor. The comparison of force percentages 

between different experiments highlights, that with the smallest kinetic energy of 56 kJ, the forces are 

already depleted at 3.25 m depth of the anchor. For higher kinetic energies the forces reach already the 

end of the anchor in around 5 m depth in the range of 4 to 18% percent, depending on the amount of 

dynamic loading.

Figure 8 Percentage of the maximum tensile force along the length of the anchor for experiments with effective absorbed 
kinetic energies of the net. The reference value, where the 100 percent are attributed to, is the force measured in the downhill 
rope. m’ and m’’ indicate that those experiments are multiple impacts of the setup of experiment m.  n’ indicates that the 
experiment is a multiple impact of the setup of experiment n.

The change of maximum dynamic tensile forces under different input kinetic energies from 25 kJ to 492 

kJ is shown in Figure 9. With increasing kinetic energy, the forces in the downhill rope, as well as in 
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the anchor, increase linearly. Within the same kinetic energy, the forces at the end of the anchor are 

lowest and they are increasing towards the anchor head. The tensile forces measured in the downhill 

rope are higher than the tensile forces along the anchor. The dynamic forces of DMS 1 and of the 

downhill rope Frope are smaller for a kinetic energy of 56 kJ than for the lower effective kinetic energy 

of 25 kJ. This fact is due to the multiple impact on the same SPIDER Avalanche System as the first 

experiment was conducted with a kinetic energy of 56 kJ. Due to the first impact of the block the upper 

construction of the flexible Avalanche System got influenced and the initial elasticity of the net got 

reduced due to plastic deformations from the first impact. Therefore, the flexible Avalanche System and 

the ropes have implemented a deformation due to the impact and are not tensioned anymore compared 

to the initial situation. The load distribution along the anchor seems to behave differently from 

experiment 3, as we do not observe a pronounced decrease in forces from DMS 3 to DMS4.

Figure 9 Maximum dynamic tensile forces in the downhill rope and the anchor over the kinetic impact energy. A linear 
regression is calculated for the measurements with minimum three points and the multiple R squared values are shown in the 
legend.

3.4. Comparison between tensile and compressive loading

The comparison of dynamic force distribution for tensile and compressive loading along the anchor and 

pile does not show the same tendency. We attribute the linear distribution of compressive forces along 

the pile to the stiffness of the pile. A schematic overview of this behaviour is shown in the appendix 

(Figure A2). The whole cross-sectional area of the grouting material is loaded. The stiffness of the 

grouted pile is some order of magnitudes higher than the stiffness of the soil. In the case of dynamic 

tensile force distribution along the anchor, the cross-sectional area of the grouting material is not 

considered, as the tensile stiffness of grout is already exceeded within the smallest kinetic impact 

energy. Therefore, only the very small cross-sectional area of steel is considered and leads to a non-

linear decrease of tensile forces along the length of the anchor. A schematic overview of this behaviour 

is shown in the appendix (Figure A2).

Due to the effective area of the ground plate, a part of dynamic forces is depleted through its effective 

area, which results in a lower dynamic compressive force value compared to the dynamic tensile force. 

Furthermore, as the effective area of the pile is larger (due to the grout area) than in the case of the 

anchor, the compressive forces are depleted within a smaller distance. In case of tensile loading, the 

dynamic forces diminish from anchor head to the anchor end in a non-linear way. There, only the 

effective area of steel is considered and leads to a non-linear decrease of tensile forces along the length 

of the anchor. 

The maximum forces measured in the anchor and in the pile are proportionally smaller than the 

maximum forces in the downhill rope and post situated above. In all seven experiments the downhill 

rope was exposed to the smaller amount of forces than the swivel post and therefore the absolute force 

values are smaller along the anchor than in the pile. This fact is due to the setup of the whole avalanche 

structure.

Due to the structural behaviour of the SPIDER Avalanche System the post and pile were subjected to 
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higher forces, which are around 60% higher than the forces in the downhill rope and the anchor. 

However, the compressive forces, which have higher absolute values than the tensile forces in the 

anchor, are depleted within a shorter distance along the pile. By introducing Fmean, which is acting on 

the SPIDER Avalanche System, this mean force brings the dynamic forces along the post and the 

downhill rope in relation to the whole system. Whereas Fmean is higher compared to the dynamic forces 

in the downhill rope and the anchor (see Figure 6), it is within the same range of dynamic forces in the 

post and the head of the pile (Figure 9). 

3.5. Comparison between static and dynamic loading

A static pull loading test was performed on the anchor. Each force loading step imposed on the head of 

the anchor was kept constant for one minute. The recorded static force values along the anchor were 

taken at the end of each loading step and compared with the forces due to dynamic impact from the 

rockfall. Therefore, the measured dynamic force in the downhill rope was defined as reference value 

and compared to the similar static loading value from the pull loading test (the absolute force values of 

the static pull loading test as well as the normalised force values of static pull loading are shown in the 

appendix, Figure A4 and Figure A5). Figure 10 shows the normalised tensile forces of dynamic and 

static measurement over the distance along the anchor.  The normalised tensile force is calculated as 

quotient in percent between the measured force along the anchor and the measured force in the rope. 

The decrease of forces is supposed to be non-linear in the static case as well as in the dynamic case. 

However, due to the dynamic impact, the tensile forces are smaller than the static tensile forces, 

compared at the same position on the anchor. For a dynamic impact of 300 kJ onto the net, which 

corresponds to a dynamic force of 32 kN in the downhill rope, only 17% of the dynamic force are 

recorded in the lowest part of the anchor at 5 m depth. However, during the static pull loading test 26 % 

of the static forces are recorded at the same depth. A similar behaviour between dynamic and static 

forces is observed in the case where the anchor is tensioned with 64 kN by static loading, which 

corresponds to 60 kN dynamic loading (492 kJ). This result has a fundamental implication for the future 

design of foundations for rockfall and avalanche barriers, depending on the type of loading. Although it 

is not the objective of this paper to define a new design criteria, it is worth to mention that based on our 

results there is a linear relationship between the kinetic energy and the maximum dynamic tensile and 

compressive forces that could be used to design foundations. Obviously, specific tests for different 

combinations of factors (soiltype, foundation type, upper structure,...) are needed to define the design 

criteria.

In the dynamic case, the anchor behaves elastoplastically and the forces along the anchor are dissipated 

over a shorter length. In the static loading case, the anchor behaviour is more plastic, depending on the 

relaxation time of the soil-anchor frictional forces. This behaviour is described in the study of 

Ostermayer (1977), who measured the time dependent variation of frictional forces along an anchor 

during 300 minutes.  

Figure 10 Experiment with 298 kJ: comparison of the static forces from the pull loading test with the dynamic forces from 
experiment 6 acting along the anchor 

4. Conclusion
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Full-scale field tests have successfully been performed under tension as well as under compression and 

the consequences of dynamic impacts on an anchor and a pile of a SPIDER Avalanche System were 

investigated for kinetic energies up to 492 kJ. 

Based on the experiments we can conclude that:

- Dynamic compressive force distribution along a pile decreases linearly with increasing pile length.

- Dynamic tensile force distribution along an anchor decreases non-linearly with increasing anchor 

length.

- Dynamic tensile forces are depleted within a shorter distance of the anchor compared to the static 

tensile forces. 

The axial force distribution along anchor and pile clearly differs between static and dynamic loading 

within a range of 25% for the investigated applied kinetic energies. The ground plate under the post 

depletes 35 to 50% of forces in the case of compressive loading. The results of this study show that for 

the optimization of foundation design in the case of flexible systems the type of loading should be 

considered. Specifically, for the dynamic loading shorter anchor lengths are needed compared to static 

loaded ones. 

The experiments verified that all load carrying components of the SPIDER Avalanche System are 

reliable when dynamically loaded. Further performed experiments reveal that the SPIDER Avalanche 

System is able, with a modified net, to take up around 500 kJ of rockfall energy compared to traditional 

steel frame constructions, which can only absorb up to maximum 50 kJ. The presented data are the first 

results for such flexible systems and they highlight the need to make further investigations in order to 

develop a new dimensioning concept for foundations under dynamic loading.
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Appendix
In Figure A1 the result of a Standard Penetration Test (SPT) over a depth of 6 meters is presented. The 

amount of hits for 10 cm vertical displacement is depicted over the depth in m. The skin friction value 

of the tube is depicted with the dashed-dotted line.

Figure A1 Data obtained from the SPT test: The amount of hits for 10 cm vertical displacement is depicted over the depth in 
m. The skin friction value of the tube is depicted with the dashed-dotted line.

Figure A2 sows a schematic sketch of the stress distribution along the length of an anchor/pile during 

dynamic loading. With increasing distance along the pile the axial stress decreases linearly and the 

shear stress remains constant. With increasing distance along the anchor the axial stress and shear stress 

decrease non-linearly.

Figure A2 Schematic sketch of the stress distribution along the length of an anchor/pile during dynamic loading. 

Figure A3 shows the force distribution over time for Experiment 2 in the downhill rope and along the 

anchor with strain gauges DMS 1 to DMS 4 with a kinetic impact energy of 108 kJ on the net. The 

decrease of force with increasing depth along the anchor can be seen clearly.

Figure A3  Time history of the measured dynamic tensile force distribution for the downhill rope and along the anchor for 
Experiment 2 with an effective absorbed kinetic energy of 108 kJ.

Figure A4 shows the measured maximum static tensile forces on the rope and along the anchor for each 
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loading step of the static pull loading test.

Figure A4 Measured maximum static tensile forces on the rope and along the anchor for each load step of the static pull 

loading test.

Figure A5 shows the percentage of the maximum static tensile forces on the rope and along the anchor 

for each load step of the static pull loading test.

Figure A5 Percentage of the maximum static tensile forces on the rope and along the anchor for each load step of the static 

pull loading test.
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Table 1 Overview of all dynamic rockfall experiments performed with results of effective absorbed kinetic energy of the net, 
maximum deflection s of the net, acting force Fmean on the net and recorded maximum dynamic compressive forces in the post 
and along pressure pile (DMS 1 to DMS4). The negative values represent compressive forces.
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Table 2 Overview of all dynamic rockfall experiments performed with results of effective absorbed kinetic energy of the net, 
maximum deflection s of the net, acting force Fmean on the net and recorded maximum dynamic tensile forces in the downhill 
rope and along the anchor (DMS 1 to DMS4). 
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Figure Captions

Figure 1 Schematic side view of a SPIDER Avalanche System. The arrows mark the directions of loading along the 
instrumented pile (compression) and anchor (tension). a) shows the front view of the experiment.

Figure 2 Left: Schematic picture of the pressure pile with specification of the positions of the strain gauges. The total length 
of the pile is 5215 mm. Upper Right: schematic cross-section of pressure pile and anchor. The steel rod with the strain 
gauges glued on it, is placed in the centre. Lower Right: Photo of grouted anchor with the measurement cables coming out at 
the anchor head. 

Figure 3 Time history of the measured dynamic compressive force distribution for the post and along the pile for Experiment 
2 with an effective absorbed kinetic energy of 108 kJ.

Figure 4 Measured maximum dynamic compressive forces on the foot of the post and along the pile for seven experiments 

with effective absorbed kinetic energies of the net. m’ and m’’ indicate that those experiments are multiple impacts of the 

setup of experiment m.  n’ indicates that the experiment is a multiple impact of the setup of experiment n.

Figure 5 Percentage of the maximum compressive force along the length of the pile for effective absorbed kinetic energies of 

the net. The reference value, where the 100 percent are attributed to, is the force measured in the post. m’ and m’’ indicate 

that those experiments are multiple impacts of the setup of experiment m.  n’ indicates that the experiment is a multiple 

impact of the setup of experiment n. A linear regression is calculated for the measurements with minimum three points and 

the multiple R squared values are shown in the legend.

Figure 6 Maximum dynamic compressive forces of the post and the pile over the kinetic impact energy. A linear regression is 

calculated for the measurements with minimum three points and the multiple R squared values are shown in the legend.

Figure 7 Measured maximum dynamic tensile forces on the rope and along the anchor for seven experiments with effective 

absorbed kinetic energies of the net. m’ and m’’ indicate that those experiments are multiple impacts of the setup of 

experiment m. n’ indicates that the experiment is a multiple impact of the setup of experiment n.

Figure 8 Percentage of the maximum tensile force along the length of the anchor for experiments with effective absorbed 

kinetic energies of the net. The reference value, where the 100 percent are attributed to, is the force measured in the downhill 

rope. m’ and m’’ indicate that those experiments are multiple impacts of the setup of experiment m. n’ indicates that the 

experiment is a multiple impact of the setup of experiment n.

Figure 9 Maximum dynamic tensile forces in the downhill rope and the anchor over the kinetic impact energy. A linear 

regression is calculated for the measurements with minimum three points and the multiple R squared values are shown in the 

legend.

Figure 10 Comparison of the static forces from the pull loading test with the dynamic forces from experiment 6 and 7 acting 
along the anchor. 

Figure A1 Data obtained from the SPT test: The amount of hits for 10 cm vertical displacement is depicted over the depth in 
m. The skin friction value of the tube is depicted with the dashed-dotted line.

Figure A2 Schematic sketch of the stress distribution along the length of an anchor/pile during dynamic loading. 

Figure A3 Time history of the measured dynamic tensile force distribution for the downhill rope and along the anchor for 

Experiment 2 with an effective absorbed kinetic energy of 108 kJ.

Figure A4 Measured maximum static tensile forces on the rope and along the anchor for each load step of the static pull 

loading test.

Figure A5 Percentage of the maximum static tensile forces on the rope and along the anchor for each load step of the static 

pull loading test.
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Figure 1 Schematic side view of a SPIDER Avalanche System. The arrows mark the directions of loading 
along the instrumented pile (compression) and anchor (tension). a) shows the front view of the experiment. 
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Figure 2 Left: Schematic picture of the pressure pile with specification of the positions of the strain gauges. 
The total length of the pile is 5215 mm. Upper Right: schematic cross-section of pressure pile and anchor. 

The steel rod with the strain gauges glued on it, is placed in the centre. Lower Right: Photo of grouted 
anchor with the measurement cables coming out at the anchor head. 
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Figure 3 Time history of the measured dynamic compressive force distribution for the post and along the pile 
for Experiment 2 with an effective absorbed kinetic energy of 108 kJ. 
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Figure 4 Measured maximum dynamic compressive forces on the foot of the post and along the pile for 
seven experiments with effective absorbed kinetic energies of the net. m’ and m’’ indicate that those 
experiments are multiple impacts of the setup of experiment m.  n’ indicates that the experiment is a 

multiple impact of the setup of experiment n. 
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Figure 5 Percentage of the maximum compressive force along the length of the pile for effective absorbed 
kinetic energies of the net. The reference value, where the 100 percent are attributed to, is the force 
measured in the post. m’ and m’’ indicate that those experiments are multiple impacts of the setup of 

experiment m.  n’ indicates that the experiment is a multiple impact of the setup of experiment n. A linear 
regression is calculated for the measurements with minimum three points and the multiple R squared values 

are shown in the legend. 

39x36mm (300 x 300 DPI) 
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Figure 6 Maximum dynamic compressive forces of the post and the pile over the kinetic impact energy. A 
linear regression is calculated for the measurements with minimum three points and the multiple R squared 

values are shown in the legend. 
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Figure 7 Measured maximum dynamic tensile forces on the rope and along the anchor for seven 
experiments with effective absorbed kinetic energies of the net. m’ and m’’ indicate that those experiments 
are multiple impacts of the setup of experiment m.  n’ indicates that the experiment is a multiple impact of 

the setup of experiment n. 
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Figure 8 Percentage of the maximum tensile force along the length of the anchor for experiments with 
effective absorbed kinetic energies of the net. The reference value, where the 100 percent are attributed to, 
is the force measured in the downhill rope. m’ and m’’ indicate that those experiments are multiple impacts 

of the setup of experiment m.  n’ indicates that the experiment is a multiple impact of the setup of 
experiment n. 
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Figure 9 Maximum dynamic tensile forces in the downhill rope and the anchor over the kinetic impact 
energy. A linear regression is calculated for the measurements with minimum three points and the multiple 

R squared values are shown in the legend. 
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Figure 10 Comparison of the quasi-static forces from the pull loading test with the dynamic forces from 
experiment 6 and 7 acting along the anchor. 
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Figure A1 Data obtained from the SPT test: The amount of hits for 10 cm vertical displacement is depicted 
over the depth in m. The skin friction value of the tube is depicted with the dashed-dotted line. 
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Figure A2 Schematic sketch of the stress distribution along the length of an anchor/pile during dynamic 
loading. 
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Figure A3 Time history of the measured dynamic tensile force distribution for the downhill rope and along 
the anchor for Experiment 2 with an effective absorbed kinetic energy of 108 kJ. 
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Figure A4 Measured maximum static tensile forces on the rope and along the anchor for each load step of 
the static pull loading test. 
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Figure A5 Percentage of the maximum static tensile forces on the rope and along the anchor for each load 
step of the static pull loading test. 
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