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Preface

Auditory spatial attention is a core ability of human behavior. It allows specific ex-

amination of a desired sound while ignoring irrelevant sounds during various important

tasks. It also allows unconscious monitoring of a listener’s surroundings while doing dif-

ferent unrelated tasks. The study of these attentive capacities has inspired investigation

of the so-called Cocktail Party Effect first described by Colin Cherry in 1953. This effect

illustrates human auditory spatial attention, with the capacity of examining one conversa-

tion specifically against other competing conversations and noises during a cocktail party.

Ever since, studies of auditory space perception, e.g. sound source separation and auditory

spatial attention, have flourished, leading to a great leap in our understanding of auditory

processing. Inspired by this knowledge, modern sound processing mechanisms have been

developed for artificial intelligence, intelligent sensing in robots, and human hearing aids.

Despite that progress, no machine has reached the levels of processing that the human brain

can achieve. Therefore, many research efforts are still necessary to explain human auditory

processes.

Among spatial auditory processes, the study of angular localization of sound source has

been the most thoroughly conducted. Direction separation of competing sound sources has

been shown to help greatly in elucidating our auditory environment, allowing the identifi-

cation of the different sound sources surrounding us. We then have the ability to examine

the desired sources specifically to achieve a particular task. To this day, however, few stud-

ies of the effects of sound source distance on auditory attention have been reported. Yet,

the sound source distance strongly affects the properties of the sound reaching the listener.

In fact, for sounds in the space within grasping reach, known as the peripersonal space, i.e.

from within 1 m from the listener’s head, the distance of sound sources affects direction

perception. The results of these interactions on auditory attention remain quite unclear.

Therefore, for sound sources in peripersonal space, this thesis presents specific exam-
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ination of a study of the effects of sound source distance on attention. In a first set of

experiments, reaction times in a target speech sound search task are examined as a func-

tion of distance of sound sources. The effects of the relevant distance perceptual cues in

auditory attentional tasks are analyzed. In a second experiment, the ability to examine a

target presented at a particular distance specifically and ignore the competing sources is

investigated. This is conducted by implicitly directing the attention of listeners to a focal

distance and by comparison to conditions with no focal distance. These two experiments

are discussed in separate chapters because they investigate different aspects of auditory

attention.

Chapter 1 first introduces the background and motivation of this study. Studies of

distance perception and of the potential importance of sound source distance on auditory

attenton are summarized. Finally, the study objective is presented.

Chapter 2 introduces the methods used to manipulate the sound source distance used

for this study. Virtual sound sources are presented to listeners through headphones. Based

on results of a numerical and subjective evaluation, the validity of this method is assessed.

Chapter 3 then presents a study of capture of attention using reaction time as a function

of the sound source distance. This chapter specifically examines the stimulus-driven effects

of source distance on auditory attention, investigating several absolute and relative source

distances. According to the spatial information included in the stimuli, the effects of very

near source distances on attention are evaluated.

On the other hand, Chapter 4 describes investigation of the effects of voluntary auditory

distance attention. In this chapter, listeners’ attention is attracted implicitly to the specific

distance at which the target sound source is positioned. According to the distance at which

the listener focuses, the difference in effects of auditory spatial attention is evaluated.

Finally, in chapter 5, all gathered results and interpretations are summarized to con-

clude the work done for this thesis.
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Chapter 1

Introduction
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1.1 Auditory Scene Analysis (ASA)

It is quite remarkable how efficiently human beings are capable to decompose their

sound environment and evolve naturally in any sound space. When in a noisy environment,

humans are exposed to a mixture of sounds of different levels, nature and positions. All

these sounds add up at the entrance of the ear and are transmitted as this sum of sound

waves within the ear canal, through the middle ear and eardrum and to the cochlea. How is

it then, that we perceive so naturally our environment and process individual sound objects

independently? This is the subject of auditory scene analysis (ASA), and of this study.

In the beginning, ASA was introduced with a different name but with a similar prob-

lematic. In the 1950s, Colin Cherry [1] studied the human capacity to focus on a particular

sound source against other competing sounds. He illustrated this capacity through an ex-

ample that he named the Cocktail Party effect, in which one is fully capable of focusing

on a desired conversation against noise and competing conversations during an event such

as a cocktail party. His designation has been widely spread and a great number of stud-

ies on this effect have been conducted following his study. Among them, studies on the

frequency components, the signal duration, temporal structure, spatial positionning of a

sound, the health of the listener and on many other factors have been examined. Albert

Bregman included this effect in a bigger field and a bigger problematic that he named au-

ditory scene analysis in his book published in 1990 [2]. This problematic is that of the

processes involved in transforming the mixture of sounds overlapped at the entrance of our

ears into meaningful sound objects. These processes begin with a step named sound stream

segregation, or streaming.

1.1.1 Sound stream segregation

Sound stream segregation is the cognitive process of separating one’s sound envi-

ronment into individual consistent sound streams. This capacity depends greatly on the

amount of sound objects presented simultaneously, on the nature of the individual sound

objects and on the properties of each sound object relatively to its competing sound envi-

ronment. A rule of thumb is that sounds which are coherent temporally, spectrally and/or
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spatially are grouped together in one same stream [2, 3, 4]. For example, hearing a complex

harmonic sound with a fundamental frequency f0 and several harmonics fk = k∗ f0 results

in a grouping of all components in one single auditory stream (Fig. 1.1 (a)). If one of the

components becomes considerably non-harmonic, the listener then hears two different au-

ditory streams : the non-harmonic sound as one stream, and the set of all harmonic sounds

as another stream (b). If one of the components has a different temporal structure, it will

also be separated into a different auditory stream (c). Finally, if the components are sep-

arated into different sound sources, increasing the directional separation between sources

results in a separation of auditory streams, where each separated sound source becomes an

individual stream (d).

Understanding the underlying mechanisms in sound stream segregation is essential to

comprehend our capacities to analyse our acoustic environment. Indeed, in real-life situ-

ations, we are able to distinguish almost instantly all different sound sources in a room.

Yet, the result of auditory stream segregation is a great amount of individual streams. This

amount is strongly dependent on the complexity of the relationship of the sounds, and of

the auditory environment. In order to comprehend our auditory environment regardless of

this great amount of simultaneous auditory streams, a filtering, or selection of information

is essential. This capacity in humans is known as auditory selective attention.

Group 1

Group 2

θ

frequency

time

(a)

(b)

(c)

(d)

Figure 1.1: Schematic representing the principles of sound stream segregation with a har-
monic sound. (a) the different components of a harmonic sound are grouped into one same
stream. (b) a non-harmonic component within a complex sound is heard as a separate
stream. (c) a component with a different temporal structure is heard in a separate stream.
(d) spatial separation of sound sources leads to grouping into different streams.
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1.1.2 Auditory selective attention

Auditory selective attention is our capacity to reduce the inconsiderable amount of

auditory information we process at once to a reasonable amount. It can be compared to a

bottleneck that selects only the most important sound information to go through the neck

and be processed by higher cognitive levels. The selection of information is done either

involuntarily or voluntarily using processes often designated as bottom-up and top-down

attention.

Bottom-up attention

Bottom-up attention is the involuntary attention shift to certain sound streams. Hearing

one’s name while occupied with a task, for example, leads to automatic attention shift to-

wards that sound source [5]. This capacity is essential for survival as it allows us to avoid

dangerous situations or objects even without seeing them. Scharf [6] describes this type

of attention as an “early warning system”. The human brain constantly and unconsciously

monitors our acoustic environment to scan for potential threats. This type of attention is

believed to be stimulus-driven [7, 8]. That is, the process is believed to start from lower

levels of the auditory system where the stimulus is analyzed, up to higher levels of cogni-

tion [8]. In this situation, the acoustic properties of the stimulus affect the mechanisms of

auditory attention. For this reason, it is often qualified as bottom-up. The property that a

sound has to capture of affect our attention is called salience, or saliency.

Top-down attention

As opposed to bottom-up attention, top-down attention is the conscious and voluntary

focus of cognitive processes on a selected information stream. Attending to one conversa-

tion in a noisy environment, for example, leads to an increase of the isolation ability of the

speech contents, revealing the increase of its intelligibility [1, 9]. Our capacities and the

way we select information are task-dependent. That is, the listener selects the information

relevent to achieve the given task and adapts his selection criteria and thresholds to this

task. This process is believed to act as a feedback from higher level cognitive functions of

the auditory system to bias the processing of incoming auditory stimuli. For this reason, it

is often qualified as top-down.
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Bottom-up attention and top-down attention are constantly acting together to better

understand our auditory environment and react appropriately to sound events. Evidence

for interactions between top-down and bottom-up processes in attention shifts [10, 11] and

target search [8] are numerous. These interactions and their origins remain unclear for

auditory attention.

Factors affecting auditory attention

Human auditory attention is affected by several factors. These factors can be related to

the nature of the stimuli, the difference between competing stimuli, the position of sound

sources, the listener’s current health and mind-set, memory, and many other parameters...

The informational contents of the sounds are an important factor for salience of sounds.

For example, Asemi et al. [12] showed that speech sounds are easier to detect than time-

reversed speech sounds although the average spectral contents of both types of stimuli are

identical, revealing the importance of informational contents. Reacting to one’s name in a

complex auditory environment [5] also goes to show this importance.

In addition to informational contents, the physical properties of sounds tend to affect

auditory attention. Various studies have shown that the intensity of sound stimuli led to

faster reactions and better processes [13, 14]. Additionally, the intensity ratio between a

sound stimulus and its competing sounds directly affects its salience and intelligibility. The

higher the ratio, namely the more intense the target sound is compared to other competing

sounds, the more it “pops-out”. In addition, spectral contents of the sounds and spectral

differences between the target and competing sounds play an important role for stream

segregation [2]. The bigger the spectral difference between target and competing sounds is,

the easier the separation is. This leads to easier focus on one of the separated streams [15].

Finally, the position of the sound source is also believed to be an important factor.

Sound source spatial separation leads to a better understanding of one’s acoustic surround-

ings. It is therefore intuitive that this added understanding is essential in auditory selective

attention. In addition, auditory processes are capable of identifying the nature and localiza-

tion of sounds regardless of the the position of the sound source around the listener. Visual

processes, on the other hand, cannot be relied on for sources outside of the field of view.

Therefore, for sounds coming from the rear, attentional processes can only rely on auditory

attention. Finally, human sound localization accuracy depends on the position of the sound

source. The attentional selective capacities based on spatial position are therefore directly
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dependent of the position of the sound source. Perhaps one of the most important finding

is that when in a noisy environment, one can focus on a particular direction, leading to

higher sensitivity to sounds coming from this direction, and ignoring the competing sound

sources presented from other directions [16, 17, 18, 19]. This capacity was named auditory

attention spotlight, inspired by its equivalent for visual attention, and by its properties.

In the past years, many studies have been led on the effect of azimuthal separation of

sound sources and of azimuthal positioning of sound sources on attention[16, 18, 19, 20].

On the other hand, very little studies on distance have been led to this day. Yet, our per-

ception of space is done both in direction and distance. In fact, the distance of a sound

source from the listener’s ears dramatically changes the sound reaching the listener. Be-

yond one meter from the head, change of distance is mainly perceived by the listener as a

change in sound level, as explained later on in this chapter (Section 1.2.1). This change

does not impact the perception of direction and is easily predictable both in physical and

psychoacoustical dimensions [21]. However, for sounds within the space under one meter

from the head, sound source distance is known to alter considerably the sound reaching

the listener’s ears [21, 22, 23, 24]. In this space, existing models and predictions for ef-

fects of source direction [25] may not be applied. To understand how proximal distances

may impact sounds reaching the ears, let us review how judgement of distance is done by

humans.
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1.2 Auditory distance perception

1.2.1 Cues for judging auditory distance

Whereas direction perception is considered to be absolute, distance perception is be-

lieved to be relative. That is, when hearing a single sound presented from a single position

in space, it is relatively easier to judge the direction of that sound than to give an accurate

judgment of the distance of that sound. In fact, it is almost impossible to judge instantly the

distance of a single sound source. The main reason may be that the judgement of distance

is dominated by the judgement of sound intensity.

Sound intensity

Indeed, sound is a spherical wave propagating through the air. As the spherical wave

propagates through space, its surface increases following a square law for radius. The

power of the source, however is a finite value. In free field conditions, this results in an

inverse square law of sound intensity for distance to the sound source :

Figure 1.2: The inverse square law for sound intensity. Adapted from HyperPhysics, hosted
by the Department of Physics and Astronomy, Georgia State University [26]
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The further the sound source is, the lower the intensity reaching the listener’s ears is.

From the listener’s point of view, this results in hearing sounds at a lower level. In free field,

the relationship between the sound level at the listener’s ears and the source distance from

the center of the listener’s head can be approximated to a reduction of 6 dB per doubling

of distance.

For a long time, it has been believed that, in anechoic space, changing a source’s inten-

sity induces the same judgement of distance variation of the source position. For example,

dividing the distance between listener and source and quadrupling the power of the source

was considered to be perceptually equivalent. This illustrates how dominant the sound in-

tensity cue is. However, we now know that this is not true for proximal sound sources, for

sources within a reverberant environment, or for great distance changes.

Direct to reverberant intensity ratio

In anechoic space, the listener hears the direct sound wave travelling from the source.

In reverberant space, reflections on objects or walls are added to the direct sound as a kind

of secondary sound sources. The sound reaching the listener’s ears is therefore a sum of

the direct sound wave propagation and of all the secondary sound waves resulting from

reflections. The reflected sounds consistently arrive with a delay to the ears, and with

altered spectrum and phase characteristics.

Several studies show that listeners can use the reverberations in a room to improve

judgement of sound source distance [27, 28]. The main cue used in distance localization

using reverberation is believed to be the direct sound to reverberant sound energy ratio

(DRR). It is defined, for a given location, by the ratio between the energy of the direct sound

and the energy of the reverberant sounds simultaneously incident to the same location.

DRR reaching the listener’s ears depends of the sound source distance, the distance of the

reflecting surfaces and the nature of these surfaces. Studies suggest that the DRR could be

used as an absolute cue for distance perception in rooms [29, 30, 31].

High frequency attenuation

Air is not an ideal medium. Therefore, a soundwave’s amplitude spectrum changes as

it propagates through the air. This attenuation can be expressed by the following law in

free field conditions :
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I(k,r) = I(k,r0)e−αk(r−r0) (1.1)

where α is an attenuation coefficient that depends on the temperature, pressure and humid-

ity of the air and k is the wavenumber defined by k = 2π f
c where f is the temporal frequency

and c is the speed of sound through the air. Practically, this results in high-frequency com-

ponents being more attenuated than low-frequency components. As a consequence, far-

away sounds are generally heard as darker, more muffled than the sound emitted at the

source. The rate of frequency attenuation is rather small : 3 to 4 dB loss for every 100 m at

4 kHz for atmospheric conditions and average humidity [32]. This has therefore a limited

effect for most everyday situations, where sounds are heard from much closer.

1.2.2 Near field distance perception cues

When sound sources are heard from distances within 1 m from the listener’s head (near

field), other cues for judgement of distance are dominantly used. The effect of the listener’s

head, shoulders and torso on the sound reaching both ears affects significantly sound within

near field distances. In addition, a phenomenon designated as auditory parallax is used.

The head shadow effect

The head shadow effect is characterised by the effects of the head on the incoming

sound wave. When the sound wave comes from the side, the presence of the head induces

a difference in paths that the wave has to travel from the source to the ears. This leads

to an interaural difference in level (ILD), time of arrival (ITD) and spectrum (Fig. 1.3).

In anechoic space, the level at the closer ear (ipsilateral ear) is constantly higher than at

the further ear (contralateral ear). Conversely, the sound wave reaches the contralateral

ear with a time delay compared to the ipsilateral ear. ILD and ITD are functions of sound

temporal frequency. For sound sources in the far field (beyond 1 m), the effect of the head

on ITD and ILD is independent of source distance [21]. However, in the near field, the

effect of the head significantly increases as a function of sound source proximity. The head

shadow acts so that closer sounds lead to higher ILD, and to higher scattering which leads

to alterations of the sound spectrum [21, 22, 23].
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Auditory parallax

Auditory parallax is defined by the difference in angle between the paths from the

source to both ears (Fig. 1.4). For distal sounds, this angle is small enough to be ignored.

However, for proximal sounds, the difference is innegligibly increasing. Although the ef-

fect of this angle is rather unclear, Brungart [33] suggested that this angle led to a distortion

of the spectrum at each ear. Kim et al. [34, 35] showed that listeners can achieve distance

judgements comparable to judgements for real sound sources, by controlling the parallax

for virtual sources.
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Figure 1.3: Schematic effect of the head shadow. The presence of the head in the sound
field results in a difference in paths that the wave travels between the source and both
ears. This difference in paths leads to level and time differences (ILD and ITD) and to a
difference in the spectrum between the ipsilateral and ear and the contralateral ear. Adapted
from Sinauer Associates, Inc. 2001.

𝒓𝟏 > 𝒓𝟐 → 𝜽𝟏 < 𝜽𝟐

𝜽𝟏
𝒓𝟏

𝜽𝟐𝒓𝟐

Figure 1.4: Schematic of the origin of auditory parallax. As sounds sources get closer, the
angle between the paths to the left ear and to the right ear increases.
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1.2.3 Other cues

Sound familiarity

Several studies show that familiarity of the target source helps greatly in distance lo-

calization [31, 36]. When a single unknown sound is presented in an unknown room,

judgement of the source distance is almost impossible. However, knowledge of the room’s

acoustics or of the initial sound leads shows an increase in localization abilities.

A study on shouted, spoken and whispered sounds, showed that perceived distance of a

speech sound depended on its vocalization and on the vocal effort [37]. Whispered sounds

were consistently perceived as closer than phonated sounds, regardless of the presented

sound level. Similarly, shouted sounds were consistently perceived further than phonated

sounds. The study also claims that listeners are capable of using their acquired knowledge

of speech characteristics to adapt their judgement of distance.

Crossmodal cues

In the processing of our environment, various sensory information is simultaneously

integrated. Indeed, vision, audition and tactile sensations work together to create our per-

ception of our proximal environment. Typically, seeing the sound source increases greatly

our sensitivity to the audio contents produced by this source. For example, watching the

lips of a talker affects positively speech intelligibility when the audio and visual contents

match [38], and negatively when there is a mismatch [39]. In soundspace perception,

spatially matching audio-visual stimuli affects very positively localization accuracy [40]

whereas spatial mismatch leads to confusion and degraded localization accuracy [41]. The

bias induced by other senses should therefore be considered carefully when presenting the

listeners with sound sources.
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1.2.4 Accuracy of distance perception

Judgement of distance of sources using sound only is poorer and more fluctuating than

judgement of direction [42]. Humans tend to overestimate the distance of proximal sound

sources, and to underestimate distance of distal sound sources. This is known as the audi-

tory horizon phenomenon. The reasons for this phenomenon remain unclear to this day.

In 2005, Zahorik et al. published a review of 84 datasets on distance localization in

different environments and test paradigms. All results in these individual evaluations were

obtained by eliminating the effect of distance on sound level reaching the center of the

listener’s head, without eliminating the ILD information. This was done in order to extract

only effects of distance perception cues. Results agree to fit estimated distance as a power

function of presented distance : r′ = kra , where r′ is the distance estimated by the listener,

r is the real source distance and k and a are fitting coefficients. Using these 84 datasets, the

average value for k was 1.32 and the average value for a was 0.54. Note that the value of

a is below 1, illustrating the overestimation for near distances and underestimation for far

distances. This study included both results from virtual presentations of sound sources and

for presentation of real sound sources. The result of the average psychophysical function

is illustrated on Fig. 1.5.

A difference between distance perception for virtual sources and for real sources is ob-

served. The overestimation of distance for virtual sound source distance is more important

than for real source localization [43]. On the other hand, Kim et al. [35] reported that

estimation of distance for both real sound sources and virtual sound sources are accurate

for sources within 1 m from the listener’s head (Fig. 1.6), with little overestimation. Over-

all, the results of accuracy from studies using different test environments differ greatly,

indicating the importance of the test environment in the estimation of source distance.
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Figure 1.5: Schematic of the average perceived distance to presented distance scale. The
dashed line represents the results gathered from 84 datasets by Zahorik et al. in 2005.
The dash-point line represents the results for virtual sources presented by Zahorik and
Wightman in 2001. The dotted line represents the geometrical ideal. Adapted from [42,
43].

Figure 1.6: Results of distance estimation of real sound sources [35]. Circle marks repre-
sent results for sources directly in front of the listener, upper triangles for sources 45◦ to
the left, lower triangles for sources 135◦ to the left (behind the listener) and squares for
sources directly behind the listener.
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1.3 Contribution of sound source distance to auditory

spatial attention

To this day, very little studies have considered the effects of distance of sound sources

in ASA. However, some main results on the effects of sound source distance on attention

can be used.

1.3.1 Sound intensity

Sound intensity is a dominant cue for distance judgement and is a primary sound char-

acteristic. It comes naturally that studies of the effect of sound intensity on attentional

factors have flourished [13, 14, 44]. It is an intuitive statement that as the sound stimulus

intensity increases, the greater its intelligibility, the higher the stimulus detection rate, and

the faster the reaction time to this sound is. Chocholle was the first to find that the relation-

ship between sound level (in decibels) and reaction time is a power function : RT = k(SP)n

where RT is the reaction time, SP is the sound pressure level of the stimulus in decibels and

k and n are fitting coefficients. The effect of sound intensity must therefore be carefully

considered when studying auditory attention for different sound source distances.

1.3.2 Peripersonal space

Sounds presented from within one meter from the listener’s head have a special role.

First, the head shadow has its strongest effects within this space, and those effects are dis-

tance dependent (Section 1.2.2). We therefore have more information to accurately judge

distance of sound sources when they are within this area. Second, one meter corresponds

roughly to the upper limit of the reaching distance for the average adult. This reaching dis-

tance is named peripersonal space (PPS). Graziano et al. [45] studied the representations

of auditory PPS on brain activity in monkey test subjects. They found that sounds within

PPS lead to a higher brain activity. Their results show that some neurons responded to very

near sounds (within 30 cm) with more activity than to further sounds, regardless of the
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sound level reaching the ear. After these studies, several studies on neural representation

of PPS in humans and monkeys were reported [46, 47]. Results from these studies suggest

that the size of PPS is task dependent, and that neural processes for sounds within PPS

differ from those outside of PPS. A possible explanation for this difference is that within

reaching distance, the tactile sensation also becomes a factor. This means that processes

become multimodal within PPS [45, 48].

1.3.3 Benefits from distance separation of sounds

In 2001, Barbara Shinn-Cunningham et al. [49] tested the effect of distance separation

of a proximal speech sound source and a proximal noise sound source on speech inteligi-

bility. They used a simple spherical head model to create spatialized virtual sound sources

presented through headphones. The result is that distance separation of a speech sound

from its masker noise sound leads to higher speech intelligibility and lower speech re-

ception thresholds (SRT). This suggests that distance separation of sources benefits sound

stream segregation.

Following this study, Brungart and Simpson [50] investigated the relationship between

the nature of the sounds used in the experiment and distance unmasking. They used a

similar experiment design as Shinn-Cunningham et al. using a generic dummy head model

for virtual sound spatialization. Their study shows that the effect of spatial advantage due to

the distance separation depends on the characteristics of target and masker sounds. When

both sounds have very different characteristics, no effect is observed. When both sounds

have similar characteristics, this effect is increasing. In the case they presented, spatial

advantage from distance separation is most prominent when separating two speech sounds

uttered by speakers of the same gender. They also suggest that the main contributors to this

spatial advantage are interaural differences due to the head shadow that occur with source

distance separation.
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1.4 Study objectives

In light of these results, the question of the effects of sound source distance in at-

tentional tasks remain unclear. If both sound space perception and neural processes are

different for sounds within PPS, then it can be hypothesized that sound source distance

greatly affects attentional capacities within this space. This study aims to contribute in

verifying this hypothesis. Auditory attention is investigated as a function of peripersonal

sound source distance in several conditions in this study. The questions that this study

aims to answer are the following : (1) What are the effects of peripersonal source distance

on auditory attention ? (2) What distance cues in proximal space benefit auditory atten-

tion ? (3) Is top-down spatial attention on source distance possible ? Namely, are listeners

capable of focusing on a particular distance and processing the information presented from

this distance with higher selectivity ? The novelty of this study is to evaluate spatial audi-

tory attention as a function of distance of sound sources within PPS, using reaction time in

an auditory search task as a measure of attention. This evaluation is done using accurate

presentation of virtual sound sources through headphones.

Chapter 2 introduces the methods used to manipulate distance of the sound sources

used in this study. Head-related transfer functions (HRTFs), manipulated using distance

varying filters (DVFs) are introduced. Both a numerical and a subjective evaluation of

these calculated functions are presented. In comparison to previous studies, this evaluation

justifies the use of HRTFs in distance-related psychoacoustic experiments.

Chapter 3 presents a study of simple reaction time to speech sounds as a function

of source distance within peripersonal space. Conditions including and excluding source

distance separation of competing sounds are considered. The configurations are chosen to

separate the effects of individual distance cues, and particularly to eliminate the dominance

of sound source intensity in distance localization. Results suggest a stronger salience of

closest the sounds, especially when separated in distance from competing sounds.

Chapter 4 contributes to the study of top-down spatial attention related to the distance

of the sound source. Here, the listener’s top-down spatial attention is implicitly attracted to

a specific source distance before sound presentation. Results suggest that focus on the spe-

cific source distance induces faster reaction time for sounds presented from this distance,

and slower reaction time for sounds presented from different distances. This reveals effects
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of top-down auditory attention to distance, for sources presented from within peripersonal

space.

Finally, Chapter 5 considers all gathered results and interpretations to conclude on the

work done in this thesis.
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Chapter 2

Production of proximal sound sources

using head-related transfer functions

filtered through distance varying filters
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2.1 Chapter objectives

There are various ways to present realistic sound space information to the listeners.

Using real sound sources to present the sound space information has the advantage of being

realistic and straightforward. However, this has some difficulties at the points of flexibility

and reproducibility. Indeed, results using real sound sources depend on the precision and

resolution of the infrastructure. This effect would be observed clearly for proximal sound

source presentation. In addition, for proximal sources, the perceived width of the source

depends of the size and distance of the loudspeaker. Finally, knowledge of the positions

of the loudspeakers may bias auditory perception. Presenting virtual sound sources via

headphones has an advantage at the points of flexibility and reproducibility. However,

quality of generated sound space is not high, in general.

The objective of this chapter is to introduce the method used to present realistic virtual

sound sources to the listeners who participated in the experiments presented in this thesis.

The evaluation of the perceptual accuracy of sound information synthesized by the applied

method has also been focused on. Binaural sounds were presented to the listeners through

headphones. In order to simulate sound space virtually, a filtering method for the listener’s

individual head-related transfer function (HRTF) was used. The results of this filtering

method were analyzed both numerically and perceptually in order to justify the use of the

current method.

This chapter presents in section 2.2 how virtual sound sources are spatiallized in direc-

tion using HRTF. In section 2.3, the filters applied to these HRTF to manipulate apparent

distance of sources, named distance varying filters (DVF), are introduced. Section 2.4

presents a numerical evaluation of the result of filtering the HRTF. Section 2.5 presents a

perceptual evaluation of these filtered HRTF. Finally, Section 2.6 presents the conclusions

from this chapter.
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2.2 Using head-related transfer functions to produce ac-

curate direction of sound sources

2.2.1 Definition

A powerful tool commonly used to synthesize virtual sound sources binaurally is the

head-related transfer function (HRTF). An HRTF for a specified ear for a certain sound

source position is obtained using two transfer functions: (1) the transfer function of the

sound propagation path from the sound source at a certain direction to the entrance of

the subject’s ear canal, and (2) the transfer function of the sound propagation path from the

same source to the position corresponding to the center of the head with no subject present.

The HRTF is calculated as the ratio of transfer function (1) to (2) [51]. They capture the

spectral effects of the shadowing and scattering on the head, torso and pinna on the sound

wave reaching the listener’s outer ear. These effects strongly depend on the individual’s

physical features. In general, high intensities appear for sound sources on the same side of

the ear (the ipsilateral side), and lower intensities for sound sources on the opposite side of

the ear (the contralateral side). When spatial sounds are synthesized by using HRTFs, it is

of great importance to use the individual’s HRTF. Although, some generic HRTFs using a

dummy head can also be used, the performances are poorer for space perception [52, 53].

An example of an HRTF for a dummy head is given in Fig. 2.2.

Suppose we know the left and right ear HRTFs for one position of a sound source

obtained for one individual. Applying these two HRTFs to a monophonic sound results

in a signal for each ear of the listener. When presenting these signals via headphones or

earphones, the listener will hear a virtual sound source at a position matching that of the

initial sound source. The process is illustrated in Fig. 2.1.
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Figure 2.1: Schematic of the origins of the HRTF. If knowing an individual’s HRTF for a
position of a sound source, one can recreate virtually a sound source matching the position
of the initial sound source.

Figure 2.2: Example of a circular HRTF calculated for the left ear of a head model. The
calculation was done at 1.5 m, with an angular resolution of 1◦. Magnitudes indicate the
difference in sound pressure level at the left ear compared to the sound pressure at the
head’s center in free-field conditions.

22



2.2.2 Measurement

Measurement of HRTFs is generally done in an anechoic room. The listener is sat at the

center of a loudspeaker array, and these loudspeakers are placed at the desired measurement

positions. Miniature microphones are set at the entrance of the listener’s ear canal. To

fix the microphones at the recording point, ear molds are inserted with the microphones.

These microphones aim to record the sound reaching the listener’s ear canal. An impulse

or a train of swept-sine signal [54] is then presented from one loudspeaker at a time. An

alternative is to use a miniature loudspeaker inserted in the listener’s ear, and recording

with a microphone array, based on the reciprocity method [55, 56, 57]. The presented

sound is transmitted to the microphone position. The recorded sound using microphones

is, then, converted to its frequency response. In this condition, reflection or scatterings

on the listener’s head is not included in the recorded sound. This sound is also converted

to its frequency response. By normalizing the complex signals obtained with the head by

the complex signal obtained in free-field condition, the left ear and right ear HRTF of the

listener for one position of a sound source is generated. This procedure is repeated for

every desired position of sound source.

-

Figure 2.3: Top view of an example measurement system for the left and right ear HRTF
of a head. Sound sources that lie on azimuths on the same side of an ear are said to be on
the ipsilateral side, and the ones lying on azimuths on the opposite side of the ear, on the
contralateral side.
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2.2.3 Limitations

Measuring HRTFs is a complex, time-consuming and resource-consuming process.

The infrastructure needed is a heavy and precisely calibrated one. Moreover, to measure

a precise HRTF, listeners may need to stay motionless for several hours. The complex-

ity of the needed infrastructure is greatly increased if one wants to measure HRTFs for

several distances. Studies to accelerate this process have been conducted [55, 58] but a

compromise between precision and speed of measurement must be done.

HRTF calculation also assumes that sound sources are point sources. Therefore for

close distances, a smaller loudspeaker must be used to be able to meet this assumption.

Yet, reducing the size of the loudspeakers impacts the frequency range that they can emit.

It follows that the frequency range of the resulting HRTFs is limited. For this reason,

most HRTF measurement systems only consider distal sounds with a fixed distance around

1.5 m. An additional reason for this is that beyond 1.5 m, HRTFs do not change with sound

source distance [21]. In order to conduct psychoacoustic experiments in peripersonal space

distances, the use of a conventional HRTF measurement system for a single far distance,

followed by the application of distance varying filters is considered.
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2.3 Using distance varying filters (DVF) to produce near-

field HRTFs

2.3.1 Motivation

In order to synthesize accurate near field HRTFs, a filtering method using distance vary-

ing filters (DVF) [59, 60] is applied to the HRTF measured for distal sounds. This method

aims to reduce the cost and increase the reproducibility of near-field HRTFs, with satisfac-

tory precision. Other synthesis methods exist such as methods using broad anthropometric

measurements [58, 61] or methods using a precise 3D model of the listener’s head [62].

However, to obtain the listener’s precise 3D model, heavy infrastructure is needed, such

as an MRI measurement system or a multi-camera system. Using DVFs has for advantage

that this complex 3D modelling is not needed.

2.3.2 Definition

The method used is the distance varying filter (DVF) developed by Salvador et al. [59,

60]. They are filters applied to an HRTF dataset measured for a circular array of distal

sound sources in order to approximate HRTFs for closer distances (illustrated in Fig. 2.4).

DVFs assume that the circular array used for measurement of the initial HRTF dataset is

situated at 0◦ elevation angle. This means that they are only used on the horizontal plane

which includes the listener’s two ears.

DVFs are obtained as the result of solving the wave equation for sound in spherical co-

ordinates. In this situation, invariance of sounds is assumed along elevation. The obtained

filter is a function of frequency, and of sound source distance and azimuth.
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Figure 2.4: Schematic on how to apply DVFs to obtain an array of near field HRTFs. With
a given dataset of HRTFs at a distance r0, applying the DVF from distance r0 to r to these
HRTFs results in a dataset of HRTFs at a distance r.

Dm(r,r0,ω) =
r−

1
2 Hµ(

ω

c r)

r
− 1

2
0 Hµ(

ω

c r0)
(2.1)

Equation 2.1: Equation of the DVF D for angular mode m, desired distance r, distance of

the initial HRTF data set r0, and angular frequency ω . H is the Hankel function of the

second kind and fractional order µ . µ is defined by the value µ2 = m2

cos2(φ )
+ 1

4 where φ is

the elevation of the sound source. The angular mode depends on the angular resolution of

the base HRTF dataset.
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2.4 Numerical evaluation of the model used

In order to confirm the validity of using the considered sound source spatialization

method, a numerical evaluation as compared to a reference method is presented in this

section. Near-field measurements of HRTFs using the reciprocical method [55, 56], were

also conducted with the Hirahara laboratory from Toyama Prefectural University. The DVF

filtered individual HRTFs are then compared numerically to the near-field measurements

of these individuals’ HRTFs.

2.4.1 Comparing to a target calculated using the boundary element

method (BEM)

In a previous study led by Salvador et al. [60], who developed the DVFs used in this

thesis, DVF filtered HRTFs for an individual’s head model were compared numerically

to a dataset of reference HRTFs. These reference HRTFs were obtained by applying the

Boundary Element Method (BEM) [62] for this individual’s head 3D model. The 3D model

was obtained using MRI imaging. The reference HRTFs were synthesized using the BEM

for an angular resolution of 1◦ of the full circle and a distance resolution of 1 cm ranging

from 10 cm to 150 cm from the center of the listener’s head. DVF filters for the same

angular and distance resolution was calculated. The DVF filters were applied to the BEM

calculated HRTF at 150 cm in order to obtain the test data.

The numerical comparison was done based on two objective measures of overall ac-

curacy. Overall accuracy along frequency is measured using the spectral distortion (SD)

in decibels. This corresponds to a logarithmic spectral distance, shown to be suitable for

predicting audible differences between measured and synthesized HRTFs [63]. Spectral

distortion is defined as :

SD(θ ) =

[
1

f2 − f1

∫ f2

f1

[
20log10

∣∣∣∣ Ĥ (θ , f )
H (θ , f )

∣∣∣∣ ]2

d f

] 1
2

(2.2)

where f2 and f1 define the frequency range over which the the SD is calculated, θ is the

source azimuth, Ĥ is the HRTF obtained by the DVFs and H is the reference HRTF
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obtained by the BEM for the same distance.

Overall accuracy along angles is measured using circular correlations (CC). They

correspond to a measure of the similarity of directional patterns in the two compared

HRTFs [64]. Normalized CC is defined as :

CC( f ) =

∫
π

−π
Ĥ (θ , f )Ĥ (θ , f )dθ∫

π

−π

∣∣Ĥ (θ , f )
∣∣2dθ ×

∫
π

−π

∣∣Ĥ (θ , f )
∣∣2dθ

. (2.3)

The results of the numerical comparison for the HRTF for one ear of one head model

are displayed in Figs. 2.6 and 2.7. Results suggest that the highest errors occur at the closest

distances. These errors are most prominent at the contralateral ear, and around frequencies

10 kHz and 16 kHz. These errors are believed to be due to the naturally low energies of

HRTFs at 10 kHz and 16 kHz, leading to higher tendency for error in this area. DVFs tend

to slightly underestimate the decrease in level at the contralateral ear that normally occurs

due to the increased effect of the head shadow as sources are brought closer. However, little

errors occur at the ipsilateral ear, for which the energy is highest. Errors are acceptable

until approximately 25 cm. The impact of these errors on the perception of space is to be

determined in Section 2.5.

Figure 2.5: Three dimensional representation of the head model used for numerical com-
parison.
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Figure 2.6: Results for the spectral distortion between the DVF filtered HRTF for one
individual’s right ear and the BEM calculated HRTF for that same ear. The lower the SD
is, the closer the frequency spectrum of both HRTFs is. The highest errors occured for the
contralateral ear and for the closest distances.

Figure 2.7: Results for the circular correlation between the DVF filtered HRTF for one
individual’s right ear and the BEM calculated HRTF for that same ear. The closer the CC
is to the value one, the closer the angular patterns of both HRTFs are. The highest errors
occured around 10 kHz and 16 kHz and for the closest distances.
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2.4.2 Comparing to a measured HRTF in the near field

This section compares the DVF filtered individual HRTFs with a dataset of measured

HRTFs. Near-field HRTFs of three listeners’ head were measured using the reciprocity

method [55, 56, 57]. This measurement was done at the Hirahara laboratory from Toyama

Prefectural University. Measurement was done in a sound proof room. The listener sat on

a chair on one side of the room. The microphones and loudspeakers were similar to the

ones used in [57] and [56]. These microphones are placed on an array of 11 distances from

15 cm from the head to 115 cm at a regular interval of 10 cm. HRTFs for 12 different

azimuths from 0◦ to 330◦ with a 30◦ resolution were measured. Examples for the resulting

HRTF and the calculated DVF filtered HRTF are illustrated in Fig. 2.8 for one head model

and several distances.

Because of the small size of the loudspeakers, and of the proximity between the lis-

tener’s ear canal and the loudspeaker, the sound pressure level of the impulse at the mea-

surement was very low. This results in a low signal to noise ratio, especially at low

frequencies, leading to inaccuracies of the measured HRTFs for under approximately

1 kHz [56, 57]. This can be observed on Figs. 2.8a and 2.8c. Whereas little variation

of the HRTF along angle is normally observed at low frequencies for dummy heads [21],

there are high variations observed in this measurement.

However, beyond 1 kHz, the measured HRTF and the calculated DVF filtered HRTF

are similar. A maximum of magnitude appears for the ipsilateral side between 3 kHz

and 7 kHz. The angle of maximum of magnitude is closer to 90◦ with closer sources.

Moreover, the angular width of the peak decreases with sound source distance [21, 33].

A second maximum at the ipsilateral side appears beyond 10 kHz for both HRTFs. The

main difference between measured and calculated HRTFs is in the lower frequencies at the

ipsilateral ear. Magnitude of the calculated HRTF at the frequency range between 1 kHz

and 3 kHz is around 6 dB lower than that of the measured HRTF. This could highlight an

underestimation of the impact of the head shadow on the interaural level differences for the

closest sounds when DVFs are used to generate near-field sounds.

The impact of the numerical differences between measured HRTF and DVF filtered

HRTF on distance perception is unclear. A subjective experiment is therefore conducted to

test the accuracy of distance localization using DVF filtered HRTFs.
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(a) Left ear HRTF measured for a distance of
45 cm using the reciprocity method.

(b) Left ear HRTF calculated for a distance of
45 cm using DVF filters.

(c) Left ear HRTF measured for a distance of
15 cm using the reciprocity method.

(d) Left ear HRTF calculated for a distance of
15 cm using DVF filters.

Figure 2.8: Comparison of measured and generated left ear HRTFs: (a) and (b) HRTFs for
45 cm, (c) and (d) HRTFs for 15 cm, (a) and (c) HRTFs measured using the reciprocity
method, (b) and (d) HRTFs calculated using DVFs applied to the BEM calculated HRTF
for 1.5 m. The HRTFs are normalized by their maximum value of amplitude and presented
on a log scale for magnitude. The frequency range is limited to 16 kHz, above which the
DVFs can not be relied on.
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2.5 Perceptual evaluation

No perceptual evaluation of DVF filtered individual HRTFs has been investigated in

previous studies. The objective of this section is thus to provide a perceptual evaluation to

determine whether this spatialization method is available in psychoacoustic studies. This

evaluation is done through the measurement of listeners’ accuracy in localization of virtual

sound sources. The accuracy test is performed for both azimuth and distance, separately.

2.5.1 Experimental design

In order to evaluate the accuracy of angular and distance estimation of sound sources,

two separate experiments were examined consecutively. The first experiment was the eval-

uation of angular accuracy. It consisted in an absolute estimation of the direction of the

presented virtual sound. The second experiment was the evaluation of distance accuracy.

It consisted in a relative estimation of the target sound source distance by comparing to the

distance of a reference source. In the experiments, ten young students (9 male, 1 female,

ages 21-24, average age 23) with normal hearing participated. All were from the Gradu-

ate School of Information Sciences of Tohoku University. Before starting the experiment,

listeners were trained to use the response interface by evaluating the position of 20 sound

sources picked at random.

In both experiments, listeners sat in a sound proof room in front of a computer with a

Matlab UI window displayed (illustrated in Fig. 2.9). All answer inputs and the progres-

sion of the experiment used this interface. Sound stimuli were presented through a RME

BabyfacePro [65] sound card and headphone amplifier, with a 48 kHz sampling frequency,

connected to Sennheiser head phones (HDA-200). The sound stimuli were a train of 5 con-

secutive rectangular windowed 150 ms white noise bursts, with an inter-stimulus interval

(ISI) of 30 ms. These stimuli provide the listener with a broadband spectrum and a tempo-

ral structure, making them robust for sound localization. The headphone transfer function

was compensated by applying the inverse transfer function calculated using a BK4153 ar-

tificial ear and repeated swept-sine signals [54]. Sound pressure leveli was set to 65 dBA

at each ear when the virtual sound source was at 1 m and straight in front of the listener.
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All stimuli in this experiment were spatialized using the listeners’ individual DVF fil-

tered HRTFs. These HRTFs were constructed by DVF filtering the individual HRTFs mea-

sured at 1.5 m with a 5◦ angular resolution. The considered directions and distances for

the experiments were seven azimuths in front of the listener ranging from −90◦ (directly

in front of the listener’s left ear) to +90◦ with a 30◦ resolution, and four distances chosen

on a logarithmic scale : 0.13 m, 0.25 m, 0.50 m and 1.00 m. This means that there were 27

possible source positions (7 directions×4 distances). The sound for each source position

was heard four times.

In the angular accuracy evaluation, a single virtual sound was presented to the listener.

The listener was free to listen to it again as many times as desired before making a judge-

ment of the direction of the source. The listener answered the direction where he/she be-

lieved the source came from all possible positions, before moving on to the next trial. In the

distance accuracy evaluation, first a reference virtual source located at 1 m was presented.

Then, the target virtual source was presented, located at one of the four possible distances.

Direction of the target source was always the same as that of the reference source. The

listener was free to listen to both sounds as many times as he desired, before making a

judgement of the distance of the target source. Both a slider and a text input were available

for the listener to answer at which distance he believed the source distance was. The slider

was ranged from 1 cm to 100 cm with 1 cm resolution. If the listener believed the sound

source came from further away than 100 cm, he could answer via the text input.

For the distance evaluation experiment, the effect of the intensity cue for distance was

considered. In one condition, this cue was included, while in another condition, this cue

was excluded. This was done in order to study judgement of distance independently from

the dominant judgement of sound intensity. To do this, the source power was changed

accordingly to distance so as to compensate for the inverse square law presented in sec-

tion 1.2.1.
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(a) View of the interface used during the angular localization accuracy experiment. The listener
selected from one of the available azimuths which direction he believed the sound source was
presented from.

(b) View of the interface used during the distance localization accuracy experiment. The listener
heard a reference and target sound and answered using a slider or text input the distance he believed
the target sound source was presented from.

Figure 2.9: Matlab Interfaces used during the localization experiments: (a) the interface
for direction evaluation, (b) the interface for distance evaluation.
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2.5.2 Results

The results obtained for angular and distance accuracy were gathered and averaged

for all listeners. The results are presented as a perceived dimension to presented dimension

scale in Fig. 2.10 and 2.12. The pearson’s correlation coefficient between perceived dimen-

sion and presented dimension is also calculated and illustrated in Fig. 2.11 and 2.13. This

correlation coefficient estimates a global accuracy value on a scale of 0 to 1. A correlation

coefficient of 1 corresponds to a perfect matching of perceived and presented dimension.

Azimuth estimation

A consistent overestimation of the laterallity of sources presented from diagonal az-

imuths (±30◦, ±60◦) is observed in Fig. 2.10. This overestimation is clearly observed for

closer sounds, up to 45◦ estimation for sounds at 0.13 m. This can be explained by the

increased effect of the head shadow. As sources are closer to the listener’s head, the inter-

aural level differences become a more important cue which results in the impression of a

more lateral position of the presented sound source. This suggests that the listener is not

used to judge the direction of sound sources from within peripersonal space.

A two way analysis of variance (ANOVA) is conducted for the parameters of Distance

(four distances) and Direction (seven azimuths). Results show significance for direction

(F(6,54)=255, p< .001) and interaction (Distance×Azimuth, F(18,162)=1.86, p< .05),

but not for distance (F(3,27)=0.44, p= .73). The results for interactions of distance on

azimuth localization confirm the effects of distance on direction perception.

The results imply that almost all listeners can judge angular of the sound source ac-

curately. Overall error between perceived and presented scales is small (absolute : 16◦,

RMS : 18◦). This error may be lower if increasing the resolution of possible angles pro-

posed for the response. The correlation coefficient between presented azimuth and per-

ceived azimuth is also very high (Fig. 2.11), with an average of 0.917. This indicates good

localization accuracy.
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Figure 2.10: Average results for the direction accuracy experiment. Each point corresponds
to the average estimated direction among all test subjects for this configuration. Vertical
bars correspond to one standard error. Results for the different considered distances are
plotted on the same graphic.
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Figure 2.11: Average correlation coefficients for the direction accuracy experiment. For
each distance, the pearson’s correlation coefficient between perceived azimuth and pre-
sented azimuth is calculated.
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Distance estimation

A consistent overstimation of the distance of sources is observed, regardless of whether

the intensity cue was included or not (Fig. 2.12). The overestimation was greater for con-

ditions excluding intensity. This overestimation is consistent with the human average dis-

tance estimation scale established by Zahorik et al. [42] presented in section 1.2.4.

A three way analysis of variance is conducted for the parameters of Distance (four

distances), Direction (seven azimuths) and Condition (with/without intensity cue). Results

show significance for Distance (F(3,27)=223, p<.001) and Condition (F(1,9)=37.5, p<

.001), but not for Direction (F(6,54)=0.2, p= .97). Interactions were significant between

Direction and Distance (F(18,162)= 2.15, p< .01), Condition and Distance (F(3,27)=

11.6, p< .001), and between all three factors (F(18,162)=2.18, p< .01) but not between

Direction and Condition (F(6,54)=1.19, p= .32).

These results indicate the effects of azimuth on distance localization in both conditions.

Distance of sources coming from the interaural axis (±90◦) are estimated more accurately

than sources coming from the median plane (0◦). The interaural differences are therefore

more consistent in localizing distance than the auditory parallax and spectral modifica-

tions. Despite the consistent overestimation of distance, results for correlation, presented

in Fig. 2.13, are suitable. The average correlation value with intensity is 0.85, and without

intensity, 0.64. The mean absolute error (with intensity : 0.13 m, without intensity : 0.31 m)

and root mean square (with intensity : 0.16 m, without intensity : 0.35 m) are also low.

Regarding distance perception, individual differences were important in conditions ex-

cluding the intensity cue. Several listeners struggled to perceive distance for sound sources

presented from the median plane. This can be explained by the little information provided

by auditory parallax to the listeners for sound localization when sources were on the me-

dian plane, leading to great uncertainties in judgement of distance. Some listeners reported

a shift in the sound image rather than a change in perceived source distance.
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Figure 2.12: Average results for the distance accuracy experiment: (a) and (b) conditions
with the intensity cue, (c) and (d) conditions without the intensity cue, (a) and (c) results
for sources on the left side, (b) and (d) results for sources on the right side. Each point
corresponds to the average estimated distance among all listeners for this configuration.
Vertical bars correspond to one standard error.
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Figure 2.13: Average correlation coefficients for the distance accuracy experiment. For
each direction and condition, the pearson’s correlation coefficient between perceived dis-
tance and presented distance is calculated. Filled and open symbols respectively corre-
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Figure 2.14: Schematic of the average perceived distance to presented distance scale. The
full line represents the results gathered from 84 datasets by Zahorik et al. in 2005. The
filled circles represent the distance perception scale averaged over azimuths obtained in
this experiment.
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2.5.3 Discussion

The high correlations between perceived and presented dimension are promising for the

use of this method. Indeed, if comparing to previous studies using virtual sound sources

excluding the intensity cue [66, 67] such as presented in the table below (Table 2.1), this

method leads to overall better correlations. The correlation coefficients for distance estima-

tion without intensity for this study range from 0.57 to 0.78, whereas correlations for past

studies range from 0.05 to 0.6. In addition, if comparing to the average human distance

estimation accuracy [42] illustrated in Fig. 2.14, the results for this method are acceptable.

However, if comparing to the distance estimation accuracy for real sources [35, 66],

this method remains slightly inaccurate.

Virtual sources Real sources

Study Brungart & Simpson
2001 [66]

Qu et al.
2009 [67]

This
method

Brungart et al.
1999 [22]

Correlation coefficient 0.05∼0.6 0.2∼0.6 0.57∼0.78 0.4∼0.85

Table 2.1: Overview of results gathered from previous localization studies when excluding
the intensity cue.

2.5.4 Evaluation conclusion

To conclude this perceptual evaluation of DVF filtered individual HRTFs, the distance

and direction estimation accuracy is comparable to that of the average human distance

estimation accuracy. It also gives better results than other virtual source spatialization

methods that were previously used in psychoacoustic experiments, indicating that these

HRTFs can be used in psychoacoustic experiments involving sound spatialization.
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2.6 Chapter conclusions

Measuring individual HRTFs for several distances is a time-consuming, complex, and

still perfectible task. It can be especially complex and inaccurate for near field sound

sources. Therefore, the use of DVFs on HRTFs to approximate near-field virtual source

positions was evaluated. Numerical results suggested that DVF filtered HRTFs are less

accurate for the closest distances than for further distances, and that the errors appear at

the contralateral ear for high frequencies of sound. However, the result of a perceptual ex-

periment using the considered method showed distance localization accuracy comparable

to the average human distance estimation accuracy. The considered method was there-

fore used for virtual positioning of sound sources in the next chapters. Furthermore, the

obtained localization scale for each listener was extracted for use in the following chapters.
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Chapter 3

Effects of sound source distance on

spatial auditory attention to speech

stimuli
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3.1 Chapter objectives

This chapter aims to investigate the effects of sound source distance on stimulus-driven

auditory spatial attention. Some researchers reported that sounds presented from within

the peripersonal space lead to a higher activity in the brain [45, 46, 47].This increase is

induced by particular auditory and multimodal processes activated when the sounds are

presented within peripersonal space [45, 48]. I hypothesize is that this particular process

of peripersonal sounds could affect auditory attention. When listeners search for a target

sound, the closest sources would attract more attention.

Firstly, the effect of sound source distance on auditory attention is investigated. Re-

action times (RT) in a target search task are used as a measure of auditory attention. The

listener is instructed to look for a particular target word. A distracting background speech

sound is presented simultaneously. By varying the sound source distance of both target

and background, RT would be changed. This change is considered to reflect the amount

of attention. If the hypothesis is appropriate, listeners would respond to the target sound

faster when the sound is more salient.

Next, the effect of the distance separation between target and competing sound sources

on RT is investigated. Shinn-Cunningham et al. [49] and Brungart and Simpson [50]

showed in their separate studies that distance separation of speech sound sources bene-

fits intelligibility. The result is a reduced masking effect of competing sounds on a target

sound. By investigating RT in this target search task, the benefits of the separation on

auditory attention are analyzed.

These two conditions are selected to investigate the effects of individual distance per-

ception cues separately. Section 3.2 presents the design of the experiment conducted in

this chapter. Section 3.3 presents the results obtained from this experiment and whether

the hypothesis that distance of sound sources affects auditory spatial attention is supported

or not. In Section 3.4 these results are considered and are discussed by relating to previous

studies of auditory spatial attention. Finally, in section 3.5, conclusions on this chapter are

presented.
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3.2 Experiment design

The experiment consists of a target (T) sound search task in a competing background

(B) sound. The listeners are instructed to respond to the target sound as fast as possible

when they noticed its presentation. The reaction time is defined as the time delay between

the presentation of the target stimulus and the input response of the listeners. Moreover,

by changing the positions of the target and background sound sources, the relationship

between observed RT and target sound distance is investigated.

3.2.1 Test participants

Nine young students (8 male, 1 female, ages 21-24, average age 23) with normal hear-

ing acuity participated in this experiment. All were from the Graduate School of Infor-

mation Sciences, Tohoku University. All listeners had also participated in the localization

accuracy experiment presented in section 2.5.

3.2.2 Apparatus and stimuli

The stimuli were presented with the same experimental apparatus and in the same en-

vironment as in the sound source localization accuracy experiment in section 2.5. The

listener was provided with a gamepad plugged to the experiment computer. The listener

was instructed to respond to the target sound by pressing the buttons of this gamepad. The

mechanical and electrical delay of the gamepad were assumed to be negligible compared

to the human reaction time.

Stimuli

The target sound was a single 4 mora word (A-DO-RI-BU,アドリブ) chosen from the

Japanese word corpus FW07 [68]. It was uttered by a male speaker and lasted 610 mil-

liseconds. It was fixed for all trials of the experiment. The background sound was a

superposition of meaningless speech sounds. To create this sound, six streams of meaning-
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less speech were created by connecting words sequentially from the FW03 Japanese word

corpus [69] uttered by the same speaker as the target sound. All words in this stream were

different from the target sound. These six streams of sound were then added with random

delay. The result is a meaningless speech sound ressembling that of several speakers talk-

ing simultaneously. The length of this background sound was 7 s. Once the background

sound finished presenting, the current trial was terminated. Between each trial, a short

break of 1 s was done for computing the next stimuli.

The background sound was presented to the listener. After a random time delay ranging

from 2 to 5 s, the target sound was presented. The listener was therefore not capable of

predicting when the target sound would be presented. The target to background sound level

ratio (TBR) of the speech sounds at the center of the head was set to be 0 dB. Virtual sound

sources were obtained by convolving the monophonic sounds with the listener’s 512 point

DVF filtered HRTFs for the desired position.

Conditions and spatial configurations

Three azimuths and four distances were considered in this experiment. The three pos-

sible azimuths were −90◦, 0◦ and +90◦. They were chosen so as to separate distance

perception cues. Indeed auditory parallax could not be used for distance perception on the

interaural axis. On the other hand, interaural differences could not be used for distance

perception on the median plane. The distances followed the same logarithmic distance

scale as used in the sound source localization accuracy test. This resulted in 12 possible

positions of the target and background sources (4 distances×3 azimuths).

Two conditions were investigated. In “Same-Distance” condition, the target sound

source and the background sound source were presented from the same position. In each

trial, this position was one of the twelve possible positions. In “Distance-Separation” con-

ditions, the background sound source was always presented at a distance of 1 m. The target

sound source was presented from one of the four possible distances. The target sound was

always presented from the same direction as the background sound. These conditions and

spatial configurations are illustrated in Fig. 3.1.

In the experiment, the effect of intensity cue was also investigated. For sounds exluding

the intensity cue, no difference in source intensity between the target and the background

could be perceived. In contrast, for sounds including the intensity cue, the distance of the

sound source affected the perceived intensity. With this choice of spatial configurations and
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conditions, the individual bottom-up contribution of distance perception cues to auditory

attention could be investigated.

3.2.3 Experimental procedure

The listeners were first instructed with the task. Then, the target word to search for

was instructed to them and presented to them via headphones. The listener was then seated

in front of a computer screen indicating the current trial number. Instruction was given

to the listener to keep his/her head straight during the session. No visual feedback on the

positions of the sound sources or the correct response was given. During one trial, if the

gamepad input occured before the target sound presentation or after a time delay of more

than 2 s, this trial was repeated once more later in the session. Before the beginning of

the experiment, the listener was trained for the experiment task on twenty trials picked

at random from the possible conditions and source positions. During the experiment, all

conditions and sound source positions were randomly mixed.

The sound sources presented from each position were heard ten times in each exper-

imental condition, and each sound intensity condition. “Same-Distance” and “Distance-

Separation” conditions were identical when both the target sound source and the back-

ground sound source were presented from 1 m, regardless of whether the intensity cue was

provided or not. Therefore, this spatial configuration was not repeated for each condition.

This resulted in 30 trials in which both target and background sound were presented at 1 m

(3 azimuths×10 repetitions). Every other target and background sound source position re-

sulted in 180 trials in each condition (3 azimuths×3 distances×2 intensity conditions×10

repetitions). This resulted in 390 trials per experiment in total. In order to preserve the lis-

tener’s attentive capabilities, the experiment was divided into five sessions of equal length

(78 trials, 10 minutes), with a short rest between each session.
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(a) Schematic of the configurations considered in the Same-Distance conditions. The target (T) and
the background (B) are presented from the same position. This position is chosen from one of all
possibilities for distance and azimuth.

−90° 0° +90°

1 m

0.5 m

0.25 m

0.13 m

TB

TB

TB

TB

T
B

TB

TB

TB

T
B

T B

T B

T B

(b) Schematic of the configurations considered in the Distance-Separation conditions. The target
(T) and the background (B) are presented from the same direction. The distance of the background
is fixed at 1 m. The distance of the target is one of all distance possibilities.

Figure 3.1: Configurations considered for both Same-Distance conditions (a) and Distance-
Separation conditions (b). The azimuth of the sources is one of three azimuths : −90◦ , 0◦

, +90◦. The distances of the sources is picked from one of four : 1 m, 0.5 m, 0.25 m and
0.13 m.
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3.3 Results

3.3.1 Analysis method

The average RT for each listener was calculated in all conditions and target sound

source positions. The mean RT over all listeners for each condition was then obtained for

sources on the interaural axis and on the median plane separately in Fig. 3.2 and 3.3.

3.3.2 Average reaction time

A three-way analysis of variance (ANOVA) with factors Condition (four :

With/Without intensity×Same-Distance/Distance-Separation), Azimuth (three), and Dis-

tance (four) was conducted. Results show a significant effect for Distance (F(3,24)= 44.2,

p< .001) and Condition (F(3,24)= 78, p< .001) but not for Azimuth (F(2,16)= 0.84,

p = .45). Interactions were significant for Condition×Distance (F(9,72) = 19.7,

p < .001), but not for Azimuth×Distance (F(6,48)=1.93, p= .095), Azimuth×Condition

(F(6,48) = 0.29, p= .94) or three-way interactions (F(18,144)=0.59, p= .90).

These results suggest the importance of distance of target sound source in attentive

target detection tasks. The processes involved in this detection task depend on source

distance. The overall tendency is that the closer sounds induce the fastest responses. This

confirms the hypothesis that closer sounds capture auditory attention.

Interactions between Condition and Distance show effects of Condition for 0.13 m

(F(3,96)=81, p< .001), 0.25 m (F(3,96)=60, p< .001), 0.5 m (F(3,96)=29, p< .001)

but not for 1 m (F(3,96) = 0, p = 1). All conditions were identical for 1 m, explain-

ing the absence of effect for this distance. In addition, effects of Distance are signifi-

cant for Distance-Separation with intensity (F(3,96)=98, p< .001) and without intensity

(F(3,96)=8.8, p< .001), and for Same-Distance with intensity (F(3,96)=13, p< .001)

but not without intensity (F(3,96)=1.7, p= .16). This indicates that the task is responded

to differently in Same-Distance condition and in Distance-Separation conditions. These

two separate conditions are therefore analysed separately.

49



Same-Distance

Results for sounds on the interaural axis and on the median plane are analyzed sepa-

rately. On the interaural axis, a three-way ANOVA with factors Intensity (With/Without

intensity), Azimuth (±90◦) and Distance (four) in conducted. On the median plane, a

two-way ANOVA with factors Intensity (With/Without intensity) and Distance (four) is

conducted.

Results on the interaural axis suggest a consistent effect of sound source distance on RT

(F(3,24)=15, p< .001). The closer the sounds were presented to the listeners, the faster

the RT was. This was true regardless of providing the intensity cue. Indeed, interactions

between Intensity and Distance were not significant (F(1,8) = 1.87, p = .16). The RT

reduction was at best of 58 ms in conditions including intensity and 25 ms in conditions

excluding intensity. This suggests that the absolute distance of sound sources have a great

effect on auditory processes. Differences between condition with intensity and without

intensity (F(1,8)= 9.26 , p< .05) could also be observed. No difference between −90◦

and +90◦ was observed (F(1,8)=0.01, p= .91). Processes seem to be identical for sounds

coming from the left or the right.

Results on the median plane show no significant effect of the Distance (F(3,24)=0.45,

p= .72) or Intensity factors (F(1,8)=3.39 , p= .102).

Comparison between the three directions leads to the conclusion that interaural dif-

ferences are used consistently in this attentive target detection task when target and back-

ground are presented from the same position. In contrast, auditory parallax alone could not

be used consistently. This difference in results for the median plane and interaural axis can

be explained by the difficulty of distance judgement in the median plane, as illustrated in

Chapter 2. Therefore, the differences between source distances on the median plane could

not lead to differences in attention.
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Distance-Separation

Similarly to Same-Distance conditions, in Distance-Separation conditions, results for

sounds on the interaural axis and on the median plane are analyzed separately.

Results on the interaural axis suggest a consistent effect of target-background distance

separation on RT (F(3,24)=54.7, p< .001). The RT reduction was at best of 126 ms in

conditions including intensity and 50 ms for conditions excluding intensity. The closer the

target sound was presented to the listeners, the faster the RT was, regardless of the intensity

cue. Both Intensity (F(1,8)=155, p<.001) and Distance×Intensity interactions (F(1,8)=

39, p< .001) were significant. The simple main effect of Distance was significant both

with intensity (F(3,48)=90.8, p< .001) and without intensity (F(3,48)=10.8, p< .001).

Results of a multiple comparison (Ryan’s method) show that all differences in distance

were significantly different with intensity (p< .01). Without intensity, only the difference

between 0.25 m and 0.5 m was non significant (p= .49). No difference between −90◦ and

+90◦ was observed (F(1,8)=0.65, p= .44). Processes here again seem to be identical for

sounds coming from the left or the right.

Results on the median plane show significant effects of Distance (F(3,24)=12.5, p<

.001), Intensity (F(1,8)=127 , p< .001) and Distance×Intensity interactions (F(3,24)=

19.5 , p< .001). Distance had a significant effect with intensity (F(3,48)=27 , p< .001)

but not without intensity (F(3,48)= 1.02 , p= .39). Results of a multiple comparison in

conditions with intensity show that only the difference between 0.13 m and 0.25 m is non-

significant (p= .62). This difference with the interaural axis leads to the conclusion that

when competing sound sources are separated in distance, only the source intensity and the

interaural differences results in differences in attention.

A larger contribution of target source distance was observed in these Distance-

Separation conditions than in Same-Distance conditions (F(1,8) = 86, p < .001). This

can be explained by the lower effects of masking by the background sound when sources

are separated in distance. These tendencies are consistent with results reported by Shinn-

Cunningham [49] and Brungart & Simpson [50].
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(a) Results on the interaural axis. On the left figure, −90◦. On the right figure, +90◦.
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(b) Results on the median plane (0◦).

Figure 3.2: Reaction time averaged for all listeners as a function of presented distance of
the target sound source in Same-Distance conditions. The results for the interaural axis (a)
and the median plane (b) are shown separately. Error bars indicate standard error. The plots
with black markers and full lines correspond to sounds including the intensity cue, while
plots with white markers and dashed lines correspond to sounds excluding the intensity
cue.
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(b) Results on the median plane (0◦).

Figure 3.3: Reaction time averaged for all listeners as a function of presented distance of
the target sound source in Distance-Separation conditions. The results for the interaural
axis (a) and the median plane (b) are shown separately. Error bars indicate standard error.
The plots with black markers and full lines correspond to sounds including the intensity
cue, while plots with white markers and dashed lines correspond to sounds excluding the
intensity cue.
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3.3.3 Normalized reaction time as a function of perceived distance

In the previous section, the mean RT for all listeners was analyzed. However, when an-

alyzing the listeners’ individual average RT, reaction speed strongly depends on individual

listeners. Some listeners have a faster average reaction time than others. Therefore, in or-

der to compare individual listeners’ RT results, each listener’s average RT was normalized.

In this section we normalize individual RT scores using a z-score transformation, using

Equation (3.1) :

z-score =
RT −µ

σ
(3.1)

where µ is the listener’s average RT over all conditions and σ is the standard deviation

of the listener’s RT over all conditions. The result of this transformation follows the same

monotony as the individual RT : when the RT is faster, the z-score is smaller. Using this

transformation, individuals’ RT behavior to source distance can be compared equally.

Then, the same individual’s perceived distance scale from section 2.5 is extracted this

individual’s z-score to perceived distance is plotted. This plot for sounds on the interaural

axis is represented in Fig. 3.4. This results in a scatter plot of the average behavior of RT

as a function of perceived distance for an average listener. After this conversion, I aim to

analyze the effects of perceived source distance, rather than presented source distance.

At the beginning of the anlaysis, a linear regression of the resulting scatter plot was

calculated and presented on the figures. R2 values are low (0.24 and 0.25) in conditions

excluding intensity but are acceptable when including intensity (0.40 and 0.66). This dis-

crepancy highlights the dominant effect of sound source intensity in distance-related exper-

iments. Overall, the values are scattered around the linear model. However, in Distance-

Separation conditions, it can be observed that the initial small separation in distance leads

to larger reduction in RT than further separation. The relationship between the average

z-score and average perceived distance is plotted in all conditions in Fig. 3.5. This figure

highlights that the initial small separation between target and background results in large

RT reduction for the Distance-Separation conditions.
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Figure 3.4: Individual z-score to perceived distance. Same-Distance conditions (a) and
Distance-Separation conditions (b) are represented. Sounds including (black marks, full
line) and excluding intensity (white marks, dashed lines) are also analyzed. In these figures,
a linear fitting is applied to the data.

55



0 0.2 0.4 0.6 0.8 1
Average perceived target distance (m)

-1.5

-1

-0.5

0

0.5

1

1.5
w/ intensity cue
w/o intensity cue

(a) Same-Distance

0 0.2 0.4 0.6 0.8 1
Average perceived target distance (m)

-1.5

-1

-0.5

0

0.5

1

1.5
w/ intensity cue
w/o intensity cue

(b) Distance-Separation

Figure 3.5: Relationship between average z-score and average perceived distance. Same-
Distance conditions (a) and Distance-Separation conditions (b) are represented. Sounds
including (black marks, full line) and excluding intensity (white marks, dashed lines) are
also analyzed. In Distance-Separation conditions, a larger reduction of z-score can be
observed in the initial separation of target and background than in further separation.

56



Taking this consideration into account, a power function model is proposed in Fig. 3.6.

The z-score is fitted by following equation :

z-score = a× (r′)b + c (3.2)

where r′ is the perceived distance and a, b and c are fitting parameters. As a result, the

model predicts a rapid reduction of RT for the initial distance separation of target and

background sources. The R2 values for each fitting model is presented in Table 3.1. The

small increase in Distance-Separation condition, as well as similar observations reported

by Brungart & Simpson [50], could justify the use of the power model.

Same-Distance Distance-Separation

w/ intensity w/o intensity w/ intensity w/o intensity

Linear model R2 0.40 0.24 0.66 0.25

Power model R2 0.42 0.24 0.71 0.29

Table 3.1: R2 values for both linear and power fitting models of z-score to perceived dis-
tance. A small increase of R2 value is observed when fitting the data with a power model.
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Figure 3.6: Individual z-score to perceived distance. Same-Distance conditions (a) and
Distance-Separation conditions (b) are represented. Conditions including (black marks,
full line) and excluding intensity (white marks, dashed lines) are analyzed. Here, a power
fitting is applied to the data, leading to better R2 values.
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3.4 Discussions

3.4.1 Effects of peripersonal space in virtual presentation of sounds

During the experiment, the listener attended to a target word. While attention is on

the nature of the word, the observed tendency of the reduction of RT with distance indi-

cates that the presentation of the sound in peripersonal space enhances auditory process. In

Same-Distance condition, no benefits of sound source separation in distance were included.

However, under this condition, the closest sounds resulted in faster RT when presented on

the interaural axis, regardless of the source intensity. This suggests that the absolute dis-

tance of sound sources impacts how much the perceived sounds capture attention. This

can also be explained by the nature of auditory attention and peripersonal space. As ex-

plained by Scharf in 1998 [6], the auditory system is “an excellent early warning system”,

and auditory attention selects which information is especially important for the organism.

Because the position of the sound sources would be considered as dangerously close, the

organism gives high priority to these closest sounds.

An explanation of the mechanisms underlying this priority of near sources could lie in

the multimodal processes involved in the peripersonal space. As sound stimuli were pre-

sented from the very closest distances, multimodal neurons which are related to the tactile

stimulation also activate for these auditory stimuli [45]. This finding was also true regard-

less of the intensity of the auditory stimuli. This multimodal activation would result in the

integration of very near sound sources with knowledge of tactile contact. This integration

results in the attribution of a high priority to these auditory stimuli.

The effect of distance was especially consistent for sources on the interaural axis. Two

possibilities to explain this phenomenon are considered. The first is that distance percep-

tion is more precise on the interaural axis as could be seen in Section 2.5 and previous

studies [22, 66], leading to more consistent effects of virtual source distance on attention.

A second possible explanation could be that sources on the interaural axis are not in the

visible field, leaving only the auditory system to process sounds coming from these direc-

tions. The absence of information for sources outside of the visible field would make them

more urgent, resulting in higher priority given to these sources.
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Whereas previous studies of auditory peripersonal space were done with real sound

sources, the results in this experiment using virtual sound sources suggest also the existence

of peripersonal space processes for virtual sound sources. This means that the high priority

given to the very near sound sources is extracted from the sound’s acoustic properties.

3.4.2 Sound stream segregation

Effects of distance on RT in Distance-Separation conditions were consistently larger

than in Same-Distance conditions, even when excluding the intensity cue. In this experi-

ment, eliminating the intensity cue also eliminated variation in target to background sound

level ratio (TBR) at the center of the listener’s head. The TBR gives a measure of dif-

ference in level between competing sounds, similar to the signal to noise ratio for signal

processing. It is calculated using Equation (3.3) below. Although distance separation did

not change this TBR at the center of the head when intensity change is eliminated, sound

source separation resulted in faster processes. This supports the hypothesis proposed by

Shinn-Cunningham [49] and Brungart & Simpson [50] that separation of competing sound

sources in distance results in unmasking benefits, regardless of the TBR at the center of the

head. Additionally, Brungart & Simpson argued that the TBR at the ipsilateral ear can not

explain these benefits neither. Indeed, during a speech intelligibility test for peripersonal

distances similar to those in this experiment, they controlled the TBR at the ipsilateral ear

to be constant while conserving natural interaural level differences. The results for control

of TBR at the center of the head and for control at the ipsilateral ear induced similar spatial

unmasking benefits.

TBR = 20 log10

(
RMS(target)

RMS(background)

)
(3.3)

where RMS is the root mean square value calculated on the length of the target word. The

TBR is estimated in decibels.

Brungart & Simpson also found that the initial separation between 1 m and 0.5 m had

more impact on unmasking benefits than further separation of sound sources. This result

is consistent with what was found in Section 3.3.3, in which the initial separation of sound

sources had more impact on RT than further distance separation.
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These two main results lead to the speculation that separation of sound sources con-

tributes to the mental sound stream segregation process, regardless of TBR. When both

sounds are presented from the same position, listener would perceive sounds in one mixed

auditory stream. The initial separation in distance results in the perception of two indepen-

dent streams. This segregation induces faster and easier process of both individual stream.

This phenomenon is similar to the contribution of angular separation of sound sources on

sound stream segregation as presented in Section 1.1.1. Further distance separation then

results only in the easier segregation of sound streams.

1 m

High benefits to 
sound stream 
segregation 

Lower benefits to 
sound stream 
segregation 

TB

1 stream 2 streams

Small ∆
B
T

2 streams

Higher ∆

B

T

r
r

T : Target sound

B : Background sound

Stream 1

Stream 2

Figure 3.7: Schematic representation of benefits of distance separation on sound stream
segregation. The slight separation in distance between target and background sounds leads
to a difference in sound image localization. This results in a separation of perceived sound
streams from one to two streams, which benefits greatly attention. Further separation of
sounds in distance only makes the separation of streams clearer, benefitting less than the
initial separation into two streams.
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3.5 Chapter conclusions

An experiment on auditory attention was conducted for a target detection task masked

by a background sound. In this experiment, no prior knowledge of the position of the tar-

get word was given. Whereas the listeners payed attention to the target word, they were

not focused on the spatial localization of the sound source. Therefore, by changing the

sound sources’ position, the stimulus-driven auditory spatial attention could be evaluated.

Results showed large bottom-up effects of distance of sound sources and distance separa-

tion of sound sources. Two main results were obtained. First, when sounds were presented

from closer distances in peripersonal space, they captured attention more consistently. Fur-

thermore, this was true regardless of the intensity cue when sounds were presented on the

interaural axis. This suggests effects of peripersonal space on auditory attention. Second,

distance separation of sources benefitted considerably sound stream segregation. Not all

distance cues could be used consistently by the listener. Only the intensity cue and the

interaural differences cue resulted in variation of reaction time.

The experiment in this chapter focused on stimulus-driven auditory attention. There-

fore this leaves us with the question of task-dependent, voluntary attention. When listeners

focus on a particular source distance, can the listeners process sound sources presented

from this distance with high priority ? This issue is investigated in the next chapter.
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Chapter 4

Top-down spatial auditory attention

effects for distance of sound sources
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4.1 Chapter objectives

This chapter aims to investigate the existence and capabilities of top-down spatial audi-

tory attention to sound source distance. In other words, the research question in this chapter

is whether listeners can focus on a specific sound source distance, or not. If this top-down

spatial auditory attention exists, then paying attention to a specific distance would enhance

auditory processes for sound sources presented from this distance. Such ability for direc-

tion of sound sources was reported by previous studies [16, 17, 18, 19, 20]. In this chapter,

the effect of top-down spatial auditory attention is investigated using a similar experiment

as in Chapter 3. Focus on a distance is drawn implicitly by using a probe-signal method, in

which probability of the target speech sound presentation is controlled. Two distances are

set to focus : far (1 m) and near (0.13 m). If the listener is capable of focusing on one of

these distances then the reaction time (RT) should be faster for sounds presented from this

distance.

Section 4.2 of this chapter presents the design of the experiment conducted in this

chapter. Section 4.3 presents the results from this experiment and whether the hypothesis

that top-down auditory spatial attention on source distance is available is supported or not.

In section 4.4, these results are discussed and put in perspective with results from the field

of auditory spatial attention. Finally, in section 4.5, this chapter is concluded.
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4.2 Experiment design

A target sound detection task similar to Chapter 3 was conducted. However, the ex-

perimental conditions were different. The previous chapter aimed to study the effects of

sound source distance on stimulus-driven auditory attention by analysing which distance

perception cues are used dominantly. In this experiment, the potential top-down auditory

attention for distance is focused on. Therefore, two types of conditions were considered :

conditions where focus on distance is attempted and conditions where no focus on distance

is attempted.

4.2.1 Test participants

In the experiment, seven young students (all male, ages 23-24, average age : 23.7) with

normal hearing acuity participated. All were from the Graduate School of Information

Sciences, Tohoku University. All listeners except for one (Subject 11) had also participated

in the localization accuracy test presented in section 2.5 and in the experiment in Chapter 2.

4.2.2 Apparatus and stimuli

The stimuli were presented through the same experimental apparatus and in the same

environment as in the sound source localization accuracy experiment in section 2.5 and the

experiment in Chapter 3. The head of the listener was fixed using a chin rest.

Stimuli

The scheme of the experiment in this chapter was the same as in the previous exper-

iment. The target sound was a four mora word chosen from the Japanese word corpus

FW07 [68], (A-DO-RI-BU, アドリブ). The background sound was made of six layers

of meaningless speech constructed from words extracted from the FW03 [69] Japanese

word corpus. However, in order to maximize the effects of top-down auditory attention,

the background sound lasted longer than in the previous chapter (more than 3 min). The
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target sound was presented several times during the length of the background sound. The

hypothesis is that within this time, the listener should be able to fine-tune auditory spatial

attention on the target distance.

In addition, so as to further study the listener’s selective capabilities, another type of

stimulus was also presented. To control the difficulty of the task, distracter sounds were

also presented between each target sound. Distracters were four mora words from the

FW07 Japanese word corpus. These were all different from the target word and the same

distracter word was not presented twice during one trial. They were all uttered by the same

speaker as the target and background sounds. The length of the distracter sounds ranged

between 650 ms and 1000 ms. Using these distracter sounds, the selective capabilities of

auditory attention for distance can also be investigated using signal detection theory.

First, the background sound was presented. After a 500 ms time delay from the begin-

ning of the background sound, the first distracter or target sound was also presented. Be-

tween each presentation of the target sound, either one, two, three or no distracter sounds

were presented. Furthermore, the inter-stimulus interval between two consecutive sound

was ranged between 750 ms and 1250 ms. The listener could therefore not predict at which

time the next target sound would be presented. This was done in order to eliminate poten-

tial temporal or rhythmic cues affecting attention. The trial ended once the target sound

was heard a fixed number of times from each distance.

Conditions and spatial configurations

Spatial configurations were similar to the ones in the experiment in Chapter 3. Four

egocentric distances in peripersonal space : 1 m, 0.5 m, 0.25 m and 0.13 m were consid-

ered. No significant difference between results for sources presented from the left and right

directions was observed in the experiment in Chapter 3. Therefore, the experiment in this

chapter considered only the left (−90◦) and front (0◦) azimuths.

The background sound was always presented from 1 m. The distance of each distracter

sound was randomized from one of the four distances. The target and distracter sounds

were always presented from the same azimuth as the background sound. The intensity cue

for distance was always eliminated.

Three conditions were investigated separately. The first condition was the No-Focus

condition, in which no a priori knowledge of the distance of the target sound source was
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given to the listener. Here, the auditory attention of the listener was not directed to a

particular distance. In this condition, the target sound was presented with equal probability

from each source distance. Therefore, the target sound was presented with 25% probability

from each of four distances. The second and third conditions were Focus conditions, in

which the listener’s auditory attention was implicitly directed to a particular distance using

the probe-signal method [20]. This method can direct the listener’s attention to a specific

position by controlling the probabilities of presentation of the stimuli from this position.

The target sound was presented from one particular distance with 80% probability, and

from each of the other three distances with 20÷ 3 = 6.66% probability. The hypothesis

was that the listeners would gradually expect the next target sound to be presented from the

high probability distance, and therefore focus on the distance implicitly. The two distances

of focus considered were set at 1 m and 0.13 m. These two distances were chosen to

clearly observe the effects of peripersonal space. The probabilities of presentation of the

target sound at one distance are summarized in Table 4.1.

Target Target

Distr.

time
ISI

Background (1 m)

Distr. Distr. Distr. Distr. Distr.

Figure 4.1: Schematic of the time course of presentation of the different stimuli. The
background sound lasted more than 3 mins. The target sound is presented several times,
separated by the presentation of one, two, three or no distracter sounds. Between each
sound, the inter-stimulus interval (ISI) ranged from 500 ms to 1000 ms. The trial stops
once the fixed amount of target sounds was presented.
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4.2.3 Experimental procedure

The listeners were instructed to press a gamepad button as soon as they heard the target

word. The target word was instructed and heard before the beginning of the experiment.

For each azimuth and condition, the target sound was presented from each distance twelve

times. Therefore, the target sound was heard 48 times (12 presentations×4 distances)

per azimuth in No-Focus conditions. As mentioned previously, the probe-signal method

was applied in Focus condition. This means that the number of target sound presenta-

tion is increased. In these conditions, for each azimuth the target was heard 144 times

from the focus distance and 12 times from each of the remaining three distances. In both

Focus 1 m and Focus 0.13 m conditions, the target was therefore presented 180 times

(144 presentations+12 presentations×3 distances) for each azimuth.

The direction of the target sound source was set to −90◦ and 0◦. These directions were

used in separate sessions, during which all sound stimuli were presented from the same az-

imuth. In order to preserve the listener’s attentive capabilities as best as possible, Focus 1 m

and Focus 0.13 m were each separated into three consecutive independent trials of equal

length (60 presentations of the target, approximately 3 mins 30 s). The full experiment for

one azimuth consisted of 7 separate sessions of approximately 3 mins 30 s (one session

in No-Focus condition, three sessions per Focus condition). The order of each conditions

were counterbalanced between all listeners. Each trial was followed with a short break.

The session always started with a training session conducted in No-Focus condition, for a

1 min long trial.

Distance

Condition 1 m 0.5 m 0.25 m 0.13 m

No-Focus 25% 25% 25% 25%

Focus : 1 m 80% 6.66% 6.66% 6.66%

Focus : 0.13 m 6.66% 6.66% 6.66% 80%

Table 4.1: The probabilities of presentation of the target sound at one distance, in each
experiment condition. In Focus conditions, the target sound is presented from a particular
distance with high probability. This results in implicitly orienting the listener’s attention to
this distance.
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4.3 Results

4.3.1 Analysis method

The hit rate and false alarm rates were investigated in this experiment. A response

via gamepad input was considered as a hit if it occured within the time interval between

the beginning of a target sound and the end of the following ISI. If no input was detected

within this interval, it was considered as a miss. Likewise, an input was considered as a

false alarm (FA) if it occured within the time interval between the beginning of a distracter

sound and the end of the following ISI. If no input was detected within this interval, it was

considered as a correct reject. These rules are summarized in Fig. 4.2.

The average RT for all individuals was calculated only for inputs considered as hits.

Furthermore, in Focus conditions, the target sound was presented from the focus distance

144 times, while it was only presented 12 times for each other distance. In order to compare

average values calculated on the same amount of data, the average RT for the focus distance

was therefore calculated using the last 12 inputs considered as hits. It is believed that the

listener’s top-down attention on the focus distance was at it’s maximum potential for these

last inputs.

Target Target

Distr.
time

Hit False alarm Hit

Figure 4.2: Schematic explaining the definitions of hit and false alarm in this experiment.
If a gamepad input is detected within the time interval of a target sound followed by its ISI,
it is considered as a hit. If no input is detected within this interval it is considered as a miss.
If a gamepad input is detected within the time interval of a distracter sound followed by its
ISI, it is considered as a hit. If no input is detected within this interval it is considered as a
miss.
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Except for one listener (Listener 2), a decrease of RT with number of presentations of

the target sound at the focus distance could be observed. This tendency was observed for

both Focus conditions on the interaural axis, and for Focus on 0.13 m on the median plane

(Fig. 4.3). The average decrease in RT for all other listeners ranged between 5 ms and

33 ms. There were little learning effects for focus on 1 m on the median plane.
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Figure 4.3: Average RT of each listener as a function of the number of target presentations
from the focus distance. (a) (b) interaural axis, (c) (d) median plane, (a) (c) Focus 1 m,
(b) (d) Focus 0.13 m. Each color corresponds to an individual listener. One listener (dark
blue, Listener 2) presented an increase of RT towards the end of the test session, suggesting
effects of fatigue due to the length of the sessions.
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4.3.2 Average results

Mean reaction time

The mean RT calculated over all listeners are compared in Fig. 4.4 for No-Focus, Focus

1 m and Focus 0.13 m. The difference of RT between No-Focus condition and each of

other two Focus conditions is represented in Fig. 4.5. By comparing the obtained RTs in

No-Focus and Focus conditions, the effect of top-down attention can be analyzed. When

the target sound is presented from the focus distance, a decrease of RT can be observed.

In contrast, the RT obtained when the targets are presented from other distances is longer

than that when the targets are presented from the focus distance. In the Focus 0.13 m

condition, the obtained decrease of RT for targets presented at the focus distance was as

much as 23 ms for targets presented at the focus distance, while the increase of RT for

targets presented from the farthest distance was 43 ms. For the Focus 1 m condition, the

decrease was as much as 13 ms and the increase of 57 ms. When the listener focused on

1 m, the RT became a decreasing function of target distance.

A three-way analysis of variance ANOVA was conducted on mean RT for the parame-

ters of Distance (four target distances), Azimuth (−90◦ and 0◦) and Condition (No-Focus,

Focus 1 m, Focus 0.13 m). Results suggest an effect of Azimuth (F(1,6)=6.15, p< .05)

and Distance (F(3,18) = 4.02, p< .05) but not of Condition (F(2,12) = 0.10, p= .90).

Interactions were significant for Condition×Distance (F(6,36) = 5.0, p< .001), but not

for Azimuth×Condition (F(2,12) = 1.32, p= .31), Azimuth×Distance (F(3,18) = 0.46,

p= .71), or three-way interactions (F(6,36)=0.44, p= .85).

The simple main effect of Distance was statistically significant in Condition at the two

Focus distances : at 1 m (F(2,48)=3.9, p< .05) and at 0.13 m (F(2,48)=8.75, p< .001).

A multiple comparison (Ryan’s method) reveals that for these two focus distances, the dif-

ference between Focus 0.13 m and Focus 1 m is statistically significant (p< .05). This con-

tributes to show that implicitly orienting the listener’s attention to a particular distance con-

siderably changes the listener’s spatial selective processes, especially at the focus distance.

The effect of Distance is largely significant for the Focus 0.13 m condition (F(3,54)=10.0,

p<.001), almost not significant in Focus 1 m condition (F(3,54)=2.2, p<.1), and not sig-

nificant in No-Focus condition (F(3,54)=2.06, p= .12). A multiple comparison (Ryan’s

method) reveals that in Focus 0.13 m condition, the differences between 1 m and 0.13 m,

between 1 m and 0.25 m and between 0.5 m and 0.13 m are significant (p < .01). The

71



non-significance of effects of Distance in No Focus condition is inconsistent with the re-

sults obtained in Chapter 3. Although the order in which Focus conditions were investi-

gated was mixed, interactions between Focus and No Focus conditions may explain this

inconsistency. The shift of attention in a Focus trial may have affected the results for the

following No-Focus trial. Another possible explanation is the small number of listeners.

Further study is needed to explain this inconsistency.
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(a) Results on the interaural axis (−90◦).
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Figure 4.4: Reaction time averaged for all listeners as a function of presented distance of
the target sound source. The results for the interaural axis (a) and the median plane (b) are
shown separately. Error bars indicate standard error. Dashed lines show the results when
no focus on distance is attempted. Filled triangles show results for focus on 1 m (upper
triangle) and 0.13 m (lower triangle).

73



0.13 0.25 0.5 1

Presented target distance (m)

-90

-60

-30

0

30

60

90

R
el

at
iv

e 
R

T
 (

m
s)

Focus : 1 m

Focus : 0.13 m

(a) Results on the interaural axis (−90◦).
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Figure 4.5: Relative reaction time advantage of focusing as a function of presented distance
of the target sound source. The calculation was made by substracting the results for No-
Focus condition from results for Focus conditions. The results for the interaural axis (a)
and median plane (b) are shown separately. Error bars indicate standard error. Upper
triangles show results for focus on 1 m and lower triangles for focus on 0.13 m.
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The effect of Azimuth was significant, but interactions between Azimuth and other

factors were not. The RT averaged on all distances is faster on the median plane than on

the interaural axis, regardless of focus conditions. This was not observed in the results

from Chapter 3. A previous study of auditory attention to direction reported faster reaction

time to sounds coming from the median plane than for sounds coming from the sides [17]

when that direction is attended to. Further study is needed to understand this difference.

Hit rate and false alarm rate

The hit rate was consistently close to 100% and the false alarm rate consistently close

to 0%. The maximum false alarm (FA) rate was obtained for the closest distance : 0.13 m

in No-Focus condition and Focus 0.13 m condition. However, the FA rate was constant

in Focus 1 m. These effects were not significant. Indeed, the maximum difference in

FA rate between conditions was 3%, which was not considered as statistically significant.

Moreover, the results of a three-way ANOVA for FA rate show only the significant effect

of Condition (F(2,12) = 5.3, p< .05), and not of Distance (F(3,18) = 2.08, p= .14) or

Condition×Distance interactions (F(6,36)= 1.25, p= .30). The difference between No-

Focus and Focus 1 m was significant (p< .01). However, the difference betwen No-Focus

and Focus 0.13 m was small (p= .06) and there was no significant difference between

Focus conditions (p= .28). Results of ANOVA for hit rate show no significant effects.
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Figure 4.6: Hit rate and false alarm rate averaged over all listeners and azimuths. Upper
triangles show results for focus on 1 m, lower triangles for focus on 0.13 m and dashed
lines for No-Focus.

75



4.4 Discussion

4.4.1 Existence of the auditory spotlight for distance and interactions

with peripersonal space

Results showed that attention on a particular distance affected the RT to the target

speech sound. When the attention of the listener was implicitly directed to a particular

distance, the response to sounds coming from this distance became faster. In contrast, the

response to sounds coming from a different distance became slower. A similar tendency

could be obtained by the study of auditory spatial attention on direction by using RT [17]

and correct response rate [16, 18, 19]. For direction, auditory spatial attention is compared

to a “spotlight” which shines on the desired direction. Auditory process of sound sources

from within the spotlight would be enhanced, while sources presented from a larger angular

separation from the center of the spotlight would be processed with decreased capabilities.

Therefore, the effect of the spotlight for direction is a function of angular distance, defined

as the absolute value of the angle between direction of focus and direction of presented tar-

get sound source. For direction, a recent study (unpublished data, Teraoka et al.) suggests

that the spotlight of attention is of similar shape and effect for several different directions

of focus.

For distance, the spotlight does not seem to be identical for all focus distances. Indeed,

the shape of the spotlight for 1 m and 0.13 m was different, as represented on Fig. 4.7.

On this figure, the effect of attention on RT is represented as a function of distance from

focus point. If taking the distance at which the benefits of focusing on a particular source

distance is null (relative RT is 0 in Fig. 4.7), the spotlight seems to be broader when fo-

cusing on far distances than on near distances. The spotlight in the Focus 1 m condition

results in faster RT until 0.75 m separation from the point of focus. However, in Focus

0.13 m, it results in faster RT only for sources until 0.37 m separation from the point of

focus. There would be two reasons to explain this phenomenon. One reason could be per-

ceptual resolution of the space which is simulated using HRTFs. It was more difficult to

distinguish the position of sound source between 0.5 m and 1.0 m than that between 0.5 m

and 0.25 m. This effect could be observed in section 2.5. Because distances of far sound
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sources are hard to differenciate, focusing on 1 m results in a broad spotlight focused on

all far distances. Another reason could be the effect of peripersonal space. This tendency

could be slightly observed in section 3.4.1. When a sound is presented from the near field

in peripersonal space, auditory processes would be enhanced. If this speculation is true,

an enhancement of the resolution of the top-down auditory spatial attention could occur

for sounds in peripersonal space. On the other hand, when a sound is presented outside of

the peripersonal space, no enhancement of auditory process would occur. As a result, the

resolution of auditory attention in the area is wide and the listener responds to all sounds

outside of the peripersonal space.

The difference in false alarm rate also suggests different properties of auditory attention

between close sources in peripersonal space and farther sources. No-Focus resulted in a

higher false alarm rate for the closest distances. This means that the listeners responded

to distracter sounds presented from 0.13 m although they were instructed to respond only

to target sounds. This contributes to the theory that near sounds in peripersonal space are

naturally alarming. Focusing on 0.13 m did not change this behavior. However, focusing

on 1 m led to an overall smaller false alarm rate for all distances, including 0.13 m. This

suggests a more composed selection of sounds when the focus is on 1 m.
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Figure 4.7: Relative contribution of focusing on distance as a function of distance to focus
distance. This figure is obtained by averaging results for the left and front azimuths. Upper
triangles show results for focus on 1 m, lower triangles for focus on 0.13 m. As the target
source is presented farther away from the focus distance, the RT increases. The size and
shape of the attention spotlight is different as a function of focus distance.
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4.4.2 Relevance of these results

As mentioned in the previous chapter, the relationship between the distance of sound

source and auditory attention is unclear. No known study of the auditory attention spot-

light as a function of distance of sound source had been conducted. This section aims to

discuss the results obtained in this chapter and to present how these results could be further

completed in future studies.

The existence of the auditory spotlight for distance, as well as a change of the shape of

this spotlight along distance can be speculated from the results in this study. The change

in shape of the spotlight according to focus distance is speculated to be due to enhanced

auditory processes for sounds from within peripersonal space. This enhancement of audi-

tory processes could also affect the auditory attention spotlight for direction. The effects of

peripersonal distance of sound sources on auditory attention for direction is an interesting

subject for further study.

In this study, the distances considered were either always closer than the far focus dis-

tance or always farther than the close focus distance. The shape of the auditory spotlight

was not investigated symetrically around a focus distance. Moreover, in neither focus con-

dition did the effect of attention seem to reach a saturation although this was reported for

direction in previous studies [16, 17]. In these studies, beyond a certain angular distance,

the effect of greater angular separation did not lead to faster processes [17] or better correct

response rate [16]. Studying the effect for further distances than 1 m could complete the

study of both the 0.13 m and the 1 m spotlight’s shapes. This study is bound to be complex

in anechoic conditions, as distances beyond 1 m in anechoic conditions are difficult to dif-

ferentiate [21]. The presence of reverberation has been reported to benefit the localization

accuracy of sound sources presented from far distances [29, 30, 31]. Therefore, using a

reverberant environment could extend the range of possible source distances beyond 1 m

to further study auditory spatial attention for distance.

It is also important to understand the conditions in which these results were obtained.

The sound sources were virtual, presented through headphones in an anechoic environ-

ment excluding the intensity cue. If supposing that the capacity and shape of the attention

spotlight depends on the localization accuracy, then these results are bound to change if

using real sound sources, if including the intensity cue, or if conducting the experiment in

a reverberant environment.
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Finally, the average RT in this experiment was fast, and the correct response rate was

very high. This shows that the task was done with ease by the listeners. Furthermore, little

learning effects were observed. Several past studies have shown that the effects of auditory

spatial attention become more important when the task is complex [20, 50, 70, 71, 72].

If making the task in this experiment more complex, the effects of auditory attention for

distance may potentially be more obvious.
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4.5 Chapter conclusions

An experiment of auditory spatial attention was conducted by implicitly orienting the

listener’s auditory attention to specific distances. The listeners performed a target detection

task in which the distance of presentation of the source was varied. Evaluation of the

listeners’ reaction time revealed that the sounds presented from the focus distance were

consistenly responded to faster than from other non focused distances. Moreover, reaction

time increased according to the distance from the focus point. This reveals the availability

of top-down attention on distance. In addition, the distance at which the listeners focus

affects their spatial selective capabilities. Focus on far distances resulted in broad spatial

selectivity, whereas focus on very near distances resulted in a narrow spatial selectivity.

This suggests a difference in processes for very near sound sources, as compared to far

sound sources. This difference in processes is believed to be due to peripersonal space

effects for the very near sound sources.
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Chapter 5

Overall conclusion
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Auditory spatial attention for distance of sound sources was investigated in this thesis.

The novelty was to investigate the effects of distance of sound sources within peripersonal

space. It is believed that human auditory processes of sound within peripersonal space are

different from sources in extrapersonal space. The sound sources were virtual, rendered

in an anechoic environment. The generated sound was presented via headphones. The

listeners were instructed to respond as fast as possible once they detected a target word

under a distracting speech sound environment. The distances of the target and distracter

sound sources were varied to investigate the relationship between auditory spatial attention

and sound source distance, as well as its relationship with distance of competing sound

sources.

An introduction to the method used to generate accurate virtual sound sources in

an anechoic environment was presented in Chapter 2. Head-related transfer functions

(HRTFs) were filtered through distance varying filters (DVF) in order to obtain transfer

functions for distances within peripersonal space. The numerical evaluation of these func-

tions, as well as a psychoacoustic localization accuracy experiment were conducted. The

results showed that virtual sound sources synthesized using these functions were localized

with accurately. The accuracy was comparable to the average human accuracy for judge-

ment of sound source distance. Based on these results, it was concluded that this DVF

method is appropriate to generate near-field sound source.

Using the spatialized virtual sound sources, auditory attention as a function of sound

source distance was investigated in Chapter 3. Effects of distance separation of competing

sound sources were also investigated. Spatial configurations and experiment conditions

were chosen to investigate the individual contribution of each distance perception cue.

Results showed that the closest sound sources capture auditory attention more consistently

than further sounds. This suggests effects of auditory peripersonal space on auditory

processes. Indeed, the acoustic properties of very near sounds resulted in enhanced

auditory processes. In addition, distance separation between competing sound sources

was used effectively to decrease reaction time even when the intensity cue for distance of

sound was not provided. The initial small separation between sound sources resulted in a

higher contribution to reaction time than further separation. This suggested that distance

separation benefits sound stream segregation. This seemed to have effect regardless of

source intensity.
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While auditory attention with no a priori knowledge of the position of the target sound

source was the focus of Chapter 3, the contribution of knowing the position of the source

prior to stimulus presentation was investigated in Chapter 4. The listeners’ attention was

implicitly directed to specific focus distances using the probe-signal method. A similar tar-

get word detection task as Chapter 3 was applied. Results suggested the effect of top-down

attentional capabilities for distance. The sounds presented from the focus distance were

consistently responded to faster than when presented from other distances. Furthermore,

the size of the selective area of spatial attention was a function of focus distance. When

focusing on a very near distance, the area of selection was narrower than when focusing on

a far distance.

Although these findings suggest a spatial selective ability with auditory distance, the

study presented in this thesis opens for many questions on the mechanisms of human audi-

tory attention as a function of sound source distance. Mechanisms underlying the enhanced

auditory processes of the closest sounds can be linked to the multisensory mechanisms that

occur within peripersonal space, especially within the space very near to the listener’s head.

As for the study of the top-down auditory attention spotlight for distance, its shape and size

are still unclear. Similar investigation for a larger range of distances would contribute to

establish a model of the spotlight for distance. Based on its interactions with the attention

spotlight for direction, a two-dimensional model of the auditory attention spotlight would

be constructed. Finally, it would be interesting to investigate the mechanisms of auditory

spatial attention in the whole peripersonal space, including rear space.
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Appendix A

DVF filtered HRTF localization

accuracy - individual results
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(a) Including the intensity cue. (b) Excluding the intensity cue.

(c) Azimuth localization.

Figure A.1: Localization accuracy results for Listener 1. (a) distance localization results
including intensity cue, (b) distance localization results excluding intensity cue, (c) azimuth
localization results.
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(a) Including the intensity cue. (b) Excluding the intensity cue.

(c) Azimuth localization.

Figure A.2: Localization accuracy results for Listener 2. (a) distance localization results
including intensity cue, (b) distance localization results excluding intensity cue, (c) azimuth
localization results.
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(a) Including the intensity cue. (b) Excluding the intensity cue.

(c) Azimuth localization.

Figure A.3: Localization accuracy results for Listener 3. (a) distance localization results
including intensity cue, (b) distance localization results excluding intensity cue, (c) azimuth
localization results.
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(a) Including the intensity cue. (b) Excluding the intensity cue.

(c) Azimuth localization.

Figure A.4: Localization accuracy results for Listener 4. (a) distance localization results
including intensity cue, (b) distance localization results excluding intensity cue, (c) azimuth
localization results.
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(a) Including the intensity cue. (b) Excluding the intensity cue.

(c) Azimuth localization.

Figure A.5: Localization accuracy results for Listener 5. (a) distance localization results
including intensity cue, (b) distance localization results excluding intensity cue, (c) azimuth
localization results.
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(a) Including the intensity cue. (b) Excluding the intensity cue.

(c) Azimuth localization.

Figure A.6: Localization accuracy results for Listener 6. (a) distance localization results
including intensity cue, (b) distance localization results excluding intensity cue, (c) azimuth
localization results.
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(a) Including the intensity cue. (b) Excluding the intensity cue.

(c) Azimuth localization.

Figure A.7: Localization accuracy results for Listener 7. (a) distance localization results
including intensity cue, (b) distance localization results excluding intensity cue, (c) azimuth
localization results.
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(a) Including the intensity cue. (b) Excluding the intensity cue.

(c) Azimuth localization.

Figure A.8: Localization accuracy results for Listener 8. (a) distance localization results
including intensity cue, (b) distance localization results excluding intensity cue, (c) azimuth
localization results.
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(a) Including the intensity cue. (b) Excluding the intensity cue.

(c) Azimuth localization.

Figure A.9: Localization accuracy results for Listener 9. (a) distance localization results
including intensity cue, (b) distance localization results excluding intensity cue, (c) azimuth
localization results.

94



(a) Including the intensity cue. (b) Excluding the intensity cue.

(c) Azimuth localization.

Figure A.10: Localization accuracy results for Listener 10. (a) distance localization results
including intensity cue, (b) distance localization results excluding intensity cue, (c) azimuth
localization results.
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Appendix B

Bottom-up effects of distance -

individual results
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(a) Sources presented from −90◦. (b) Sources presented from +90◦.

(c) Sources presented from 0◦.

Figure B.1: Reaction time experiment results for Listener 1. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from +90◦, (c) mean RT for
sounds presented from 0◦. Full black lines are results when including the intensity cue,
dashed white lines are results when excluding the intensity cue. Diamonds are results for
Same Distance condition, Triangles for Distance Separation condition.
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(a) Sources presented from −90◦. (b) Sources presented from +90◦.

(c) Sources presented from 0◦.

Figure B.2: Reaction time experiment results for Listener 2. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from +90◦, (c) mean RT for
sounds presented from 0◦. Full black lines are results when including the intensity cue,
dashed white lines are results when excluding the intensity cue. Diamonds are results for
Same Distance condition, Triangles for Distance Separation condition.
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(a) Sources presented from −90◦. (b) Sources presented from +90◦.

(c) Sources presented from 0◦.

Figure B.3: Reaction time experiment results for Listener 3. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from +90◦, (c) mean RT for
sounds presented from 0◦. Full black lines are results when including the intensity cue,
dashed white lines are results when excluding the intensity cue. Diamonds are results for
Same Distance condition, Triangles for Distance Separation condition.
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(a) Sources presented from −90◦. (b) Sources presented from +90◦.

(c) Sources presented from 0◦.

Figure B.4: Reaction time experiment results for Listener 4. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from +90◦, (c) mean RT for
sounds presented from 0◦. Full black lines are results when including the intensity cue,
dashed white lines are results when excluding the intensity cue. Diamonds are results for
Same Distance condition, Triangles for Distance Separation condition.
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(a) Sources presented from −90◦. (b) Sources presented from +90◦.

(c) Sources presented from 0◦.

Figure B.5: Reaction time experiment results for Listener 5. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from +90◦, (c) mean RT for
sounds presented from 0◦. Full black lines are results when including the intensity cue,
dashed white lines are results when excluding the intensity cue. Diamonds are results for
Same Distance condition, Triangles for Distance Separation condition.
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(a) Sources presented from −90◦. (b) Sources presented from +90◦.

(c) Sources presented from 0◦.

Figure B.6: Reaction time experiment results for Listener 6. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from +90◦, (c) mean RT for
sounds presented from 0◦. Full black lines are results when including the intensity cue,
dashed white lines are results when excluding the intensity cue. Diamonds are results for
Same Distance condition, Triangles for Distance Separation condition.
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(a) Sources presented from −90◦. (b) Sources presented from +90◦.

(c) Sources presented from 0◦.

Figure B.7: Reaction time experiment results for Listener 7. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from +90◦, (c) mean RT for
sounds presented from 0◦. Full black lines are results when including the intensity cue,
dashed white lines are results when excluding the intensity cue. Diamonds are results for
Same Distance condition, Triangles for Distance Separation condition.
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(a) Sources presented from −90◦. (b) Sources presented from +90◦.

(c) Sources presented from 0◦.

Figure B.8: Reaction time experiment results for Listener 8. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from +90◦, (c) mean RT for
sounds presented from 0◦. Full black lines are results when including the intensity cue,
dashed white lines are results when excluding the intensity cue. Diamonds are results for
Same Distance condition, Triangles for Distance Separation condition.
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(a) Sources presented from −90◦. (b) Sources presented from +90◦.

(c) Sources presented from 0◦.

Figure B.9: Reaction time experiment results for Listener 9. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from +90◦, (c) mean RT for
sounds presented from 0◦. Full black lines are results when including the intensity cue,
dashed white lines are results when excluding the intensity cue. Diamonds are results for
Same Distance condition, Triangles for Distance Separation condition.
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Appendix C

Top-down attention on distance -

individual results
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(a) Sources presented from −90◦. (b) Sources presented from 0◦.

Figure C.1: Reaction time experiment results for Listener 1. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from 0◦. Dashed lines are results
when no focus is attempted on distance, upper triangles are results when focus is forced on
1 m, lower triangles when forced on 0.13 m.

(a) Sources presented from −90◦. (b) Sources presented from 0◦.

Figure C.2: Reaction time experiment results for Listener 2. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from 0◦. Dashed lines are results
when no focus is attempted on distance, upper triangles are results when focus is forced on
1 m, lower triangles when forced on 0.13 m.
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(a) Sources presented from −90◦. (b) Sources presented from 0◦.

Figure C.3: Reaction time experiment results for Listener 3. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from 0◦. Dashed lines are results
when no focus is attempted on distance, upper triangles are results when focus is forced on
1 m, lower triangles when forced on 0.13 m.

(a) Sources presented from −90◦. (b) Sources presented from 0◦.

Figure C.4: Reaction time experiment results for Listener 4. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from 0◦. Dashed lines are results
when no focus is attempted on distance, upper triangles are results when focus is forced on
1 m, lower triangles when forced on 0.13 m.
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(a) Sources presented from −90◦. (b) Sources presented from 0◦.

Figure C.5: Reaction time experiment results for Listener 5. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from 0◦. Dashed lines are results
when no focus is attempted on distance, upper triangles are results when focus is forced on
1 m, lower triangles when forced on 0.13 m.

(a) Sources presented from −90◦. (b) Sources presented from 0◦.

Figure C.6: Reaction time experiment results for Listener 6. (a) mean RT for sounds
presented from −90◦, (b) mean RT for sounds presented from 0◦. Dashed lines are results
when no focus is attempted on distance, upper triangles are results when focus is forced on
1 m, lower triangles when forced on 0.13 m.
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(a) Sources presented from −90◦. (b) Sources presented from 0◦.

Figure C.7: Reaction time experiment results for Listener 11. Listener 11 did not partici-
pate in the experiments presented in chapters 2 and 3. (a) mean RT for sounds presented
from −90◦, (b) mean RT for sounds presented from 0◦. Dashed lines are results when no
focus is attempted on distance, upper triangles are results when focus is forced on 1 m,
lower triangles when forced on 0.13 m.
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