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ABSTRACT 

We evaluated the electrochemical reduction reaction of CO2 (ECR) on low-index Au single crystal 

surfaces (Au(111), (100), and (110); Au(hkl)) and discussed the surface-atomic-arrangement-

dependence of Au on the ECR. Online-electrochemical mass spectrometry (OLEMS) results 

revealed that the onset potential of the quadrupole mass spectrometer (Q-mass) ion signal for the 

reduction product carbon monoxide (CO; m/z =28) is ca. 0.3 V lower on the Au(110) surface than 

on the Au(111) and (100) surfaces. Furthermore, the Au(110) surface showed a superior selectivity 

for CO generation in the potential region of −0.4V to −1.4V vs. reversible hydrogen electrode 

(RHE); the relative, OLEMS-corrected ECR partial current density for generated CO at −0.76 V 

was ca. 20-fold higher compared with the Au(100) and (111) surfaces. The Tafel slope of Au(110) 

at the onset potential region (around −0.4V) was much smaller than that of the Au(111) and (100) 

surfaces, suggesting that Au(110) shows the fastest ECR kinetics among the low-index Au surfaces. 

The results obtained in this study reveal that the ECR efficiency as well as the selectivity for CO 

generation on Au electrode surfaces can be dominated by the surface atomic arrangements and that 

relative Faradaic selectivity evaluation by OLEMS is helpful for discussion of the ECR process. 

 

Keywords; Electrochemical CO2 reduction, gold electrode, carbon dioxide, carbon monoxide, 

single crystal surfaces, online electrochemical mass spectrometry 
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MAIN TEXT 

The electrochemical reduction reaction of CO2 (ECR) is one of the most effective 

approaches to converting the green-house gas molecule of CO2 to valuable carbon-based chemical 

substances, such as carbon monoxide (CO), formic acid (HCOOH), or C1-C2 carbohydrates1-7. It 

is well known that the reduction products of the ECR are strongly dependent on the electrode 

materials used8-9, e.g., Au, Ag, or Zn, and these alloys mainly generate CO with high energy 

efficiencies10-15. However, further improvements in both the efficiency and selectivity of CO 

generation are required for the industrialization of the ECR. 

Electrode-catalytic reactions on metals and alloys are strongly influenced by the surface 

atomic arrangements16-19. As for the ECR, pioneering works by Hori and coworkers are well-

known for examining the low- and high-index surfaces of Cu, Pd, Ag, and Pt single crystals20-24. 

Furthermore, a new insight was recently reported25-27 for intermediate species and elementary steps 

of the ECR on Cu single crystal surfaces. However, as for Au single crystal surfaces, while DFT 

calculations for the adsorption energies of the reaction intermediates have been conducted and 

reported11, 28-29, no experimental studies aimed at clarifying the dependence on the Au surface 

atomic arrangements have been reported yet. In addition to the surface atomic arrangement 

dependences of the electrode materials, the electrochemical efficiency and selectivity of the ECR 

depend strongly on the applied potentials8. To date, the ECR efficiency and selectivity are mainly 

discussed in relation to the polarization curve and objective product analysis at a static applied 

potential by using gas-chromatography3. Because the ECRs for the objective- and by-products 

proceed simultaneously on the same electrode surface, it is necessary to clarify the contribution of 

each  product to the total ECR current to discuss the selectivity and activity. Therefore, in-situ 

analysis of individual ECR products (CO, H2, etc.) on the electrode surface while sweeping the 
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electrochemical potential is indispensable for a discussion of the effect of the surface atomic 

arrangement of the Au electrodes. This will provide essential information for the development of 

practical Au electrode-catalysts for ECR.  

In this study, we evaluated the electrochemical efficiency and selectivity of the ECR on 

ultra-high vacuum (UHV; ~10-8 Pa) cleaned low-index single crystal surfaces of Au, i.e., Au(111), 

Au(100), and Au(111), by using polarization curve measurements while simultaneously 

performing online electrochemical mass spectrometric (OLEMS) measurements. The onset 

potentials of the polarization curves during potential sweeps in the negative direction depend upon 

the surface atomic arrangements of Au. The OLEMS results clearly showed that, over the potential 

range of −0.4 to −1.4 V, the relative Faradaic selectivity for the reduction product of CO is highest 

on the Au(110) surface. On the basis of the polarization curves and OLEMS results, we conclude 

that superior electrochemical efficiency and selectivity for the ECR to CO can be obtained on 

Au(110),  in comparison with the Au(100) and (111) surfaces.  

Au(111), (100), and (110) disk electrodes (φ = 12 mm, t = 1 mm) were used as working 

electrodes. Hereafter, we simply denote the sample electrodes as “Au(hkl)”. The electrode surfaces 

were cleaned by repeated cycles of Ar+ ion sputtering and annealing at 1073 K in UHV. The UHV-

cleaned Au(hkl) electrodes were transferred to the electrochemical setup without air exposure by 

using a sample transfer vessel30 and were set in the electrochemical cell (Figure 1) in an N2-purged 

glove box to avoid any contamination of the electrode surface. Surface characterization of the 

UHV-cleaned Au(hkl) samples was conducted using a scanning tunneling microscope (STM) in 

UHV and cyclic voltammetry measurements in 0.1 M HClO4 at a room temperature. Detailed 

results are described in the Supporting Information. 
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Figure 1 shows a schematic drawing of the home-made OLEMS system used in this study. 

The ECR on the Au(hkl) electrodes was conducted in CO2-saturated 0.1 M KHCO3. The home-

made H-type two compartment cell with a Pt-wire counter electrode, a Ag/AgCl(3 M) reference 

electrode and the Au(hkl) working electrode (WE) was used for the ECR measurements31. The 

geometrical surface area of the WE exposed to the electrolyte was confined to be 0.635 cm2 by an 

O-ring. With reference to the paper by Wonders et al.32, porous Teflon (pore size = 10 μm) was 

inserted into a gas sampling tip to prevent direct introduction of the solution into the quadrupole 

mass spectrometer (Q-mass; SRS RGA100) equipped vacuum system. The distance between the 

tip and the Au(hkl) electrode surface was kept constant at several tens of micrometers. Retardation 

of the ECR-product detection by the Q-mass was estimated to be ca. 15 s caused by the rather low 

conductance of the vacuum line connected to the EC cell. Considering the retardation time, the 

electrode potentials of the OLEMS spectra were compensated to compare the ECR currents on the 

corresponding polarization curves. Onset potentials both for the EC polarization curves and Q-

mass ion signals are defined as applied potentials corresponding to 1 % intensity of the maximum 

EC current density or Q-mass ion signals. 

Polarization curves (a) and corresponding OLEMS spectra (b) of the Au(hkl) electrodes 

recorded in CO2-saturated 0.1 M KHCO3 are presented in Figure 2. The ECR current densities 

over the potential regions below −0.4 V increased in the order of Au(111) < Au(100) < Au(110). 

A close inspection of the onset potential region (ca. −0.2 V; inset in Figure 2 (a)) reveals that only 

the Au(110) surface showed a small feature at −0.23 V (marked by *). This faint feature probably 

corresponds to the adsorption of intermediates, e.g., COOH or CO, on the metal electrodes33, 

suggesting that such reaction intermediates tend to stabilize on the Au(110) surface. One might 

notice that the onset potential of ECR current is lowest for the Au(111) surface (inset of (a)), 
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though the overall ECR current for the Au(110) surface is highest. As shown in the corresponding 

OLEMS results for the reduction product CO (m/z = 28; middle panel in (b)), the Au(110) surface 

showed the largest Q-mass ion signal intensity and a much higher onset potential in comparison 

with the Au(111) and Au(100) surfaces. In contrast, Q-mass ion signal intensity for H2 (m/z = 2) 

was the lowest for the Au(110), except for the onset potential region where the Au(111) is almost 

the same  to the Au(110). Although CH4 (m/z = 15) was detected above a noise-level below the 

potential region of ca. −0.6 V, the intensities of m/z = 15 were very weak relative to those for H2 

and CO (bottom panel of (b)) for all the Au(hkl). As for formate (HCOO−), which is known to be 

a very small amount product of the ECR on the Au electrode [34], no Q-mass ion signal due to a 

fragment of formate (m/z = 45; HCOO−) was detected for all the Au(hkl) surfaces in this OLEMS 

condition (Figure S3 in the Supporting Information). Table 1 summarizes the onset potentials of 

the Au(hkl) electrodes for the ECR currents (on the polarization curves (a)) and Q-mass ion signals 

(OLEMS (b)) of H2 (m/z = 2) and CO (m/z = 28). While the onset potentials of the ECR currents 

and that of the CO Q-mass ion signals for both the Au(111) and (100) surfaces were the almost 

same, the onset potential for Au(110) was ca. 0.3 V higher than that of the Au(111) and (100) 

surfaces.  Furthermore, for Au(100), although the CO Q-mass ion signal showed similar behavior 

on Au(111) up to −1.0 V, the signal of H2 was much weaker than on Au(111). The results suggest 

that the Au(100) surface shows higher selectivity for the generation of CO in comparison to 

Au(111). In other words, the ECR by-product of H2 is correlated with the lowest onset potential 

of ECR current for the Au(111) surface (Figure 2(a) inset).  

In this study, the relative Faradaic selectivity for the objective ECR gaseous product 

(RFSx)  was calculated by using the following equation (1)35, 



8 

 

𝑅𝐹𝑆௫  =  
2𝐼௫

2𝐼ுమ
+ 2𝐼஼ை + 8𝐼஼ுర

 × 100 (%)     (1) 

where x is the objective ECR product (H2, CO, and CH4 in this study) and Ix is the corresponding 

Q-mass ion signal intensity (Figure 2 (b)). The RFSx values of CO (RFSCO) vs. electrode potentials 

are presented in Figure 3. Because the Q-mass intensities below −0.4 V were rather weak and 

fluctuated, the RFSx values are plotted for the potential region from −0.4 V to −1.4 V. The results 

indicate that Au(110) showed a much higher RFSCO than the Au(100) and (111) surfaces over the 

potential region; the difference is particularly noticeable at low potential regions around −0.6 V, 

suggesting that the Au(110) surface can generate CO with high selectivity even at a low potential, 

i.e., the low ECR current density region.  

Partial current densities for each reaction product were calculated by multiplying the 

corresponding RFS values of H2 and CO by the current densities of the polarization curves (Figure 

2(a)); the results are summarized in Figure 4 (a). The partial current density of CH4 is excluded 

because of its faint Q-mass signal intensity (Figure 2(b)). It can be clearly seen that the partial 

current density for H2 is comparably independent of the surface atomic arrangement of Au, though 

close inspection reveals that the Au(111) surface showed the lowest onset potential for the ECR 

current (Figure 2(a) inset). In contrast, the value of the partial current density for the generation of 

CO is remarkable for Au(110), even over the estimated potential regions. By reference to the 

previous study36, we used the partial current densities at −0.76 V to determine the electrochemical 

generation efficiency for CO; the results are plotted in Figure 4(b). As can clearly be seen, the 

Au(110) surface showed ca. 20 times higher partial current density than the Au(111) and (100) 

surfaces, clearly indicating the highest selectivity to CO. 
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Tafel plots of partial current densities for CO (Figure 4 (c)) estimated from the polarization 

curves and corresponding OLEMS results support the strong dependence of the ECR activation 

energy on the surface atomic arrangements of Au. The Tafel slope for Au(110) at the onset 

potential region (−0.4 ~ −0.5 V) was estimated to be 117 mV/dec. This value was much smaller 

than that for Au(111) (208 mV/dec) and Au(100) (181 mV/dec) at the onset regions (−0.6  ~ −0.7 

V) and, furthermore, is also smaller than the reported value of 140 mV/dec for a polycrystalline 

Au film that was evaluated in a 0.1 M NaHCO3 solution37. Liu et al. reported the reaction kinetics 

for the ECR on low-index Au(hkl) surfaces based on density functional theory (DFT) calculations 

and deduced that the Gibbs free-energy change (ΔG) for the first uphill reaction step, i.e., CO2 + 

H+ + e－ + * → COOH* (* is a surface adsorption site), is the smallest for the Au(110) surface28. 

Therefore, the difference in estimated Tafel slopes (Figure 4(c)) probably reflects the fact that the 

first reaction step is faster for the Au(110) surface than for the Au(111), Au(100), and 

polycrystalline Au surfaces37. Such structural dependence of the Tafel slopes has been reported for 

nanostructured Cu and Au catalysts10, 38.  

  Published papers for the ECR on the nanostructured Au catalysts, e.g., monodispersed 

nanoparticles (NPs)39, 40, nanowires41, and oxide-derived Au10 discussed the surface structural 

effects. For example, Zhu et al. investigated the ECR properties of the size-confined Au 

nanoparticles with diameters of 4 to 8 nm39. Their DFT results show that COOH* intermediate 

adsorbates become more stabilized on Au(211) surface having low-coordinated step (edge) sites 

(coordination number (CN) = 7) in comparison to Au(111) (CN = 9), while CO adsorption energy 

of the two surfaces are almost same. As for the corner-sites (CN = 6), the CO adsorption energy is 

too large. In accordance with the results, they deduced that 8 nm NPs, which has appropriate 

number of edge sites ((CN) = 7), showed the highest CO selectivity; maximum faradaic selectivity 
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value for CO of the 8 nm NPs is over 90 %. The selectivity value of 90 % is higher than the 

estimated value of 79 % for the UHV-cleaned Au(110) (CN = 7; Figure 3). Therefore, the estimated 

CO selectivity might also be influenced by minor surface sites of the Au(hkl) surfaces, e.g., steps, 

kinks and atomic defects. 

Also, OLEMS investigations for oxidation/reduction reactions (redox) of the ECR-related 

adsorbates and/or product molecules, e.g., formate, formaldehyde and CO should provide deeper 

insights to the ECR mechanisms, because such the molecules should also correlate with the 

element reaction steps of the ECR. In fact, as for the CO oxidation reaction, Koper and coworkers 

clarified the difference in CO adsorption sites and the adsorption energy depending on the catalyst 

surface atomic arrangements by combined analysis of electrochemistry, spectroscopy and DFT 

calculations42-43. OLEMS analysis for the stepped single crystal surfaces and for the ECR-related 

molecules should provide crucial information for developing highly efficient Au-based CO2 

electroreduction nanostructured catalysts.  

 

Conclusions 

We first showed the dependence of the ECR on the surface atomic arrangement of the Au(hkl) 

electrodes from the electrochemical polarization curves and OLEMS measurements in CO2-

saturated 0.1 M KHCO3. The onset potential for the generation of CO on the Au(110) surface as 

evaluated from the Q-mass ion signal intensities was ca. −0.4 V; the over potential was ca. 0.3 V 

lower than on Au(111) and (100). Furthermore, the Au(110) surface showed higher selectivity for 

CO generation in the applied potential range from −0.4  to −1.4 V and the partial ECR current 

density for CO at −0.76 V was ca. 20 times higher than on the Au(100) and (111) surfaces. The 
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results demonstrate that the OLEMS measurements are indispensable for discussion of the ECR 

process, particularly in terms of the dependence of the ECR efficiency, selectivity, and reaction 

kinetics on the surface atomic arrangements. Future OLEMS study for the high-index single crystal 

surfaces of Au and for the redox of by-product molecules should provide deeper insights to the 

CO2 reduction mechanisms. Also, Surface engineering to ensure precise control of the low-

coordination surface sites of nano-structured catalysts, such as edges and/or corners, is essential 

for achieving superior electrochemical efficiency of CO2 conversion to CO on Au and Au-based 

alloy electrodes.  
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Figure 1. Schematic of the home-made OLEMS system used in this study 
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Figure 2. (a) Polarization curves of Au(hkl) recorded in a CO2-saturated 0.1 M KHCO3 solution 

at 1 mV/s. (b) Normalized Q-mass ion currents for hydrogen, carbon monoxide, and methane 

probed by OLEMS with dependence of the applied cathodic potential. Insets are magnifications 

of onset potential regions. 
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Table 1. Onset potentials estimated from polarization curves and OLEMS ion currents for H2 and 

CO. 

 

  

 
Onset Potentials (V vs. RHE)  

Polarization Curves 
(ECR Current) 

Q-mass ion signal (OLEMS) 

H
2
 (m/z = 2) CO (m/z = 28) 

Au(111) -0.33 -0.31 -0.66 

Au(110) -0.34 -0.34 -0.37 

Au(100) -0.48 -0.48 -0.66 
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Figure 3. Relative Faradaic selectivity for CO (RFSCO) on the Au(hkl) surfaces. 
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Figure 4. (a) Partial current densities for H2 and CO on the Au(hkl) surfaces vs. applied 

potentials. (b) The partial current densities at −0.76 V vs. RHE for Au(hkl). (c) Tafel plots for 

CO partial current densities. 

 


