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Abstract Both laboratory experiments and seismic observations indicate that the solid Earth is composed
of strongly anisotropic materials and its dynamics can be better constrained by exploring seismic anisotropy.
Due to the limited number and poor depth resolution of currently available seismic anisotropy
measurements, tectonic regimes of upper mantle deformations beneath Southern California still remain
enigmatic and controversial. Here we present high-resolution three-dimensional models of Pwave azimuthal
and radial anisotropy in the crust and upper mantle beneath Southern California obtained by a joint inversion
of local-seismic and teleseismic P wave data. Our results reveal significant depth-dependent anisotropy in
which fast orientations in the lithospheric mantle closely follow the strike of the San Andreas fault and those
in the asthenosphere are characterized as a predominantly circular pattern centered in the robust high-
velocity Isabella anomaly beneath the Great Valley. The Isabella anomaly is possibly a remnant of the fossil
Farallon slab and is currently experiencing a tectonic regime of lithospheric downwelling, contributing to the
development of a circular asthenospheric flow. High-velocity anomalies are revealed below 300-km depth
beneath areas surrounding the Great Valley, which may reflect the delaminated lithospheric segments.
Different rifting processes may take place beneath the Inner Borderland and the Salton Trough whose
developments are possibly related to regional mantle upwelling and lithospheric stretching, respectively.

1. Introduction

With the purpose of better understanding how regional tectonic units along the plate boundary deform,
Southern California becomes an ideal locale to investigate complex interactions of the crust, lithospheric
mantle, and asthenosphere in response to the relativemotion between the Pacific and North American plates
(Figure 1). Situated at the seismically most active region of southwestern United States, Southern California is
bisected by the dramatic right-lateral strike-slip San Andreas fault (SAF). The SAF has developed to accommo-
date about 75% of the ~50mm/year relative motion between the Pacific and North American plates, whereas
the remaining 25% deformations are mostly assimilated in the Eastern California Shear Zone (Argus et al.,
2011; Molnar & Dayem, 2010). The SAF was initiated by the subduction of the East Pacific Rise beneath
North America, and the east-northeastward subduction of the Farallon plate was terminated at ~30 Ma by
the northward migrating Mendocino triple junction (Atwater, 1970). Some fragments of the Farallon plate
were incorporated into the Pacific plate such as the Monterey microplate near the western side of the
Great Valley (GV; Cox et al., 2016; Jiang et al., 2018; Nicholson et al., 1994; Wang et al., 2013). Consequently,
since then, deformation beneath Southern California has changed from compression to transpression, espe-
cially within the plate interface. Regional tectonic features have also developed in the Neogene that the
Transverse Ranges captured by the Pacific plate experienced more than 90° clockwise rotation to its current
position and extensional tectonics take place beneath the Salton Trough (Nicholson et al., 1994). These past
and current tectonic deformations can be characterized and discriminated by exploring the patterns of seis-
mic anisotropy that they would generate (Silver & Chan, 1991).

Seismic anisotropy provides an effective tool to construct the bridge for understanding the past and present
deformations within the upper mantle and is usually induced by the lattice preferred orientation of anisotro-
pic minerals such as olivine (Savage, 1999; Silver & Chan, 1991; Zhang & Karato, 1995). To detect the upper
mantle anisotropy, analyzing shear wave splitting (SWS) of the core-refracted phases (PKS, SKKS, and SKS)
is a very popular technique, but it is unable to discriminate the depth of the anisotropic source, and the
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observed splitting time is an integral effect of anisotropy from the core-mantle boundary to the surface along
the raypath (Savage, 1999). Seismic anisotropy can be also revealed by surface wave studies, but the results
are sometimes inconsistent with those from SWS measurements (Marone & Romanowicz, 2007; Montagner
et al., 2000). The lithosphere and asthenosphere beneath Southern California were proposed to be
coupled based on the observed systematic E-W fast orientations in the upper mantle from the analysis of
Rayleigh waves (Yang & Forsyth, 2006) and the inversion of 5,954 SKS splitting data (Lin et al., 2014).
Another earlier investigation of 3,400 SKS splitting measurements indicated that there was a poor
correlation between the shallow and deep deformations (Monteiller & Chevrot, 2011). In addition, two-
layer complex anisotropies were revealed from a series of SWS studies (e.g., Savage & Silver, 1993;
Özalaybey & Savage, 1995; Hartog & Schwartz, 2001) in which the upper layer was closely related to
lithospheric deformation, whereas the dominant E-W fast orientations were attributed to asthenospheric
flow associated with the Farallon plate subduction (Liu et al., 1995; Özalaybey & Savage, 1995; Silver &
Holt, 2002), toroidal flow around the edge of the sinking Gorda-Juan de Fuca slab (Zandt & Humphreys,
2008), or the shearing induced by the absolute plate motion (APM) of the North American lithosphere
(Bonnin et al., 2010; Hartog & Schwartz, 2001; Kosarian et al., 2011). Small-scale mantle convections and

Figure 1. Major tectonic setting and distribution of seismic stations (green dots) used in this study. Black lines display the major faults. Red triangles are Cenozoic
volcanoes. Red stars denote large earthquakes (M> 6.0) that occurred from 1933 to 2017. Blue arrows display the absolute plate motion direction based on the NNR-
MORVEL56 model (Argus et al., 2011). CTR = Central Transverse Range; ECSZ = Eastern California Shear Zone; EF = Elsinore fault; ETR = Eastern Transverse Range;
GF = Garlock fault; IB = Inner Borderland; SAF = San Andreas fault; SJF = San Juan fault; WTR = Western Transverse Range. The inset map shows the location of the
study area highlighted by the red rectangle.
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lithospheric delamination were proposed based on results of isotropic tomography (Humphreys & Hager,
1990; Jones et al., 2014; Schmandt & Humphreys, 2010; Zhao et al., 1996), whereas their connections with
the observed seismic anisotropy were rarely discussed, which is possibly due to the fact that the results of
isotropic tomography can only characterize present and static velocity structures. Thus, although extensive
investigations have been conducted for Southern California, its dynamic regimes of the lithospheric deforma-
tion and mantle flow still remain poorly constrained.

In this study, we aim to simultaneously determine high-resolution three-dimensional (3-D) isotropic and ani-
sotropic velocity images of the crust and upper mantle beneath Southern California by applying advanced
anisotropic tomography techniques to both local-seismic and teleseismic P wave data (Wang & Zhao,
2008, 2013). Our results reveal significant depth-dependent anisotropy and shed new light on the litho-
spheric deformation and mantle dynamics beneath Southern California. In our study area, the common
A-type olivine fabrics are expected to dominantly exist in the upper mantle (Barak & Klemperer, 2016). Pwave
azimuthal anisotropy obtained from our tomographic inversion is similar to those from the SWS measure-
ments that mainly reveal the anisotropic orientations in the horizontal plane. In contrast, radial anisotropy
works as a proxy for plastic flow directions within the upper mantle in the vertical plane, and positive and
negative radial anisotropies indicate horizontal and vertical flows, respectively (Wang & Zhao, 2013).

2. Data and Methods
2.1. Data Selection and Analysis

The seismic data used in this study were recorded at a total of 1,673 stations (Figure 1) and from two data-
bases. Arrival times of local earthquakes during 1949 to 2017 were requested from the Southern California
Earthquake Data Center (http://scedc.caltech.edu). The travel time data of teleseismic events during 1965
to 2014 with epicentral distances ranging from 30° to 90° were downloaded from the International
Seismological Centre (ISC; http://www.isc.ac.uk) and had beenmanually reviewed by the ISC staff. The picking
accuracy is 0.1 s or better for most of the data (Tian et al., 2007). Events recorded at less than 10 seismic sta-
tions are removed. To get a more uniform distribution of earthquakes than those in the original catalog, we
divided the study area into cells with lateral and vertical intervals of 8 and 2 km, respectively, which are set as
0.1° and 10.0 km for areas outside of Southern California. In each cell, we select only one event following a
criterion that the event was recorded by the maximum number of stations.

Most of the travel time residuals for both the selected local and teleseismic events fall in the range of ±1.0 s
(Figure 2). In order to minimize the effects of hypocentral mislocations, we use both P and S wave arrivals to
relocate all the local earthquakes. The relocated events with uncertainties <4 km in focal depth, <0.04° in
epicentral location, and <0.4 s in origin time are used to conduct the tomographic inversions. As a result,
our final data set contains 579,072 P wave arrivals from 16,600 local earthquakes and 280,441 P wave arrivals
from 12,491 teleseismic events (Figure 3). Theoretical travel times are calculated for the IASP91 Earth model
with the Moho topography (Tape et al., 2012; Figure S1) taken into account. Most parts of the study area are
well covered by the crisscrossing rays, especially beneath the coastal and continental regions (Figure 4).

2.2. Isotropic and Anisotropic Tomography

We investigate the 3-D velocity structure beneath the study area using the isotropic tomography method of
Zhao et al. (1992, 1994), which can deal with lateral depth variations of seismic discontinuities (e.g., the Moho)
in the study region. Here we only briefly introduce the methods of radial and azimuthal anisotropy tomogra-
phy (Wang & Zhao, 2008, 2013). The anisotropy is commonly considered to possess an axis of hexagonal
symmetry, which is quite close to the realistic Earth model and greatly reduces unknown parameters for
tomographic inversion (e.g., Huang & Zhao, 2013; Maupin & Park, 2007; Wang & Zhao, 2008). Under the
assumption of weak azimuthal anisotropy with a hexagonal symmetry axis in the horizontal direction, we
can approximately express the P wave slowness as the following (Backus, 1965; Wang & Zhao, 2008):

S φð Þ ¼ S0 1þ A cos 2φð Þ þ B sin 2φð Þ½ �; (1)

where S and S0 indicate the total slowness and azimuthal average slowness (i.e., the isotropic component),
respectively. A and B represent two azimuthal anisotropy parameters, and φ is the raypath azimuth. The fast
orientation (ψ) and the amplitude (α) of azimuthal anisotropy can be expressed as
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where V0 is the isotropic velocity, and Vf and Vs correspond to velocities in the fast and slow orientations,
respectively (Wang & Zhao, 2008).

Radial anisotropy is characterized as revealing the difference between the horizontal and vertical velocities
and usually assumed to have a vertical axis of hexagonal symmetry. Under such an assumption, equation (1)
can be rewritten as (Wang & Zhao, 2013)

S ¼ S0 1þ C cos 2θð Þ½ � (4)

where C is the parameter for radial anisotropy and θ is the incident angle of a raypath. The amplitude (β) of
the radial anisotropy is expressed as

Figure 2. Histograms of P wave travel time residuals. Local earthquake travel time residuals (a) before and (b) after the
earthquake relocation. (c) Relative travel time residuals of teleseismic events.
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β ¼ Vph � Vpv
2V0

¼ C

1� C2 (5)

where Vph and Vpv are Pwave velocities in the horizontal and vertical directions, respectively. Thus, positive β
means a faster P wave velocity in the horizontal direction (Vph/Vpv>1), and vice versa.

Tomographic inversions for 3-D isotropic velocity, 3-D radial anisotropy, and 3-D azimuthal anisotropy are
individually conducted. One set of 3-D grid is set up to invert for the 3-D isotropic velocity model.
However, two sets of 3-D grid are adopted for models of the radial and azimuthal anisotropy tomography.
One fine grid is used to express the 3-D isotropic velocity, whereas the other coarse grid is used to express
the anisotropic structure, because better azimuthal coverage of rays is required for determining the anisotro-
pic parameters (Huang & Zhao, 2013; Wang & Zhao, 2008). The iterative conjugate-gradient LSQR algorithm

Figure 3. Distributions of 12,491 teleseismic events (a) and 16,600 local earthquakes (b) used in this study. The red lines
denote active faults in the study region. Colors of the dots denote the focal depths.
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with damping and smoothing regularizations is employed to solve the large and sparse system of
observation equations (Zhao et al., 1992, 1994). The optimal damping and smoothing parameters are
determined based on the trade-off curves between the root-mean-square travel time residual and norm of
the solution (Figure S2 in the supporting information). The smoothing parameter is firstly determined with
an initial damping value of 80, and the optimal smoothing value is found to be 0.001, which is then used
for determining the damping parameter (Figure S2). As a result, the optimal damping parameter is found
to be 100 (Figure S2). Given the decent azimuthal coverage of the events (Figure 3) and the dense seismic
network (Figure 1), the trade-off between seismic anisotropy and heterogeneity is considered to be
insignificant (Huang et al., 2015). Extensive checkerboard resolution tests are conducted (Figures S3–S15),
and the test results show that the isotropic and anisotropic tomographic models have a lateral resolution
of 0.3° and 0.6°, respectively. Hence, we adopt the horizontal grid intervals of 0.3° and 0.6° for inverting for
the final velocity and anisotropy parameters, respectively. Meshes of grid nodes are arranged at depths of
5, 25, 75, 125, 200, 300, 400, and 500 km in the crust and upper mantle. To evaluate the robustness of
main features of the tomographic images, we have also performed restoring resolution tests with input
models derived from the tomographic results (Figures S16–S21). Gaussian noise with a standard deviation
of 0.1 s is added to the theoretical travel times in all the synthetic tests. The final 3-D models of P wave
velocity relative to the IASP91 Earth model, and azimuthal and radial anisotropies relative to the 3-D
velocity model are shown in Tables S1–S3, respectively.

2.3. Two-Layer Fitting of SWS Measurements

A model of two anisotropic layers is usually adopted to investigate complex anisotropy characterized as azi-
muthal variations of the SWSmeasurements with approximately π/2 periodicity (Silver & Savage, 1994). In this

Figure 4. Density distribution of P wave rays at different depths. The green line denotes the coastal line. The black lines indicate active faults.
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study, we employ a misfit function to determine the optimal anisotropic parameters of the two layers
beneath Southern California by grid searching of fast orientations and splitting times in the range of
0°–180° and 0.5–2.0 s, respectively (Gao & Liu, 2009; Silver & Savage, 1994). The misfit function is expressed as

ϵ2 ¼ ∑
n

i¼1
w1�

ψobs
i � ψcal

i

� �
σψi

� �2
þ w2�

δtobsi � δtcali

� �
σδti

" #2

(6)

where (ψobs
i ; δtobsi ) and (ψcal

i ; δtcali ) are the observed and calculated pairs of fast orientation and splitting
time of the ith measurement, respectively, n is the number of measurements, σψi

and σδti are the standard
deviations of the ith ψ and δt, respectively, and w1 and w2 are the weighting factors with a sum equal to
1, which are set as 0.8 and 0.2, respectively. The fitting accuracy is estimated to be ±25° in ψ and ±0.3 s in
δt (Savage & Silver, 1993).

3. Results and Discussion

As a whole, the resulting isotropic 3-D Vp model (Figures 5 and S16) is consistent with those of previous
tomographic studies (e.g., Boyd et al., 2004; Humphreys et al., 1984; Humphreys & Hager, 1990; Jiang
et al., 2018; Raikes, 1980; Schmandt & Humphreys, 2010; Tape et al., 2009; Tian et al., 2007; Zhao et al.,
1996). In the crust, sedimentary basins are well imaged as low-velocity (low-V) anomalies. The batholith

Figure 5. Map views of P wave isotropic tomography and azimuthal anisotropy. The orientation and length of the white bars denote the fast-velocity direction and
the amplitude of azimuthal anisotropy, respectively. The background colors show P wave velocity variations from isotropic tomography. The red circles and the red
thick line in (d)–(f) typically depict the circular pattern of azimuthal anisotropy and deflected mantle flow, respectively. GV = Great Valley; PR = Peninsular Ranges;
SN = Sierra Nevada; ST = Salton Trough; ECSZ = Eastern California Shear Zone; IB = Inner Borderland. The other symbols are the same as those in Figure 1.
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of the Mesozoic Peninsula Ranges is divided into western and eastern portions based on the observed
high- and low-velocity anomalies, respectively, which is possibly due to the development of more mafic
crust beneath the western terrane (Lewis et al., 2000). Prominent lithospheric roots are revealed as high-
velocity (high-V) anomalies beneath batholiths such as the GV, the Transverse Ranges, the Mojave Block,
and the Peninsula Ranges. Accordingly, low-V anomalies are revealed in the lithospheric mantle beneath
some weak areas like the Inner Borderland, the Salton Trough, the Coast Range, and the Sierra Nevada. In
contrast, substantial high-V anomalies exist at depths of ~300 to 500 km beneath the central SAF and
areas surrounding the GV, which are also revealed by previous tomographic studies (Schmandt &
Humphreys, 2010; Sigloch et al., 2008).

3.1. Depth-Dependent Azimuthal Anisotropy

Azimuthal anisotropies in the lower crust and lithospheric mantle beneath areas adjacent to the SAF are
poorly correlated (Figures 5b and 5c), possibly indicating their decoupling tectonic regime (Hartog &
Schwartz, 2001), which is consistent with results from a joint inversion of ambient noise and earthquake data
in the western United States (Lin et al., 2011). Geodetic evidence indicates that the viscosity of the lower crust
is relatively high (Meade & Hager, 2005) and nonbrittle deformation dominantly develops to accommodate
the right-lateral shear in the lower crust (Hartog & Schwartz, 2001). Crustal anisotropy is usually associated
with shape-preferred orientation, and the observed complex patterns can be attributed to fossilized fabric
within schists in the lower crust (Porter et al., 2011), regional stresses, active faults, local tectonic features,
and rock types (Li & Peng, 2017). In comparison, azimuthal anisotropy in the lithospheric mantle systemati-
cally follows the strike of the SAF (Figure 5) where the magnitude of anisotropy is dependent on the strain
rates and decreases with the distance from the SAF. The relative plate motions between the Pacific and
North American plates possibly place significant shear forces along the SAF, which align the anisotropic
minerals within the lithospheric mantle and develop the observed fault-parallel azimuthal anisotropy
(Hartog & Schwartz, 2001; Savage, 1999). Thus, the SAF may be a large-scale lithospheric feature and pene-
trate into the mantle (Tanimoto & Prindle Sheldrake, 2002).

A circular pattern of the fast orientations is highlighted in the upper asthenosphere (Figures 5d and 5e) and
centered in the GV where its lithosphere (Figures 5a–5c) is characterized as possessing coherent N-S fast
orientations. To quantify the matching between the resulting fast orientations and the circular trend, we cal-
culated their absolute angle differences (Figure 6), which are mostly less than 30° for the majority of the areas
surrounding the GV. The matching results beneath the Sierra Nevada (Figure 6) become worse at greater
depths, which are possibly influenced by other factors such as the APM and deep mantle perturbations.
Such a circular asthenospheric anisotropy is totally different from the fault-parallel anisotropy in the litho-
spheric mantle, suggesting the existence of complex anisotropy in the upper mantle, which is also supported
by SWS measurements (Figure 7). Considering the quantity and location of the SWS measurements and fea-
tures of the resulting azimuthal anisotropy, we explored the complex anisotropy beneath part of the central
SAF (Figure 7), which has been extensively studied during the last two decades (e.g., Bonnin et al., 2010;
Hartog & Schwartz, 2001; Özalaybey & Savage, 1995; Polet & Kanamori, 2002; Savage & Silver, 1993; Silver
& Savage, 1994). A two-layer model is usually employed to explore complex anisotropy based on the SWS
measurements (Silver & Savage, 1994). Our two-layer fitting of the SWS measurements well determines the
optimal model that the upper layer (the lithosphere) has a fault-parallel fast orientation of 142° and the lower
layer (the asthenosphere) owns a fast orientation of 69° consistent with the circular pattern. The resulting
parameters characterizing the complex anisotropy are also consistent with results of the previous SWS stu-
dies (e.g., Bonnin et al., 2010; Hartog & Schwartz, 2001; Özalaybey & Savage, 1995). Therefore, the lithosphere
and asthenosphere beneath the SAF are significantly decoupled, and their anisotropies are possibly induced
by different tectonic regimes.

NE-SW fast orientations are coherently revealed in the lithosphere and asthenosphere beneath the Basin and
Range at the NE corner of our study region (Figure 5), closely consistent with the APM of the North American
plate and the SWS measurements (Figures 1 and 7). Southwestward dragging from the North American plate
motion may induce significant shearing and viscous coupling deformation between the lithosphere and the
asthenosphere, leading to the resulting APM-parallel fast orientations. Compilation of the SWS database for
the western and central United States (Yang et al., 2016) also indicates that the APM plays a significant role in
generating azimuthal anisotropy with the NE-SW fast orientations.
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3.2. Lithospheric Downwelling and Asthenospheric Flow

A prominent high-V anomaly existing beneath the GV, known as Isabella anomaly (Raikes, 1980), extends
from near the base of the crust into the asthenosphere (Figures 5 and 8), which has been imaged by many
previous studies (Gilbert et al., 2012; Humphreys & Hager, 1990; Jones et al., 2014; Raikes, 1980; Schmandt
& Humphreys, 2010; Tanimoto & Prindle Sheldrake, 2002; Tian et al., 2007; Zhao et al., 1996). Various ori-
gins of the Isabella anomaly have been proposed, which is interpreted as a remnant of the subducted
Farallon slab (Bird & Rosenstock, 1984; Cox et al., 2016; Jiang et al., 2018; Raikes, 1980; Wang et al.,
2013; Zhao et al., 1996) or lithospheric pieces associated with delamination or convective removal of
dense materials from beneath the Sierra Nevada (Boyd et al., 2004; Gilbert et al., 2012; Jones et al.,
2014; Zandt et al., 2004). Our results show that the Isabella anomaly exhibits an overwhelming negative
radial anisotropy (Figure 8), possibly indicating a downwelling motion, and systematical N-S fast orienta-
tions in the lithosphere that are seriously oblique to the APM of the North American plate. Similar features
are also observed beneath central Tibet (Zhang et al., 2016) and central Wyoming (Li et al., 2017) where
the downwelling lithospheres are clearly imaged as high-V anomalies with negative radial anisotropy.
The relatively high viscosity of the high-V mantle blocks possibly plays a dominant role in the character-
ization of mantle downwelling as negative radial anisotropy (Li et al., 2017). Assuming that the Isabella
anomaly is generated by convective removal of lithospheric materials from the southern Sierra Nevada,
one may expect to observe generally E-W fast orientations in the lithosphere, which is not consistent with
our results (Figure 5). Such a mechanism is also difficult to explain the robust high-V anomalies around
300-km depth beneath areas surrounding the Isabella anomaly. In addition, the position of the Isabella
anomaly in the mantle fails to support the connection between the Isabella anomaly and the Sierra

Figure 6. The colors denote the absolute angle differences between the resulting fast Vp orientations at depths of 125, 200,
and 300 km and the trend of the proposed circles centered in the Great Valley. The absolute angle differences at each point
are calculated by subtracting the fast Vp orientations from the tangent angle of the circle that is centered in the Great
Valley, and its radius is the distance between each point and the center of the Great Valley. The color scale is shown at the
bottom. The other symbols are the same as those in Figure 5. ECSZ = Eastern California Shear Zone; GV = Great Valley;
PR = Peninsular Ranges; SN = Sierra Nevada; ST = Salton Trough; IB = Inner Borderland.
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Nevada (Jiang et al., 2018). Thus, we favor the interpretation that the Isabella anomaly is instead a fossil
slab fragment of the Farallon plate (Cox et al., 2016; Jiang et al., 2018; Nicholson et al., 1994; Wang
et al., 2013). The resulting N-S fast orientations in the lithosphere of the GV possibly represent fossil
anisotropy inherited from the subducted Farallon plate where trench-parallel fast orientations are
expected to develop, which has been extensively observed in the subducting slabs surrounding the Pacific
(e.g., Liu & Zhao, 2017; Long & Silver, 2008; Wei et al., 2016; Zhao et al., 2016). The observed trench-parallel
fast orientations within the slab are more likely to be induced by frozen-in anisotropy formed at the mid-
ocean ridge or the lattice-preferred orientation of the B-type olivine (Wang & Zhao, 2013).

The Isabella anomaly is revealed to be possibly attached to the Monterey microplate (Cox et al., 2016;
Jiang et al., 2018; Nicholson et al., 1994; Wang et al., 2013). Modeling results (Pikser et al., 2012) indicate
that it is feasible to transport the Isabella anomaly hundreds of kilometers along-strike to its current place

Figure 7. (a) Comparison of fast velocity directions (white bars) of Pwave azimuthal anisotropy at 75-km depth determined
by this study with the distribution of delay times (colors) of shear wave splitting (SWS) measurements (Barak & Klemperer,
2016; Ramsay et al., 2016; Yang et al., 2016). (b) Comparison of the lithospheric thickness (Lekic et al., 2011) with P wave
azimuthal anisotropy (white bars) at 200-km depth determined by this study. (c) Distribution of the SWS measurements.
The color and length of each bar denote the fast polarization direction and the SWS delay time, respectively, whose scales
are shown below (c). Observations within the black rectangles are used in Figure 7d. (d) Two-layer fitting of the SWS
measurements. The upper and lower panels show the results for the fast polarization direction and the delay time,
respectively. The red lines show the modeling results, whereas the vertical bars denote the observed values (open circles)
and their standard deviations. (ϕU, δtU) and (ϕL, δtL) are the optimal values of the fast orientation and splitting time for the
upper and lower layers, respectively.

10.1029/2018JB015873Journal of Geophysical Research: Solid Earth

YU AND ZHAO 8851



while remaining intact and attached. Since the cessation of the Farallon plate subduction around 30 Ma,
the Isabella anomaly has been experiencing deformations of the oblique convergent motion between the
Pacific and North American plates (Bird & Rosenstock, 1984). The oceanic composition of the Isabella
anomaly can easily put itself in a gravitationally metastable state due to the density contrast and
promote the occurrence of lithospheric downwelling. Numerical modeling of the Great Basin predicts
that downwelling of the lithosphere into the asthenosphere can be activated by a density anomaly of
as little as 1% (West et al., 2009). The Isabella anomaly is possibly experiencing a process of ongoing
lithospheric downwelling, which can induce much more substantial modification of regional fabrics
(West et al., 2009) highlighted by the resulting outstanding circular pattern of azimuthal anisotropy in
the asthenosphere. Lithospheric downwelling of the Isabella anomaly can exert a downward pull to the
base of the overlying crust and lead to overlying subsidence (Houseman & Molnar, 1997), which is
supported by the surface topography and numerical modeling (Fay et al., 2008). The sinking of the
Isabella anomaly must be much slower than the plate motion rate for it to be at its current position.
Significant dropping of the Isabella anomaly may have occurred only in the past a few million years,
possibly due to the change of slab geometry and the enhancement of oblique convergence at the

Figure 8. Vertical cross sections of P wave isotropic tomography and radial anisotropy. The horizontal white bars indicate
that the horizontal velocity is faster than the vertical velocity and vice versa. The length of the bars denotes the amplitude
of radial anisotropy. Red stars and triangles denote large earthquakes (M> 6.0) and Cenozoic volcanoes shown in Figure 1,
respectively, within a 50-km width of each profile. BR: Basin and Range; CR: Coast Ranges; MB: Mojave Block.
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western Transverse Range. Clockwise rotation makes the western Transverse Range sit close to the
Isabella anomaly and become the most compressional place in Southern California (Bird & Rosenstock,
1984; Nicholson et al., 1994; Raikes, 1980).

The downwelling Isabella anomaly may trigger mantle upwelling in its surrounding areas (Göğüş et al., 2017)
where systematical negative radial anisotropies are revealed in the asthenosphere (Figure 8). The upwelling
mantle flow is possibly twisted by the right-lateral strike-slip SAF when it approaches the transition between
the lithosphere and asthenosphere, resulting in a rotated pattern of flow system in the horizontal direction
consistent with the observed circular pattern of azimuthal anisotropy and systematical positive radial aniso-
tropy (Figures 5 and 8). Such a flow system is also revealed as anomalously high heat flow (Lachenbruch &
Sass, 1980) and relatively larger SWS delay times (Figure 7). The hot asthenosphere brought by the upwelling
asthenospheric flowmay create melting of the lower lithosphere and induce the development of lithospheric
delamination, which is estimated to occur at ~3.5 Ma based on a sudden pulse of mafic magmatism at the
Sierra Nevada from 4 to 3 Ma (Manley et al., 2000). The delaminated lithosphere drops down to the astheno-
sphere and is replaced by hot materials from the asthenospheric flow, forming the observed low-V anomalies
(Boyd et al., 2004) and providing dynamic support to the ranges of the southern Sierra Nevada and the Coast
Ranges (Manley et al., 2000). The high-V anomalies imaged at ~300-km depth are located exactly beneath the
ranges surrounding the GV and most likely correspond to the segments of the delaminated lithosphere,
which helps answer the long-lasting puzzle of where the removed lithospheric root of the southern Sierra
Nevadamight be at present (Jones et al., 2014). Numerical modeling investigations proposed that the growth
period of delamination takes an order of magnitude shorter time (Beall et al., 2017), which is consistent with
the depth distribution of high-V anomalies (Figure 5) that are much shallower beneath the GV (~200-km
depth) than those beneath its surrounding ranges (~300-km depth).

Similar lithospheric delamination also occurs beneath the Mojave Block and the Transverse Ranges where the
upper and lower lithospheres exhibit positive and negative radial anisotropies, respectively (Figure 8). Active
melting from possibly small-scale mantle convection (Fay et al., 2008) contributes to the peeling away of
dense materials from the lower lithosphere. This ongoing delamination has left footprints in the mantle tran-
sition zone where significant high-V anomalies (Figure 5) are detected (Schmandt & Humphreys, 2010;
Sigloch et al., 2008), possibly corresponding to the delaminated lithospheric segments. Meanwhile, mantle
flow associated with the APM or the Isabella anomaly is regionally disturbed by the topography of litho-
sphere and altered at the boundary of thick lithospheric root (Lekic et al., 2011) such as the Eastern
California Shear Zone (Figure 7) where the flow is deflected to propagate in a NW-SE direction.

3.3. Rifting at the Inner Borderland and Salton Trough

In Southern California, there are predominantly two rift regions situated at the Inner Borderland and the
Salton Trough where significant lithospheric thinning is revealed by receiver function investigations (Lekic
et al., 2011; Reeves et al., 2015). Based on the resulting distinct features of both the azimuthal and radial ani-
sotropies, mechanisms of rifting at the Inner Borderland and the Salton Trough possibly follow distinct
modes. Previous isotropic tomography studies usually interpreted the low-V anomaly beneath the Salton
Trough as mantle upwelling to accommodate for the oblique spreading (Humphreys et al., 1984; Raikes,
1980; Schmandt & Humphreys, 2010; Tian et al., 2007), which is further supported by weak anisotropy from
tomographic analyses of SWS data (Monteiller & Chevrot, 2011). However, recent SWS analysis detected sig-
nificant anisotropy beneath the Salton Trough with an average splitting delay time of about 1.2 s and fast
orientations aligned in the NW-SE transform shear direction (Barak & Klemperer, 2016), which is well consis-
tent with our results (Figure 7) and argues against the model of mantle upwelling.

A conspicuous high-V anomaly resting around the Moho has been revealed beneath the Salton Trough
(e.g., Han et al., 2016; Hauksson, 2000; Jiang et al., 2018; Lee et al., 2014; Tape et al., 2009), whereas its
asthenosphere is depicted as a comparatively low-V anomaly (e.g., Humphreys et al., 1984; Raikes,
1980; Schmandt & Humphreys, 2010). The crustal high-V anomaly possibly reflects a shallow Moho depth
or the ongoing upward basaltic intrusion where negative radial anisotropy (Figure 8) and high heat flow
are revealed (Lachenbruch et al., 1985; Lachenbruch & Sass, 1980). Intrusion of basaltic magma induces
the emplacement of higher density igneous rocks ponding around the Moho and then forms the oceanic
basement beneath the Salton Trough (Elders et al., 1972; Han et al., 2016). Evidence from seismic reflec-
tions (Brothers et al., 2009; Han et al., 2016) indicates that relative motion between the Pacific and North
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American plates beneath the Salton Trough generates a transextension force, leading to lithospheric
stretching and the formation of pull-apart basins (Elders et al., 1972). The decrease of lithospheric loading
in turn induces decompression melting in the upper mantle imaged as a low-V anomaly (Figure 8). The
vertical melt pockets in the upper mantle are aligned in the shear direction and further develop the
rift-parallel azimuthal anisotropy with NW-SE fast orientations (Barak & Klemperer, 2016), which is also
supported by the uniformly positive radial anisotropy (Figure 8). Rift-parallel azimuthal anisotropy induced
by oriented magmatic cracks in the mantle is also observed beneath other continental rifts such as the
Kenya rift (Gao et al., 1997). Thus, the Salton Trough seems to follow a passive rifting model that rifting
is activated by the oblique strike-slip plate motions and the decompressed melt pocket is directed to
align horizontally instead of upwelling, which is similar to the incipient Okavango rift in southern Africa
where the APM plays the primary role (Yu et al., 2017).

In contrast, rifting beneath the Inner Borderland seems to follow more like an active model that mantle
upwelling is currently taking place based on the prominent low-V anomalies in the asthenosphere and the
significant negative radial anisotropy (Figure 8). Lithospheric thinning beneath the Inner Borderland (Lekic
et al., 2011) is clearly revealed (Figure 7). Mantle flow possibly associated with small-scale mantle convections
beneath the Transverse Ranges and adjacent areas (Fay et al., 2008; Schmandt & Humphreys, 2010) can be
released to upwelling in places where the lithosphere becomes weak (Figure 8). The sinking of the delami-
nated lithospheric segments into the mantle transition zone beneath the Transverse Ranges may also contri-
bute to mantle upwelling. The rotation of the Traverse Range possibly makes the Inner Borderland a relatively
lithospheric weak zone (Nicholson et al., 1994; Reeves et al., 2015), which offers the chance for the mantle
flow to migrate upward, providing the driving force for rifting beneath the Inner Borderland.

4. Conclusions

The first high-resolution model of 3-D isotropic and anisotropic (including azimuthal and radial anisotropy)
tomography of the crust and upper mantle beneath Southern California is determined using a large quantity
of both local-seismic and tele-seismic P wave arrival-time data. Depth-varying azimuthal anisotropy is
revealed around the SAF where the fast orientations change from fault-parallel in the lithospheric mantle
to circular patterns in the asthenosphere. The high-V Isabella anomaly beneath the Great Valley is better
interpreted as a remnant of the fossil Farallon slab currently experiencing a possible process of lithospheric
downwelling based on the resulting negative radial anisotropy and coherent N-S fast orientations of azi-
muthal anisotropy in its lithosphere. The downwelling of the Isabella anomaly in turn may induce mantle
upwelling, which is twisted by the relative motion between the Pacific and North American plates along
the SAF to flow horizontally when reaching the lower lithosphere. Such a flow system possibly contributes
to the lithospheric delamination beneath areas surrounding the Great Valley where the delaminated litho-
spheric segments are clearly revealed as high-V anomalies at a depth of >300 km. Rifting developments
beneath the Inner Borderland and the Salton Trough are revealed to have close associations with regional
mantle upwelling and the relativemotion between the Pacific and North American plates, respectively, based
on the resulting distinct features of radial and azimuthal anisotropies.
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