

Heterogeneities in Stress and Strength in Tohoku and Its Relationship with Earthquake Sequences Triggered by the 2011 M9 Tohoku-Oki Earthquake

著者	Keisuke Yoshida, Akira Hasegawa, Takeyoshi Yoshida, Toru Matsuzawa
journal or	Pure and Applied Geophysics
publication title	
volume	176
number	3
page range	1335-1355
year	2018-12-07
URL	http://hdl.handle.net/10097/00126601

doi: 10.1007/s00024-018-2073-9

1	Heterogeneities in stress and strength in Tohoku and its relationship with
2	earthquake sequences triggered by the 2011 M9 Tohoku-Oki earthquake
3	
4	Keisuke Yoshida ¹ , Akira Hasegawa ¹ , Takeyoshi Yoshida ² , Toru Matsuzawa ¹
5	
6	1: Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate
7	School of Science, Tohoku University
8	2: Institute of Mineralogy, Petrology, and Economic Geology, Graduate School of
9	Science, Tohoku University
10	
11	Corresponding author: Keisuke Yoshida, Research Center for Prediction of Earthquakes
12	and Volcanic Eruptions, Tohoku University, 6-6 Aza-Aoba, Aramaki, Aoba-ku, Sendai,
13	980-8578, Japan. (keisuke.yoshida.d7@tohoku.ac.jp)

15 Abstract

16Inland Tohoku has been recognized as being under the WNW-ESE compressional stress state before the 2011 M9 Tohoku-Oki earthquake. Earthquakes that occurred there were 17characterized by reverse faulting with compressional axis oriented almost WNW-ESE 18direction. The Tohoku-Oki earthquake reduced this WNW-ESE compressional stress and, 19therefore, should have suppressed the earthquake occurrence. However, several intensive 20earthquake sequences were triggered in inland Tohoku. In this study, we investigated the 2122triggering mechanism of these remote earthquake sequences in the stress shadow based on the detailed distribution of stress orientations newly determined from pre-mainshock 23focal mechanism data. The spatial distribution of stress orientations shows that there exist $\mathbf{24}$ some regions with anomalous stress fields even before the Tohoku-Oki earthquake on the 2526spatial scale of a few tens of kilometers. This spatial heterogeneity in stress field suggests that the differential stress magnitude in inland Tohoku is low (a few tens of MPa). 27Locations of the earthquake clusters tend to correspond to regions where the principal 28stress axis orientations of the pre-mainshock period are similar to those of the static stress 29change by the Tohoku-Oki earthquake. This observation suggests that these earthquake 30 31sequences were triggered by local increase in differential stress due to the static stress change. However, a few swarm sequences occurred in central Tohoku with delays ranging 32

33	from a few days to few weeks after the Tohoku-Oki earthquake despite the reduction in
34	differential stress. These sequences have notable characteristics including upward
35	migration of hypocenters. Such features are similar to the fluid-injection induced
36	seismicity. The source regions of these swarms are located near the ancient caldera
37	structures and geological boundaries. The swarm activities were probably triggered by
38	the upward fluid movement along such pre-existing structures. These observations
39	demonstrate that information about the temporal evolutions of both stress and frictional
40	strength is necessary to understand the triggering mechanism of earthquakes.

41 **1. Introduction**

To obtain a comprehensive view of the earthquake generation process, it is necessary to understand the triggering mechanism of aftershocks or induced earthquakes after a large earthquake. In general, an earthquake occurs when the shear stress acting on a plane exceeds the frictional strength of the plane. We can use the Coulomb failure criterion as a simple approximation of the condition of the earthquake occurrence:

47
$$\tau = \mu(\sigma_{\rm n} - P_{\rm P}) \tag{1}$$

where τ is shear stress, μ is coefficient of friction, σ_n is normal stress, and P_P is pore 48pressure. Based on this equation, we can consider two causes for the occurrence of an 49earthquake: increases in shear stress τ and decreases in frictional strength $\mu(\sigma_n - \sigma_P)$ 50(e.g., Hainzl & Fischer, 2002). It has been suggested that both, accumulation of stress and 5152reduction in frictional strength due to elevated pore pressure play an important role in earthquake generation (e.g., Hasegawa, 2017; Hubbert & Rubey, 1959; Miller, 2013; Nur 53& Booker, 1972; Rice, 1992; Sibson, 1992). Thus, the knowledge of the temporal change 54in stress and pore pressure after a large earthquake is essential to understand the triggering 55of an earthquake. In particular, the following effects can be considered: coseismic 5657Coulomb's stress increase by static deformation and dynamic wave propagation, postseismic Coulomb's stress increase by postseismic slip and viscoelastic response, $\mathbf{58}$

elastic interaction among triggered earthquakes, and the effect of pore pressure changeassociated with these processes.

61	The 2011 M9 Tohoku-Oki earthquake caused numerous earthquakes along the plate
62	boundary, within the overriding plate, and within the subducting slab (Asano et al., 2011;
63	Ishibe et al., 2011; Toda et al., 2011; Yukutake et al., 2011; Miyazawa et al., 2011; Okada
64	et al., 2011; Lengliné et al., 2012; Enescu et al., 2012; Kato et al., 2013; Yukutake et al.,
65	2013; Shimojo et al., 2014). A number of earthquakes took place in inland Japan (Fig. 1),
66	which is densely covered by the nationwide seismic network. This provides a unique
67	opportunity to study the mechanism of remote earthquake triggering.

The focal mechanisms of these earthquakes triggered by the Tohoku-Oki 68 earthquake are readily explained by the static stress change by the Tohoku-Oki mainshock 69 (e.g., Asano et al., 2011; Chiba et al., 2013; Hasegawa et al., 2011; Hasegawa et al., 2012; 70Hasegawa & Yoshida, 2015; Nakajima et al., 2013; Yoshida et al., 2012). (1) Interplate 7172aftershocks do not occur inside the large slip area of the mainshock rupture. They instead focus on the edge of the large slip area (Asano et al., 2011; Hasegawa et al., 2012; Kato 73and Igarashi, 2012; Nakamura et al., 2016). This feature can be well explained by the 7475redistribution of shear stress inside and around the mainshock slip region. (2) Aftershocks within the subducting Pacific plate intensely occurred in the eastern and the western 76

77	extensions of the large slip region of the mainshock rupture. P-axes of earthquake focal
78	mechanisms were oriented to WNW-ESE in the western extension parallel to the
79	coseismic slip direction, while T-axes were oriented to this direction in the eastern
80	extension (Chiba et al., 2013; Hasegawa & Yoshida, 2015). This pattern is also well
81	explained by the effect of the static stress change caused by the mainshock slip. (3)
82	Numerous normal fault earthquakes occurred in the overriding plate above the source
83	region of the mainshock (Asano et al., 2011; Hasegawa et al., 2012). Such normal fault
84	earthquakes were scarcely observed before the Tohoku-Oki mainshock, which suggests
85	that the stress field rotated after the Tohoku-Oki earthquake by its static stress change
86	(Hasegawa et al., 2011, 2012; Hardebeck, 2012). These normal fault earthquakes seem to
87	almost continuously occur from just above the large slip region to the Fukushima-Ibaraki
88	border region near the Pacific coast. (4) In the Chubu-Kanto district in inland Japan,
89	seismicity rate increased. In this region, the background stress field was characterized by
90	NW-SE compression similar to the static stress change by the mainshock rupture. Yoshida
91	et al. (2012) suggested that the increase in seismicity rate was caused by the increase in
92	differential stress. (5) Even in regions very far from the source region of the Tohoku-Oki
93	mainshock (the static stress change < 0.001 MPa), some earthquake sequences were
94	triggered probably due to the dynamic wave propagation and the associated pore pressure

95 change (Enescu et al., 2012; Kato et al., 2013; Yukutake et al., 2013).

96	In general, the occurrence of an earthquake does not only increase the Coulomb's
97	stress but also reduces it depending on location, referred to as the stress shadow (e.g.,
98	Simpson & Reasenberg, 1994), even on fault planes with the same specific orientation by
99	the modulation of stress field. Inland Tohoku was recognized as being under the WNW-
100	ESE compressional reverse faulting stress regime before the Tohoku-Oki earthquake (e.g.,
101	Hasegawa et al., 1994; Terakawa and Matsu'ura, 2010; Townend and Zoback, 2006;
102	Yoshida et al., 2012). Indeed, all of recent large (M>6) earthquakes have reverse faulting
103	focal mechanisms with P-axis oriented to WNW-ESE. This WNW-ESE compressional
104	stress was at least partly formed by the mechanical coupling along the plate boundary
105	(e.g., Suwa et al., 2006). The Tohoku-Oki earthquake reduced this WNW-ESE
106	compressional stress and, therefore, the differential stress (Fig. 1), producing a stress
107	shadow, especially in inland Tohoku, with the typical NNE-SSW striking reverse fault.
108	Therefore, it should have suppressed the earthquake occurrence in inland Tohoku.
109	However, intensive earthquake sequences were activated in inland Tohoku after the
110	Tohoku-Oki event. Thus, the triggering mechanism of earthquake sequences in inland
111	Tohoku is not simple.

In this study, we attempt to improve our understanding of the triggering mechanism

113	of earthquakes in the stress shadow by focusing on the Tohoku-Oki earthquake. In the
114	subsequent section, we review distinctive characteristics of the earthquake sequences
115	triggered by the Tohoku-Oki earthquake in inland Tohoku, such as anomalous focal
116	mechanisms (Section 2). We then examine the spatial distribution of the stress
117	orientations in Tohoku to understand why earthquake sequences were triggered in inland
118	Tohoku with anomalous focal mechanisms (Section 3). We also discuss the effect of pore
119	pressure change, which probably played an important role in triggering the earthquake in
120	Tohoku (Section 4).
121	
122	
123	2. Reviews of notable features of inland earthquake sequences triggered by the
124	Tohoku-Oki earthquake
125	2.1 Hypocenter distribution and geological structure
126	Substantial earthquakes occurred in inland Tohoku just after the 2011 Tohoku-Oki
127	earthquake. Hypocenter distributions of earthquakes in inland Tohoku for the period from
128	March 11, 2011 to the end of 2012 are shown in Fig. 2(a). Hypocenters of events after the
129	Tohoku-Oki earthquake are concentrated at several locations in clusters, rather than being
130	distributed homogeneously throughout the Tohoku region. Hypocenters of earthquakes

131	before the Tohoku-Oki earthquake are plotted over those after the Tohoku-Oki earthquake
132	for comparison and are shown in Fig. 2 (b). The figure indicates that intense earthquake
133	clusters after the Tohoku-Oki earthquake were mainly located in regions where the pre-
134	mainshock seismicity rate was quite low. This is unlike the cases of the 1992 Landers
135	earthquake and the 1995 Hyogo earthquake, in which post-mainshock seismicity
136	increased in proportion to the level of prior seismicity (Mallman & Zoback, 2007). Figure
137	2 (c) shows the earthquake occurrence time plotted against latitude. Those locations of
138	concentrated seismicity are northern Akita (N1), southern Akita (N2), the Yamagata-
139	Fukushima border (C1), Sendai-Okura (C2), Yamagata (C3), the Fukushima-Ibaraki
140	border (S1), and the Tochigi-Gunma border (S2). Although hypocenters seem scattered,
141	the earthquake occurrence rate increases in Iwate-Prefecture (N3). The geological
142	boundaries in Tohoku are shown in Fig. 2 (b) by broken curves. The geologic boundaries
143	go along the Fukushima-Ibaraki border (S1), Yamagata-Fukushima border (C1),
144	Yamagata (C3), northern Akita (N1) and southern Akita (S1) earthquake clusters. All of
145	the earthquake clusters in the central part of Tohoku (C1~C3) are located near ancient
146	calderas (e.g., Yoshida et al., 2017).
147	Temporal distributions of the number of earthquakes for the period of 75 days

148 before to 75 days after the Tohoku-Oki earthquake are shown in Fig. 3 for the eight

149	earthquake clusters. The required magnitude was set to 2.0. Although the completeness
150	magnitude was relatively low just after the Tohoku-Oki earthquake (e.g., Kato et al., 2013;
151	Yoshida et al., 2018a), the earthquake numbers still increased abruptly after the Tohoku-
152	Oki earthquake for all these clusters. Seismicity rates were very low before the Tohoku-
153	Oki earthquake in the focal region of these earthquake clusters. However, it was reported
154	that the seismicity rate decreased in the aftershock area of the 2008 M7.2 Iwate-Miyagi
155	Nairiku earthquake, which is located in central Tohoku, in the stress shadow of the
156	Tohoku-Oki earthquake (Suzuki et al., 2013). The initiations of triggered seismic activity
157	of the three clusters C1~C3 in central Tohoku were delayed by a few days to a few weeks
158	after the Tohoku-Oki earthquake, while triggered seismicity of the earthquake clusters
159	N1-N3 and S1-S2 in the northern and southern parts of Tohoku began immediately after
160	the Tohoku-Oki earthquake (Fig. 3).
161	

163 **2.2 Change in focal mechanism**

A notable feature of the earthquake sequences triggered by the Tohoku-Oki earthquake is significant changes in predominant focal mechanisms after the mainshock; earthquakes with anomalous focal mechanisms, such as normal faulting with the T-axes

167	oriented to WNW-ESE and strike-slip faulting with P-axes oriented to NNE-SSW, started
168	to occur in a wide range of Tohoku from the region beneath the Pacific Ocean in the large
169	slip area of the mainshock rupture (Asano et al., 2011; Hasegawa et al., 2012) to inland
170	Tohoku apart from the source area (Kato et al., 2011; Yoshida et al., 2012). Figure 4 shows
171	focal mechanisms of earthquakes in the overriding plate taken from Yoshida et al. (2012)
172	and Hasegawa et al. (2012). The color shows faulting type based on the classification by
173	Frohlich (1992). The typical focal mechanism in inland Tohoku was known to be reverse-
174	faulting with WNW-ESE P-axis (e.g., Terakawa et al., 2010). The spatially homogeneous
175	WNW-ESE compressional reverse fault stress regime in Tohoku was supported by
176	geodetically measured principal strain rate axes (e.g., Kato et al, 1998; Miura et al., 2002;
177	Sagiya et al., 2000), geological structures (e.g., Nakamura and Uyeda, 1980), earthquake
178	focal mechanisms, and stress tensor inversion analyses (e.g., Hasegawa et al., 1994;
179	Terakawa and Matsu'ura, 2010; Townend and Zoback, 2006; Yoshida et al., 2012). On the
180	other hand, the earthquake clusters that occurred after the Tohoku-Oki earthquake in
181	northern Tohoku (N1, N2) and those in southern Tohoku (S1) are characterized by strike-
182	slip fault with NNE-SSW P-axes and normal fault with E-W~NW-SE T-axes, respectively.
183	These focal mechanisms cannot be explained by the spatially homogeneous WNW-ESE
184	compressional stress state which was thought to be dominant before the Tohoku-Oki

185 earthquake.

186	Three different hypotheses are suggested to explain these anomalous focal
187	mechanisms. We summarize these hypotheses in this section as follows: a possibility of
188	the rotation of the principal stress axes due to the static stress change of the Tohoku-Oki
189	earthquake (Subsection 2.2.1), a possibility of the apparent stress rotation due to the pore
190	pressure change (Subsection 2.2.2), and a possibility of the apparent stress rotation due
191	to the stress heterogeneity in space (Subsection 2.2.3).
192	
193	2.2.1 Possibility of stress rotation due to static stress change of the Tohoku-Oki
194	earthquake
195	A stress tensor inversion analysis based on earthquake focal mechanisms clearly
196	shows that the principal stress axes in the hanging-wall right above the large slip area of
197	the mainshock rupture was rotated by the Tohoku-Oki earthquake (Hasegawa et al., 2012).
198	Moreover, Yoshida et al., (2012) suggested that the stress axes in a couple of areas in
199	southern Tohoku (S1) and northern Tohoku (N1, N2) also rotated after the Tohoku-Oki
200	earthquake. The stress orientations estimated from the stress tensor inversions in inland
201	Tohoku (Yoshida et al., 2012) along with those in the source region beneath the Pacific
202	Ocean (Hasegawa et al., 2012) are shown in Fig. 5. The figure shows that the orientations

of the principal stress axes are significantly different before and after the Tohoku-Oki
earthquake not only in the source region just above the large slip area but also in inland
Tohoku. Figure 5 (c) shows the distribution of principal stress axis orientations of the
static stress change of the 2011 Tohoku-Oki earthquake computed by Yoshida et al. (2012)
and Hasegawa et al. (2012).

Both in the source region beneath the Pacific Ocean and in inland Tohoku, the stress 208209orientations after the Tohoku-Oki earthquake (Fig. 5b) were similar to those of the static stress change (Fig. 5c). This suggests that the stress axes were rotated by the static stress 210change of the Tohoku-Oki earthquake even in inland Tohoku. If this is the case, since the 211stress field after the earthquake (Fig. 5b) is considered as the sum of the background stress 212field (Fig. 5a) and the static stress change (Fig. 5c), magnitudes of deviatoric stress tensor 213214components before the Tohoku-Oki earthquake were smaller than that of the static stress change (Yoshida et al., 2012). Yoshida et al. (2012) quantitatively evaluated deviatoric 215stress magnitude before the Tohoku-Oki earthquake based on the observed stress rotation 216217by using Wesson & Boyd's (2007) method, and concluded that the differential stress magnitude, as a representative measure of the magnitudes of deviatoric stress tensor 218219components, before the Tohoku-Oki earthquake needs to be less than ~1 MPa in northern and southern Tohoku. Differential stress of ~1 MPa seems to contradict typically 220

221	estimated values of stress drop ranging from $1 \sim 10$ MPa (e.g., Allmann & Shearer, 2009;
222	Oth et al., 2013). We also consider other possibilities which might explain these
223	anomalous post-earthquake focal mechanisms similar to the static stress change.
224	
225	
226	2.2.2 Possibility of apparent stress rotation due to increase in pore pressure
227	Increasing pore pressure can allow unfavorably-oriented fault planes, on which
228	Coulomb's stress caused by the regional stress field are small, to slip (e.g., Sibson, 1990).
229	A recent fluid injection test confirms that earthquakes occur even on severely mis-
230	oriented planes in proximity to the injection well during periods of high injection rates
231	(Martinez-Garzon et al, 2016a). If such unfavorably-oriented fault planes would be
232	selectively activated by the increase in pore pressure, stress tensor inversion result would
233	be biased. This could lead to apparent stress rotation after the earthquake. By considering
234	the increase in pore pressure after the Tohoku-Oki earthquake, Terakawa et al. (2013)
235	attempted to explain the change in focal mechanisms after the earthquake. They
236	demonstrated that focal mechanisms in northern Akita (N1) can be explained by the
237	regional WNW-ESE compressional stress states. However, another mechanism is
238	necessary to explain the anomalous focal mechanisms in southern Akita (N2) and

239	southern Tohoku (S1) because their slip directions are largely different from those
240	expected from the regional WNW-ESE compressional stress state. The increase in pore
241	pressure alone does not explain why those anomalous focal mechanisms are similar to the
242	static stress change.
243	
244	2.2.3 Possibility of apparent stress rotation due to heterogeneous stress field in the
245	considered volume
246	Another possibility which might explain the anomalous focal mechanisms is the
247	effect of the spatial heterogeneity of stress orientations (e.g., Smith and Dieterich, 2010).
248	As an example of the 1992 Landers earthquake, Hardebeck and Hauksson (2001)
249	suggested that the stress fields rotated after the earthquake, while Townend and Zoback
250	(2001) found the spatial heterogeneity in the stress field in and around the source region
251	and the stress orientations remained almost stationary in the same locations.
252	Since the stress tensor inversion method needs to use multiple diverse focal
253	mechanism data to constrain the stress orientation, it assumes the uniform stress
254	orientation in a volume in which focal mechanism data are taken. Violation of this
255	assumption can lead to an apparent rotation of stress field when combined with sample
256	bias effects due to the static stress triggering. Figure 6 illustrates a simple situation in

which the considered volume includes subregions where the stress orientations largely 257258differ from those in the other regions (Fig. 6a). Given that the orientation of the static stress change is similar to those in such subregions (Fig. 6b), the differential stress and 259thus the shear stress on optimally-oriented fault locally increases there (Fig. 6c). 260Earthquakes can be selectively triggered in such subregions with locally anomalous stress 261axes. This might lead to the observation of the apparent change in focal mechanisms, and 262263therefore an apparent stress rotation. The spatial extent of the activation depends on the scale of the spatial change. 264

The spatial heterogeneity in stress orientations in inland Tohoku has been recently 265found by determining many focal mechanisms using data from the dense seismic network 266covering this area (Yoshida et al., 2015a). Yoshida et al. (2015a) found that there were 267268regions with stress orientations largely different from the regional WNW-ESE compressional stress state. Fukushima-Ibaraki (S1) is one such region; normal fault stress 269regime here exists in the shallower part (z < 12 km) even before the Tohoku-Oki 270earthquake, while a reverse fault stress regime exists in the deeper portion. This should 271have caused the local increase in differential stress in the shallower part of the S1 region 272273by the Tohoku-Oki earthquake because the stress orientation there is similar to the static stress change of the Tohoku-Oki mainshock. The normal fault stress regime in the 274

Fukushima-Ibaraki region was also found previously by Imanishi et al. (2013) who focused their stress inversion study on the earthquake sequence in this region. These observations indicate that the stress rotation in this region after the Tohoku-Oki earthquake were artefact and came from the spatial change in stress fields inside the region in which stress field is assumed to be uniform.

In northern Tohoku, the WNW-ESE compressional stress state seems to be homogeneously distributed (Fig. 5a). This WNW-ESE compressional stress and therefore differential stress should have been reduced by the Tohoku-Oki earthquake. The reason why earthquakes with such focal mechanisms, unlikely to occur under the WNW-ESE compressional stress regime, were intensively triggered in northern Tohoku after the Tohoku-Oki earthquake has not been clarified.

286

287 2.3 Summary of earthquake sequences triggered by the Tohoku-Oki earthquake in 288 inland Tohoku

(1) The Tohoku-Oki earthquake triggered intensive earthquake sequences even in the stress shadow of inland Tohoku. Hypocenters of these triggered earthquakes were scattered in a wide area concentrated at several locations in clusters rather than being distributed homogeneously in space throughout the inland region of Tohoku (Fig. 2).

293	(2) Earthquakes in a few such earthquake clusters (N1, N2, S1) have strikingly different
294	focal mechanisms, such as normal faulting type with T-axes oriented to WNW-ESE and
295	strike-slip faulting type with P-axes oriented to NNE-SSW, from the typical one in inland
296	Tohoku. Focal mechanisms in the two clusters N2 and S1 cannot be explained by the
297	regional WNW-ESE compressional stress even if pore pressure increases and
298	unfavorably-oriented fault planes selectively slip.
299	(3) The orientations of the stress axes which caused earthquake clusters with anomalous
300	focal mechanisms are strikingly similar to those of the static stress change by the Tohoku-
301	Oki earthquake. This observation suggests the two possibilities: (1) the stress axes in areas
302	of those clusters locally rotated by the Tohoku-Oki earthquake and (2) the stress axes
303	orientations before the Tohoku-Oki earthquake have some variations in space. The stress
304	fields have a strong depth variation in the Fukushima-Ibaraki region (S1) and the
305	occurrence of earthquake sequence there with many normal fault earthquakes was due to
306	the local increases in differential stress by the static stress change of the Tohoku-Oki
307	earthquake. In northern Tohoku, the WNW-ESE compressional stress field similar to the
308	regional stress state is homogeneously distributed before the Tohoku-Oki earthquake. The
309	reason why the earthquake clusters with anomalous focal mechanisms unlikely to occur
310	under the WNW-ESE compressional stress regime are intensively activated in northern

311 Tohoku has not been clarified.

313	3. Spatial heterogeneity of stress axes in Tohoku before the Tohoku-Oki earthquake
314	Information about the spatial heterogeneity of the stress orientation is crucial for
315	understanding the triggering mechanism of earthquakes as described in the previous
316	section. In this section, we focus on inland Tohoku and examine in detail the spatial
317	variation of the principal stress axes before the Tohoku-Oki earthquake based on new
318	focal mechanism dataset to understand why earthquake sequences with anomalous focal
319	mechanisms were triggered in Tohoku.
320	
321	3.1 Focal mechanism data
222	
322	Stress orientations are estimated by inverting focal mechanism data using the
322	Stress orientations are estimated by inverting focal mechanism data using the method of Michael (1987) and Hardebeck and Michael (2005). (1) We use focal new
323 323 324	Stress orientations are estimated by inverting focal mechanism data using the method of Michael (1987) and Hardebeck and Michael (2005). (1) We use focal new mechanism data of earthquakes for the period 1977 to 2003, which we determined in the
323 323 324 325	Stress orientations are estimated by inverting focal mechanism data using the method of Michael (1987) and Hardebeck and Michael (2005). (1) We use focal new mechanism data of earthquakes for the period 1977 to 2003, which we determined in the present study. (2) Focal mechanism data determined by Yoshida et al. (2015a) for the
 322 323 324 325 326 	Stress orientations are estimated by inverting focal mechanism data using the method of Michael (1987) and Hardebeck and Michael (2005). (1) We use focal new mechanism data of earthquakes for the period 1977 to 2003, which we determined in the present study. (2) Focal mechanism data determined by Yoshida et al. (2015a) for the period 1997 to the occurrence of the 2011 Tohoku-Oki earthquake are used. For the
 322 323 324 325 326 327 	Stress orientations are estimated by inverting focal mechanism data using the method of Michael (1987) and Hardebeck and Michael (2005). (1) We use focal new mechanism data of earthquakes for the period 1977 to 2003, which we determined in the present study. (2) Focal mechanism data determined by Yoshida et al. (2015a) for the period 1997 to the occurrence of the 2011 Tohoku-Oki earthquake are used. For the determination of focal mechanisms, we used P-wave first motion polarity data manually

329	mechanisms were determined in the same way as Yoshida et al. (2015a) by applying the
330	method of Hardebeck and Shearer (2002) to the P-wave polarity data. We determined
331	focal mechanisms if the P-wave polarity data was larger than 10 and the azimuthal gap
332	was less than 45°. In the method of Hardebeck and Shearer (2002), focal mechanism
333	solutions are evaluated and classified into A - F ranks depending on confidence levels.
334	Only the events with rank A or B were used here. As a result, we could determine 919
335	focal mechanisms. The number of focal mechanisms with rank A and B are 180 and 739,
336	respectively. The mean numbers of polarity data used for the determination of rank A and
337	B focal mechanisms are 38.7 and 22.7, respectively. The mean RMS values of angular
338	differences of possible nodal planes are 18.7° and 27.5 for rank A and B focal mechanisms,
339	respectively. Examples of focal mechanisms are shown in Fig. S1. Thus, our dataset
340	contains a total of 3,118 focal mechanisms. The lateral distribution of focal mechanisms
341	is shown in Fig. 7.

342

3433.2 Stress tensor inversions

For estimating the stress orientation, we assumed that: (1) earthquakes occurred 344along pre-existing weak planes having various strikes and dips, (2) slip occurred in the 345direction of maximum resolved shear stress on those planes, and (3) the stress orientation 346

was uniform in the volume from which the data were taken. By the stress tensor inversion, 347the orientations of the principal stress axes and stress ratio $R = (\sigma 1 - \sigma 2)/(\sigma 1 - \sigma 3)$ 348are constrained, although their magnitudes cannot be known. 349 To investigate the lateral variation of the stress orientations, the study area was 350 divided into several subareas. For each subarea, focal mechanisms were inverted 351assuming a homogeneous stress orientation. However, given that these results may vary 352depending on how the subareas are defined, we used two different approaches for 353subdividing the study area following Yoshida et al. (2015a, 2016a). 354The first approach is similar to that of Hardebeck and Hauksson (2001). First, we 355placed a 5-km spaced grid net over the study area. Then, we carried out the stress 356inversion of Michael (1984, 1987) at each grid node using all events located within 20 357 358km if the number of such events was <15. Otherwise, we used the 15 events closest to the grid node. If there were <10 qualifying events, we did not estimate the principal 359stress orientations at that grid node. In this approach, the spatial resolution of stress 360 fields depends on the density of focal mechanisms and thus on the location. The 361362orientations of σ HMAX computed based on the equation by Lund and Townend (2007) 363 are shown in Fig. 8 (a).

364 The second approach applies the damped stress inversion method of Hardebeck and

365	Michael (2006) to the focal mechanism data. This involved placing a grid with 0.5°
366	spacing over the study area and assigning each focal mechanism to the nearest grid
367	node. This method avoids the creation of apparent spatial variability, which is actually
368	an artifact due to over-fitting noisy data or non- uniquely fitting data that does not
369	completely constrain the stress tensor. The spatial damping parameter chosen was 0.6 on
370	the basis of a trade-off between model length and data variance. The result of the stress
371	tensor inversions is shown in Fig. 8 (b). We consider that the second approach yields a
372	more macroscopic and stable view of stress fields than the first approach, while the first
373	approach can provide the higher spatial resolution.

374

3.3 Spatial distribution of stress orientations before the Tohoku-Oki earthquake and 375static stress change 376

Figs. 8 (a) and (b) show that the stress analyses performed using the two different 377378 approaches basically yield similar results. The inland stress field is characterized by WNW-ESE compression except for the north and south outer arcs in which $\sigma 1$ axes are 379 oriented nearly N-S and vertical, respectively. The earthquake sequences N3 and S1 are 380 included in these north and south outer arc regions. Stress orientations are similar to the 381regional WNW-ESE compressional stress state in regions corresponding to the 382

earthquake sequences N1, N2, C1, C2, and C3 from the result of the second approach 383 384 (Fig. 8b) which focuses on a macroscopic view (~ 50 km) of stress fields. On the other hand, we can see some deviations of the stress orientations in regions corresponding to 385the earthquake sequences N1 and N2 in the first approach (Fig. 8a) which focuses on a 386 spatially high-resolution view of the stress field. The orientations of principal stress axes 387in N1 and N2 are NE-SW, which are similar to those observed after the 2011 Tohoku-Oki 388389earthquake (Fig. 5b). This suggests that anomalous stress fields existed there even before the Tohoku-Oki earthquake and that the differential stress magnitude in inland Tohoku 390 can be much higher than 1 MPa as estimated by Yoshida et al. (2012) based on the stress 391 rotation after the earthquake. The difference between the first and second approaches 392suggests that the stress field is heterogeneous in Tohoku with a scale less than a few tens 393 394 kilometers.

We estimated the static stress change of the Tohoku-Oki earthquake for comparison 395with the stress field before the earthquake. We used the coseismic slip distribution 396 397 determined by Iinuma et al. (2012) by assuming the rigidity of 30 GPa and the Poisson's of 0.25. We DC3D 398ratio used the code 399 (http://www.bosai.go.jp/study/application/dc3d/DC3Dhtml E.html) based the on analytical solution for the homogeneous half space summarized by Okada (1992). 400

Although there are various published coseismic slip models (Brown et al., 2015), the
results in inland Tohoku, relatively far from the source region, scarcely depend on the
difference of the models (Yoshida et al., 2012; 2018a).

Spatial distribution of $\sigma 1$ and $\sigma 3$ axes of the static stress change is shown in Fig. 404 8 (c). The orientation of $\sigma 1$ axis is NE-SW in northern Tohoku (N1, N2), which is 405similar to that of the observed one before the Tohoku-Oki earthquake in the fine scale 406(Fig. 8a), indicating that the Tohoku-Oki earthquake lead to the local increases in 407differential stress. We estimated the increase or decrease of the differential stress by the 408 static stress change of the Tohoku-Oki earthquake based on the background stress 409orientations of the finer grid result (Fig. 8a) by assuming that the principal stress axes did 410411 not rotate after the Tohoku-Oki earthquake. Signs of the differential stress change are 412shown in Fig. 9 by red and blue colors. Figure 9 indicates whether or not differential stress increased by the static stress change at each grid node. Although the computation result 413is somehow affected by our limited resolution of stress fields, we can see that differential 414stress increases only locally in some regions. Figure 9 shows the differential stress 415increased in the focal regions of the earthquake sequences N1, N2, S1, and S2. This 416417suggests that the earthquake sequences N1, N2, S1, and S2 in these regions were caused by the increase in differential stress by the occurrence of the Tohoku-Oki earthquake due 418

419	to the	local	stress	hetero	geneity	y
-----	--------	-------	--------	--------	---------	---

421

422

423 **4. Discussion**

424 **4.1 Temporal variation in frictional strength due to upward fluid movement**

The existence of the spatial stress heterogeneities in inland Tohoku can explain why 425the earthquake sequences in northern and southern Tohoku (N1, N2, N3, S1, and S2) were 426 triggered by the Tohoku-Oki earthquake. However, it is difficult to explain the activation 427of the earthquake sequences in central Tohoku (C1, C2 and C3) (Fig. 10). Since they have 428reverse fault focal mechanisms with P-axes oriented WNW-ESE similarly to the typical 429 430 focal mechanism in Tohoku, shear stress on the fault planes decreased by the WNW-ESE extension associated with the Tohoku-Oki earthquake (Yoshida et al., 2018a). 431Previous studies suggest that those earthquake sequences in central Tohoku were 432activated in response to the increase in pore pressure due to the upwelling fluids facilitated 433by the WNW-ESE extension associated with the Tohoku-Oki earthquake (Terakawa et al., 434

- 435 2013; Okada et al., 2015; Yoshida et al., 2016b, 2017, 2018a and 2018b). Those
- 436 earthquake sequences are characterized by the swarm-like seismicity pattern with a

437	distinct migration behavior of hypocenters, as summarized by Okada et al. (2015). Such
438	migration behaviors of hypocenters are similar to the fluid-injection induced seismicity
439	(e.g., Julian et al., 2010; Rutledge et al., 2004; Shapiro et al., 1997). Differential stress
440	magnitude in inland Tohoku is estimated to be a few tens of MPa or so by recent studies
441	based on the correlation of stress field with topography (Yoshida et al., 2015a) and with
442	the static stress change by the recent large (~M7) inland earthquakes (Yoshida et al., 2014,
443	2015b, 2016c). Given that differential stress magnitude in Tohoku is as small as a few
444	tens of MPa, pore pressure needs to be much higher than hydrostatic to cause earthquakes
445	under expected effective normal stress at seismogeneic depth and the typical value of
446	coefficient of friction obtained by laboratory experiments (e.g. Sibson, 1974). It should
447	be noted that the differential stress magnitude of a few tens of MPa is much higher than
448	1 MPa estimated based on the stress rotation after the 2011 Tohoku-Oki earthquake in
449	inland Tohoku (Yoshida et al., 2012), which was apparently obtained from ignoring the
450	spatially heterogeneous stress field (Fig. 8a).
451	A plausible cause for the reduction in the frictional strength is increasing pore
452	pressure (e.g., Hasegawa, 2017; Hubbert & Rubey, 1959; Miller, 2013; Nur & Booker,

- 453 1972; Rice, 1992; Sibson, 1992).
- 454 In fact, temporal variations in frictional strengths, stress drops, b-values, and

455	seismicity pattern have been detected for the Yamagata-Fukushima border earthquake
456	swarm (C1), which can be explained by the temporal change in pore pressure in its source
457	area (Yoshida et al., 2016b, 2017, 2018b). The source area of this swarm is located just
458	beneath the late Miocene Ohtoge caldera and is related to the volcanic structure
459	(Kanisawa et al., 2006; Yoshida et al., 2016b), which is believed to include shallow
460	igneous bodies with hydrothermal fluids immediately below (Yoshida et al., 2005 and
461	2014). Precisely relocated hypocenters by Yoshida et al. (2018b) clearly show that they
462	are concentrated on several discrete planes and migrate along those planes from deeper
463	to shallower levels (Fig. 11).

.

Depth-time plots of hypocenters of events in the three earthquake sequences C1, 464C2, and C3 in central Tohoku (Fig. 12) clearly show hypocenters moved from deeper to 465shallower level in all the sequences. The initiations of the seismic activity of these swarms 466 were delayed a few days to a few weeks after the occurrence of the Tohoku-Oki 467468 earthquake (Fig. 3). The delays of the initiation of seismicity, only observed in the earthquake sequences in central Tohoku, might have been necessary for the upwelling 469 fluids to move and increase the pore pressure in their source areas to fulfill the failure 470471criterion.

472 All these swarms are located near the ancient caldera structures (Kanisawa et al.,

2006; Yoshida et al., 2016b). High b-values were obtained all for these swarms ranging 473474from 1.3-1.6 (Fig. 13d, e and f), which are significantly high compared to the other earthquake sequenses (Fig. 13a, b, c, g, and h) and the typical estimation value of ~0.8 in 475Tohoku (e.g., Cao & Gao, 2002), which might reflect high pore pressure in the source 476area as suggested from the observations of the fluid-injection induced seismicity (e.g., 477Wyss, 1978; Bachmann, 2012). Indeed, Yoshida et al. (2017) reported that b-value 478479changes from 2 to 1 in the source area of the Yamagata-Fukushima border earthquake swarm in association with decreasing pore pressure. 480

These similarities support that all the three earthquake swarms in central Tohoku 481were caused by the increase in pore pressure due to upward fluid movements facilitated 482by the decrease in WNW-ESE compressional stress due to the Tohoku-Oki earthquake. 483484Breaking of low-permeability seals due to the ground shaking might have helped fluid move to the shallower levels. The fluids permeated into several pre-existing planes, 485reduced the frictional strengths, and satisfied the failure criteria, causing the earthquake 486 swarms despite the reduction in the Coulomb stress. The fluids probably further migrated 487upward along the planes, which is manifested as the hypocenters migrating along the 488489planes.

490

Fluid movements after the Tohoku-Oki earthquake affected earthquake occurrences

not only in the central part of Tohoku. Kosuga et al. (2013) reported that the earthquake 491 492swarm in northern Tohoku (N1) also exhibits a distinct migration behavior of hypocenters. Namely, both the differential stress and the pore pressure increased in this cluster after 493the Tohoku-Oki earthquake. Delayed triggered swarms with the migration behaviors of 494 hypocenters were also observed after the Mw 7.8 Dusky Sound and the Mw 7.1 Darfield 495earthquake in New Zealand probably due to the fluid diffusion (Boese et al., 2014). These 496observations suggest that the pore pressure change after the occurrence of a large 497earthquake more or less universally plays an important role for subsequent earthquake 498 sequences in association with the stress change. 499

500

501 4.2 A possible cause of heterogeneity of stress field

We observed the spatial heterogeneities in stress field in inland Tohoku even before the Tohoku-Oki earthquake (Fig. 8b) based on the stress tensor inversion analyses. The stress tensor inversion methods (e.g., Gephart & Forsyth, 1984; Michael, 1987) were devised to avoid the effects of the bias in fault planes (McKenzie, 1969) by utilizing the diversity of focal mechanisms. It is still difficult, however, to completely distinguish the effect of the fault plane bias from the variations of stress field (Townend, 2006). In fact, estimation errors of focal mechanism lead to apparent diversity of focal mechanism.

Furthermore, even small earthquakes can perturb the nearby stress field, which violates 509510the assumption of the uniform stress orientation in the considered volume. One way to remove this effect is the use of declustered seismicity catalogue as advocated by 511Martinez-Garzon et al. (2016b); however, this reduces the number of available focal 512mechanism data to examine the detailed spatial variation. Therefore, in this study, we 513have been focusing on a relatively large-scale pattern of stress fields and have discussed 514the variation in stress fields with such a length scale. Hypocenters of events with 515anomalous focal mechanisms that occurred after the Tohoku-Oki earthquake are 516concentrated at several locations in clusters (N1, N2, S1), rather than being distributed 517homogeneously throughout the Tohoku region (Fig. 2a), which suggests that the 518predominant length scales of the heterogeneity of stress field roughly correspond to those 519520of the clusters (> 10 km).

To confirm the existence of the spatial heterogeneity in stress fields, we used the angle between the direction of the slip and the maximum resolved shear stress computed from the regional stress field (misfit angle). For that, we first performed the stress tensor inversion by assuming that the stress field is uniform in the entire Tohoku, and computed misfit angle of each focal mechanism. The obtained stress field shows the WNW-ESE compressional reverse faulting stress regime (Fig. 14a) with the mean misfit angle of

527	approximately 35° (Fig. 14b). We selected the fault plane from the two nodal planes as
528	having the smaller misfit angle. We then computed the mean values of misfit angles at
529	each grid node based on focal mechanism data used for the stress tensor inversions in Fig.
530	8. The spatial distribution of misfit angles in Fig. 14 (c) indicates a deviation of the stress
531	field from the WNW-ESE compressional reverse faulting stress regime (Fig. 14a). The
532	spatial variation is consistent with the stress tensor inversion results in Fig. 8(a). In
533	particular, mean misfit angles are high in the focal regions of earthquakes that occurred
534	after the 2011 Tohoku-Oki earthquake (N1, N2, N3 and S1), which confirms that these
535	earthquakes occurred in regions with anomalous stress field.
536	One possible explanation of the local stress heterogeneities is the effect of the static
537	stress change of large earthquakes that occurred previously. The static stress change of an
538	earthquake can rotate the principal stress axes in and around the source region (e.g.,
539	Hardebeck & Hauksson, 2000; Wesson & Boyd, 2007), if magnitudes of deviatoric stress
540	tensor components of the background stress field are small compared to those of the static
541	stress change. The differential stress magnitude in inland Tohoku is estimated to be $< \sim$ a
542	few tens of MPa based on the correlation of orientations of the principal stress axes with
543	the topography (Yoshida et al., 2015a). This value of the differential stress is similar to
544	that estimated by Hasegawa et al. (2011) for the source area of the Tohoku-Oki earthquake

545	based on the stress rotation observed after the earthquake. Indeed, spatial heterogeneities
546	in the stress orientations have been detected in the focal regions of the recent three large
547	earthquakes in inland Tohoku: the 2003 M6.3 Northern Miyagi Prefecture earthquake
548	(Yoshida et al., 2016c), the 2008 M7.2 Iwate-Miyagi Nairiku earthquake (Yoshida et al.,
549	2014), and the 2011 M7.0 Fukushima-Hamadori earthquake (Yoshida et al., 2015b). The
550	spatial patterns of the principal stress axes in their source areas after the mainshocks are
551	well explained by the static stress change of those mainshocks, suggesting that the
552	differential stress magnitude in inland Tohoku is very small (< a few ten MPa) and the
553	effects of large earthquake can produce the spatial heterogeneities in stress orientations.
554	Conversely, if differential stress magnitude in Tohoku is small (less than a few tens
555	of MPa), the principal stress axes should rotate by various effect such as effects of the
556	topography and the static stress change of a large earthquake. The approximate focal
557	regions of large (M>6.5) earthquakes that occurred in Tohoku before 1950 listed by
558	Usami (2003) are shown in Fig. 8 (a) by circles. The focal regions indicated roughly
559	correspond to the regions with anomalous stress orientations. This suggests the possibility
560	that the stress axes locally rotated in these regions after the large earthquakes, and this
561	time the earthquake sequences were triggered by the Tohoku-Oki earthquake because of
562	the local increase in differential stress due to the stress heterogeneities thus produced.

563	The stress field in northern Tohoku is characterized by the WNW-ESE compression
564	as well as the N-S compression depending on location (Fig. 8a). This suggests the
565	existence of other causes of the regional stress in northern Tohoku besides the relative
566	movement of the Pacific plate and the overriding plate. Seno (1999) assumed a higher
567	magnitude of N-S compressional stress in central and eastern Japan than in western Japan
568	because of the collision of the Izu Peninsula with central and eastern Japan from south
569	(Matsuda, 1978). In fact, the orientation of σ 1-axis is rotated to NNW-SSE direction
570	locally near the Izu Peninsula (Ukawa et al., 1982). The sliver motion of the Kuril fore-
571	arc located just north (e.g., Kimura, 1986; Acocella et al., 2008) might not only sustain
572	the collision force but also increase N-S compressional force in northern Tohoku. The
573	gravitational collapse of the mountain range (Wang & He, 1999) might reduce the WNW-
574	ESE compressional stress.

576 **5.** Conclusions

577 We examined the spatial variation in stress field in inland Tohoku to understand the 578 triggering mechanisms of earthquake sequences by the 2011 Tohoku-Oki earthquake that 579 occurred in the stress shadow. Focal mechanisms of shallow earthquakes in inland Tohoku 580 are newly determined based on the P-wave first motion polarity data, and we inverted them for the stress orientations.

582The obtained spatial distribution of the stress orientation shows some variations in inland Tohoku even before the Tohoku-Oki earthquake. Earthquake clusters triggered by 583the Tohoku-Oki earthquake tend to correspond to the regions in which the orientations of 584the background stress field are locally similar to those of the static stress change of the 585earthquake. This observation suggests that those earthquake clusters were triggered by 586the local increase in shear stress due to the static stress change, which was caused by the 587spatial heterogeneity of the stress orientation, already existed before the Tohoku-Oki 588earthquake. 589

A few earthquake swarms, however, were triggered in central Tohoku where 590differential stress decreased by the static stress change of the Tohoku-Oki earthquake. All 591592the earthquake swarms have notable characteristics including delays of initiation time of seismic activity by a few days to a few weeks, upward migrations of hypocenters along 593several thin planes, and high b-values. Such features are similar to the fluid-injection 594induced seismicity. The source regions of these earthquake swarms are located near the 595ancient caldera structures and the major geological boundaries (Yoshida et al., 2014). The 596597swarm activities are probably triggered by the upward fluid movement along such preexisting structures, which was facilitated by the WNW-ESE extension associated with the 598

599	Tohoku-Oki earthquake. These observations demonstrate that information about the
600	temporal evolutions of stress and frictional strength are necessary to understand the
601	triggering mechanism of earthquakes.
604	Acknowledgments
-----	-----------------
-----	-----------------

605 We would like to thank the editor Y. Ben-Zion, an associate editor, and two

- anonymous reviewers for their constructive comments which helped improve
- 607 the manuscript. The figures in the present paper were created using GMT (Wessel and
- 608 Smith, 1998). The present study was partly supported by MEXT KAKENHI (No.
- 609 26109002).

C	1	1
b		
~	-	-

References

612	Acocella, V., Yoshida, T., Yamada, R. and Funiciello, F. (2008). Structural control on
613	late Moicene to Quaternary volcanism in the NE Honshu arc, Japan.
614	Tectonics, 27, TC5008, doi:10.1029/2008TC002296.
615	Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to
616	large earthquakes. Journal of Geophysical Research: Solid Earth, 114(1), 1-
617	22. https://doi.org/10.1029/2008JB005821
618	Asano, Y., T. Saito, Y. Ito, K. Shiomi, H. Hirose, T. Matsumoto, S. Aoi, S. Hori and S.
619	Sekiguchi (2011), Spatial distribution and focal mechanisms of aftershocks
620	of the 2011 off the Pacific Coast of Tohoku Earthquake, Earth Planets
621	Space, 63, 669–673, http://dx.doi.org/10.5047/eps.2011.06.016.
622	Bachmann, C. E., S. Wiemer, B. P. Goertz-Allmann, and J. Woessner (2012), Influence
623	of pore-pressure on the event-size distribution of induced earthquakes,
624	Geophys. Res. Lett., 39(9), 1–7, doi:10.1029/2012GL051480.
625	Boese, C. M., Jacobs, K. M., Smith, E. G. C., Stern, T. A., & Townend, J. (2014).
626	Background and delayed-triggered swarms in the central Southern Alps,
627	South Island, New Zealand. Geochemistry, Geophysics, Geosystems, 15(4),
628	945–964.

629	Brown, L., Wang, K., & Sun, T. (2015). Static stress drop in the Mw 9 Tohoku-oki
630	earthquake: Heterogeneous distribution and low average value. Geophys.
631	Res. Lett., 42(24), 10595–10600. https://doi.org/10.1002/2015GL066361
632	Cao, Aimin, and Stephen S. Gao, (2002), Temporal Variation of Seismic B-Values
633	beneath Northeastern Japan Island Arc, Geophysical Research Letters 29
634	(9), http://onlinelibrary.wiley.com/doi/10.1029/2001GL013775/full.
635	Chiba, K., Iio, Y., Fukahata, Y., 2013. Detailed stress fields in the focal region of the
636	2011 off the Pacific coast of Tohoku Earthquake—Implication for the
637	distribution of moment release—. Earth, Planets Sp. 64, 1157–1165.
638	doi:10.5047/eps.2012.07.008
639	Enescu, B., Aoi, S., Toda, S., Suzuki, W., Obara, K., Shiomi, K., Takeda, T., 2012.
640	Stress perturbations and seismic response associated with the 2011 M9.0
641	Tohoku-oki earthquake in and around the Tokai seismic gap, central Japan.
642	Geophys. Res. Lett. 39, 10-15. doi:10.1029/2012GL051839
643	Fukuyama, E., Ishida, M., Dreger, D. S., & Kawai, H. (1998). Automated seismic
644	moment tensor determination by using on-line broadband seismic
645	waveforms. Zisin, 51(1), 149–156.
646	Fukuyama, E., & Dreger, D. (2003). Performance test of an automated moment tensor

647	determination system for the future "Tokai" earthquake. Earth, Planets and
648	Space, 52(6), 383–392. https://doi.org/10.1186/BF03352250.
649	Frohlich, C. (1992). Triangle diagrams: ternary graphs to display similarity and
650	diversity of earthquake focal mechanisms. Physics of the Earth and
651	Planetary Interiors, 75(1-3), 193-198. <u>https://doi.org/10.1016/0031-</u>
652	<u>9201(92)90130-N</u> .
653	Gephart, J. W., and D. W. Forsyth (1984), An improved method for determining the
654	regional stress tensor using earthquake focal mechanism data: Application
655	to the San Fernando earthquake sequence, J. Geophys. Res., 89, 9305-9320,
656	doi: 10.1029/JB089iB11p09305.
657	Hainzl, S., and T. Fischer (2002), Indications for a successively triggered rupture growth
658	underlying the 2000 earthquake swarm in Vogtland/NW Bohemia, J.
659	Geophys. Res. Solid Earth, 107(B12), 1–9, doi:10.1029/2002JB001865.
660	Hardebeck, J. L. and E. Hauksson (2001), Crustal stress field in Southern California and
661	its implications for fault mechanics, J. Geophys. Res., 106, 21, 859-21,
662	882, doi:10.1029/2001JB000292.
663	Hardebeck, J. L. and A. J. Michael (2006), Damped regional-scale stress inversions:
664	Methodology and examples for Southern California and the Coalinga

665	aftershock sequence, J. Geophys. Res., 111, B11310,
666	doi:10.1029/2005JB004144.
667	Hardebeck, J. L. and P. M. Shearer (2002), A new method for determining first-motion
668	focal mechanisms, Bull. Seismol. Soc. Am., 92, 2264–2276,
669	doi:10.1785/0120010200.
670	Hardebeck, J. L. (2012), Coseismic and postseismic stress rotations due to great
671	subduction zone earthquakes, Geophys. Res. Lett., 39, L21313,
672	doi:10.1029/2012GL053438.
673	Hasegawa, A., 2017. Role of H2O in Generating Subduction Zone Earthquakes.
674	Monogr. Environ. Earth Planets 5, 1–34.
675	doi:10.5047/meep.2017.00501.0001
676	Hasegawa, A., Horiuchi, S., Umino, N., 1994. Seismic structure of the northeastern
677	Japan convergent margin: A synthesis. J. Geophys. Res. Solid Earth 99,
678	22295–22311. doi:doi: 10.1029/93JB02797
679	Hasegawa, A., Yoshida, K., 2015. Preceding seismic activity and slow slip events in the
680	source area of the 2011 Mw 9.0 Tohoku-Oki earthquake: a review. Geosci.
681	Lett. 2, 6. doi:10.1186/s40562-015-0025-0
682	Hasegawa, A., Yoshida, K., Asano, Y., Okada, T., Iinuma, T., Ito, Y., 2012. Change in

683	stress field after the 2011 great Tohoku-Oki earthquake. Earth Planet. Sci.
684	Lett. 355–356, 231–243. doi:10.1016/j.epsl.2012.08.042
685	Hubbert, M., Rubey, W., 1959. Role of fluid pressure in mechanics of overthrust
686	faulting I. Mechanics of fluid-filled porous solids and its application to
687	overthrust faulting. Geol. Soc. Am. Bull. 70, 115–166.
688	Iinuma, T., Hino, R., Kido, M., 2012. Coseismic slip distribution of the 2011 off the
689	Pacific Coast of Tohoku Earthquake (M9. 0) refined by means of seafloor
690	geodetic data. J. Geophys. Res. Solid Earth 117, B07409.
691	doi:10.1029/2012JB009186
692	Imanishi, K., R. Ando and Y. Kuwahara (2011), Unusual shallow normal-faulting
693	earthquake sequence in compressional northeast Japan activated after the
694	2011 off the Pacific coast of Tohoku earthquake, Geophys. Res. Lett., 39,
695	L09306, doi:10.1029/2012GL051491.
696	Ishibe, T., Shimazaki, K., Satake, K., & Tsuruoka, H. (2011). Change in seismicity
697	beneath the Tokyo metropolitan area due to the 2011 off the Pacific coast of
698	Tohoku Earthquake. Earth, Planets and Space, 63(7).
699	https://doi.org/10.5047/eps.2011.06.001.
700	Julian, B.R., Foulger, G.R., Monastero, F.C., Bjornstad, S., 2010. Imaging hydraulic

701	fractures in a geothermal reservoir. Geophys. Res. Lett. 37, 1–5.
702	doi:10.1029/2009GL040933.
703	Kanisawa, S., Otsuki, K., Ehiro, M., Yoshida, T., Kazama, M., Kano, K., Takarada, S.,
704	Wakita, K., Kyogoku, M., Nakayama, M., Shikama, S., Koyama, T. and
705	Miura, A. (2006), Geology of NE Honshu for construction engineers (with
706	digital geological map of Tohoku district, Japan (1:200,000)) (in Japanese),
707	report, 408pp., Tohoku Constr. Assoc., Sendai, Japan.
708	Kato, T., G. S. El-Fiky, E. N. Oware and S. Miyazaki (1998), Crustal strains in the
709	Japanese Islands as deduced from dense GPS array, Geophys. Res. Lett.,
710	25(18), 3445-3448, doi:10.1029/98GL02693.
711	Kato, A., S. Sakai and K. Obara (2011), A normal-faulting seismic sequence triggered
712	by the 2011 off the Pacific coast of Tohoku earthquake: Wholesale stress
713	regime changes in the upper plate, Earth Planets Space, 63, 745–748,
714	doi:10.5047/eps.2011.06.014.
715	Kato, A., & Igarashi, T. (2012). Regional extent of the large coseismic slip zone of the
716	2011 Mw 9.0 Tohoku-Oki earthquake delineated by on-fault aftershocks.
717	Geophysical Research Letters, 39(15), 2-7.
718	https://doi.org/10.1029/2012GL052220

719	Kato, A., Fukuda, J., Obara, K. (2013), Response of seismicity to static and dynamic
720	stress changes induced by the 2011 M9.0 Tohoku-Oki earthquake.
721	Geophys. Res. Lett. 40, 3572–3578. doi:10.1002/grl.50699
722	Kosuga, M., 2014. Seismic activity near the Moriyoshi-zan volcano in Akita Prefecture,
723	northeastern Japan: implications for geofluid migration and a midcrustal
724	geofluid reservoir. Earth, Planets Sp. 66, 77. doi:10.1186/1880-5981-66-77
725	Lengliné, O., Enescu, B., Peng, Z., Shiomi, K., 2012. Decay and expansion of the early
726	aftershock activity following the 2011, Mw 9.0 Tohoku earthquake.
727	Geophys. Res. Lett. 39, 6-11. doi:10.1029/2012GL052797.
728	Lund, B. and J. Townend (2007), Calculating horizontal stress orientations with full or
729	partial knowledge of the tectonic stress tensor, Geophys. J. Int.,
730	doi:10.1111/j.1365–246X.2007.03468.x.
731	Mallman, E. P., & Zoback, M. D. (2007). Assessing elastic Coulomb stress transfer
732	models using seismicity rates in southern California and southwestern
733	Japan. Journal of Geophysical Research, 112(B3), 37.
734	Martínez-Garzón, P., Kwiatek, G., Bohnhoff, M., & Dresen, G. (2016a). Impact of fluid
735	injection on fracture reactivation at The Geysers geothermal field. J.
736	Geophys. Res. Solid Earth, 121, 7432–7449.

737	Martínez-Garzón, P., & Ben - Zion, Y. (2016b). A refined methodology for stress
738	inversions of earthquake focal mechanisms. J. Geophys. Res. Solid Earth,
739	121, 8666–8687, doi:10.1002/2016JB013493.
740	Matsuda, T., & Uyeda, S. (1971). On the pacific-type orogeny and its model - extension
741	of the paired belts concept and possible origin of marginal seas.
742	Tectonophysics, 11(1), 5–27. https://doi.org/10.1016/0040-1951(71)90076-
743	Χ/
744	McKenzie, D., (1969). The relationship between fault plane solutions for earthquakes
745	and the directions of the principal stresses, Bull. Seism. Soc. Am., 59, 591-
746	601.
747	Michael, A. J. (1984), Determination of stress from slip data; faults and folds, J.
748	Geophys. Res. 89, 11,517–11,526, doi: 10.1029/JB089iB13p11517.
749	Michael, A. J. (1987), Use of focal mechanisms to determine stress: A control study, J.
750	Geophys. Res., 92, 357–368, doi: 10.1029/JB092iB01p00357.
751	Miller, S. A. (2013), The role of fluids in tectonic and earthquake processes. Adv
752	Geophys., 54, 1–46.
753	Miura, S., T. Sato, K. Tachibana, Y. Satake and A. Hasegawa (2002), Strain
754	accumulation in and around Ou Backbone Range, northeastern Japan as

755	observed by a dense GPS network, Earth Planets Space, 54, 1071–1076.
756	Miyazawa, M., 2011. Propagation of an earthquake triggering front from the 2011
757	Tohoku-Oki earthquake. Geophys. Res. Lett. 38, 1-6.
758	doi:10.1029/2011GL049795
759	Nakajima, J., Yoshida, K., Hasegawa, A., 2013. An intraslab seismic sequence activated
760	by the 2011 Tohoku-oki earthquake: Evidence for fluid-related
761	embrittlement. J. Geophys. Res. Solid Earth 118, 3492–3505.
762	doi:10.1002/jgrb.50246
763	Nakamura, K., & Uyeda, S. (1980). Stress gradient in arc-back arc regions and plate
764	subduction. Journal of Geophysical Research, 85(B11), 6419.
765	https://doi.org/10.1029/JB085iB11p06419
766	Nakamura, W., N. Uchida, and T. Matsuzawa, Spatial distribution of the faulting types
767	of small earthquakes around the 2011 Tohoku-oki earthquake: A
768	comprehensive search using template events, J. Geophys. Res., 121,
769	doi:10.1002/2015JB012584, 2016
770	Nur, A., and J. R. Booker (1972), Aftershocks caused by pore fluid flow?, Science,
771	175(4024), 885-887, doi:10.1126/science.175.4024.885.
772	Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space.

773	Bull. Seismol. Soc. Am. 82, 1018–1040.
774	Okada, T., Yoshida, K., Ueki, S., Nakajima, J., Uchida, N., Matsuzawa, T.,
775	Hasegawa, A. (2011). Shallow inland earthquakes in NE Japan possibly
776	triggered by the 2011 off the Pacific coast of Tohoku Earthquake. Earth,
777	Planets and Space, 63(7), 749-754. https://doi.org/10.5047/eps.2011.06.027
778	Okada, T., Matsuzawa, T., Umino, N., Yoshida, K., Hasegawa, A., Takahashi, H.,
779	Yamada, T., Kosuga, M., Takeda, T., Kato, A., Igarashi, T., Obara, K.,
780	Sakai, S., Saiga, A., Iidaka, T., Iwasaki, T., Hirata, N., Tsumura, N.,
781	Yamanaka, Y., Terakawa, T.,
782	Oth, A. (2013). On the characteristics of earthquake stress release variations in Japan.
783	Earth and Planetary Science Letters, 377–378, 132–141.
784	https://doi.org/10.1016/j.epsl.2013.06.037
785	Nakamichi, H., Okuda, T., Horikawa, S., Katao, H., Miura, T., Kubo, A., Matsushima,
786	T., Goto, K., Miyamachi, H., 2015. Hypocenter migration and crustal
787	seismic velocity distribution observed for the inland earthquake swarms
788	induced by the 2011 Tohoku-Oki earthquake in NE Japan: implications for
789	crustal fluid distribution and crustal permeability. Geofluids 15, 293–309.
790	doi:10.1111/gfl.12112.

791	Rice, J. R. (1992), Fault stress states, pore pressure distributions, and the weakness of
792	the San Andreas Fault, In Evans, B., and T. F. Wong, eds., Fault mechanics
793	and transport properties of rocks, New York, Academic Press, p. 475-503.
794	Rutledge, J.T., Phillips, W.S., Mayerhofer, M.J., 2004. Faulting induced by forced fluid
795	injection and fluid flow forced by faulting: An interpretation of hydraulic-
796	fracture microseismicity, Carthage Cotton Valley gas field, Texas. Bull.
797	Seismol. Soc. Am. 94, 1817–1830. doi:10.1785/012003257.
798	Sagiya, T., Miyazaki, S. and Tada, T. (2000), Continuous GPS array and present-day
799	crustal deformation of Japan, Pure Appl. Geophys, 157, 2303–2322.
800	Seno, T. (1999). Syntheses of the regional stress fields of the Japanese islands. Island
801	Arc, 8(1), 66–79. https://doi.org/10.1046/j.1440-1738.1999.00225.x
802	Shapiro, S.A., Huenges, E., Borm, G., 1997. Estimating the crust permeability from
803	fluid-injection-induced seismic emission at the KTB site. Geophys. J. Int.
804	131, F15–F18. doi:10.1111/j.1365-246X.1997.tb01215.x.
805	Shimojo, K., Enescu, B., Yagi, Y., Takeda, T., 2014. Fluid-driven seismicity activation in
806	northern Nagano region after the 2011 M9.0 Tohoku-oki earthquake.
807	Geophys. Res. Lett. 41, 7524–7531. doi:10.1002/2014GL061763
808	Sibson, R. H. (1990). Rupture nucleation on unfavorably oriented faults. Bulletin of the

809	Seismological Society of America, 80(6), 1580–1604.
810	https://doi.org/10.1021/jp111520r
811	Sibson, R. (1992), Implications of fault-valve behaviour for rupture nucleation and
812	recurrence, Tectonophysics, 211(1-4), 283-293, doi:10.1016/0040-
813	1951(92)90065-Е.
814	Simpson, R. W., and P. A. Reasenberg, Earthquake-induced static- stress changes on
815	central California faults, U.S. Geol. Surv. Prof. Pap., 1550-F, 55-89, 199.
816	Smith, D. E., & Dieterich, J. H. (2010). Aftershock Sequences Modeled with 3-D Stress
817	Heterogeneity and Rate-State Seismicity Equations: Implications for
818	Crustal Stress Estimation. Pure and Applied Geophysics, 167(8–9), 1067–
819	1085. https://doi.org/10.1007/s00024-010-0093-1
820	Suwa, Y., Miura, S., Hasegawa, A., Sato, T., & Tachibana, K. (2006). Interplate coupling
821	beneath NE Japan inferred from three-dimensional displacement field.
822	Journal of Geophysical Research: Solid Earth, 111(4), 1–12.
823	https://doi.org/10.1029/2004JB003203
824	Suzuki, Y., S. Toda, K. Yoshida, and T. Okada (2014), Local receiver fault dependency
825	of seismicity shut down in the 2011 Tohoku-oki stress shadow, In AGU Fall
826	Meeting, San Francisco, Abstracts (S23A-4473).

827	Terakawa T. and M. Matsu'ura (2010), The 3-D tectonic stress fields in and around
828	Japan inverted from centroid moment tensor data of seismic events,
829	Tectonics, 29, TC6008, doi:10.1029/2009TC002626.
830	Terakawa, T., Hashimoto, C., Matsu'ura, M., 2013. Changes in seismic activity
831	following the 2011 Tohoku-oki earthquake: Effects of pore fluid pressure.
832	Earth Planet. Sci. Lett. 365, 17-24. doi:10.1016/j.epsl.2013.01.017
833	Toda, S., Stein, R.S., Lin, J., 2011. Widespread seismicity excitation throughout central
834	Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation
835	by Coulomb stress transfer. Geophys. Res. Lett. 38, 1–5.
836	doi:10.1029/2011GL047834.
837	Townend, J. (2006). What do faults feel? Observational constraints on the stresses
838	acting on seismogenic faults. In R. Abercrombie, A. McGarr, H. Kanamori
839	& G. Di Toro (Eds.), Earthquakes: Radiated Energy and the Physics of
840	Faulting (AGU Monograph Series Vol. 170, pp. 313–327). Washington
841	D.C., USA: American Geophysical Union.
842	Townend, J., & Zoback, M. D. (2001). Implications of earthquake focal mechanisms for
843	the frictional strength of the San Andreas fault system. Geological Society,
844	London, Special Publications, 186(1), 13-21.

845	Townend, J., and M. D. Zoback (2006), Stress, strain, and mountain building in central
846	Japan, J. Geophys. Res., 111, B03411, doi:10.1029/2005JB003759.
847	Ukawa, M. (1982). Lateral stretching of the philippine sea plate subducting along the
848	nankai-suruga trough. Tectonics, 1(6), 543–571.
849	https://doi.org/10.1029/TC001i006p00543
850	Usami, T. (2003), A catalogue of disastrous earthquakes in Japan, (in Japanese) updated
851	edition, University of Tokyo Press. (728pp.).
852	Wang, K., & He, J. (1999). Mechanics of low-stress forearcs: Nankai and Cascadia.
853	Journal of Geophysical Research, [Solid Earth], 104(B7), 15191–15205.
854	Wessel, P., and W. H. F. Smith (1998), New, improved version of the Generic Mapping
855	Tools released, Eos Trans. AGU, 79, 579.
856	Wesson, R. L., and O. S. Boyd (2007), Stress before and after the 2002 Denali fault
857	earthquake, Geophys. Res. Lett., 34, L07303, doi:10.1029/2007GL029189.
858	Wyss, M. (1973). Towards a Physical Understanding of the Earthquake Frequency
859	Distribution. Geophysical Journal of the Royal Astronomical Society, 31(4),
860	341-359. https://doi.org/10.1111/j.1365-246X.1973.tb06506.x.
861	Yoshida, K., & Hasegawa, A. (2018a). Sendai-Okura earthquake swarm induced by the
862	2011 Tohoku-Oki earthquake in the stress shadow of NE Japan: Detailed

863	fault structure and hypocenter migration. Tectonophysics, 733, 132–147.
864	Yoshida, K., & Hasegawa, A. (2018b). Hypocenter Migration and Seismicity Pattern
865	Change in the Yamagata-Fukushima Border, NE Japan, Caused by Fluid
866	Movement and Pore Pressure Variation. Journal of Geophysical Research,
867	[Solid Earth], 95, 664.
868	Yoshida, K., A. Hasegawa, T. Okada, T. Iinuma, Y. Ito and Y. Asano (2012), Stress
869	before and after the 2011 great Tohoku-oki earthquake and induced
870	earthquakes in inland areas of eastern Japan, Geophys. Res. Lett., 39,
871	L03302, doi:10.1029/2011GL049729.
872	Yoshida, K., A. Hasegawa, T. Okada, and T. Iinuma (2014), Changes in the stress field
873	after the 2008 M7.2 Iwate-Miyagi Nairiku earthquake in northeastern
874	Japan, J. Geophys. Res. Solid Earth, 119(12), 9016–9030,
875	doi:10.1002/2014JB011291.
876	Yoshida, K., Hasegawa, A., Okada, T., (2015a), Spatial variation of stress orientations in
877	NE Japan revealed by dense seismic observations. Tectonophysics 647–
878	648, 63-72. doi:10.1016/j.tecto.2015.02.013.
879	Yoshida, K., Hasegawa, A., & Okada, T. (2015b), Spatially heterogeneous stress field in
880	the source area of the 2011 Mw 6.6 Fukushima-Hamadori earthquake, NE

881	Japan, probably caused by static stress change. Geophysical Journal
882	International, 201(2), 1062–1071. https://doi.org/10.1093/gji/ggv068.
883	Yoshida, K., Pulido, N., & Fukuyama, E. (2016a). Unusual stress rotations within the
884	Philippines possibly caused by slip heterogeneity along the Philippine fault:
885	STRESS FIELDS IN THE PHILIPPINES. Journal of Geophysical
886	Research, [Solid Earth], 121(3), 2020–2036.
887	Yoshida, K., Hasegawa, A., Yoshida, T., (2016b), Temporal variation of frictional
888	strength in an earthquake swarm in NE Japan caused by fluid migration. J.
889	Geophys. Res. Solid Earth. doi:10.1002/2015JB012352.Received
890	Yoshida, K., A. Hasegawa, and T. Okada (2016c), Heterogeneous stress field in the
891	source area of the 2003 M6.4 Northern Miyagi Prefecture, NE Japan,
892	earthquake, Geophys. J. Int., 206(1), 408-419, doi:10.1093/gji/ggw160.
893	Yoshida, K., Saito, T., Urata, Y., Asano, Y., & Hasegawa, A. (2017). Temporal Changes
894	in Stress Drop, Frictional Strength, and Earthquake Size Distribution in the
895	2011 Yamagata-Fukushima, NE Japan, Earthquake Swarm, Caused by Fluid
896	Migration: Changes in Stress Drop and B-Value. Journal of Geophysical
897	Research, [Solid Earth], 122(12), 10,379–10,397.
898	Yoshida, T., J. Kimura, R. Yamada, V. Acocella, H. Sato, D. Zhao, J. Nakajima, A.

899	Hasegawa, T. Okada, S. Honda, M. Ishikawa, O. D. A. Prima, T. Kudo, B.
900	Shibazaki, A. Tanaka and T. Imaizumi (2014), Evolution of late Cenozoic
901	magmatism and the crust-mantle structure in the NE Japan Arc, Geol. Soc.
902	Spec. Publ., 385, 335–387, doi:10.1144/SP385.15.
903	Yoshida, T., Nakajima, J., Hasegawa, A., Sato, H., Nagahashi, Y., Kimura, J., Tanaka,
904	A., Prima, O.D.A. and Ohguchi, T. (2005), Evolution of late Cenozoic
905	magmatism in the NE Honshu Arc and its relation to the crust-mantle
906	structures. Quaternary Research, 44, 195-216 [in Japanese with English
907	abstract].
908	Yoshida, T. (2017) Basic structure of Tohoku District (Chapter 2) in Edited by Yoshida,
909	T. et al., Regional Geology of Japan 2, Tohoku District. Asakura Publishing
910	Co. Ltd., 7-103. (in Japanese)
911	Yukutake, Y., Honda, R., Harada, M., Aketagawa, T., Ito, H., Yoshida, A., 2011b.
912	Remotely-triggered seismicity in the Hakone volcano following the 2011
913	off the Pacific coast of Tohoku Earthquake. Earth, Planets Sp. 63, 737–740.
914	doi:10.5047/eps.2011.05.004
915	
916	

917	Figure 1. Hypocenter distribution of shallow earthquakes (z < 40 km) that occurred
918	after the 2011 Tohoku-Oki earthquake in the overriding plate. Dots show hypocenters
919	of earthquakes listed in the JMA unified catalogue during the four-year period from
920	March 11, 2011 with the JMA magnitude equal to or greater than 1.5. In this study,
921	we focus on inland earthquakes shown by black colors. Other earthquakes are also
922	shown by green. The rectangle with broken lines indicates the target region of this
923	study. The black contours show the coseismic slip distribution of the Tohoku-Oki
924	earthquake determined by Iinuma et al. (2012). Red and blue arrows show the
925	orientations of the maximum principal stress (σ 1) axis and the minimum principal
926	stress (σ 3) axis, respectively, at 10 km depth caused by the static stress change due
927	to the Tohoku-Oki earthquake based on the elastic dislocation model of Okada (1992).
928	The length of arrows varies according to the steepness of the plunge (i.e., shorter
929	arrows are more steeply inclined). NA: North American plate, PA: Pacific plate. The
930	arrow indicates the plate convergence direction.

Figure 2. Seismicity before and after the 2011 Tohoku-Oki earthquake. (a) Shallow
earthquakes (z < 40 km) after the Tohoku-Oki earthquake (2011/3/11-2012).
Hypocenters are shown by red circles. (b) Shallow earthquakes before (1997-

935	2011/3/11) the Tohoku-Oki earthquake are plotted over those after (2011/3/11-2012)	
936	the earthquake. Hypocenters are shown by gray circles (before) and red circles (after).	
937	The rectangles denote focal regions of intense seismicity after the earthquake. Major	
938	geological boundaries are shown by broken curves (Yoshida et al., 2014). (c) Space-	
939	time plot of earthquakes before and after the Tohoku-Oki earthquake in inland	
940	Tohoku. The occurrence time is plotted against latitude by black dots for 300 day	
941	periods before and after the Tohoku-Oki earthquake.	
942		
943	Figure 3. Temporal distributions of earthquake number for 150 day period before and	
944	after the Tohoku-Oki earthquake for eight earthquake clusters indicated in Fig. 2 (b).	
945	Cut off magnitude was set at 2.0. The blue curves show the cumulative number of	
946	earthquakes.	
947		
948	Figure 4. Distributions of P- and T-axes of focal mechanisms before and after the	
949	Tohoku-Oki earthquake. Focal mechanism data are the same as those in Yoshida et	
950	al. (2012) and Hasegawa et al. (2012). P-axes before and after the earthquake are	
951	shown in (a) and (b), respectively. T-axes before and after the earthquake are shown	
952	in (c) and (d), respectively. Red, green, blue, and black colors show reverse faulting,	

953	strike-slip faulting, normal faulting and odd type, respectively, based on the
954	classification of Frohlich (1992). Data periods of Yoshida et al. (2012) and Hasegawa
955	et al. (2012) are from 1997 to 20 July 2011 and from 2003 to 30 September 2011,
956	respectively.
957	
958	Figure 5. Principal stress axes (a) before and (b) after the Tohoku-Oki earthquake and
959	(c) the static stress change of the earthquake in the overriding plate. Stress tensor
960	inversion results and the static stress change by Yoshida et al. (2012) and Hasegawa
961	et al. (2012) are shown by arrows. Red and blue arrows show $\sigma 1$ and $\sigma 3$ axes,
962	respectively. Dark arrows in (c) highlight the results in the region where the stress
963	tensor inversion is performed both before and after the Tohoku-Oki earthquake. The
964	length of arrows varies according to the steepness of the plunge (i.e., shorter arrows
965	are more steeply inclined).
966	
967	Figure 6. A schematic illustration explaining the drastic change of focal mechanisms
968	after the earthquake by the spatial change in stress field. Orientations of principal
969	stress axis are represented by beach-balls. P-, B-, and T-axes corresponds to $\sigma 1$, $\sigma 2$,

970 and σ 3 axes, respectively. (a) Stress field before the earthquake. (b) Static stress

971	change caused by the earthquake. (c) Resultant stress field. Red and blue indicate
972	increase and decrease in differential stress, respectively.

974

Figure 7. Distribution of focal mechanism data used in this study. Red, green, blue,
and black beach-balls show reverse faulting, strike-slip faulting, normal faulting, and
odd type, respectively, based on the classification of Frohlich (1992).

978

Figure 8. Stress field before the Tohoku-Oki earthquake and the static stress change. 979(a) Orientations of the observed maximum horizontal compressive stress σ HMAX 980 measured in degrees clockwise from north determined based on the first approach 981 982 described in Section 3.2. Orientations of σ HMAX are shown by the color scale at the left top. (b) Orientations of the best fit $\sigma 1$ and $\sigma 3$ axes projected onto a gridded 983 horizontal plane determined based on the second approach described in Section 3.2. 984 (c) Orientations of $\sigma 1$ and $\sigma 3$ axes of the static stress change of the Tohoku-Oki 985earthquake at 20 km depth. In Fig. 8(b) and Fig. 8(c), $\sigma 1$ and $\sigma 3$ axes are indicated 986 987 by red and blue arrows, respectively, at each grid reference. The length of arrows varies according to the steepness of the plunge (i.e., shorter arrows are more steeply 988

989	inclined).
-----	------------

Figure 9. Spatial distribution of increase or decrease of differential stress by the static
stress change of the Tohoku-Oki earthquake. Differential stress change is shown by
the color scale.

995	Figure 10. Hypocenter distribution of earthquakes in central Tohoku before and after
996	the Tohoku-Oki earthquake. Gray and blue circles show hypocenters before and after
997	the earthquake, respectively. Beach-balls show focal mechanisms of events in the
998	earthquake sequences C1, C2, and C3 listed in the F-net moment tensor catalogue
999	(Fukuyama et al., 1998, 2003) and the JMA catalogue. Major geological boundaries
1000	are shown by broken curves (Yoshida et al., 2014).
1001	
1002	Figure 11. Hypocenter distribution of the earthquake swarm C1 in the Yamagata-
1003	Fukushima border. Hypocenters were relocated by Yoshida et al. (2018b). (a) Map
1004	view showing hypocenter migration. Dots show hypocenters of earthquakes for the
1005	period of 800 days from the beginning of the swarm activity. Elapsed time after the
1006	Tohoku-Oki earthquake is shown by the color scale. The thin broken line denotes the

1007	border line between Yamagata and Fukushima prefectures. The thick broken line
1008	denotes the rim of the Ohtoge caldera (Kanisawa et al., 2006). (b)-(f) Cross-sectional
1009	views showing hypocenter migration along five discrete planes in the western cluster
1010	of this earthquake swarm. Hypocenters are shown separately on the five discrete
1011	planes plotted on a vertical cross section along the solid line shown in (a). Color scale
1012	shows the sequence of earthquake occurrence ordered by time. Sizes of circles
1013	correspond to fault diameter assuming a stress drop of 10 MPa. Gray circles show
1014	hypocenters of other earthquakes.
1015	
1016	Figure 12. Depth-time plots of the hypocenters of events in the three earthquake
1017	sequences in central Tohoku for (a) the Yamagata-Fukushima border swarm C1; (b)
1018	the Sendai-Okura swarm C2; (c) the Yamagata swarm C3.
1019	
1020	Figure 13. Magnitude-frequency distributions of earthquakes in the earthquake
1021	clusters. Black dots indicate the cumulative number of earthquakes. Red broken lines
1022	show the best-fit Gutenberg-Richter relation. Blue inverted triangles indicate the cut-
1023	off magnitude for the fitting of the Gutenberg-Richter relation.
1024	

1025	Figure 14. (a) Principal stress axis orientations determined by the stress tensor
1026	inversion based on all the focal mechanism data in Tohoku. Red, green, and blue
1027	circles show $\sigma 1,$ the $\sigma 2$, and $\sigma 3$ -axes, respectively. Circles denote the best-fit solution.
1028	(b) Histogram showing the frequency distribution of misfit angles. (c) Spatial
1029	distribution of the mean values of misfit angles of focal mechanisms. The mean
1030	values are plotted at the same grids used in the stress tensor inversion of Fig. 8(a).
1031	
1032	Figure S1. Examples of focal mechanism solutions determined by the present study.
1033	(a) Focal mechanisms evaluated as rank A and (b) those as rank B by the criteria of
1034	Hardebeck and Shearer (2002). The frequency distributions of the number of polarity
1035	data used for the determinations are shown in (c) for focal mechanisms with rank A
1036	and in (e) for those with rank B. The frequency distributions of average RMS angular
1037	differences between the best solutions to their acceptable solutions are shown in (d)
1038	for focal mechanisms with rank A and in (f) for those with rank B.
1039	

 $1052\\1053$

Figure 4

Figure 7

1079 Figure 10

(c) Num. of polarity r(a) Rank A mean: 38.7 50 ์ M 3 9 M35 M 4 0 M 5 9 M 3.9 0 50 100 (d) RMS difference(°) 100 most 0 mean: 18.7 M 5.0 M 2.4 M 3.8 50 0 M37 M 2.8 M 4 1 M 3 F M3 M 3 ์ M 3 8 M 3 0 30 60 90 (b) Rank B (e) Num. of polarity 400 - mean: 22.7 300 - -60820ur 200 М 3.9 M M 3.5 100 0 0 50 100 (f) RMS difference(°) 400 mean: 27.5° 300 -200 -100 -8.00 м з.з м з.о M 1.3 28 199808281 Sec. S. ™ 2.6 М 3. M 2.2 0 30 60 90 Ò

1101

1102

1103 Figure S1

1100