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ABSTRACT

In recent years, vibration based energy harvesting techniques showed a promis-

ing alternative to power wireless sensor networks (WSN). Billions of low power sensors

are currently used widely in wireless sensor networks (WSN) and the Internet of Things

environment (IoT). These sensors are currently powered by a traditional power source,

i.e. a disposable battery. Vibrations are an abundant source of kinetic energy that

can serve as the power source for these sensor nodes. This approach eliminates the

necessity for frequent battery replacement due to their short-life span and hazardous

disposal process. The adverse and irreversible effect from the disposal of these batteries

have an alarming impact on the environment.

In order to limit the severity of this impact, the vibration energy harvesting

alternative is proposed as a solution. Vibration energy harvesting provides on site power

sources for these small sensors by utilizing kinetic vibrations from its surroundings.

This was the drive for much of the research done in vibration based energy harvesting.

Most of the work that has been done so far focused on linear resonators with limited

operational bandwidth. This limitation opposes a challenge, considering that vibrations

exist on a wide frequency spectrum. This challenge was met by the invention of

levitation based magnetic energy harvester. In a traditional magnetic levitation design,

two stationary magnets are fixated in an orientation to repel a center magnet to allow

it to float in between.

iii



iv

This mechanism shows considerable lever in terms of power generation and

operational bandwidth over linear counterparts. The traditional design shows superior

performance over linear generators. Nonetheless, it remains deficient in power output

as well as operational bandwidth. This work introduces an Enhanced Energy Harvester

(EEH) design over the traditional design (TEH) based on dual mass moving magnets.

The proposed design shows significant increase in power output and a wider frequency

response bandwidth. The presented EEH design consists of a levitated magnet, an

FR4 spring-guided magnet, and coils. Prototypes of the EEH have been fabricated and

characterized experimentally. Nonlinear dynamical models of the EEH are developed

and validated against experimental data.

The results show excellent agreement between model simulations and experi-

mental data. The figure of merits shows that the presented EEH design significantly

outperforms the commonly studied magnetic spring based vibration energy harvesters.

The EEH generates 1.97 mW/cm3g2 at 0.4 g[m/s2] which is approximately 400% the

amount of power generated by the traditional magnetic spring based harvester, i.e. 0.5

[mW/cm3g2]. At lower acceleration, i.e. 0.1 g[m/s2], the enhanced harvester exhibits

4000% increase in power density compared to the traditional harvester. This makes the

presented enhanced harvester design exceptionally suitable for applications where low

acceleration oscillations are abundant, including harvesting vibrations from highway

bridges and human body motion. Additionally, the half-power frequency bandwidth

of the EEH is 90% wider than the bandwidth of its rival traditional magnetic spring

based energy harvester.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Internet of Things (IoT) is expected to revolutionize the globe by connecting

over 25 billion devices with over six trillion dollars market share in the next five years [1].

With this innovative technology, wireless sensors connected to a network will be able

to collect information about the surrounding environment, including temperature,

pressure, gas leak, humidity, flow rate, etc. Real-time readings from these sensors

will facilitate new business opportunities and solve problems related to global needs

such as energy, water, food shortages, green house, and terrorism. Nonetheless, the

use of traditional batteries to operate these sensors requires continuous replacement,

frequent maintenance, extensive labor, and hazardous disposal [2,3]. This is especially

daunting because billions of batteries are needed to power billions of sensors.

However, the continuous drop in power requirements to operate these sensors

[4, 5] and other gadgets [6–8] has resulted in a growing interest in utilizing freely

available energy sources from the surrounding environment to provide the electric

power needed to operate these sensors. Among these alternative sources is ambient

vibrations [9] that are made of broadband low frequencies with power densities that

can reach approximately 500 µW/cm3 [10]. Over the past few decades, much of the

work on vibration energy harvesting has focused on linear harvesters to convert the

1
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energy in these vibrations into useful electric power. However, researchers around the

globe quickly realized the inherent limitations of a linear energy harvester design.

First, a linear design is only capable of harvesting maximum power at a single

frequency, i.e. resonant frequency. Therefore, linear harvesters are inappropriate

for most sources of ambient vibrations because these vibrations are on a broadband

low frequency spectrum. Second, low frequency operation adds significant challenges

to the linear design because it will require an extremely soft spring and large mass.

Consequently, recent research efforts have shifted towards intentionally introducing and

exploiting nonlinearities into the harvester design to broaden its frequency response.

These nonlinearities include geometric nonlinearities [11,12], stiffness nonlinearities

[13–15], and damping nonlinearities [16,17].

1.2 Literature Review

Information and communication technologies (ICT) emerged at a rapid rate

only twenty-five years ago [18], linking millions of people through computers and mobile

devices. Currently, ICT is evolving, not only connecting people, but it is connecting

objects (cars, buildings, and electrical appliances), thus creating internet of things

(IoT) [19]. With the accelerated growth of the revolutionizing technologies of IoT, it

is forecasted that over 25 billion of wireless sensors will soon be embedded in most

machines, transportation, and around our environment by 2020 [1]. But who is going

to change those billions of batteries? Powering these wireless sensors autonomously is

still a major challenge that engineers are trying to overcome and is yet to be realized.

Applications of IoT are widely used, some are found in factory automation [20], health
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monitoring and medical diagnostics [16], security and military unmanned vehicle

navigation [21], aircraft fatigue crack detection [10] just to name a few. Companies

such as John Deere and UPS currently use IoT-based fleet tracking which gives real-

time visibility into vehicle location and route analytics [22]. For instance, currently,

one of the most essential IoT technologies are radio frequency identification (RFID).

Disney′s new MagicBand wristbands have RFID chips which allow connectivity of the

system to connect data (park tickets, hotel room keys, payments) to park visitors [22].

The continuous dimension reduction of CMOS integrated circuitry, and consequently

power consumption, has led to this large-scale utilization of wireless sensor and actuator

networks [10]. Supplying power to the wireless sensor nodes remains a major challenge

in the implementation process [10,23].

Currently, these low power wireless sensors are powered by conventional

batteries that require frequent replacement and extensive labor [24]. This opposes an

issue for areas where many of these sensors are implemented, making the replacement

impractical. It is especially an issue for sensors located in remote or hazardous areas,

where battery replacement can be life threatening [15]. Furthermore, the impact

extends beyond impractical or unsafe installation. The batteries’ detrimental effect

on the environment, specifically RFID tags disposal, is an extensively investigated

area of research. Active RFID sensor tags are powered by a traditional on-tag battery.

These batteries contain significant amounts of heavy metals that effect the recycling

and disposal processes [18].

The European commission had released an action plan in 2009 in reference to

IoT technology. Action plan no.12 addressed waste management of RFID tags and
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the arising challenge of recycling its complex metal components [19]. The German

federal environment agency had also revealed the alarming number of RFID tags that

were disposed of in 2009 to be ∼ 86 million tags. The agency projects an estimated

number of tags to be disposed of by 2020 to reach 23 billion [25]. It is evident from the

number of publications, patents, and product prototype throughout the past decade

that extensive research in the area of energy harvesting has been made to address the

aforementioned battery′s.

The energy harvesting field offered many promising advances showcasing cost

effective and energy efficient solutions to power these wireless sensor networks [23]. Of

all the energy harvesting solutions proposed, solar energy provides nearly two orders

of magnitude higher power density than other energy sources: 15, 000 µW/cm3 [26].

However, this is not the case for an indoor environment where it drops to 10 − 20

µW/cm3. The most attractive alternative would be the use of mechanical vibrations

which provide power density up to 500 µW/cm3 [10, 26].

1.3 Vibration Based Energy Harvesting

The focus here would be on relatively low vibration transducers that can harvest

energy from commonly occurring vibrations in the environment. Vibration energy can

be converted into electrical energy through three common methods of transduction:

piezoelectric [27, 28], electrostatic [29,30], or electromagnetic [31,32].

Some common vibration sources and their corresponding acceleration peak

magnitudes and dominant frequencies are found in Table 1.1. [9, 33,34].
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Table 1.1 Commonly found sources of vibrations

Vibration Source Peak acceleration (g) Frequency (Hz)
Kitchen blender casing 0.65 121
Clothes dryer 0.35 121
Microwave 0.1 200
Toyota Vios-1.5cc car (stationary) 0.2 25
Base of 3-axis machine tool 1.0 70
Washing machine (unloaded) 0.03 39

These common and periodic vibrations generated by rotating machinery or

engines can be tapped to generate power. Therefore, the approach of energy harvesting

makes it possible to realize in situ energy source that harness the otherwise wasted

kinetic energy from vibrations. This gave rise to the vibration based energy harvesting

area of the research as a proposed solution to extend wireless sensors’ lifetime

indefinitely [35].

Vibration energy harvesting occurs in a two-step conversion. Firstly, vibrations

turn into a relative motion in a mass-spring system. This is described by the equation

of motion and schematic [36,37]:

mz̈(t) + dż(t) + kz(t) + F = −mÿ(t) (1.1)

where the dots represent derivatives with respect to time; m is the seismic mass, and

d and k are the mechanical damping and stiffness constants, respectively. The mass

m moves with relative displacement z(t) with respect to the housing displacement

y(t). The second step of the conversion includes the use of a mechanical-to-electrical

converter (piezoelectric material, coil around electromagnet, or variable capacitor),

which then converts that motion into electricity [33]. The mechanical-to-electrical

conversion introduces an electromechanical coupling effect to the system. This effect is
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Figure 1.1: Schematic of a vibration generator.

in the form of a mechanical force opposing the relative motion due to Lenz’s Law [13].

This electromagnetic interaction between the magnet and the current i is accounted

for by the force term F in Equation 1.1 where F is given by [37]:

F = φi (1.2)

where φ is the electromechanical coupling coefficient.

1.3.1 Piezoelectric Energy Harvesting

Piezoelectricity is a property of materials that exhibit direct and converse

piezoelectric effects. The direct effect is produced when the crystals undergo mechanical

deformation allowing electric current generation. The converse effect produces

controlled deformation of piezo crystal when electrical charges are applied [38]. The

generation of electricity inside the piezoelectric material is proportional to the induced

stress [38]. This allows for energy conversion opportunity from surrounding vibrations.

A design of a MEMS piezoelectric energy harvester is depicted in Figure

1.2 [39]. The harvester has an etched spiral structure and is 0.11 mm3 in size. When
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the harvester is subjected to vibrations, the spiral structure will oscillate, thus creating

stress on the structure boundaries which allows for induced voltage. Under base

Figure 1.2: Schematic of vibration based piezoelectric energy harvester.

excitation, for low power transducers, piezoelectric harvesters are flexible, lightweight

and have an easy mounting process. However, an essential limitation of piezoelectrics

is their inherently large internal resistance [24]. Consequently, large load resistance is

required to obtain optimum power transfer. This results in very small output currents,

i.e. in the order of 1 mA. These currents are well below the threshold required to

operate wireless sensors, i.e. 10-50 mA [24].

1.3.2 Electrostatic Energy Harvesting

Electrostatic micro harvesters generate electricity from variations in capacitance

between the capacitor plate’s surface. A variable capacitor can be utilized in energy

harvesting by varying any of these three variables: area, separation distance, or

dielectric constant [40]. By maintaining a constant charge value (Q) and voltage (V),
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a variation in capacitance (∆C) results in variations in voltage (∆v) [41]:

∆C =
Qconst

∆v
(1.3)

A vibration based electrostatic energy harvester that relies on separation

distance variation can be seen in Figure 1.3 [42]. The micro-machined power generator

has a proof mass supported on a flexible polyimide membrane. Gold metal plates

were patterned for the fixed and the moving plate to form the parallel plate capacitor.

Generation of power is achieved from the mechanical force causing the plates to move

apart against the electric field.

Figure 1.3: Separation distance variable electrostatic energy harvester.

Electrostatic energy harvesters can be easily fabricated on a small scale using

MEMS techniques. However, an electric field-based harvester is limited by the

maximum allowable electric field without electric breakdown, typically 108 V/m

for small scale devices [43]. Furthermore, one major and unavoidable problem in

fabricating electrostatically actuated devices is known as stiction, a pull-in voltage

induced failure. Stiction occurs when the electrostatic force exceeds a certain threshold
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causing the capacitor parallel plates to adhere together, resulting in permanent damage

to the plates [44].

1.3.3 Electromagnetic Energy Harvesting

The principal for electromagnetic energy harvesting stems from Michael Fara-

day’s Law of electromagnetic induction; any change in the magnetic environment

of a coil will cause an electromotive force (voltage) to be induced inside that coil.

This phenomenon serves the fundamental basis for electrical generators, motors,

transformers, and many other electromagnetic machines [45]. The electromotive force

induced inside of the coil is equal to the time rate of change of the magnetic flux

linkage in that coil [23], i.e.

ε = −N dφB
dt

=
dΦ

dt
(1.4)

where N is the number of coil turns, dφB is the average flux linkage per turn, dΦ is

the total flux linkage given by the summation of linkages of the individual turns [23]:

Φ =
N∑
i=1

∫
Ai

B · dA (1.5)

Magnetic induction based harvesters can carry adequate power supply in wearable

electronics. A human motion based electromagnetic energy harvesting bracelet can be

seen in Figure 1.4 [46].
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Figure 1.4: Section view of electromagnetic energy harvesting bracelet.

The bracelet harvester uses the motion of permanent magnetic movers to

harvest energy from the wearer’s motion in any direction. The magnetic movers are

packaged in a shell, and repel each other in a rotational motion through the coil

transducers. The bracelet harvester can charge a 47 µF -25 V rated capacitor in ≈ 132

ms.

Among all the motion based transduction methods, electromagnetic energy

harvesting prove to be most effective at generating power at a small scale [47].

Regardless of the mechanism used, most of the work on vibration transducers focused

on designing linear resonators that operate in a narrow frequency bandwidth. This

does not reflect a realistic environment where frequency of vibrations varies in a

certain range. Therefore, it would be more appropriate to take into consideration

the systems response to a broader excitation frequency spectrum [48]. Considerable

bandwidth enhancements can be achieved by exploiting magnetic levitation-based
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energy harvesting techniques. [13, 14, 49–53]. Magnetic levitation system′s exhibit

nonlinear negative stiffness profiles. This nonlinearity is a product of the repulsive

forces between the magnetic poles, which results in a nonlinear frequency response [14].

1.3.4 Traditional Magnetic Levitation Energy Harvesters

In a traditional magnetic levitation design, stationary magnets are positioned

at the ends of a center magnet, as depicted in Figure 1.5. The orientation of the outer

stationary magnets are configured to repel the center magnet causing it to float at a

stable point (mono-stable), and therefore become suspended by nonlinear restoring

forces [11–13,49,50,54].

Figure 1.5: Cross-sectional view of a traditional magnetic-levitation based energy
harvester.

Moreover, these magnetic spring based harvesters are characterized by their

low output impedances. This ensures, relatively, large electric currents that can
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meet the electric current threshold required to operate low-power sensors [24, 55].

Additionally, the mass of the levitated magnet in the harvester reduces its resonant

frequency which further enables low frequency specialization [56]. This is especially

important since most ambient vibration sources are rich with low frequencies [57, 58].

This configuration setup of magnets resolves the prevalent friction issue from magnets

sliding against housing containers [59].

The need for a frictionless levitating magnet was the drive behind the work

done by Palagummi and Yuan in making a mono-stable diamagnetic levitation energy

harvester [59]. Their system consists of two diamagnetic plates (pyrolytic graphite), a

center repelled floating magnet between the plates, and a top lifting magnet to stabilize

the weight of the floating magnet. Power is generated through the coils attached to

the top and bottom fixed diamagnetic plates that generated root mean square (rms)

power of 1.72 µW under peak acceleration of 0.081 m/s2 and frequency of 2.1 Hz.

The system produces nonlinear hardening frequency response, i.e. a steep descent

is observed in the curve once it reaches resonance. This is indicative of engagement

of the system’s nonlinearity from exploiting the magnetic levitation magnets setup

configuration. Nonlinear frequency response, and tunable resonance adds leverage to

the designed energy harvester. It allows compatibility of device function at varying

excitation frequency environment.

Mann and Sims investigate the nonlinearity phenomenon in their mono-stable

magnetic levitation based harvester and incorporate tunability of resonant frequency

[13]. The system consists of two outer stationary magnets fixed on a threaded support,

configured with an orientation to repel a center floating magnet. The threaded
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support surface allows the user to vary the separation distance between the magnets,

which allows control over the system’s magnetic stiffness, thus allowing resonant

frequency tunability. Their investigation of nonlinearities concludes that engagement

of a system’s nonlinear frequency response leads to relatively larger oscillations over

a wider frequency spectrum. Larger oscillations can also be obtained from having a

weaker magnetic flux in the floating magnet at the sides that are being repelled by the

stationary magnets. Work done by Apo and Priya investigated the effect of reducing

the magnetic flux of a center mono-stable floating magnet at its top and bottom sides

where it gets repelled by outer top and bottom stationary magnets [14] as can be seen

in Figure 1.6.

Figure 1.6: (a) Single levitating magnet, (b) two levitating magnets with one
separator, (c) three moving magnets with two separators.

The single levitating magnet would have a strong magnetic flux flowing from

its poles compared to the two and three floating magnets in (b) and (c) [14]. However,



14

the two and three floating magnet configurations have stronger magnetic flux from the

side compared to the single floating magnet; thus, more power can be generated from

the coil windings around the floating magnets [14]. Furthermore, the weaker field from

the top and bottom poles in the (b) and (c) configurations allow the magnet composite

to float at larger oscillations since they have a weaker stiffness (k) value. This work

had reported one of the highest power densities of 15.33 mWcm−3g−2 at 0.25 g and

13 Hz. The volume of the designed mono-stable harvester has considerable effect on

its power density. Berdy et al. used block-shaped magnets to fabricate a magnetic

spring based harvester [54]. The energy harvester produced 410 µW at 0.1 g and 6

Hz. They use block shaped magnets instead of cylindrical which allows for thinner

device fabrication, where cylindrical magnets impose limits on the form factor [54].

Contrarily to the reviewed mono-stable work thus far, Gao et al. introduced a

nonlinear multi-stable (quad-, tri-, bi-, and mono-stable) magnetic levitation-based

energy harvesters. The quad-stable energy harvester depicted in Figure 1.7 generated a

root-mean-square current of 80.15mA and power of 440.98mW , which was significantly

higher than the other multi-stable harvesters they fabricated [24]. The levitating

magnet had four stable points represented with dashed-lines. Chen et al. had

incorporated a combination of linear and nonlinear springs in a modeled and fabricated

multi degree-of-freedom (MDOF) electromagnetic energy harvester. The harvester

utilized vertical linear springs and nonlinear magnetic springs based on magnetic

levitation [60]. The fabricated prototype produced 78 mW at 0.5 g. Similarly, Abed

et al. considered modal interactions and magnetic nonlinearities with numerical
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Figure 1.7: Quad-stable energy harvester schematic.

simulations showing an expected performance of 795 mW at 0.17 g for a three

degree-of-freedom harvester [61].

1.4 Objective of the Work

This work explores a uniquely enhanced, magnetic spring-based energy harvester

design that uses dual-mass MDOF, and a geometrically nonlinear FR4 planar spring.

This enhancement will significantly improve power metrics over a traditional magnetic

spring based energy harvester. The frequency responses of the traditional and enhanced

design are modeled and the results are validated. The power measurements are taken

for both designs and are compared to each other. Bandwidths comparison of traditional

and enhanced design at different acceleration levels is formed. The normalized power

is a power averaging method used to compensate for the change in volume and
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acceleration values in both designs for a more accurate depiction of power output.

This method is widely adopted in the field of energy harvesting and will be utilized in

the assessment of both designs.

1.4.1 Structure of Thesis

In this work, prototypes of the Enhanced Energy Harvester (EEH) design

are fabricated and their superiority over Traditional Energy Harvester (TEH) design

is demonstrated. Three comparable EEH designs with various FR4 planar springs

were fabricated along with one TEH design for direct analysis and comparison. The

four harvesters were designed and manufactured using 3D printing and CNC tools

which will be discussed in length in Chapter 2. Chapter 3 will carry out details of

mathematical modeling for each energy harvester′s dynamical behavior which includes

magnetic spring force displacement and frequency response. Static and dynamic

characterization tests were conducted for all four harvesters. These tests will be

discussed at length in Chapter 4. Merits of EEH design over traditional design and

results from model and experiment are presented, the findings and outcomes from

model and experiment are demonstrated in Chapter 5.



CHAPTER 2

DESIGN AND FABRICATION

2.1 Traditional Energy Harvester and Enhanced Energy Harvester
Design

A schematic of the EEH introduced in this work compared with the TEH

design is shown in Figure 2.1. In the TEH, the magnetic spring is made of two fixed

(top and bottom) magnets and a middle levitated magnet. In the EEH design, the top

magnet is freed and an FR4 mechanical spring is used to guide its motion. This yields

varying distances between the levitated magnet and the top magnet which allow for

improved conversion between the kinetic energy of the moving magnets and electric

energy. That is, as the harvester is externally excited, energy in these oscillations is

converted into kinetic energy of the moving magnet. The coil wrapped around the

harvester casing is responsible for extracting electric energy from the kinetic energy of

the moving levitated magnet. Additionally, the EEH design integrates a second top

coil, which is used to harvest the kinetic energy from the top magnet that is guided

by the FR4-spring. As will be demonstrated in this work, when stretched, the FR4

spring exhibits stiffness nonlinearity due to geometric stretching of the spring. This

leads to improved performance and a venue for additional desired nonlinearity.

17
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Figure 2.1: Exploded view schematic of enhanced versus traditional magnetic spring
based energy harvesters: a) TEH and b) EEH.

The geometries of the harvesters adopted in this work are shown in Figure

2.2. In order to have a fair comparison, both TEH and EEH were built to have the

same clearance in the levitating magnet tube, size of the magnets, the number of coil

turns, and magnet distance to allow for matched comparison between their dynamic

responses and performance metrics.
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Figure 2.2: Cross-sectional view of design and geometry of the harvesters: a) TEH
and b) EEH.

To fabricate both TEH and EEH, first, the casings of the harvesters were 3D

printed using PLA filament. The filament type was essential in achieving a smooth

surface for the magnets to travel in with minimal friction (3D universe 2.85 mm).

The filaments were used for that purpose. For the TEH design, two neodymium iron

boron (NdFeB) solid magnets were glued to the top and bottom of the harvester

casing. A third magnet was carefully slid into the harvester and placed in a repulsive

configuration with respect to the top and bottom fixed magnets as shown in Figure 9a.

A copper wire was then placed around the equilibrium position of the levitated magnet.

The wire was wound around a removable ring piece. This allowed for the coil to be

removed when static (force displacement test) was conducted on the levitating magnet.

The ring piece also accounted for uniformity of coil winding by having stoppers at

both ends of the ring. The EEH design was fabricated in a similar fashion.
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Upon assembly, the FR4 spring was anchored into the EEH casing, and the

top magnet was glued to the center of the FR4 spring. This was then followed by

winding the top coil around the casing as shown in Figure 2.1. Details of properties

and dimensions for both of the assembled energy harvesters are given in Table 2.1.

Figure 2.3 shows the fully fabricated and assembled TEH and EEH.

Figure 2.3: Fully fabricated and assembled harvesters: a) TEH and b) EEH.

Table 2.1 Material parameters and specifications

Coil
Type 40 AWG enameled copper wire
Diameter Top: 50.8 mm Middle: 17.4 mm
# turns Top: 1500 Middle: 450
Resistance Top: ∼ 890 ohm Middle: ∼ 93 ohm
Magnets
Material NdFeB type N42
Thickness Top/Bottom: 4.76 mm Middle: 19.05 mm
FR4 Spring
Material G10 FR4 fiberglass composite
Thickness 0.64 mm
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2.2 FR4 Springs Design and Fabrication

The FR4 springs were first designed using SolidWorks computer aided design

(CAD) software and then exported into a drawing exchange file (DXF). The file is then

sent to Kern micro laser cutting machine (ker4824-ti100 micro) to cut the pattern onto

FR4 sheets at 3.75 in/sec speed and 80% power. It is worthy of note that different

laser settings (speed and power) will vary the stiffness of the cut springs. The intricate

spring designs displayed in Figure 2.4 are geometry sensitive, so a slight shift in power

or speed of cutting will result in deviation in the width of the 1.27 mm bridges. In this

work, the three FR4 planer springs were fabricated and tested on the EEH. The FR4

springs were made of concentric rings that are connected through bridges as shown in

Figure 2.4. Varying the number of concentric rings in each spring resulted in the three

springs shown in Figure 2.4 (a-c) having three distinguished stiffness characteristics.

Figure 2.4: FR4 planar springs used in the EEH design: a) First FR4 spring design,
b) Second FR4 spring design, c) Third FR4 spring design, and d) Dimensions and
geometry.



CHAPTER 3

MODEL AND THEORY

In this section, mathematical models of the TEH and EEH are developed in

order to understand and analyze the dynamic response of the harvesters. Since these

harvesters represent coupled magnetic-mechanical nonlinear dynamic systems, first,

the magnetic spring forces are formulated and then integrated into the equations of

motion for both harvesters. Dynamic responses of the energy harvesters are obtained

by solving their equations of motion numerically using the Runge-Kutta Method.

This yields the displacement, velocity, and acceleration of the moving magnets. The

solutions attained from these equations of motion are then used to obtain frequency

responses and output voltages from the harvesters. Details are discussed next.

3.1 Formulation of Magnetic Forces

Appendix (A) contains the nomenclature used in this section. Figure 3.1 shows

the schematic of the magnetic model of the harvesters. The magnetic field of a

magnetic dipole inside the levitated magnet is expressed as [62]:

Bd (r) =
µ0

4π

[
3 (m · (r− rd)) (r− rd)

|r− rd|5
− m

|r− rd|3

]
(3.1)

In Equation 3.1, rd(xd, θd, ρd) is the vector position of the magnetic dipole inside

the levitated magnet, and r(x, θ, ρ) is the vector position of the point of evaluation

in the cylindrical coordinate system shown in Figure 3.1a. Let the magnetic dipole m

22
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point in the longitudinal direction, and the projection of this magnetic field along the

longitudinal axis in a cylindrical coordinate system is expressed as:

Bd (x, θ, ρ) =
µ0m1

4π

[
2(x− xd)2 − ρ2 − ρd2 + 2ρρdcos(θ − θd)(

(x− xd)2 + ρ2 + ρd2 − 2ρρdcos(θ − θd)
)5/2

]
(3.2)

Figure 3.1: Magnetic model representation of the harvesters: a) Force derivation,
and b) Voltage derivation.

Setting ρ = 0, Bd becomes the dipoles magnetic field along the longitudinal axis and

can be written as:

Bd|ρ=0(x) =
µ0m1

4π

[
2(x− xd)2 − ρd2(

(x− xd)2 + ρd2
)5/2

]
(3.3)

The magnetic field of the levitated magnet along the longitudinal axis is the integration

of Bd/V1 over its volume and is given by:

B1=

∫ x1+h1/2

x1−h1/2

∫ 2π

0

∫ d/2

0

Bd|ρ=0(x) ρd
V1

dρddθddxd

=
m1µ0

2V1

 h1 − 2(x− x1)√
d2 + (h1 − 2(x− x1))2

+
h1 + 2(x− x1)√

d2 + (h1 + 2(x− x1))2

 (3.4)
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Similar to 3.4, the magnetic field of the top and the bottom cylindrical magnets

along the longitudinal axis is given by B2 and B3, respectively [2]:

B2 =
m2µ0

2

 h2 − 2(x− x2)√
d2 + (h2 − 2(x− x2))2

+
h2 + 2(x− x2)√

d2 + (h2 + 2(x− x2))2

 (3.5)

B3 =
m3µ0

2

 h3 − 2(x− x3)√
d2 + (h3 − 2(x− x3))2

+
h3 + 2(x− x3)√

d2 + (h3 + 2(x− x3))2

 (3.6)

Approximating the levitated magnet as one dipole, the total magnetic force

acting on the levitated magnet is the gradient of the dot product between the

surrounding magnet′s magnetic field and the levitated magnets dipole moment [62].

The axial component of this force is expressed as:

F ∗1 (x1) =
d

dx
[(B2 +B3)m1]

= m1d
2µ0

m2
V2

 1(
d2 + [h2 + 2(x1 − x2)]2

)3/2 − 1(
d2 + [h2 − 2(x1 − x2)]2

) 3
2

+
m3

V3

 1(
d2 + [h3 + 2(x1 − x3)]2

) 3
2

− 1(
d2 + [h3 − 2(x1 − x3)]2

) 3
2

 (3.7)

Equation 3.7 can be improved by approximating the levitated magnet as n = 3

dipoles as shown in Figure 3.2. The improved expression of the total magnetic force

acting on the levitated magnet is given by:

F1(x1) =
1

n

n∑
i=1

F ∗1

(
x1 − (i− n+ 1

2

h1
n+ 1

)
, n = 3

=
m1d

2µ0

3

3∑
i=1


m2

V2


1{

d2 +
[
h2 + 2

(
x1 − x2 − (i−2)h1

4

)]2} 3
2
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− 1{
d2 +

[
h2 − 2

(
x1 − x2 − (i−2)h1

4

)]2} 3
2


+
m3

v3


1{

d2 +
[
h3 + 2

(
x1 − x3 − (i−2)h1

4

)]2} 3
2

− 1{
d2 +

[
h3 − 2

(
x1 − x3 − (i−2)h1

4

)]2} 3
2


 (3.8)

Figure 3.2: Multi-dipole approximation schematic of the levitated magnet.

Similar to Equation 3.7, the total magnetic force acting on the top cylindrical magnet

is given by:

F2(x2) =
d

dx
[(B1 +B3)m2]

= m2d
2µ0

[
m1

V1

(
1(

d2 + [h1 + 2(x2 − x1)]2
)3/2 − 1(

d2 + [h1 − 2(x2 − x1)]2
)3/2

)

+
m3

V3

(
1(

d2 + [h3 + 2(x2 − x3)]2
)3/2 − 1(

d2 + [h3 − 2(x2 − x3)]2
)3/2

)]
(3.9)
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The formulated magnetic spring forces are now integrated into the equations

of motion of the harvesters as discussed next.

3.2 Equations of Motion

Figure 3.3 shows the mechanical model schematic of the harvester′s free body

diagrams. Assuming lateral motion of the moving magnets is negligible, the equation

of motion of the levitated magnet in the traditional harvester is given by:

m1ẍ1 + c1(ẋ1 − ẋ3) + F1 +m1g = 0 (3.10)

Similarly, the equation of motion of the levitated magnet and the FR4 spring-guided

top magnet in the enhanced harvester is described by a system of two equations:


m1ẍ1 + c1(ẋ1 − ẋ3) + F1 + (m1)g = 0

m2ẍ2 + c2(ẋ2 − ẋ3) + F2 + (m2)g + Fs = 0

(3.11)

Figure 3.3: Mechanical model schematic of the harvesters: a) Free body diagram of
the TEH and b) Free body diagram of the EEH.
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Upon external base harmonic excitation, the position of the fixed bottom

magnet x3 is given by:

x3 =
A

ω2
sin(ωt) (3.12)

In 3.11, the FR4 spring force, Fs, is represented as a third order polynomial function

with only odd order terms [31]. The general form of the FR4 spring force is given as:

Fs = k1(x2 − x3 − s) + k3(x2 − x3 − s)3 (3.13)

For the three FR4 spring configurations shown in Figure 2.4 the set of terms

(k1, k3) in Equation 3.13 becomes (k1a, k3a), (k1b, k3b), or (k1c, k3c), for the FR4-a,

FR4-b, and FR4-c springs, respectively. The equations of motion describing the motion

of the two masses, m1 and m2, are solved numerically to obtain their displacements

and velocities. The attained solutions are then used to obtain the output voltages

generated by the harvesters. Details are discussed next.

3.3 Formulation of Output Voltages from the Harvesters.

3.3.1 EEH

Based on Faraday′s Law, when the harvesters are externally excited, the kinetic

energies of the moving magnets in the EEH are converted into electric energies as

a result of change in magnetic fluxes across the surrounding coils. For the levitated

magnet, setting ρd = 0, the expression of Bd in Equation 3.2 becomes the magnetic

field of the levitated magnet approximated as a dipole placed on the axial line and is

written as:

Bd|ρ=0(x) =
µ0m1

4π

[
2(x− xd)2 − ρ2(
(x− x)2 + ρ2

)5/2
]

(3.14)
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The flux emanating from this field through all middle coil turns positioned around

the levitated magnet is given by Figure 3.1:

Φ∗1(x1) =
N1

L1

∫ x3+a1+L1/2

x3+a1−L1/2

∫ 2π

0

∫ d1/2

0

(Bd|ρd=0) ρdρdθdx

=
m1N1µ0

2L1

 L1 − 2(x1 − x3 − a1)√
(L1 − 2(x1 − x3 − a1))2 + d21

+
L1 + 2(x1 − x3 − a1)√

(L1 + 2(x1 − x3 − a1))2 + d21

 (3.15)

Approximating the levitated magnet as 7 dipoles, the expression of flux in

Equation 3.15 is improved and yields:

Φ1(x1) = F1(x1) =
1

n

n∑
i=1

Φ∗1

(
x1 − (i− n+ 1

2
)
h1

n+ 1

)
, n = 7

=
m1N1µ0

14L1

7∑
i=1

 L1 − 2(x1 − x3 − a1 − (i−4)h1
8

)√(
L1 − 2

(
x1 − x3 − a1 − (i−4)h1

8

))2
+ d21

+
L1 + 2(x1 − x3 − a1 − (i−4)h1

8
)√(

L1 + 2
(
x1 − x3 − a1 − (i−4)h1

8

))2
+ d21

 (3.16)

Similar to Equation 3.15, the flux emanating from the FR4 spring-guided top

magnet approximated as a dipole through middle coil turns is given by:

Φ2(x2) =
m2N1µ0

2L1

 L1 − 2(x2 − x3 − a1)√
(L1 − 2 (x2 − x3 − a1))2 + d21

+
L1 + 2(x2 − x3 − a1)√

(L2 + 2 (x1 − x3 − a1))2 + d21

 (3.17)
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The voltage generated in the middle coil due to the motion of the two moving

magnets, i.e. the levitated magnet and the FR4 spring-guided top magnet in the EEH,

is then given by [62]:

ε1 = −d(Φ1 + Φ2)

dt

N1d1µ0

L1


m1(ẋ1 − ẋ3)

7

7∑
i=1


1{[

L1 − 2(x1 − x3 − a1 − (i−4)h1
8

)
]2

+ d21

}3/2

− 1{[
L1 + 2(x1 − x3 − a1 − (i−4)h1

8
)
]2

+ d21

}3/2


+ m2(ẋ2 − ẋ3)

{
1{

[L1 − 2(x2 − x3 − a1)]2 + d21
}3/2

− 1{
[L1 + 2(x2 − x3 − a1)]2 + d21

}3/2}
}

(3.18)

Similar to Equation 3.18, the voltage generated in the top coil turns due to

the motion of the two moving magnets in the EEH is given by:

ε2 =
N2d2µ0

L2


m2(ẋ1 − ẋ3)

7

7∑
i=1


1{[

L2 − 2(x1 − x3 − a2 − (i−4)h1
8

)
]2

+ d22

}3/2

− 1{[
L2 + 2(x1 − x3 − a2 − (i−4)h1

8
)
]2

+ d21

}3/2


+ m2(ẋ2 − ẋ3)

{
1{

[L2 − 2(x2 − x3 − a2)]2 + d22
}3/2

− 1{
[L2 + 2(x2 − x3 − a2)]2 + d22

}3/2}
}

(3.19)
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3.3.2 TEH

For the TEH design, the voltage generated from the middle coil is expressed in

Equation 3.18. However, the term (ẋ2 − ẋ3) vanishes since the top magnet and the

bottom magnet are both fixed. The voltage 1 can be rewritten as:

ε1 =
N1d1µ0m1(ẋ1 − ẋ3)

7L1

7∑
i=1


1{[

L1 − 2(x1 − x3 − a1 − (i−4)h1
8

)
]2

+ d21

}3/2

− 1{[
L1 + 2(x1 − x3 − a1 − (i−4)h1

8
)
]2

+ d21

}3/2

 (3.20)



CHAPTER 4

EXPERIMENT

4.1 Overview

Experimental work was geared towards obtaining force-displacement curves and

understanding the stiffness behavior of the harvesters. Additionally, the experimental

work was focused on measuring the dynamic frequency responses and performance

metrics of the harvesters.

4.2 Static Characterization

Figure 4.1 shows the experiment apparatus used to obtain magnetic forces, F1

and F2 given by Equation 3.8 and Equation 3.9, respectively, as well as measuring the

restoring forces of the fabricated FR4 springs. A digital force sensor (SHIMPO FG-

3006) fixed on a test stand (SHIMPO FGS-250W) was used to measure the magnetic

force, while the displacement was monitored using a displacement sensor (KEYENCE

IL-100). In order to measure the magnetic stiffness of the levitating magnet, a 3D

printed force gauge attachment was utilized for the test. The windows on either side

of the levitating magnet tube allowed for a nonferromagnetic rod to be placed on top

of the levitating magnet after removing the coil ring. Pushing on the rod using the

3D printed attachment would result in force displacement variation that produced the

experimental magnetic stiffness curve.

31



32

Figure 4.1: Experiment apparatus used for measuring restoring forces.

4.3 Dynamic Characterization

The windows on the levitating magnet tube also assist in the ring down experi-

mental test. Ring down waveforms are used to find the mechanical damping coefficient

for all four harvesters as seen in Figure 4.2. The waveforms were obtained by pushing

down on the levitating magnet through the tube window using a nonferromagnetic

rod and releasing the rod instantly for the magnet to oscillate freely.
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Figure 4.2: Ringdown waveforms for (a) TEH, (b) EEH-c, (c) EEH-b, and (d)
EEH-d.

Figure 4.3 shows the experiment apparatus used to study the dynamic response

of the harvesters. The setup consists of a shaker table (VT-500, SENTEK DYNAM-

ICS), power amplifier (LA-800, SENTEK DYNAMICS), vibration controller (S81B-

P02, SENTEK DYNAMICS), accelerometer (PCB333B30 model, PCB Piezotronics),

data logger (NI myDAQ), and a PC. When performing the experiment, the harvester

was securely mounted on a five-inch tall spacer to shield the effect of the magnetic

field from the shaker table. The harvester response was measured at predetermined

frequencies, i.e. 5 − 15 [Hz] and accelerations, i.e. 0.3 g, and 0.5 g[m/s2] using

engineering data management software (EDM). The generated voltage from the

harvester was measured and stored on the PC for later analysis.
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Figure 4.3: Experiment apparatus used for dynamic characterization of the fabricated
harvesters.

The power measurements were conducted using the same dynamic testing setup

with the addition of a resistance decade box model (RDB-10) that served as optimum

load resistance source to the harvesters as seen in Figure 4.4.
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Figure 4.4: Schematic of experiment setup used for energy harvesters′ power
measurements.



CHAPTER 5

RESULTS AND DISCUSSION

5.1 Overview

This chapter will present the measured magnetic stiffness of TEH and EEH

compared to analytical and numerical model along with measured mechanical stiffness

of the three FR4 springs. Open circuit voltage forward and backward frequency

responses are compared with model predictions. The resulting power measurements at

accelerations (0.1, 0.3, 0.5)g are presented. Normalized power calculations are carried

out and compared. The corresponding -3dB frequency bandwidth for the energy

harvesters are analyzed.

5.2 Force Measurements and Model Validation

Measured magnetic force-displacement curves using the setup in Figure 4.1

are compared to those obtained using Equation 3.8 and Equation 3.9, respectively,

in Figure 5.1 (a-b). Furthermore, two-dimensional (2D) axisymmetric models of

magnetic forces F1 and F2 were developed using the AC/DC module in the COMSOL

Multi-physics software. In these 2D models, magnets were represented by rectangles

along the plane and all remaining edges of each magnet were magnetically insulated.

A moving mesh function was used upon model simulation of the moving magnets as

it oscillated between the fixed magnets. A parametric sweep is used to estimate the
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magnetic restoring force as a result of the oscillatory motion of the moving magnets.

Figure 5.1 reveals excellent agreement between COMSOL model simulations, analytical

models given by Equation 3.8 and Equation 3.9, and measured magnetic forces. The

nonlinear behavior of the magnetic forces is evident, especially at higher displacements.

The standard error associated with the force values of the experimental data

are shown in Figure 5.2. Additionally, the FR4 springs are characterized using the

setup shown in Figure 4.1. Figure 5.3 shows the measured force-displacement curves

for the three FR4 springs fabricated in this work. Figure 5.3 shows that as the number

of concentric rings increase, the FR4 spring becomes softer due to its ability to flex

out more freely. Additionally, nonlinear stiffness manifests itself as the number of

concentric rings decrease as shown in Figure 5.3.
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Figure 5.1: Measured and modeled magnetic spring forces: a) F1 acting on levitated
magnet and b) F2 acting on top magnet.
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Figure 5.2: Measured magnetic spring force acting on the levitated magnet and the
error associated with the force values.

Figure 5.3: Measured restoring forces of the fabricated FR4-a, FR4-b, and FR4-c
springs.
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5.3 Open Circuit Voltage Frequency Response

Figure 5.4 shows the open circuit voltage frequency response using the setup

in Figure 4.3 of the TEH during forward and backward sweeping obtained using

experiment and model at 0.3 g and 0.5 g[m/s2], respectively. Similarly, Figures (5.5-

5.7) compare the voltage frequency responses of the EEH using the three fabricated

FR4 springs (FR4-a, FR4-b, and FR-c) at 0.3 g and 0.5 g[m/s2], respectively. Excellent

agreement between model simulation and measured frequency response is evident for

both TEH and EEH. Both experiment and model exhibit the nonlinear hardening

effects in voltage frequency responses of both TEH and EEH harvesters. The non-

resonant behavior of the harvesters due to nonlinear stiffness is evident. For instance,

in Figures (5.4-5.7), comparing the frequency response of the levitated magnet at 0.3

g and 0.5 g[m/s2], one can notice that as the excitation level increased the voltage

peak shifted towards the right side of the frequency response curve due to nonlinearity

manifesting itself and hardening effects becoming more apparent.

Additionally, a sudden drop in the frequency response of the energy harvester

is evident during forward sweeping. This is because the system moves from high to low

stable points. This behavior is a characteristic of nonlinear Duffing oscillators and is

commonly referred to as the frequency jump phenomena or saddle node point [31, 63].

The discontinuity occurs as a result of the coexistence of multiple energy states at

the frequency branch [64]. During backward sweeping, the voltage peak occurres at a

lower frequency. This hysteresis in forward and backward frequency response denotes

the co-existence of multiple solutions [31, 63]. Similar observation can be made for

the frequency response of the top magnet in the EEH Figures (5.5-5.7). That is,
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the stiffness nonlinearity of the FR4 spring results in non-resonant behavior and a

frequency jump in the frequency response of the top magnet as shown in Figures

(5.5-5.7).

Figure 5.4: Forward and backward frequency response of TEH: a) Experiment at
0.3 g[m/s2], b) model at 0.3 g[m/s2], c) Experiment at 0.5 g[m/s2], and d) model at
0.5 g[m/s2]. Experiment: Grey for forward and black for backward. Model: light blue
for forward and dark blue for backward.
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Figure 5.5: Forward and backward frequency response of TEH: a) Experiment at
0.3 g[m/s2], b) model at 0.3 g[m/s2], c) Experiment at 0.5 g[m/s2], and d) model at
0.5 g[m/s2]. Experiment: Grey for forward and black for backward. Model: light blue
for forward and dark blue for backward.
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Figure 5.6: Forward and backward frequency response of EEH with FR4-a spring:
a) Experiment at 0.3 g[m/s2], b) model at 0.3 g[m/s2], c) Experiment at 0.5 g[m/s2],
and d) model at 0.5 g[m/s2]. Experiment: Middle coil (grey for Forward and black for
backward), Top coil (dark brown for forward and light brown for backward). Model:
Middle coil (light blue for forward and dark blue for backward), Top coil (dark green
for forward and light green for backward).
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Figure 5.7: Forward and backward frequency response of EEH with FR4-c spring:
a) Experiment at 0.3 g[m/s2], b) model at 0.3 g[m/s2], c) Experiment at 0.5 g[m/s2],
and d) model at 0.5 g[m/s2]. Experiment: Middle coil (grey for Forward and black for
backward), Top coil (dark brown for forward and light brown for backward). Model:
Middle coil (light blue for forward and dark blue for backward), Top coil (dark green
for forward and light green for backward).

5.4 Power Measurements

Next, power metrics of the EEH design are compared to those of the TEH in

Figures (5.8-5.9). Figure 5.8 shows the total power generated by the harvesters at

three acceleration levels, i.e. 0.1 g, 0.3 g, and 0.5 g[m/s2]. For these measurements,

the optimum load resistance was first determined in order to maximize power transfer

following the same procedure as in [31]. This was done by measuring the voltage

produced by the energy harvesters across different load resistances using the setup in

Figure 4.3. These optimum load resistance values were found to be approximately

similar to the top and middle coil resistances shown in Table 2.1. This observation is

similar to the one made by Mallick et al. [31] where maximum power transfer occurs
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when the load resistance matches the internal resistance of the coil, i.e. impedance

matching.

Figure 5.8: Power generated by the TEH and EEH (with FR4-a, FR4-b, FR4-c) at
different acceleration levels: a) Power generation at 0.1 g[m/s2], b) Power generation
at 0.3 g[m/s2], and c) Power generation at 0.5 g[m/s2].
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Figure 5.9: Comparison of power generation at different acceleration levels: a)
Middle coil in the TEH and EEH, and b) Top coil in EEH.

The superiority of the EEH is evident in Figure 5.8 at all acceleration levels.

Most notably, at lower acceleration level, i.e. 0.1 g[m/s2]. For example, at 0.1 g[m/s2],

the total peak power generated by the EEH with FR4-c spring is approximately 40

times higher than the power generated by the TEH. This significant increase in power

generation in the EEH, compared to the TEH, is presumably due to freeing the top



47

magnet in the enhanced design, thus allowing the levitated magnet to move at higher

velocity and with less constrained movement. Additionally, for a given FR4 spring

design, the improvement in power generation by the EEH drops as the acceleration

level increases. For example, for the EEH with FR4-c spring, the improvement in

power generation drops to approximately a factor of 3 at 0.5 g[m/s2] (compared to a

factor of 40 at 0.1 g[m/s2]). This is likely because as the acceleration level increases,

the FR4 spring is stretched to its maximum deflection and, therefore, resembles the

traditional design where the movement of the top magnet is restrained.

Additionally, the FR4 spring-guided movement of the top magnet in the EEH

contributes to the total power via power generation through the top coil. The amount

of power portion generated in the top and middle coils is shown in Figure 5.9. It

is evident that for the EEH design, most of the power is generated in the middle

coil. This is expected since the size of the levitated magnet is much larger than the

FR4 spring-guided top magnet. Also, the middle coil is placed closer to the levitated

magnet compared to the position of the top coil relative to the FR4 spring-guided top

magnet. These factors result in higher power generation in the middle coil compared

to the top coil.

Figure 5.9 confirms the superiority of the soft (FR4-c) spring design over the

other FR4 springs (FR4-a and FR4-b) tested in this work. While the EEH with the

three implemented FR4 springs shows superior performance compared to the TEH,

the EEH with the soft FR4 (FR4-c) spring yields the highest power generation at

any acceleration level. For fixed acceleration, for instance 0.1 g[m/s2], the power

ratio (defined as normalized power generated by the EEH over normalized power
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generated by the TEH) decrease from approximately 40 to 15 and 6.6 for the EEH

with FR4-c (Softest), FR4-b, and FR4-a (Stiffest) spring, respectively. This decay in

power ratio is likely due to the gradual increase in stiffness of the three FR4 springs.

Normalized power metrics are given in Table 5.1. Here, the power generated by the

EEH and the TEH are normalized against their volumes and input acceleration levels.

These normalized power metrics confirm the previous observations and emphasize the

superiority of the EEH introduced in this work in comparison to the commonly used

harvester, i.e. TEH.

Table 5.1 Normalized power comparison of TEH and EEH.

Normalized Power [mW/cm3 g2]

Base excitation (g) TEH EEH-a EEH-b EEH-c

0.1 0.034 0.226 0.503 1.35
0.2 0.36 1.13 0.64 1.75
0.3 0.607 1.14 1.018 1.92
0.4 0.500 0.92 1.035 1.97
0.5 0.529 0.891 0.974 1.55

5.5 Energy Harvester Bandwidth

Figure 5.10 compares the bandwidths of the TEH and the EEH at different

acceleration levels. In Figure 5.10, the frequency bandwidth refers to the half-power

bandwidth which corresponds to a −3 dB bandwidth. Results show that for both

TEH and EEH, the bandwidth increases as the acceleration level is increased. This

is due to the hardening nonlinearities of the magnetic spring and FR4 springs in

TEH and EEH harvesters. At lower acceleration level, 0.1 g and 0.2 g[m/s2], the

bandwidths of TEH and EEH harvesters are very narrow and, approximately, the
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same, i.e. 0.4 [Hz]. As the acceleration level increases, the superiority of the EEH

design over the TEH design becomes more evident. For example, at 0.3 g and 0.4

g[m/s2] the bandwidth of the EEH (with FR4-c spring) is improved by approximately

80% and 90%, respectively, compared to the TEH. This bandwidth superiority is likely

due to the prominent nonlinearity introduced by the FR4 spring in the EEH design.

At 0.5 g[m/s2] the bandwidths of all EEH plateau approximately at 60% level above

the TEH due to the FR4 springs being stretched significantly.

Figure 5.10: Comparison of bandwidths of traditional and enhanced harvesters at
different acceleration levels.



CHAPTER 6

CONCLUSION AND FUTURE DIRECTION

In summary, a superior magnetic spring based nonlinear vibration energy

harvester has been introduced in this work. Traditionally, a magnetic spring based

harvester consists of a levitated magnet that is placed between two fixed top and

bottom magnets. As the harvester is vibrated, the kinetic energy of the levitated

magnet is converted into useful electric power using a coil placed around the casing

of the harvester. Unlike commonly studied magnetic-spring based harvesters, the

enhanced harvester introduced in this work frees the top fixed magnet and uses an

FR4 spring to guide its motion. This allows for better energy conversion and improved

performance of the harvester. Both experiment and model have been used to study the

enhanced harvester design. Prototypes of the enhanced harvester have been fabricated

and characterized. Specifically, three enhanced harvesters with three different FR4

spring dimensions have been fabricated and tested.

Moreover, for comparison, a traditional harvester with similar geometries and

dimensions has been fabricated. Frequency response curves as well as performance

metrics confirm the superiority of the enhanced design introduced in this work over

the commonly studied harvester design. Results show excellent agreement between

model and experiment. The figure of merits show that the presented enhanced design

outperforms the commonly studied magnetic spring based vibration energy harvesters

50
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under all conditions. Specifically, at low acceleration level, i.e. 0.1 g[m/s2], the power

metrics of the EEH reach up to 1.35 [mW/cm3g2] which is approximately 40 times

higher than the TEH and both harvesters exhibit similar frequency bandwidths. As

the acceleration level increases, i.e. 0.5 g[m/s2], power generation from the EEH is

approximately 3 times the power generated by the TEH.

However, at this level of acceleration, the bandwidth of the EEH is approx-

imately 60% higher than the TEH. For the purpose of studying the behavior of a

spring-guided design, the FR4 material was chosen for spring material. However, the

material is not ideal for practical application due to the fact that it is prone to plastic

deformation at the smallest acceleration. This drawback of the material was mitigated

by using disposable one time use FR4 springs for each test at every single acceleration.

A future direction would be to find a higher quality material that can maintain elastic

deformation under the above mentioned testing procedures. Realizing a high quality

spring material along with miniaturization of the proposed design can allow practical

use of the energy harvester in powering small sensors.
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Table A.1 Nomenclature

Symbol Definition Value Unit

a1 The axial position of the center of the

middle coil

4.39 cm

a2 The axial position of the center of the top

coil

9.68 cm

A The acceleration amplitude of the bottom

magnet and the shaker table

- m2
s

B1 The scalar magnetic field on the axial line

of the levitated magnet

- T

B2 The scalar magnetic field on the axial line

of the top magnet

- T

B3 The scalar magnetic field on the axial line

of the bottom magnet

- T

Bd The scalar magnetic field of a magnetic

dipole inside the levitated magnet

- T

Bd The magnetic vector field of a magnetic

dipole inside the levitated magnet

- T

c1 The damping coefficient of the levitated

magnet

- Ns/m

c2 The damping coefficient of the top magnet - Ns/m

d The diameter of each magnet 12.7 mm

d1 The diameter of the middle coil 17.4 mm

d2 The diameter of the top coil 53.3 mm

F1 The total magnetic force acting on the

levitated magnet as 3 dipoles

- N

F ∗1 The total magnetic force acting on the

levitated magnet as 1 dipole

- N
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F2 The total magnetic force acting on the top

magnet

- N

h1 The height of the levitated magnet 19.1 mm

h2 The height of the top magnet 4.76 mm

h3 The height of the bottom magnet 4.76 mm

i The summation index in multi-dipole ap-

proximations

- 1

k1 The linear stiffness coefficient of a FR4

spring

- N/m

k3 The nonlinear stiffness coefficient of a FR4

spring

- N/m

k1a The linear stiffness coefficient of the FR4-a

spring

2,566 N/m

k3a The nonlinear stiffness coefficient of the

FR4-a spring

2.963× 109 N/m

k1b The linear stiffness coefficient of the FR4-b

spring

1,002 N/m

k3b The nonlinear stiffness coefficient of the

FR4-b spring

8.693× 107 N/m

k1c The linear stiffness coefficient of the FR4-c

spring

454.7 N/m

k3c The nonlinear stiffness coefficient of the

FR4-c spring

1.414× 106 N/m

L1 The height of the middle coil 13.7 mm

L2 The height of the top coil 12.7 mm

m The dipole moment vector of the levitated

magnet

- A ·m2

m1 The mass of the levitated magnet 18.1 g
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m2 The mass of the top magnet 4.53 g

m1 The magnetic dipole moment of the levi-

tated magnet

2.53 A ·m2

m2 The magnetic dipole moment of the top

magnet

-0.634 A ·m2

m3 The magnetic dipole moment of the bottom

magnet

-0.634 A ·m2

n Number of dipoles in multi-dipole approxi-

mations

- 1

N1 The number of coil turn of the middle coil 450 1

N2 The number of coil turn of the top coil 1,500 1

r The vector position of a point of evaluation - m

rd The vector position of a magnetic dipole

inside the levitated magnet

- m

s The distance between the equilibrium posi-

tion of the top magnet and the position of

the bottom magnet

96.012 mm

t Time - s

V1 Volume of the levitated magnet 2.41 cm3

V2 Volume of the top magnet 0.603 cm3

V3 Volume of the bottom magnet 0.603 cm3

x The axial position of a point of evaluation - m

x1 The axial position of the center of the

levitated magnet

- m

ẋ1 The velocity of the levitated magnet - m/s

ẍ1 The acceleration of the levitated magnet - m/s2
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x2 The axial position of the center of the top

magnet

- m

ẋ2 The velocity of the top magnet - m/s

ẍ2 The acceleration of the top magnet - m/s2

x3 The axial position of the center of the

bottom magnet

- m

ẋ3 The velocity of the bottom magnet - m/s

xd The axial position of a dipole inside the

levitated magnet

- m

ε1 The voltage generated in the middle coil - V

ε2 The voltage generated in the top coil - V

θ The azimuthal position of a point of evalu-

ation

- rad

θd The azimuthal position of the dipole inside

the levitated magnet

- rad

µ0 The permeability of free space 4π × 10−7 mkg/s2A2

ρ The radial position of a point of evaluation - m

ρd The radial position of the dipole inside the

levitated magnet

- m

Φ1 The flux emanating from the levitated

magnet approximated as 7 dipoles going

through all coil turns of the middle coil

- V · s

Φ∗1 The flux emanating from the levitated

magnet approximated as 1 dipole going

through all coil turns of the middle coil

- V · s

Φ2 The flux emanating from the levitated

magnet going through all coil turns of the

middle coil

- V · s
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ω The angular frequency of vibration of the

shaker table

- rad
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