
Smith ScholarWorks Smith ScholarWorks 

Mathematics and Statistics: Faculty 
Publications Mathematics and Statistics 

2019 

Convergence in a Disk Stacking Model on the Cylinder Convergence in a Disk Stacking Model on the Cylinder 

Christophe Golé 
Smith College, cgole@smith.edu 

Stéphane Douady 
Laboratoire Matière et Systèmes Complexes 

Follow this and additional works at: https://scholarworks.smith.edu/mth_facpubs 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Golé, Christophe and Douady, Stéphane, "Convergence in a Disk Stacking Model on the Cylinder" (2019). 
Mathematics and Statistics: Faculty Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/mth_facpubs/50 

This Article has been accepted for inclusion in Mathematics and Statistics: Faculty Publications by an authorized 
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/mth_facpubs
https://scholarworks.smith.edu/mth_facpubs
https://scholarworks.smith.edu/mth
https://scholarworks.smith.edu/mth_facpubs?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/mth_facpubs/50?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Convergence in a disk stacking model on the cylinder*
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Abstract

We study an iterative process modelling growth of phyllotactic patterns, wherein disks are added
one by one on the surface of a cylinder, on top of an existing set of disks, as low as possible and
without overlap. Numerical simulations show that the steady states of the system are spatially pe-
riodic, lattices-like structures called rhombic tilings. We present a rigorous analysis of the dynamics
of all configurations starting with closed chains of 3 tangent, non-overlapping disks encircling the
cylinder. We show that all these configurations indeed converge to rhombic tilings. Surprisingly, we
show that convergence can occur in either finitely or infinitely many iterations. The infinite-time
convergence is explained by a conserved quantity.

Keywords: Disk packing, phyllotaxis, rhombic tiling, attractor, dynamical system.
Declaration of interest: None.

1 Introduction

The study of packing of identical elements on the surface of a cylinder originated almost two hundred
years ago in phyllotaxis, where packing processes model the morphogenesis of arrangements of plant
organs around the stem. The most commonly described arrangements are cylindrical lattices made of
two intersecting families of helical rows of elements (called parastichies). The numbers of rows in these
families are most often successive Fibonacci numbers [3, 10, 11, 16, 22, 27, 33].

More recently, the lattice arrangements introduced in phyllotaxis have seen applications beyond
plant biology. Levitov [17] showed that, theoretically, repulsive vortexes in a type II superconductor
lead to minimal energy lattices with Fibonacci phyllotaxis. The spirals of phyllotaxis were reproduced
in an experiment using repulsive drops of ferrofluid [37] or with “magnetic cactii” [4].

Regular arrangements that do not necessarily follow the Fibonacci sequence have been studied by
Erickson [9], who pointed out examples in microbiology. Carbon nanotubes are non-biological examples
of regular tubular lattices [24]. Models of sphere packing have been used for these structures [1, 21],
although again they were introduced in 1872 to give an evolutionary explanation to phyllotaxis [13].

In most of the literature cited above, the structures of reference are cylindrical lattices. They appear
either as descriptive models [16], minimum of a certain energy [17], minimum of packing density [10],
or as stable fixed points of a dynamical system with more or less “soft” interactions between stacked
elements [18, 23, 30]. Interesting exceptions to this focus on lattices occur, among others, in [5] where
transitions between lattices due to physical deformation of the cylinder are studied in terms of disloca-
tions. Line slip structures, where a part of a cylindrical lattice is translated along a parastichy, appear
in the densest packings of spheres for certain parameter values [21]. Structures with line slips, do oc-
cur in our setting (see Figure 28) but are just examples of a larger set of lattice-like structures, called
rhombic tilings [22, 28], which are central to the present paper. When the vertices of a cylindrical lattice
are ordered by height, the angle between a vertex and the next one - the angle of divergence in phyl-
lotaxis - is constant and close to the Golden Angle (≈ 137.51o) in Fibonacci phyllotaxis [16, 23, 27]. On
the other hand, in rhombic tilings the divergence angle, as well as the vertical displacement, are peri-
odic, but usually not constant. Some data suggests that these patterns may better describe phyllotactic
structures [22, 28].
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Figure 1: a. Digitally unrolled spadix of peace lily (Spathyphyllum), showing a phyllotactic structure
obtained by joining the center of each organ to those of its contact neighbors. The (broken) blue and
red lines that trace these contacts are called parastichies, that form helices around the spadix. The two
white lines in the picture correspond to the same line on the spadix. The pattern is transitioning from
7 up (blue) and 6 down (red) parastichies, to (6, 6). This can be monitored locally via the zigzagging
fronts: each pentagon decreases a parastichy number by 1, each triangle increases one by 1. This pattern
appears to converge in finite time to a rhombic tiling, where no triangles or pentagon appears any more.
Note that this is not a Fibonacci pattern but what we called Quasi-Symmetric in [12]. b. A similar
pattern, starting as (6,6) and ending as (6, 6), simulated, with more complicated transitions, by stacking
150 disks over the original bottom (6, 6) front. This pattern ends up, after a last pentagon, back in a (6,
6) rhombic tiling, with fronts repeating with periodicity vector shown by the black dashed arrow. c. The
graph showing the fronts parastichy numbers and their convergence to (6, 6).

In 1868, Schwendener [33] introduced the first dynamical model of phyllotaxis morphogenesis. It
is based on Hofmeister’s observation that a plant organ forms at the edge of the meristem (microscopic
tip of a plant stem) at a place where the existing organs have left enough space [34]. Schwendener
modeled nascent organs as disks, placed iteratively on the surface of a cylinder, on top of an existing set
of disks, as low as possible and without overlap. (Note that the threshold condition subsumed in the
expression “enough space” is translated to the geometric condition of “as low as possible”.) While this
model produces, as steady states, the cylindrical lattice structures described in the classical phyllotaxis
literature, it also exhibits the aforementioned rhombic tilings, which are periodic steady states that look
like crooked cylindrical lattices (see Figures 1c and 2. For more on rhombic tilings, see [22, 28]).

We conjecture that a subset of the rhombic tilings forms the attractor for this model. In other words,
the stacking model always converges toward periodic rhombic tilings, a surprising fact given the appar-
ent geometric rigidity of the model. As a first, significant step, we prove here this conjecture for patterns
whose initial conditions consists of chains of 3 tangent disks: any configuration produced by the system
on such chains converges to some rhombic tiling. We achieve this by providing a complete analysis of
the dynamics of the system with these initial conditions. Note that chain of 3 tangent disks give rise
most immediately to patterns of parastichy numbers (1, 2) or (2, 1), which are the first non symmetric
state in Fibonacci phyllotaxis stemming from monocot plants.

We also show, by examples and numerical simulations that the same geometric mechanism that
yields convergence in our simple case also occurs in patterns with more complicated initial conditions.
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Striking to us was the fact that the disk stacking model exhibits two kinds of convergence to rhombic
tilings: the patterns may be pre-periodic and become rhombic tilings in finite time, or they can do so
asymptotically, in infinite time.

Our rigorous dynamical analysis on the set of 3-chains shows that this is indeed the case even with
simple initial conditions. And it unveils a mechanisms of convergence that seems to apply to the general
case. Connecting the centers of the tangent disks in a configuration, one obtains a graph (the ontogenetic
graph, see [32] and Figure 2). The process of convergence on the space of 3-chains always involve
recurring pairs of pentagons and triangles in the faces of the graph (see Figures 1b and 2B). Moreover, in
the case of infinite convergence, these configurations of triangles and pentagons give rise to a geometric
quantity that is conserved along the orbit, as the shape of the successive pentagons flattens to a pair of
rhombus and triangle (Figure 3 A, A’, A”. See also Figure 9 for evidence in a case of larger initial chains).

Understanding the nature of the attractor for the disk stacking model has practical implications in
phyllotaxis. Rhombic tilings, while regular enough looking, can be a better descriptor for botanical
patterns than lattices, and account for permutations of the vertical order of elements, as was shown
on a Birch catkin in [22, 28]. Careful measurements in Arabidopsis thaliana have also shown that the
divergence angle may switch from the Golden Angle to multiples of it. This can also be simply explained
by permutations of the vertical order of the elements [31,38]. The last authors have proposed a stochastic
model to account for this phenomenon [26]. But the stacking models, which are deterministic, also
generates these permutations [12, 22, 31].

Moreover, when the disk size is allowed to diminish slowly, the stacking model provides a concise
and intuitive geometric explanation for the overwhelming occurrence of Fibonacci phyllotaxis. [12]1

Maybe more surprisingly, for faster decrease rates of the disks’ size, the system most often generates
what we’ve called quasi-symmetric phyllotaxis, where the number of parastichies are close together i.e.
of the form (m,m + k), k � m (see Fig. 1). This type of pattern, exhibited by a number of plants (e.g.
corn, strawberries, or peace lily) has somehow never been mentioned explicitly in the three-century-
old literature on phyllotaxis [12, 28]. In the language of dynamical systems, these phenomena can be
interpreted in terms of orbits falling into basins of attraction of different components of the attractor.
This is the tack taken in [18, 23] in a simpler system, where the attractor, composed of rhombic lattices
is part of the so-called van Iterson diagram. In this viewpoint, identifying the attractor and its topology
as it varies with disk size is a central question, one that we start addressing here. And while this work
sets the stage for this big topological picture, it also provides dynamical and geometric tools that work
on the local level, spelling out the conditions for different pattern transitions to occur. Both should be
useful in a rigorous study of the Fibonacci transitions in the disk stacking model.

While phyllotaxis has fascinated scientists of all kinds since the 18th century, it was not until the
turn of the 21st century that, thanks to the use of fluorescent markers and microscopy, the biological
mechanism of phyllotaxis pattern formation started to be understood. In the prevalent biological model
[6,14], the main actors are the plant hormone auxin and the auxin efflux transporter PIN, both of which
interact in a process called polarized auxin transport. Primordia (nascent organs) form where there is
sufficient auxin concentration. In a positive feedback loop, the PIN protein facilitates auxin’s transport
toward cells with greater auxin concentration and in turn, auxin concentration attracts PIN to these
cells’ walls. This mechanism leads to increase auxin concentration at the site of a nascent primordium,
but also to a depletion of auxin in its neighborhood. In other words the next primordium will not be
located near this new one. Geometrically, the new primordium is “taking space”, that can’t be occupied
by the next primordia. And by the uniformity of the process, that space is of roughly uniform size.
Hence this biological mechanism, with short range activation and longer range inhibition can be seen as
a validation of Hofmeister’s hypothesis.

This mechanism is also consistent with Turing’s model of Phyllotaxis [20] who, long before this bio-
logical mechanisms was uncovered, had hypothesized an abstract chemical system of reaction-diffusion

1This explanation has roots in van Iterson [11].
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with a kind of coupled short-range activation and long-range inhibition, where the uniform distribution
of some (hypothetical) morphogen is an unstable equilibrium. This principle, and the type of PDE’s that
he used to model it became the basis for his and later models of morphogenesis in general [2, 20].

Many of the computer era models of phyllotaxis are more or less explicitly based on Hofmeister’s
hypothesis [18, 23, 29–32]. Other, PDE-based models, are in a more direct lineage with Turing’s, and
display the short range activation and long range inhibition conferring instability of constant solutions
[15]. A recent paper in that vein takes a mechanistic approach, incorporating the known biochemical
and mechanical factors known to biologists [19] in its choice of equations. Other, large ODE models seek
to reproduce the transport mechanisms at the cellular level [7, 14, 25].

While each of these model brings new insight, they all display short-range activation and longer-
range inhibition, and thus express in one way or another Hofmeister’s hypothesis. The disk stacking
model has the advantage of simplicity and of directly addressing the geometric constraints implied by
Hofmeister. Moreover its simulation is by orders of magnitude faster than the ODE or PDE models:
we have run loops involving thousands of simulations, each involving hundreds of iterations within
minutes. This allows an effective exploration of the entire phase space in some cases (see e.g. Figure 3)
that helped structure the rigorous classification of the dynamics. In [12], a sweep of 2500 simulations
through a parameter plane uncovered the duality of Fibonacci vs Quasi-symmetric phyllotaxis.

Goal and plan of this article Again, the main goal of this paper is to provide a complete mathematical
analysis of the disk stacking process on cylindrical chains of 3 disks. This provides in particular a first
rigorous step (see Theorem 1) towards proving that all (admissible) configurations yield rhombic tilings
in finite or infinite time under the stacking process.

After this introduction, we start by the self-contained Section 2 that summarizes our findings as well
as the main ideas behind our analysis, in a language that we hope strikes a balance between intuition
and sufficient precision. As a motivation, we start by presenting outputs of our numerical simulations,
with an overview of the space of initial conditions and the different types of dynamics it supports. The
section ends with a presentation of numerical evidence of a similar convergence mechanism to rhombic
tilings for more general initial conditions, leading more credence to our conjecture.

Section 3 goes through geometric definitions used in our analysis of the dynamics. Section 4 zooms
in on properties of notches, the elementary segments of chains of tangent disks whose geometry deter-
mines the types of transitions that patterns go through (rhombic, triangle or pentagon). Section 5 gives
a parametrization of the phase space C3 of 3-chains. In Section 6, we begin the classification of the
dynamics of configurations starting on C3, concentrating on periodic or pre-periodic regions, while Sec-
tion 7 deals with the non periodic dynamics of asymptotic convergence. Section 8 contains concluding
remarks and it is followed by appendices where some of the more technical results are proven.

Acknowledgements. The authors would like to thank Pau Atela, Jacques Dumais and Christophe
Godin for useful conversations. Scott Hotton started the study of the topology and symmetries of disk
chains, and we have borrowed some of his terminology, descriptions, and illustrations of the space C3
of 3-chains, for which we are grateful. Finally, we are grateful to Rebecca Benhardt who, while a Smith
College student, came across the special kind of rhombic tilings that we named after her.

2 Convergence: simulations and results

In this section we introduce the phenomenology of convergence of the disk stacking process. We also
sketch the proofs involved in the classification of its dynamics.

2.1 Informal introduction to the geometric concepts.

A rigorous approach to the concepts and their properties are presented in Section 3.1.
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Geometry of disk stacking The disk stacking process consists in placing disks one by one on the sur-
face of the cylinder, in the lowest place possible without overlap with previously placed disks. Assuming
that the initial configuration, not necessarily a result of the dynamical process itself, is dense enough so
that disks can’t “fall through the cracks”, each new disk must then rest tangentially on two lower disks.
We will make this density condition precise and call it admissibility. The disk stacking process can be
seen as a map S (sometimes multivalued) from an admissible configuration to another one.

We say that the new disk is the child of the disks that it is tangent to, one on the left and one on the
right, which we call its parents. Occasionally a disk has 3 parents. As the stacking proceeds, the pattern
forms a graph, called ontogenetic graph [32] whose vertices are the centers of the disks, and the edges
connect parents and children (see Figure 1b & c). Orienting the edges from left to right, they become
vectors that either point up or down, and we call them accordingly up or down vectors of the chain (see
Figures 2 A).

Chains and their parastichy numbers After a few iterations (e.g. 5 iterations in Figures 2 A and B),
the top of the pattern becomes a prone, cylindrical chain of disks enclosing the cylinder. A chain of disks
is just a finite sequences of disks, each one tangent to the previous one. The chain is prone if it’s oriented
so that the vector connecting the centers of a disk to the next one is pointing to the right, i.e. is an up or
down vector. The chain is cylindrical if goes once around the cylinder before closing back on its initial
disk. In Figure 2A, the sequence of disks 10:7:9:16:14 is not a chain since 16 is not tangent to 9. The
sequence 10:7:4:6:9:11:8:10, while a cylindrical chain, is not prone. The sequences 10:7:4:6:8:10 and
10:7:9:6:8:10 form prone cylindrical chains. The latter has the distinction of being a front, i.e. a prone
cylindrical chain of disks such that the next disk piled on it, (11 here) is higher than any disk of the
front. In the first example, the next disk to be piled on it, 9, is lower than 10, so that chain is not a front.

The number of down vectors, and number of up vectors of a prone cylindrical chain of disks are
called its parastichy numbers [12, 22, 32].

In Figure 2A, all the prone cylindrical chains have the same parastichy numbers (number of downs,
number of ups) = (2, 3) as the original chain 5:2:4:1:3:5. This is due to the fact that faces formed by the
ontogenetic graph are all rhombic: the addition of a new disk only transposes a pair of up and down
vectors, with no net change in their numbers. Note also that, with a swap of colors, these numbers corre-
spond to the numbers of (undulating) parastichies of the pattern. Indeed there are 2 green parastichies
(1:3:7:9. . . and 2:4:6:8. . .) and 3 red ones (1:4:7. . ., 2:5:8. . . and 3:6:9. . .). This correspondence arises from
the fact that a red parastichy contains the tip of exactly one green vector of the (prone, cylindrical) chain.
This innocuous property contains the power of the concept of chain or front parastichy numbers: it gen-
eralizes the classical concept of parastichy numbers, in that it coincides with it when parastichies are
clear in a disk piling pattern but it is also defined when the pattern does not have clear parastichies. It is
more local and computable than the classical concept, and thus eminently suited for transition analysis.

To start seeing the usefulness of chain parastichy numbers, consider the front 11.9.10.7.8.11 in Figure
2 B. The child Disk 12 of the front and its parents 7 and 8, which are themselves tangent, form a triangle,

yielding a net increase of one down vector (namely
−−−−−→
(12)8 ) in the new front 11.9.10.7.12.8.11. Likewise,

the pentagon 7:12:14:13:10:7 decreases the number of down vectors by one.2 In [12, 28] we show, as
the radius of the disks is progressively decreased, how fronts, with orderly triangle transitions, act as
“Fibonacci-adding machines” explaining the widespread occurrence of Fibonacci parastichy numbers
in plants. Likewise, orderly pentagon transitions can explain the transitions of decreasing Fibonacci
parastichy numbers in sunflower or artichoke heads.

In Figure 2A, the chain 5:2:4:1:3:5 is also a front: the new disk stacked at the lowest place, i.e. 6 in
this case, is higher than all the disks in the front. This remains true of the successive chains formed
after that by adding the new disk, and removing the disk(s) between its parents. And this also holds for
Figure 2B. In plants, one should think of a front as the chain of primordia which, at a given time, form

2Crystallographers call these “ +1 or -1 dislocations”.
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Figure 2: Disk stacking process. A. The cylinder is shown unrolled, with a configuration of disks obtained by
stacking on the original configuration of gray disks. The two vertical lines represent the same “meridian” line on
the cylinder. Disks are stacked in the lowest place available, resulting in the order shown by the numbers. In this
case. The edges connecting tangent disks form the ontogenetic graph, with green up vectors and red down-vectors
(we only show their orientation in this picture). The faces of the graph are all rhombi, and thus the stacking is a
rhombic tiling. As shown by the black arrow, Front 11.8.10.7.9 is just a translation of Front 5.2.4.1.3. All fronts
have parastichy numbers (3, 2). B. The tiling produced by the ontogenetic graph includes not only rhombi but a
triangle and a pentagon, which break the translation symmetry. The triangle transition adds a red (down) vector,
and the pentagon removes one. As a result the front parastichy numbers switch from (3, 2) to (3, 3) (at Disk 12)
and back to (3, 2) (at Disk 14).

the boundary of the morphogenetic region at the growing tip of the plant.
We sometime denote a front or a chain by its highest element, which indicates the time at which it

was the highest chain. For instance 5.2.4.1.3.5 is the front at 5.

Rhombic tilings and the convergence conjecture. The configuration in Figure 2A is periodic: the
front at 10:7:9:11:8:10 is a translation of the front 5:2:4:1:3:5 by the vector (black, dashed arrow) joining
the centers of Disks 5 and 11. It is not a coincidence that 6, the period, is the product 3 × 2 of the
parastichy numbers common to all fronts in this configuration: the pattern returns to the same exact
front shape when all the transpositions in the 6 possible pairs of the 3 up and 2 down vectors in rhombic
transitions have occurred. Since its ontogenetic graph will forever have rhombic faces, we call this
pattern a rhombic tiling [12, 22]. Similarly to the example, all the fronts in a general rhombic tiling have
the same parastichy numbers, and any rhombic tiling of parastichy numbers (Ndown,Nup) is a periodic
orbit of period Ndown ·Nup for the stacking process. Sometime, when some of the down (or up) vectors
are equal, the period will divide Ndown ·Nup. The classical example is the case of a rhombic lattice,
where all up vectors are equal, and all the down vectors are equal: such a configuration, if obtained by
stacking, is a fixed point of the system. This is proven in [22], Proposition 6.4.

In our many numerical experiments, we have observed that, for random admissible initial conditions,
the configuration converges toward a rhombic tilling. This can happen in finite time (i.e. within a
finite number of iterations the pattern becomes periodic), as in Figure 2A, or in infinite time, with the
distance to a rhombic tilling decreasing asymptotically to zero (Figure 3A). This observation leads to the
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conjecture:

Conjecture 1. Under the disk stacking process S , any admissible configurations yields chains of rhombic tilings
after finitely many iterations or tends to one in infinitely many iterations.

In other words, this conjecture says that the global attractor of the system is a subset of the set of
rhombic tilings.3 The bulk of this paper is devoted to a complete analysis of the dynamics of the stacking
process on the space C3 of initial configurations that are fronts of parastichy numbers (1, 2) or (2, 1).
That analysis will show that Conjecture 1 indeed holds in this case:

Theorem 1. When starting with cylindrical chains of parastichy numbers (1, 2) or (2, 1), all chains obtained
in the stacking process either become chains of rhombic tilings after a finite number of iterations, or tend to
such chains in infinitely many iterations.

In the rest of this section, we present numerical simulations that provide a schematic picture of
all the different types of dynamics and convergence, and where they occur in C3. We then sketch the
proof of Theorem 1. We also present observations and heuristic arguments (Section 2.4) that show that
this mechanism is at play for configurations with chains of arbitrary parastichy numbers, evidence that
Conjecture 1 should also hold for longer initial chains, or arbitrary (admissible) initial conditions.

2.2 Dynamics on the chains of length 3: computer simulations

As mentioned above, our proof of Theorem 1, which occupies Sections 3-7, consists of an entire classifi-
cation of the dynamics of S on the space C3 of chains of length 3. We present here this classification via
numerical simulations, illustrating in particular the different modes of convergence.

Chains of length 3, i.e. chains of parastichy numbers either (1, 2) or (2, 1) can be parametrized by
the angles β1,β2,β3 their successive vectors make with the horizontal. Since the chain starts and ends at
the same point, we must have sin(β1) + sin(β2) + sin(β3) = 0. This is the equation of a surface in 3-space.
Non-overlap conditions further constrain 3-chains to a subset of this surface, that constitutes the space
C3. We will show that the projection of C3 onto its tangent space at (0,0,0), i.e. the plane β1 +β2 +β3 = 0,
is a hexagon (Section 5). The inverse of the projection on this hexagon provides a parametrization of C3.

Numerically, we detected exactly four types of dynamics for patterns starting in C3. These four types
partition the hexagonal parameter space into a “Star of David” with a rosace inside (see Figure 3R). Out-
side the star, all the patterns propagate immediately as rhombic tilings (deep blue); in the red petals
of the rosace, patterns seem to converge asymptotically to rhombic tilings, via an infinite sequence of
triangles and pentagons, with the pentagons progressively closing up; In the region outside the petals,
in lighter red on up to blue, the patterns become rhombic tiling in finite time, with only finitely many
triangles and pentagons. Finally, the six triangular rays of the “Star of David” are colored in purple
because, due to triple tangencies (where a child disk has three parents), they afford two possible inter-
pretations: either as (2, 2) - rhombic tilings (blue) or patterns with infinite time convergence, oscillating
periodically between chains of parastichy numbers (2, 1) and (2, 2) . We call these patterns Benhart
tilings after Rebecca Benhart, the Smith College student who first discovered them. It was surprising
(to us) that Benhart tilings form a full 2-dimensional subset of the parameter space: at first sight, the
condition of triple tangency that characterizes them seems non-generic, and intuitively should reduce
the dimension of this subset to 0 or 1.

Of course, the existence of the infinite convergence case can only be ascertained by a proof, which
was the initial motivation behind this paper.

3The attractor does not include all rhombic tilings: it is possible to find rhombic tilings that can’t be obtained by stacking,
e.g. rhombic lattices whose two sets of parastichies wind up the cylinder in the same direction.
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Figure 3: The different dynamics of fronts of C3. R. Fronts of C3 are parametrized by a hexagonal region H3 of the plane
β1 +β2 +β3 = 0, where βk is the angle that the kth vector of the chain makes with the horizontal. Fronts were iterated 200 times,
the top index of the last pentagon was recorded, and used to color the corresponding points with index 0 (in darker blue),
100 and above (in darker red) and the spectrum (orange and lighter blue) in between. We marked 4 points corresponding
to fronts whose dynamics appears in the figures of same labels. A (Infinite convergence): Pairs of pentagons and triangles
seem to occur indefinitely. However, the pentagons, after opening up, tend toward closed pentagons, as seen in A”, where
we translated the pentagons to the same base point, and indicated the dynamics from red (early iterations) to pink (late).
Because of pentagons closing up, the limiting pattern (see A’, after 287 iterates) can be interpreted as a (2, 3)-rhombic tiling.
See Theorem 2 and Figure 28. B. (Benhart Tiling). Because of their recurrent triple tangencies, these periodic patterns can
either be interpreted as (2, 2)-rhombic tilings or as patterns with closed pentagons, taking infinite time to converge (hence the
purple color of the 6 triangular regions they occupy). Since the disks at d and c are tangent, the 6 points marked can either
be grouped into the pentagon {a,b,c,d,e} and triangle {d,e, f } or as the two rhombi {a,b,c,d} and {c,d,e, f } C (Rhombic tiling).
All points outside the Star of David (deep blue in Figure R) correspond to either (1, 2) or (2, 1) rhombic tilings. D (Finite
convergence). Pentagons and triangles disappear after 21 iterations of S in this example, at which point the pattern turns into
a (2, 2)-rhombic tiling.

Packing density along orbits To connect our work to the extensive literature on packing density -
and the question as to whether Fibonacci phyllotaxis optimizes packing, and thus could be prefered by
evolution, we did some numerical experiment on how packing changes along the orbits of the stacking
process. The packing density of a configuration of disks is the proportion of the area occupied by the
disks in a given area of the cylinder. Lagrange (regular case, 1773) and Thue (general case, 1890) proved
that the densest possible packing of disks of equal radius in the plane (and hence in the cylinder, when
possible) is the triangular packing, where each disk has 6 tangent neighbors. This tiling has density
(π
√

3)/6 ≈ 0.9069 ( [35]). Work by Bergeron and Reutenauer [10] shows that, in some very precise sense4,
the density of cylindrical lattices is asymptotically maximized when the divergence angle of the lattice
is the Golden angle or any angle with same asymptotic continued fraction expansion (noble angles). The
minimal density for a regular lattice is obtained for a square lattice, of density π/4 ≈ 0.7854 .

Since the packing varies along an orbit in our case, we computed the density in bands of height 1 on
the cylinder, repeating this at each point of the orbit. We also calculated the average of these densities
over the asymptotic period of each orbit, again at each point of the orbit.

Clearly, because each orbit converges to a rhombic tiling, the average density becomes constant,
asymptotically (Figure 4 A) or in finite time (B, C, D). Interestingly, even though the dynamical process
of disk accretion is, at each iteration, optimizing the packing density, the density may increase and

4They work with the notion of ”growth capacity” which is π/4 times the packing density.
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Figure 4: Density plots along orbits. The density plots over bands of height 1 (gray), averaged over the asymptotic period
(blue) of the orbits of the chains A, B, C, and D of Figure 3. The red dotted lines indicate the minimum and maximum disk
packing density of π/4 and π

√
3/6. All configurations reach a plateau: the density of Configuration A does so asymptotically,

the others in finite time. And all end up increasing to the plateau, in the last phase of convergence - unless they already are on
the plateau, when the starting chain is already that of a rhombic tiling, as for Chain C.

decrease along an orbit. This is most notable for some orbits that converge in infinite time such as for
chain A, where the packing density may first dip down, as the pentagons open up, before going back up
again, as the pentagons close up. What seems to be true however is that the closing of the pentagons
always yields an increase of density. Hence, before stabilizing on a constant period-averaged density,
that density increases.

The rest of the paper, starting on Section 3.1 will concentrate on proving that the dynamics are
indeed as described above. This will prove in particular that all patterns starting with chains in C3 do
converge in either finite or infinite time to a rhombic tiling.

2.3 Sketch of the proofs involved in the classification

We now present the broad outline of the proofs behind the classification of the dynamics of the stacking
process. These proofs occur in Sections 4-7, after Section 3, where we give rigorous definitions and
establish basic properties of the stacking process. As we said earlier, we conceptualize the stacking
process as a map S on the space of configurations of disks on the cylinder and, for now, we use chains of
C3 as initial conditions.

To determine the offspring of a chain, i.e. the new disk determined by S applied to that chain, we first
analyze the possible offsprings of notches. An i, j notch is a sub-chain made of i down vectors followed
by j up vectors. In all the cases that we encounter in this paper, the offsprings of a chain is also the
offspring of one of it notches. The type of transition the chain undergoes is thus a function of the shape
of the notch, as parametrized by its hinge angles, as well as the general orientation of the notch (See
Figure 5).

τ

A
β2

τ

B
α

D

τ γ

C

τ

Figure 5: Notches and their offsprings. The first 3 examples shown are 1,1-notches. A. The hinge angle τ < 2π/3:
the offspring yields a quadrilateral transition. B. The hinge angle τ > 2π/3: the offspring undergoes a triangular
transition, resting on the up vector since it is less steep than the up vector. C. The hinge angle τ is identical to
the one in B. But the general orientation of the notch (as given by the angle β2) now makes the down vector less
steep, and the triangle rests on it. D. A 1,2-notch with a pentagon transition. The fact that α ≤ π/3 or equivalently
γ + τ ≤ 4π/3 is a necessary and sufficient condition for the existence of this transition (Proposition 4.3).

On the 1,1 notches, there is a rhombus transition if the hinge angle τ is in the interval [π/3,2π/3],
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and a triangle transition if τ is in [2π/3,π]. In the latter case, the triangle rests on the least steep of the
two vectors of the notch, insuring the lowest position possible for the offspring. The boundary cases
τ = π/3 or 2π/3 afford both interpretations as triangle and rhombus transitions. The 1,2 or 2,1 notches
present more possibilities: not only do they yield triangle and rhombus transitions, but they can also
generate pentagon transitions, see Figure 5D. Section 4 entirely classifies the possible offsprings of 1,2 or
2,1 notches, depending on conditions on the two hinge angles τ,γ of the notch, as well as on the bearing
angle β2, which gives the angular orientation of the notch. Even though the chains we’ll encounter in
our proofs may have notches of length greater than 3, this classification is enough to examine all the
situations that arise in orbits of S starting in C3.

β  = 03

β  = 02

β
 = 0
1

β  = 
3
β 2

β  = π/3 1β2

β  = 2π/3 1
β3

β  = π/3 
1

β
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β
 = 2π/3 
1

β
2

A B

B’

A

(3)A’
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C

C’ C’
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�
�
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A’

Figure 6: First iterations on chains in C3. The set of all admissible 3-chains, reduced by symmetry to a
kite shape parameter region in the plane β1 + β2 + β3 = 0. Representative chains from that region (black
disks joined by blue segments) are shown with their first iterates (in grey)

We use symmetry to reduce our study to a kite-shaped slice of the parameter spaceH3 of C3, between
the planes β2 = 0 and β3 = 0. The symmetries, i.e. geometric transformations that commute with S ,
consist of the permutations (β1,β2,β3)→ (β2,β3,β1)→ (β3,β1,β2), which can be seen as just choosing a
different starting point for the same chain. Another symmetry consists of reflecting the chain about a
vertical axis, yielding (β1,β2,β3)→ (−β3,−β2,−β1). Combinations of these two types of symmetry give
rise to 6 distinct symmetries, and hence the hexagonal symmetry of the parameter space. (Section 6).
Hence studying the stacking process starting on 1/6 of the parameter space - a Kite shape sector - is
enough to understand the outcomes of the process on all 3-chains in C3.

Using our knowledge of notch offsprings, we determine the outcome of the first four iterations of S .
For this we partition the kite along the lines β2 = β3 (long diagonal), β2 −β1 = π/3 (vertical bisector) and
β3 − β1 = π/3 (diagonal bisector). These lines separate chains according to whether they or their iterates
never have triangle offsprings (Region C ∪C′), or they have one within the first (Region A∪A′ ∪B′) or
second iteration (Region B). Chains in Region C ∪C′ are chains of 2, 1-rhombic tilings, and S has the
effect, via rhombic transitions, of flipping β2 and β3 at each iteration, yielding period 2 orbits. Region
B∪B′ is made of Benhart tilings, of period 4. Finally, all the chains from Region A’ go to Region A in 3
iterations.

The most complex and surprising dynamics is concentrated in Region A, characterized by the equa-
tions β2 − β1 < π/3, β3 < β2 (Section 7).

It turns out that, to establish the dynamics in that region, it is necessary to entirely understand the
effect of the 8 first iterations on the initial chain 1:2:3:1 . We do this step by step, showing that the
combinatorics of the transitions is the same for all chains in that region, up to Disk 10 (Figure 7): 2
triangles, one pentagon, 3 rhombii, then either a triangle or repeated rhombii. Moreover, we trace the
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parents of each new disk. We prove for instance that Disk 7 is always R45, meaning that it undergoes a
rhombic transition with parents 4 and 5.

1
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3
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8
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I
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Figure 7: Dynamics in
Region A. The conserved
quantity I is the length of
the dotted segments.

The universality is broken at Disk 10, which can either be R98 or, as in Fig-
ure 7, the triangular T78. In the latter case, we can show that the geometric
conditions on Chain 11.9.7.10.8.11 are similar to those that permitted our
analysis starting on Chain 5.3.1.4.2.5, six iterations before. The same com-
binatorial dynamics thus applies, and repeats every 6 iterations, or until
the analog of the angle ∠8.7.9, 6k iterations away, becomes small enough
to stop giving rise to a triangular transition. We show that, in some cases
this occurs for a finite k, in others one needs to let k go to infinity for this
angle to go below the threshold 2π/3. The question is then: how to distin-
guish between these two cases? The key to this answer is represented by
the colored vectors in Figure 7.
The vectors of like colors shown in this figure are identical because of
rhombic transitions. For instance the green vectors

−−→
56 and

−−→
78 are equal.

Because of this, the composite vectors
−−−−−→
8(11) and

−−→
25 are equal and their

norm constitutes a conserved quantity I under the sixth iteration S6 of S ,
as long as triangles occur.

Because of the colored vectors identities, a rotation by π and a translation of Chain 5.6.4.2 gives
Chain 8.7.9.11, with corresponding vectors in reverse order. The shapes of these chains are determined
by their hinge angles τ = ∠1.3.5,γ = ∠2.1.3 and τ ′ = ∠7.9.11 = ∠2.4.6,γ ′ = ∠8.7.9 = ∠5.6.4 and they in turn
determine the shapes of the chains 5.3.1.4.2.5 and S6(5.3.1.4.2.5) = 11.9.7.10.8 (see Figure 8a). We show
that, in general, on the chains {S6k(5.3.1.4.2.5) : k ∈ N}, S6 can be expressed as S6(τ,γ,α) = (τ ′ ,γ ′ ,α),
where α, constant along an orbit, is the angle that the yellow vector make with the horizontal. To
understand the asymptotic behavior of S , it is therefore enough to understand the map defined by
φ(τ,γ) = (τ ′ ,γ ′).
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γʹ
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I

Figure 8: Conserved quantity I and dy-
namics in A. a. Hexagon formed by a pair
of triangle-pentagon, with the original hinges
angles τ and γ and the transformed angles τ ′

and γ ′ . b. Isolines of I in Region A, with the
resulting dynamics color-coded as in Fig. 3.
The lighter blue region is mapped in one iter-
ation of φ into the darker blue region, e.g. ,
while preserving the isolines.

With the rotation symmetry pointed to above, the angles
that define φ appear within the hexagon formed by the tri-
angle and pentagon pairs of the configuration (Figure 8a).
Simple geometry shows that τ ′ ≥ τ and γ ′ ≤ γ , which ex-
plains the change of shape of the pentagon in Figure 3A’, as
well as the arrows in Figure 8b. Indeed, this and other prop-
erties translate into properties of the conserved quantity I ,
whose isolines can be traced in coordinates of the Region A
of C3 (in white on Fig. 8b).
In this representation, points in the upper boundary (hy-
potenuse) correspond to γ ′ = γ,τ ′ = τ , i.e. fixed points of
φ. They also correspond to rhombic tilings: the hexagon of
Figure 8a has parallel opposite sides in this case, and thus
the middle quadrilateral (joining the vertices with marked
angles γ,γ ′ , τ,τ ′) is a rhombus (see Figure 28 for an exam-
ple). Isolines of I join the fixed points on the hypotenuse by
pairs. A point on such an isoline converges asymptotically,
under infinitely many iterations of φ, to the right hand fixed
point of the pair, and to the left hand fixed points under it-
erations of φ−1: its orbit is heteroclinic.
One isoline of I connects the endpoints of the hypotenuse.
This curve, and all the isolines above it, correspond to het-
eroclinic orbits. This region corresponds exactly to the red
petal-shaped region of our simulation, confirming that it is
indeed the region of infinite convergence to rhombic tilings.

Below that red region, the isolines end up on the vertical right side of region A touching the region B of
the Benhart tilings. Points there end up, in a finite number of iterations of φ, in the darker blue region to
the right of the black curve, corresponding to the set where exactly one triangle transition occurs. After
that triangle, the configuration is then a rhombic tiling. These orbits thus reach rhombic tiling chains in
finite time . This ends the classification of the dynamics of orbits starting on C3, and the proof that any
such orbit converges to a rhombic tiling, with a precise distinction between those that do so in finite and
those that do it in finite time.
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2.4 Convergence in configurations starting with longer chains.

A B C

Figure 9: Convergence in higher dimensions. A. A pattern that goes from (4, 4) to (4, 5) and back to (4, 4) via triangle
and pentagon pairs. The latter shrink slowly, indicating convergence. B & C. By removing many of the rhombi, we can “factor
out” the non essential elements of the dynamics, i.e. , rhombi. Doing so reduces the pattern to the dynamics of convergence of
smaller chains, pointing to the universality of the mechanism.

From our many simulations with initial conditions of various length, we found the same kind of conver-
gence as with C3 chains, and the same kind of convergence mechanism at play. Indeed, either we ob-
served rhombic tilings, or sequences of triangle and pentagon pairs arranged along parastichies. There
again, we observed the pentagons in these pairs disappear in finite time or shrinking asymptotically -
in either cases the patterns converge to rhombic tilings. Figure 9 shows how the dynamics in higher di-
mensions (longer chains) can in a sense be reduced to lower dimensions (shorter chains). But things can
get a little more complicated: we have also observed patterns where two distinct sequences of triangles
and pentagons can evolve in parallel. We have also observed cases where an isolated hexagon transition
may appear. But, again, all pattern we observed did converge to rhombic tilings, all eventually involving
pairs of triangles and pentagons in a row, separated by rhombi.

Systematic iterations on a 2D slice of 5,3-fronts To get a more global view of convergence in the
spaces of longer chains, we ran the disk stacking process on fronts from a two dimensional slice of the
space of (5, 3)-chains of a given diameter. This space, around a generic point, is 6-dimensional: there
are 8 angles defining the vectors of the front, but two of these are determined by the other 6.

ε

δ

A B

Figure 10: Witches hats. A 5,3 witches hat, with ε = .5, δ = .4, and its corresponding front.
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Figure 11: Convergence in higher dimensions. A The space of “witch hats” fronts as parametrized by ε,δ. It is colored
according to the parastichy numbers of the final fronts after 100 iterations. Green: (5, 3)-rhombic tilings (the origin represents
the (5, 3)- lattice with the given disk diameter), Red: converging to (5, 3)-rhombic tilings, pink: converging to (5,4) rhombic
tilings, darker yellow: (6, 3), lighter yellow: (6,4), darker blue: (4,3), medium blue (4, 4), lighter blues: (4,5) and (4,6). B The
same points, but projected via their sum of up vectors. The (4,3) and (4,5) points are not very visible, but they exist. The set
of sum of up vectors of the (4,4) points (left insert) and (5, 3) points (right insert) have been magnified to show the folding
occurring in the projection.

We swept through a 2 dimensional slice of this 6 dimensional space (with disk diameter 0.1688), by
choosing fronts that are defined by taking all but one of each up and down vectors to be the same. The
parameters are the angle ε and δ that the exceptional up vector (resp. exceptional down vector) makes
with the rest. These are best visualized in the chain obtained by rearranging the vectors of the front,
putting all the up vectors first, and then the down vectors looked to us as a “witch hat”, hence the name.
See Figure 10. Iterating S on this subset of (5, 3)-fronts, we observed systematic convergence to rhombic
tilings, in either finite or infinite time. The irregularity of the witch hat fronts produces convergence to
rhombic tilings of many different parastichy number, apart from the original (5, 3): (4, 3), (4, 4), (4, 5),
(4, 6), (5, 4), (6, 3), (6, 4). Taking the quotient of the largest over the smallest of each pair yields values
usually closer to one than the original 5/3. This is a phenomenon - migration towards quasi-symmetry-
that we have studied more extensively in [12].

3 Dynamical and geometric definitions

3.1 Disk stacking process S

As described earlier, the disk stacking process consists of adding disks of constant diameter on the
surface of the cylinder in the lowest possible place with no overlap with the existing disks. This process
is well defined when the configuration has no holes large enough to let the new disk percolate down
indefinitely. When this is the case, it is intuitively clear that the new offspring disk will land tangentially
to two parent disks of the configuration and that the parents are on opposite sides of the offspring. We
make all these notions more precise in this section.

The cylinder C We define the cylinder C to be the plane with identifications: (x + n,y) � (x,y),∀n ∈ Z,
that is C = R/Z×R. We think of the plane R

2 as an image of the unrolled cylinder. Mathematically, R2

is homeomorphic to the universal covering space C̃ of the cylinder C. With this convention, the cylinder
has circumference 1.
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C C

a b

Figure 12: Disk stacking process. a. The dark gray disks of diameter b (= .184 here) form an admissible configuration:
the corresponding disks of diameter 2b (lighter gray) form a bounding curve for the top component A. The offspring disk of
the configuration is centered at the minimum C of the bounding curve. The part of the circle ∂D of radius 2b centered at C
replaces arcs in the former bounding curve to form the new one. b. After the stacking process is iterated 8 times (in this case),
it forms a chain of disks, represented here by the blue zigzagging line joining the centers of its disk. As the offspring of this
chain is higher than any of its disks the chain is actually a front.

Admissible configurations Given a finite configuration of closed disks of some fixed diameter5 b ≤ 1
(dark gray in Figure 12) on the surface of a cylinder C, construct closed disks of diameter 2b (lighter gray
in Figure 12) concentric to the smaller ones. Call Ω the set of these larger disks. Take a point P higher
than any point of Ω. We say that a configuration is admissible if the connected component of P in the
complement Ωc is bounded below. Call this the top component A of the configuration.

Definition 3.1. (Disk stacking process S) Given an admissible configuration of disks of diameter b,
add a new disk of diameter b centered at the lowest point C of the boundary ∂A of the top component.

In practice, C is the lowest point of the connected component of ∂A that separates the cylinder into
a part that contains A and an other that contains arbitrarily low points of the cylinder.

We call the new added disk the offspring of the configuration. Once the offspring is added, we obtain
a new admissible configuration. Indeed, consider the closed disk D of diameter 2b about C. Adding
D to Ω makes the new top component a subset of the former one. The new com which makes the new
component bounded below. Hence the process can be iterated indefinitely.

Lemma 3.1. (No overlap condition) The offspring of a configuration does not overlap the interior of the disks
of the configuration.

Proof. Since the center of the offspring is on a component of the boundary of Ω, which is made of arcs
of the circles of diameter 2b, it is at distance at least b from any (dark) disk in the configuration.

Lemma 3.2. (Opposedness condition) The offspring of a configuration is tangent to two disks of the config-
uration on opposite sides of a vertical line through the center of the offspring.

Proof. To prove this, we show that the lowest point C of ∂A is at the intersection of two arcs of circles
that bound disks of Ω, and that the centers of these circles are on opposite sides of the vertical through
C. Since ∂A is a union of arcs of circles bounding disks of Ω, C must belong to one of those arcs. Assume
by contradiction that C is not an intersection point of the arc with another disk of Ω. Since C must be

5The notation is that of van Iterson [11]. It is a fundamental parameter in phyllotaxis, that can be interpreted as the ratio
of the primordium diameter over the circumference of the meristem. In [30] the related parameter Γ = b/2π, the ratio of the
primordium diameter over the radius of the meristem is used.
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the lowest point on this arc, it must be the bottom point of the circle the arc is on. Since the disk D the
circle bounds is in Ω, and C is in ∂A, there must exist ε > 0 such that the ball Bε(C) intersects both D
and A, and no other disk of Ω. Since Bε(C)∩D is above C, the points of Bε(C) vertically below C, are
all in A. But as A is bounded below, these points themselves must be vertically above some point of
∂A. This contradicts the fact that C is the lowest point of ∂A. Hence C is the intersection point between
two boundary circles of disks of Ω, of centers that we denote by P1 and P2. This makes the offspring
disk, of diameter b centered at C, tangent to the configuration disks centered at P1 and P2. We claim that
these points are on opposite sides of the vertical through C. Indeed, suppose not and, without loss of
generality both P1 and P2 are to the left of C. Then C is at the intersection of the two right half-circles
of radius b centered at these points, and there are points below C on the lowest of these two half circles
that belong to ∂A, a contradiction.

As mentioned in the previous section, we call the two disks of radius b centered at P1 and P2 the
parents of the offspring, and we say that the offspring is the child of these two disks. Note that, there can
sometime be a third disk of Ω passing through C, but only two of these disks may contribute to the two
arcs forming the boundary ∂A around C. This gives an unambiguous definition of the parents of a child:
out of the all the configuration disks tangent to an offspring, its parents must be the highest possible
opposite pair.

3.2 S as a dynamical system

We have defined a disk stacking process that can be iterated indefinitely. To make it into a discrete
dynamical system, we need to define the state space on which S acts as a map. Each disk of the con-
figuration can be characterized by two variables, namely the two coordinates of its center. To obtain a
phase space of fixed dimension, we consider admissible configurations of a large enough number K of
disks (depending on the size b of the disks: the smaller b is, the larger K must be) and, as we add an
offspring to the configuration, we remove the lowest disk in the configuration. The process becomes
then a map S : CK 7→ CK . The map is multivalued at (non-generic) configurations which possess two
or more possible offsprings at the same height. Think for instance of a configuration made of equally
spaced, horizontally aligned disks: any disk above, and tangent to two neighboring disks of the line is a
legal candidate.

We say that two configurations have same (oriented) shape if one can be translated (on the cylinder)
to the other. Having the same shape is a relation of equivalence ∼, whose set of equivalence classes,
CK / ∼ is the shape space of configurations. The shape space has dimension 2(K − 1): every configuration
in an equivalence class can be translated to a representative that has its lower disk centered at a (0, 0).
This reduces the numbers of degrees of freedom by 2.

Clearly S commutes with any translation: the offspring of a translated configuration is the translation
of the offspring. This allows us to think of the map S as acting on CK / ∼, and we keep the same notation
S for this quotient map.

Rhombic tilings as periodic orbits, lattices as fixed points We defined in the previous section rhom-
bic tilings as configurations with only rhombic transitions (Figure 2A). We argued there that the effect of
S on the fronts of a rhombic tiling was to transposition of a pair of down and up vectors, and therefore,
if there areM down, andN up vectors, a maximum ofMN transpositions can take place before the front
recovers its original order of up and down vectors, and hence its original shape. Hence rhombic tilings
arising from disk stacking are periodic orbits of period MN for S acting on shape space.

Note that this argument seems to rest solely on algebraic and combinatorial facts about the tilings.
The algebraic tack is indeed taken in [22], where a rhombic tiling of parastichy numbers (M,N ) is defined
as a set of points that correspond to sums of down and up vectors chosen among M given down vectors,
and N up vectors. These vectors and their sums satisfy certain periodicity conditions. The periodicity
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of rhombic tilings under S is proven somewhat differently from the above argument ( [22], Proposition
6.4), by counting the number of points between a front and its translation by the vector formed by
summing all the up vectors.

Sometime, when some of the down (or up) vectors are equal, the minimum period of the rhombic
tiling is a proper divisor ofMN . This occurs for configurations starting with chains of C3 in the diagonal
of the kite (Figure 6) where the 2 up vectors are equal. In the part of a diagonal that’s in a petal of C3
(boundary between Regions A and A’), the chain becomes, in two iterations, a front of a 3,2 rhombic
tilings, with two of its three down vectors equal (see Figure 28). The resulting configuration has period
3, which divides the full period 6. In the part of the diagonal that’s in the blue region (boundary between
Regions C and C′), the chain is immediately a front of a 1,2 rhombic tiling, but with equal up vectors.
Simple observation shows that these tilings have period 1, which obviously divides the predicted period
MN = 2.

The latter configurations are examples rhombic cylindrical lattices where all the up vectors are equal,
and all the down vectors are equal. In general, a cylindrical lattice is a set of points obtained as the integer
multiples of a given generating vector on the cylinder (i.e. (mod (1, 0) in the plane); this can be thought
of as a representation of the group Z as a subgroup of the cylinder, itself seen as the group S

1 ×Z, [22]
). A rhombic cylindrical lattice is a cylindrical lattice where the two closest neighbors of any given
point are equidistant to it. Their set, parametrized by their generator, forms the “van Iterson Diagram”,
a P SL(2,Z)−invariant binary tree of the the upper half plane, formed by arcs of circles (hyperbolic
geodesics).

Any rhombic lattice obtained by disk stacking is a fixed point of S acting on shape space ( [22],
Proposition 6.4). Visually, rhombic lattices are “straightened-up” rhombic tilings. The set of fixed points
is a proper subset of the van iterson diagram: the tree must be “pruned” to only comprise the lattices
that are orbits of S [8, 11, 23, 27].

A natural question arises: Are there any periodic configurations other than rhombic tilings for S? Prov-
ing Conjecture 1 would answer this question by the negative: if all configurations tend to, or become
rhombic tilings, then no indefinitely repeating configuration could be other than a rhombic tiling itself.
Certainly, among all configurations starting with chains of C3, all periodic configurations are rhombic
tilings.

3.3 Chains, fronts and their notches

Chains and their properties As we have seen above, to describe the zigzagging lines joining adjacent
disks in the upper layer of a configuration we use the language of chains and fronts. We now make
their definitions rigorous and derive some general properties of these chains. A polygonal chain in the
plane [36] (or, simply, chain in this article) is a piecewise linear curve consisting of vertices A0,A1, . . . ,AN
and the line segments Ak−1Ak , k ∈ {1, . . . ,N }, called edges, that connect consecutive vertices. The length
of a chain is its number of edges. Choosing an order for the vertices confers an orientation to the chain

, in which each edge becomes a vector
−−−−−−−→
Ak−1Ak . A chain A0A2 · · ·AN is closed if A0 = AN , and is open

otherwise. A chain is simple if only consecutive edges ( that includes the first and last, for closed chains)
intersect at their common vertex. A chain is equilateral if its edges all have same length, which we
denote generically by b, as the diameters of the disks in [11]. In this article, unless otherwise mentioned
all chains are assumed to be simple and equilateral. We call a ( simple, equilateral) chain a chain of disks if
the open disks of diameter b centered at its vertices do not intersect.

These notions transfer readily to the cylinder C, with additional features. Indeed there are two kinds
of closed chains in C: those that are contractible (i.e. continuously deformable to a point) and those that
are not. We call the non-contractible closed chains in the cylinder cylindrical chains. A cylindrical chain
wraps around the cylinder once. Drawn on the unrolled cylinder, a cylindrical chain is an open planar
chain whose end points differ by the vector (±1,0).6

6Note that an open planar chain whose end points differ by the vector (n,0), with n an integer different from ±1 would
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We denote by dX the open disk of diameter b about a point X, by DX the open disk of diameter 2b
about X and by CX = ∂DX the circle of diameter 2b about a X. The disks dX and dY overlap if XY < b.
This is equivalent to X ∈DY and Y ∈DX .

By extension, we will say that, given b, the points X and Y overlap if dX ∩dY , �. Using this terminol-
ogy, a (simple, equilateral) chain is a chain of disks whenever no two of its vertices overlap.

To make this more precise, recall that an orientation of the plane is given by the choice of an ordered
basis that is declared positively oriented - usually the canonical basis {−→e1 ,

−→e2 } = {(1,0), (0,1)}. Any other
basis falls into the positive or negative orientation category according to the sign of the determinant of
its vectors expressed in the original basis.

Bearing angles and hinge angles of a chain We denote by ∠(−→v , −→w ) the angle obtained by basing the
vectors −→v , −→w at the same point and traveling counterclockwise from vector −→v to vector −→w . We use the
same notation for the measure, in radians, of that angle. If the measure θ of the angle is greater than

π, we also give it the measure θ − 2π when convenient. We use the notation ∠ABC = ∠(
−−→
BA ,
−−→
BC ) for the

angle formed by three points in the plane. We say that C is to the right of
−−→
AB if ∠BAC < 0 and to its left

otherwise.
These definitions also hold in the cylinder as long as the x coordinates of the vectors involved are

less than 1 in absolute value.
The bearing angle ∠~v of a vector ~v in the cylinder or the plane is the angle it makes with the oriented

horizontal axis - in other words it is the angular coordinate of the vector when written in polar coordi-

nates. Equivalently, ∠~v = ∠(−→e1 ,
−→v ), where −→e1 = (1,0). In a chain A0A2 · · ·AN we denote by βj = ∠

−−−−−−→
Aj−1Aj ,

the bearing angle of the jth vector of the chain.

Up and down vectors and parastichy numbers of a prone chain. We say that a chain A0A2 · · ·AN is
prone if its bearing angles βj ∈ (−π/2,π/2), j ∈ {1, . . . ,N }. Intuitively, a prone chain is oriented from left to
right, and it does not fold over itself, and can only close by going around the cylinder. A prone chain is

monotone with respect to the horizontal, in the language of polygonal chains [36]. A vector
−−−−−−→
Aj−1Aj in a

prone chain is called a down vector if its bearing angle βj ∈ (−π/2,0) and an up vector if βj ∈ [0,π/2).
If a chain has m down and n up vectors, we say that it has parastichy numbers (m,n) and that it is an

m,n-chain. If N =m+ n, we also say that it is an N -chain. When in a configuration the parastichy num-
bers of successive fronts are constant, their parastichy numbers correspond to the classical parastichy
numbers of cylindrical lattices , see Figure 2 ( [12, 22]).

We say that a chain is a notch if it is prone, and it consists of k + j vectors where the k first are down
vectors and the j last are up vectors. Clearly such a notch has parastichy numbers k, j and we say it is a
k, j-notch. A prone, cylindrical chain can always be decomposed into a sequence of notches: starting at
the highest disk of the chain, the first vector must be down, and the last must be up.

Hinge angles and the no-overlap condition We define the hinge angle hj of a chain A0A2 · · ·AN by

hj = ∠Aj+1AjAj−1 = π+ βj − βj+1. (1)

(See Figure 13). These angles determine the shape of the chain. Note that, representing them in (−π,π],
hj > 0 means the chain is having a “left turn” at Aj , whereas hj < 0 means it’s having a “right turn”.
Hence in Figure 13, the chain is making a left turn at A1 and at A3, and a right turn at A2,

A consequence of the no-overlap condition in an equilateral chain of disks A0A2 · · ·AN is that∣∣∣hj ∣∣∣ ≥ π/3. (2)

necessarily self intersect in C, or would not be homeomorphic to the circle.
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Figure 13: Bearing angles, hinge angles, parastichy numbers and notches of a chain. The chain A0A1A2A3A4 is prone
as β1,β2,β3,β4 ∈ (−π/2,π/2) and equilateral, but it is not a chain of disks, since A2 and A4 overlap: π − β3 + β4 = h3 < π/3.
However the subchain A0A1A2A3 is prone, equilateral and a chain of disks: it has no overlaps. Neither chain is a cylindrical
chain: A0 and A4 are not at the same height and thus could not represent the same point in the cylinder, and likewise for

A0,A3. The vectors
−−−−−→
A0A1 ,

−−−−−→
A2A3 are down vectors since their bearing angles β1,β3 are negative. Likewise

−−−−−→
A1A2 ,

−−−−−→
A3A4 are

up vectors since their bearing angles β2,β4 are positive. This means that A0A1A2A3A4 has parastichy numbers (2, 2), whereas
A0A1A2A3 has parastichy numbers (2, 1). A0A1A2A3A4 is composed of the two 1,1-notches A0A1A2 and A2A3A4.

(or hj ∈ [π/3,5π/3], when considering hj ∈ [0,2π)). Indeed 0 ≤ hj = ∠Aj+1AjAj−1 < π/3 implies that
Aj+1Aj−1 < b, i.e. these two points overlap. In terms of the bearing angles, this local no-overlap condition
is ∣∣∣βj − βj+1

∣∣∣ ≤ 2π/3. (3)

As could be expected, for a prone, equilateral chain of disks, the no-overlap with immediate neighbors
implies no overlap at all:

Proposition 3.3. An equilateral and prone chain in the plane, with hinge angles in [π/3,5π/3] has no overlap,
i.e. it is a chain of disks.

Proof. We prove the statement by induction on the length N of the chain. The first meaningful step
is N = 3. Let A0A1A2 be an equilateral, prone 3-chain. Its only hinge angle is h1 = ∠A2A1A0. Since
A0A1 = A1A2 = b, the only overlap possible in the chain A0A1A2 occurs when A0A2 < b, or equivalently
|∠A2A1A0| = h1 < π/3. Assume now by induction that any equilateral and prone chain of length strictly
less than N with hinge angles within [π/3,5π/3] has no overlap. Let A0A2 · · ·AN be an equilateral, prone
chain with hinge angles within [π/3,5π/3]. The only points of the chain that could overlap are A0 and
AN . Indeed, an overlap of Aj and Ak , with {j,k} , {0,N }, would contradict the induction hypothesis for
the (prone, equilateral) subchain Aj · · ·Ak , which is of length strictly less than N .

Assume now by contradiction that A0 and AN overlap. Since the chain is prone, it is contained in
the vertical strip of cylinder, call it CA0AN , between the vertical lines through A0 and AN (included): the
chain would have to fold over itself otherwise. Without loss of generality we can also assume that A1 is

to the right of
−−−−−→
A0AN , i.e. ∠ANA0A1 < 0. We claim that AN−1 is then also to the right of

−−−−−→
A0AN . If not, let

j ∈ {1, . . . ,N − 1} be the last such that Aj is to the right of
−−−−−→
A0AN . Then ∠ANA0Aj < 0 and ∠ANA0Aj+1 > 0.

Since Aj ,Aj+1 ∈ CA0AN , the segments AjAj+1 and A0AN must cross and thus form the diagonals of a
convex quadrilateral ANAjA0Aj+1. Since A0 and AN overlap, these diagonals have both length ≤ b, and
at least one of the sides of the quadrilateral must have length less than b. But that means Aj and/or Aj+1
overlap A0 and/or AN , a contradiction to our induction hypothesis. Since the chain is prone and both
A1,AN−1 ∈ CA0AN and are to the right of ~A0AN , we have

−π/2 < ∠
−−−−−→
A0A1 < ∠

−−−−−→
A0A1 , ∠

−−−−−→
A0A1 < ∠

−−−−−−−−→
AN−1AN < π/2.

The line through A0A1 and the line through AN−1AN must then meet at a point I in CA0AN below A0AN .
The law of cosines applied to the triangles 4A1IAN−1 and 4A0IAN , and their common angle ∠A0IAN ,
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shows that A1AN−1 < A0AN < b, and hence A1 and AN−1 overlap, a contradiction to our induction hy-
pothesis. Thus A0,AN do not overlap.

Remark 3.1. Note that if the angle condition for a prone chain was relaxed to allow bearing angle to
roam over the closed interval [−π/2,π/2],

the proof of Proposition 3.3 would still go through. The only case not covered is when A1 is vertically
below A0 and AN−1 is vertically below AN . In this case, A0A1AN−1AN is a parallelogram, and thus
A1AN−1 = A0AN < b yielding the contradiction that A1 and AN−1 overlap if A0 and AN do. Note however
that the boundary case A0AN = b is possible when we allow for vertical up vectors as well as vertical
down vectors.

Propagation of chains and fronts All the configurations of disks that we will encounter in this paper
are topped by a cylindrical chain. In fact, although we won’t need this fact here, one can prove that any
admissible configuration eventually yields a prone cylindrical chain on top of the configuration. We will
say in this case that the configuration is topped by cylindrical chain. A precise way to say this that the
complement of the disks (of diameter b) in the chain has two connected components, an upper one U
containing arbitrarily high points of C, and similarly for the lower component. The chain is on top of the
configuration if the disks in the configuration are all in the complement U c of U . Equivalently, doubling
the diameter of the disks, we get, using the notation in Definition 3.1, that the set Ω is bounded above
by a curve that encircles the cylinder.

The following lemma shows that these top chains govern the dynamics of S

Lemma 3.4. If a configuration is topped by a prone cylindrical chain c of disks, then it is admissible and its
image by S is also topped by a prone cylindrical chain of disks which is above c. A cylindrical chain is made of
notches.

Proof. Let a configuration be topped by a prone cylindrical chain of disks c = A0A2 · · ·AN . Since the chain
is cylindrical, The complement of the set of closed disks of diameter b centered at its points separate the
cylinder into an upper and a lower component.The set Ω consisting of disks of diameter 2b centered
at the same points thus necessarily also separate the cylinder in two. Thus the chain c is an admissible
configuration in of itself. By assumption the top component A of the complement of Ω is also the
top component for the whole configuration. So the offspring K of this configuration is the same as the
offspring of c. In particular, the parents of K are disks of c. One gets a new cylindrical chain c′ of disks
by taking the union of K and the points of c, and removing those that are strictly between the parents of
K in c. This remains a prone chain, since the parents are on opposite sides of K by Lemma 3.2. Also, the
removed points between the parents are below c′, that is, in the complement of its top component A′.
Since A′ ⊂ A and the chain c ⊂ Ac, we must have c ⊂ A′c, that is c′ is above c.

To see that a prone cylindrical chain c is made of notches, start at the highest point of the chain. You
must go down, and necessarily up again, since the chain is closed. Reaching the top of that first hill, if
you are not back at the starting point, you necessarily have to go down again. Proceeding recursively
this way, the last stretch is necessarily uphill since the start and end point is the highest.

As mentioned earlier, if the offspring of the chain is higher than all the disks in the chain, we call the
chain a front (see Figure 2). Although we will not need to prove this here, any chain that is not itself
a front will eventually yield a front and from then on, the configuration is always bounded above by a
front.

In a chain, the number of disks separating the parents of the offspring determines the parastichy
numbers of the new chain formed. Indeed, if the parents of the offspring are adjacent, the offspring and
its two parents form an equilateral triangle. This type of transition yields a net increase in one of the
parastichy numbers of the chain, as one vector of the chain begets two new ones (Figure 14A). If there
is exactly one disk of the front between the parents, that disk, the parents and the offspring form a a
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rhombus (Figure 2B). In this case there is no net change in the parastichy numbers of the chain: the two
front vectors involved are replaced by two parallel vectors, with a transposition in their order. More
generally, we classify the type of transitions a new disk induces by the polygon it encloses with the the
disks in the front: triangle, rhombus, pentagon and generally N -gon transitions. The general rule is that
an N-gon transition adds a total of 4−N to the parastichy numbers.

By far the most common transitions in simulations are triangle, rhombus and pentagon transitions.
They are the building blocks for all the commonly seen patterns in plants [12,28]. Whereas it is possible
to build chains or even fronts that yieldN -gon transitions for any positive integerN (see e.g. the octagon
in Figure 17B) in practice, transitions with N = 6 are very rare in computer experiments with random
initial conditions, and, in our many simulations, we have never come across examples with N > 6. We
suspect this to be the case in actual plant patterns as well.

Hexagon:  7, 5    6, 4D6, 5Pentagon:  6, 6    C

Rhombus:  6, 6 6, 6BTriangle:  6, 5    6, 6A

Figure 14: Transitions in fronts. The different transitions illustrate that an N -gon transition has the effect of changing the
parastichy numbers by a total of 4 −N . A. A triangle transition increases one parastichy number by 4-3 = 1. B. A rhombic
transition leaves parastichy numbers unchanged. C. Pentagon transition lowers one parastichy number by 1. D. A hexagonal
transition that lowers by one each of the parastichy numbers.

Characterization of bearing angles of a cylindrical chain We spell out the restrictions on the bearing

angles β1, . . .βN of a prone, cylindrical N -chain A0A2 · · ·AN of disks. Denoting by vk =
−−−−−−−→
Ak−1Ak , the kth

vector of the chain, we must have
N∑
k=1

vk = (1,0),

as the chain wraps around the cylinder. Since vk = b(cos(βk),sin(βk)), this can be expressed as:

b
N∑
k=1

cos(βk) = 1 (4)

N∑
k=1

sin(βk) = 0 (5)

Because of the chain is prone we must have:

−π/2 < βk < π/2. (6)
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Since c is a chain of disks, it satisfies the no-overlap condition (Equation 3):∣∣∣βk+1 − βk
∣∣∣ ≤ 2π/3 (7)

where k and k + 1 are computed mod N , that is, N + 1 ≡ 1. In terms of hinge angles, this is simply∣∣∣hj ∣∣∣ ≥ π/3.
Putting these conditions together, we have:

Proposition 3.5. (Characterization of chains in terms of their bearing angles) AnN -tuple (β1,β2, . . . ,βN )
of real numbers represents the bearing angles of an equilateral, prone, cylindrical chain of disks if and only if it
satisfies Conditions (5), (6), (7) for all k ∈ {1,2, . . . ,N }.

Proof. The discussion above is essentially the proof of the forward implication in our statement. We now
prove the converse. Any equilateral cylindrical chain with bearing angles (β1,β2, . . . ,βN ) ∈ (−π/2,π/2)N

(Condition 6 ), that satisfies Condition 5 has its start and end points at the same height. Since for all
k, cos(βk) > 0, one can find b such that Equation 4 is satisfied. Placing a disk of diameter b at each vertex
of the chain, one obtains a chain of disks: the disks on two adjacent vertices are automatically tangent,
and overlap is avoided by Equation 7.

4 Offspring classification of 2- or 3-notches

We will see that, in the context of this paper, we are able to reduce the study of offsprings of configura-
tions to those of prone chains, and then to offspring of notches to notches of length 2 or 3. This section
classifies all possible transitions on these short notches, according to their hinge angles and one bearing
angle (namely β2), given us the solid building blocks to all the dynamics we will encounter.

4.1 More definitions and notation

Figure 15: Offspring of a notch The chain A0A1A2A3A4A5A6 is a prone notch of disks. The set Ω of disks of diameter
2b centered at the points of the notch together with the rays r− and r+ partition the plane in an upper and lower region. The
lowest point of the upper boundary U (dashed) of that set is the offspring K .

Offspring of a notch Our definition of offspring of a notch is essentially the same as for an admissible
configuration. In particular, it only depends on geometric data from the notch alone. To set it up requires
a little work however.

Let A0A2 · · ·AN be a notch and consider the union Ω of open disks DA0
,DA1

, . . .DAN of diameter 2b.
Let A′0 be the point at distance b vertically above A0, and likewise for point A′N and AN . The chain
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A′0A0A2 · · ·ANA′N is prone, except for the fact that A′0A0 and ANA′N are vertical. Applying Proposition
3.3 and Remark 3.1 to this chain implies that neither A′0 nor A′N belong to Ω: else these points would
overlap with other points of the chain. Considering the notch as a chain in the plane, draw the infinite
horizontal ray r− starting from A′0 pointing left, and another one, r+, starting from A′N pointing right.
The complement of the set Ω′ = Ω∪ r−∪ r+ in the plane has two unbounded components. The boundary
of the top component is a curve comprising of the two rays, and arcs of some of the circles C0,C1, . . . ,CN .
We know that A′0 and A′N belong to the boundary of Ω since they do not overlap with other points of the
chain. Orienting the curve from left to right, consider the segment U of it starting at A′0 and ending A′N .
We define the offspring of the notch to be the lowest point of U . This definition works also for a chain
made of multiple notches. It is not hard to see that the minimum does occur at the intersection of two
circles CAk and CAj , and not on the rays r− and r+.

Notation for 2- and 3-chains Given an (open or closed) oriented equilateral 3-chain ABCD, as before

we denote the bearing angles of the vectors
−−→
AB ,
−−→
BC ,
−−−→
CD by β1,β2,β3 respectively, and we let b = AB =

BC = CD. The shape of the chain is determined by the two hinge angles h1,h2 which we re-baptize τ,γ :

τ = ∠CBA = ∠(
−−→
BC ,
−−→
BA ) = π+ β1 − β2

γ = ∠DCB = ∠(
−−−→
CD ,

−−→
CB ) = π+ β2 − β3 (8)

See Figure 16, top left. The offspring of the chain is determined by the intersection of corresponding

circles CA,CB,CC ,CD of diameter 2b. We denote by T0 the point in CA ∩CB that is to the left of
−−→
AB , and

T ′0 the one on the right. Note that T0 and T ′0 form equilateral triangles 4ABT0 and 4ABT ′0 with the chain.
We define similarly T1,T

′
1 ∈ CB ∩CC , and T2,T

′
2 ∈ CC ∩CD . The intersections of disks whose centers are

separated by one vertex of the chain form rhombi with the chain. We call them R1,R
′
1 ∈ CA ∩CC and

R2,R
′
2 ∈ CB∩CD , where R′1 is to the right of

−−→
AC and R′2 is to the right of

−−→
BD . Note that if τ < π, R′1 = B

and if τ > π, R1 = B, with a similar statement for γ,R2,R
′
2 and C. Finally P and P ′ are the intersection

points of CA and CD (when it exists), with P to the left of
−−−→
AD and P ′ to the right.

We adopt the same notations for a 2 chains ABC, where it makes sense.

4.2 Offsprings of 1,1 notches

Even though the choice of offspring of a 1,1 notch is intuitively clear, its rigorous analysis is a good test
ground for the concepts and methods used in the much more complicated case of 3-notches.

Proposition 4.1. A 1,1-notch yields a triangle on the least steep of its two vectors if the notch angle τ ≥ 2π
3

and yields a rhombus otherwise.

Proof. Let ABC be a 1,1 notch with bearing angles β1 < 0 < β2. Assume τ ≥ 2π
3 . The angles ∠R1CB and

τ of the rhombus ABCR1 add up to π. From our assumption, ∠R1CB = π − τ < π
3 . Thus R1B < b and R1

overlaps B. If
∣∣∣β1

∣∣∣ < |β2|, T0 is lower than T1 and is thus the offspring. Likewise, if
∣∣∣β1

∣∣∣ > ∣∣∣β2

∣∣∣, T1 is the
offspring. When

∣∣∣β1

∣∣∣ =
∣∣∣β2

∣∣∣ the offspring has the two values T0 and T1. 7

Now let τ ≤ 2π
3 . The triangles ABT0 and BCT1 are equilateral, thus ∠CBT0 = ∠T1BA = τ − π3 <

π
3 . This

implies CT0 = AT1 < b. This in turns means that T0 overlaps with C and T1 overlaps with A. On the other
hand ∠R1CB = π − τ ≥ π

3 and R1 does not overlap with B: it must be the offspring.
7In plants, this simple fact is actually rather momentous: The choice of T0 or T1 at a stage of the pattern formation deter-

mines the chirality of the subsequent spiral pattern, which varies within plants of the same specie and even different organs of
the same plant [28].
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Figure 16: Shape space of 3-chains and offsprings of 1,2-notches. The shape of a 3-chain is parametrized by its hinge
angles τ = ∠CBA and γ = ∠DCB. We chose β2 = ∠BC to control the angular orientation of the chain in the plane - it is the
same for all chains (notches) represented here. We restricted the parameter space to τ ≥ π/3,γ ≥ π/3 (no overlap) and τ+γ ≤ π
(chains which, given a proper β2 are notches) and partitioned it according to which points of pairwise intersection of the circles
CA,CB,CC and CD do not overlap with the points of the chain. The offspring of a notch is located at such a point, which are
labeled according to the type of transition they give rise to: T for triangle, R for rhombus, P for pentagon. These regions’
boundaries are determined in Lemma 4.2, with the most crucial, at the boundary of the region where P does not overlap,
denoted by L. The white, elliptical looking curve is the boundary of the region where P exists. Applying to a point in the
triangular region the reflexion about the diagonal boundary τ +γ = π transforms a chain into one of same shape, rotated by π.
Even though these chains can’t be notches as they satisfy β1 > β3, the partition of that upper triangle of the parameter space is
identical. See the online Geogebra file https://ggbm.at/prevpdfk for an interactive version of this figure.

4.3 Partition of the shape space of 3-chains according to overlaps

The location of the offspring of a 3-notch depends on both the overlaps of the intersection points of the
circles CA,CB,CC ,CD with the vertices of the notch, as well as on the overall orientation of the notch. We
first concentrate on the overlaps, which are uniquely function of the shape of the notch, that is of the
angles τ,γ . Figure 16 represents the shape space of 3-chains in the γ,τ-plane, partitioned according to
the different possible offsprings the chains may have: the intersection points that do not overlap. This
partition is established rigorously in the following lemma, which refers to the colored regions in Figure
16:

Lemma 4.2. In a chain of disks ABCD with hinge angles τ and γ , the following holds:

(i) τ ∈ [π/3,5π/3], γ ∈ [π/3,5π/3], τ + γ ≥ π (left and bottom sides of the triangle, and line between the
grey and yellow regions)

(ii) τ +γ = 4π/3⇔ R1 = T2⇔ R2 = T0⇔ P and P ′ exist and {T0,T2} = {P ,P ′} (line between the yellow and
blue regions).

(iii) τ +γ < 4π/3⇔ R1 overlaps with D⇔ T2 overlaps with A⇔ R2 overlaps with A⇔ T0 overlaps with D
(yellow region: no T’s or R’s).

(iv) τ +γ ≤ 4π/3⇔ P exists and does not overlap with any point in the chain (yellow region: P ).
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(v) τ + γ > 4π/3 and τ < 2π/3⇔ T0,T1,R2 and P overlap with some point of the chain, and T2,R1 do not.
τ + γ > 4π/3 and γ < 2π/3⇔ T1,T2,R1 and P overlap with some point of the chain, and T0,R2 do not.
(Blue regions are R’s or T’s)

(vi) τ+γ > 4π/3 and τ > 2π/3,γ > 2π/3⇒ R1,R2 and P overlap with some point of the chain, and T0,T1,T1
do not (pink region is only T’s).

(vii) τ +γ > 4π/3 and τ = 2π/3⇒ R1 = T0 = T1 and this point does not overlap with any vertex of the chain
and neither does T2, but R2 and P do.

τ +γ > 4π/3 and γ = 2π/3⇒ R2 = T2 = T1 and this point does not overlap with any vertex of the chain
and neither does T0, but R1 and P do.

(Lines between blue and pink regions: some R’s and T’s coincide, P is out).

We leave the rather involved proof to Appendix A. The reader is urged to visually check its validity
using the online interactive version of Figure 16 in Geogebra https://ggbm.at/prevpdfk.

Remark 4.1. Note that an equivalent way to express the pentagon condition τ + γ ≤ 4π/3 is that the
hinge angle between the first and last vectors of the notch is small enough:

∠( ~CD, ~BA) ≤ π/3.

Indeed, let I be the intersection of lines AB and CD, and consider the triangle 4BIC: it has angles
∠B = π − τ,∠C = π −γ,∠( ~CD, ~BA) = ∠I = γ + τ −π. So indeed τ +γ ≤ 4π/3 =⇒ ∠( ~CD, ~BA) ≤ π/3

4.4 Offsprings of 3-notches

We now complement the statements of Lemma 4.2 by incorporating the information about the angular
orientation of a notch to entirely determine its offspring as function of τ,γ and β2.

Proposition 4.3. The following table classifies the conditions under which the different candidates are off-
springs of a 3-notch.

γ + τ ≤ 4π/3
(β3 − β1 ≥ 2π/3)

P

γ + τ ≥ 4π/3
(β3 − β1 ≤ 2π/3)

τ ≤ 2π/3
(β2 − β1 ≥ π/3)

τ −γ + 2β2 ≥ −π/3
(β1 + β3 ≥ −π/3)

R1

τ −γ + 2β2 ≤ −π/3
(β1 + β3 ≤ −π/3)

T2

γ ≤ 2π/3
(β3 − β2 ≥ π/3)

τ −γ + 2β2 ≤ 2π/3
(β1 + β3 ≤ 2π/3)

R2

τ −γ + 2β2 ≥ 2π/3
(β1 + β3 ≥ 2π/3)

T0

τ ≥ 2π/3
γ ≥ 2π/3

(β2 − β1 ≤ π/3)
(β3 − β2 ≤ π/3)

τ ≥ π − 2β2
(β2 ≥

∣∣∣β1
∣∣∣) T0

{τ ≤ π − 2β2, β2 ≥ 0} or {γ ≥ π+ 2β2, β2 ≤ 0}
(0 ≤ β2 ≤

∣∣∣β1
∣∣∣ or 0 ≤ −β2 ≤ β3)

T1

τ ≤ π − 2β2,β2 ≤ 0
(0 ≤ β3 ≤ −β2)

T2

Proof. The first two columns of the table correspond to the partition of shape space in Figure 16, and
Lemma 4.2: the top row corresponds to the yellow region, and below that, in the second column, the
first two cells correspond to the two blue region and the third cell to the red region.

Our task is now to further partition these four distinct regions into sub regions where only one off-
spring is possible. This is done according to the chain’s angular orientation, as measured by β2, under the
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assumption that the chain is indeed a notch, i.e. β1 ≤ 0 ≤ β3. The sign of β2 further determines the kind of
notch the chain is: a 1,2 notch if β2 ≥ 0 and a 2,1 notch if β2 ≤ 0. The static Figure 16 cannot account for
this added third dimension. It is best visualized with the interactive applet https://ggbm.at/prevpdfk,
where a shaded square region represents the range of shapes that form a notch for a given value of β2.
This square, as well as (dashed) boundary lines separating the options in the colored region, move with
the slider for β2, sweeping over all the possibilities for the parameters τ,γ,β2. In this proof, we use the
inequalities in terms of β1,β2,β3 that appear in parenthesis in the table. We let the reader translate the
different cases in terms of the angles (τ,γ,β2).

P when τ + γ ≤ 4π/3. As established in Lemma 4.2, the angle condition τ + γ < 4π/3 insures that P
is the only possible offspring: all the other potential points overlap with the notch’s vertices. When the
inequality is an equality, P is still the offspring, but it is also equal to either T0 and R2, or T2 and R1.

R1 vs. T2 when τ + γ ≥ 4π/3,γ ≤ 2π/3 : R1 ⇔ β1 + β3 ≥ −π/3 (Top blue region). Lemma 4.2 shows
that these two points are the only two free from overlap with notch vertices in this case. The offspring
is the lowest of the two. The height difference between R1 and C is b sin(−β1). The height difference
between T2 and C is b sin(β3 +π/3). If β3 +π/3 > π/2, T2 is to the left of both its parents C and D and thus
can’t be the locus of the minimum height. So we can restrict ourselves to the range 0 ≤ β3 +π/3 < π/2
where sin is an increasing function. The angle −β1 is also in this range, so:

R1 is lower than T2⇔−β1 ≤ β3 +π/3⇔ β1 + β3 ≥ −π/3

R2 vs. T0 when τ + γ ≥ 4π/3,γ ≤ 2π/3 : R2 ⇔ β1 + β2 ≤ 2π/3 (bottom blue region). Similar to the
previous case, except that we compare the differences of heights between B and T0 (b sin(−β1 +π/3)) and
between B and R2 (bsin(β3)) here.

T0 vs. T1 vs.T2 when τ + γ ≥ 4π/3, τ ≥ 2π/3,γ ≥ 2π/3 (Red region): reduces to the 1,1 notch ABC if
β2 ≥ 0 or to BCD if not.

Assume β2 ≥ 0. The other case is similar. We first show that T2 is irrelevant in this case, by showing
that its height is always greater or equal than that of T1.

The difference of heights between T1 and C is b sin(β2 + 2π/3) and b sin(β3 + π/3) between T2 and
C. Let ω1 = β2 + 2π/3, ω2 = β3 + π/3. Since β3 ≥ 0 and γ ≥ 2π/3, ω2 ∈ [π/3,ω1]. The minimum of
sin(ω2) on the sub-interval ω2 ∈ [π/3,2π/3] is attained at π/3 and 2π/3. Since β2 < π/2, we must have
ω1 ∈ [2π/3,7π/6), and sin(ω2) is a decreasing function of ω2 ∈ [2π/3,ω1] and thus has its minimum at
ω2 = ω1 on that interval. Hence, we have proven that sin(ω2) ≥ sin(ω1), that is T1 is always lower, or at
same height as T2 (equality occurs in the case ω2 = ω1, that is γ = 2π/3 or ω1 = π/3,ω2 = 2π/3, which
happens when β2 = β3 = 0).

To determine the offspring of the notch, we thus have to compare the heights of T0 and T1. Given our
assumptions, we have 2π/3 ≤ τ < π, and ABC is a 1,1 notch. Proposition 4.1 implies that the offspring
occurs at T1 if β2 ≤

∣∣∣β1

∣∣∣, and at T0 otherwise.

4.5 Offsprings of chains of two short notches

In this section we show that, in the context of orbits of S starting on chains of C3, we can reduce our
study of offsprings of chains to that of notches of maximum length 3. This is because all the chains
encountered will be of maximum length 5 and made of a maximum of 2 notches of types (1, 1), (1,
2), (2, 1). We will also encounter (2, 2) notches but whose offspring, by some distance estimates, will
necessarily have their parents in a 2, 1 or 1, 2 sub-notch (see Corollary 6.3). At any rate, we will not
encounter the case shown in Figure 17 b, of a chain of length 6.

Proposition 4.4. Let c be a chain of disks with two notches, one of type (1, 1), the other of type (1, 1), (2, 1)
or (1, 2). The offspring of c must have both it parents in one of the notches.

Note that this statement does not preclude a parent being in two notches.
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Figure 17: Offsprings of chains with two notches. a. The chain ABCDEF is made of the 1,1 notch ABC and the 1, 2
notch CDEF. If its offspring had parents A and E, it would be at the top intersection point of circles CE and CA. But such an
intersection occurs only when RCE is to the left of RAB. That’s impossible since RAB is to the left ofMC , and RCE is to the right
of the same line, since ~RC ‖ ~AB, a down vector, and ~CR′ ‖ ~DE, an up vector. Other possibilities are treated similarly. b. An
example of a prone chain of disks composed of a 2,1 notch and a 1, 2 notch, and whose offspring straddles the two notches.

Proof. Without loss of generality, we treat the case of a chain ABCDEF with ABC a 1,1 notch, and CDEF
a 1,2 notch. The other cases have similar proofs. The situation is illustrated in Figure 17.

Let us extend some prior notation for this proof. As before, we denote by CX the circle of radius b
centered at X, and by DX the open disk it bounds. We denote the upper intersection point of CX and
CY by TXY if X and Y are adjacent in our chain (triangle case), by RXY when they are separated by one
point (rhombus case), PXY when they are separated by 2 points (pentagon). We also denote by MX the
top point of the circle CX .

Given a prone chain c = A0A2 · · ·AN , we call U (c) or U the upper boundary of Ω =
⋃N
k=0DAk in the

strip CA0AN (see Figures 15, and 18). We claim that if c is made of 1,1 notches, then U (c) is a graph over
the horizontal axis. Proving is reduced to the case of 1,1 notches of the chain, which we do in the caption
of Figure 18. Note that the analysis shows that if ABC is a 1,1 notch, the curve U (ABC) must start at MA

and end at MC .

ττττ
τ
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A

BBBBB1111

C

TTTTTABABABABAB TTTTTBCBCBCBCBC

RRRRR ACACACACAC

MMMMMAAAAA
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MMMMMAAAAA1111
MMMMMCCCCC1111

τ

U

U

a b

Figure 18: Curve U on a 1,1 notch is always a graph. (a) When the hinge angle τ ≥ 2π/3, the curve
U must contain the triangle points TAB and TBC (and not RAB which overlaps with B, and is thus inside

DB). Since β1 = ∠
−−→
AB > −π/3 (else we would have ∠ ~BC < 0), ∠

−−−−−→
ATAB = β1 +π/3 > 0 and thus the arc of U

between MA and TAB is on the upper half circle of CA. Similar reasoning applies to the other 2 arcs of
U . (b) When the angle τ ≤ 2π/3, U must contain the rhombic point RAB (and not the triangular points

TAB and TBC which overlap with C and A respectively). Since ∠
−−−−−→
ARAC = ∠

−−→
BC ∈ [0,π/2) the arc of U

between MA and RAC is on the upper part of CA and hence a graph over the x-axis, and likewise for the
arc between RAC and MC .
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Back to our prone chain of disks c = ABCDEF, its subchain ABCDE is made of two 1,1-notches and
the curve U (ABCDE) is thus a graph, and always contains an arc of the circle CC and the point MC .

We first show that A and D (and, symmetrically, E and B) can’t be parents of the offspring of c. If
they were, their child disk would be PAD in the 3-chain ABCD. But, by Lemma 4.2 (iv), such a point
exists without overlap with the other points of ABCD only if the hinge angles add up to less than 4π/3.
But since ∠CAB > π/3 and ∠DCB > π here, PAD , if it exists at all, cannot be an offspring of ABCD, and
thus even less so of the longer chain c. Likewise PBE can’t be an offspring of BCDE, nor of c.

To show that A and E can’t be parents of the offspring of c, fix the chain ABCD and let E rotate on

CD in its allowable angular range of β4 ∈ (0,π/2) (as
−−−→
DE is an up vector). Since U (ABCD) is a graph,

as β4 increases the leftmost intersection point O of U (ABCD) and CE moves continuously to the left on
U (ABCD). For O to have parents A and E, it would have to be to the left of MC . But O = MC means

in particular that O ∈ CC ∩CE , i.e. O = RCE . In the rhombus CDERCE ,
−−−−−→
CRCE ‖

−−−→
DE , and the latter has

bearing angle less than π/2. In other words, for O to reach MC , E would have to go beyond its allowable
angular course on CD (See Figure 17 a).

To show that A or B and F can’t be parents of the offspring of c, we proceed similarly: we fix the
chain ABCDE and let F rotate on CE in its allowable angular range of β5 ∈ (0,π/2). As before the
leftmost point O of intersection of CF and U (ABCDE) (which is a graph) travels continuously to the left
as the β5 increases. And as before we show that O must be to the right of MC and thus can never reach
the disks CB or CA. For O to reach MC would mean that O ∈ CC ∩CF , or in other words O = PCF . But in
the quadrilateral CEFPCF , CE ≥ PCFF = b. This implies in turn that ∠

−−−−−→
CPCF ≤ ∠

−−→
EF < π/2, and PCF can’t

reach MC .
We have exhausted all the possibilities, and shown that the offspring of c could not have parents in

two different sub-notches.

Finally, we show that in conditions where they will be encountered in this paper, the offsprings
of 2,2-notches have both their parents in the same 1,2- or 2,1-sub notch. This finishes justifying our
concentrating on understanding offsprings of notches of length no more than 3.

Proposition 4.5. Let ABCDA be a 2,2-notch that is also a cylindrical chain of disks and let b < 1/2. The
offspring of ABCDA has parents either both in the 1,2-notch BCDE or both in the 2,1-notch ABCD.

Proof. If b < 1/2, the disks of diameter b at a point A and its translate by (1, 0) to the right in the unrolled
cylinder are too far to be parents of a disk of diameter b.

4.6 Pentagon Lemma

The following lemma is a consequence of our study of shapes of 3-chains, and will be used repeatedly
in Section 7.

Lemma 4.6. (Pentagon Lemma). Let ABCDP be a non self-intersecting equilateral pentagon in the plane
with inner angles greater or equal to π/3. Then ABCDP is convex and the hinge angle between any two
non-adjacent sides is comprised in the interval [0,π/3].

Proof. We let ABCDP be an equilateral pentagon with edge length b and all inner angles greater than

or equal to π/3. We want to show that ∠(
−−−→
CD ,

−−→
BA ) ∈ [0,π/3]. The proof for the other angles is obtained

from this one by relabeling.

We first prove that ∠(
−−−→
CD ,

−−→
BA ) ≥ 0. When this angle is 0, AB and BC are parallel, so that ABCD

is a rhombus and AD = b. If ∠(
−−−→
CD ,

−−→
BA ) < 0, the rays continuing

−−→
BA and

−−−→
CD intersect and simple

trigonometry shows that AD < BC = b. The isosceles triangle 4ADP must then have angle ∠APD < π/3,
which contradicts our assumption about inner angles.
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To prove ∠(
−−−→
CD ,

−−→
AB ) ≤ π/3, we rephrase it in terms of the hinge angles angles τ = ∠CBA,γ = ∠DCB.

Assuming ∠(
−−−→
CD ,

−−→
BA ) > 0 and denoting by I the intersection point of the lines BA and CD, the triangle

4BIC has angles ∠B = π − τ,∠C = π −γ which makes ∠(
−−−→
CD ,

−−→
BA ) = ∠I = τ +γ −π.

The assumption on the inner angles implies that no two vertices of the pentagon overlap (in the sense
defined in the beginning of this section). In particular, ABCD can be seen as a chain of disks, with no
vertices overlapping. Lemma 4.2 (iv) applies and shows that, since P exists and does not overlap with the

other points of the chain, we must have τ+γ ≤ 4π/3, which is equivalent to ∠(
−−−→
CD ,

−−→
BA ) = τ+γ−π ≤ π/3.

To prove the convexity of ABCDE, note that τ + γ ≤ 4π/3 and τ ≥ π/3,γ ≥ π/3 implies τ ≤ π,γ ≤
π. Relabeling the points, we find that all the inner angles are less than π, and thus the pentagon is
convex.

5 Parametrization of the space C3

We first give the proper definition of C3:

Definition 5.1. C3 is the space of prone, cylindrical 3-chain of disks.

In other words, chains in C3 are made of 3 disks of equal radius, that wrap around the cylinder
without overlaps or switchbacks.

As before, we denote by {β1,β2,β3} the bearing angles of a 3-chain. The following proposition char-
acterizes C3 and its parametrization (see Figure 19):

Β1

�1

0

1

�1 0 1

Β2

�1

0

1

Β3

a b

Figure 19: Representation of C3 in the space of bearing angles. a. (Courtesy S. Hotton) The hexagonal prism (in pink)
forming the boundary of the region satisfying

∣∣∣βk+1 − βk
∣∣∣ ≤ 2π/3, k ∈ {1,2,3} , intersecting the surface sin(β1)+sin(β2)+sin(β3) =

0 (in blue) and its tangent plane T0 (in yellow). b. The hexagon, projection of C3 on T0, which we use to parametrize C3. The
star of David inside the hexagon bounds regions with distinct dynamics.

Proposition 5.1. C3 is a bounded surface in the 3-space of bearing angles characterized by

(Cylinder chain) sin(β1) + sin(β2) + sin(β3) = 0 (9)

(Prone)
∣∣∣βk∣∣∣ , π/2, k ∈ {1,2,3} (10)

(No overlap)
∣∣∣βk+1 − βk

∣∣∣ ≤ 2π/3, k ∈ {1,2,3} (11)
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The last condition is understood mod 3: if k = 3, we set k + 1 ≡ 1. C3 is parametrized by the inverse of the
orthogonal projection on its tangent plane β1 + β2 + β3 = 0 at (0,0,0), with hexagonal domain that we call H3,
bounded by

∣∣∣βk+1 − βk
∣∣∣ = 2π/3, k ∈ {1,2,3} (mod 3), with vertices removed.

The inequalities (11) represent 6 half spaces bounded by the planes βj − βk = 2π/3, k , j ∈ {1,2,3},
each of which contains the origin. Hence, C3 is obtained by carving out the surface given by Equation
(9) with a hexagonal “cookie cutter”, conserving the boundary, except for the corners. See Figure 19.

Proof. The equations and inequalities characterizing C3 in our statement are a direct application of
Proposition 3.5, with the notable exception of Equation 10, which replaces the inequalities −π/2 < βk <
π/2 in that proposition. It turns out that, in C3, strict inequality in (11) implies −π/2 < βk < π/2. Al-
though this can be proven using algebra, it is better seen geometrically through the contrapositive state-
ment: if one of the bearing angles is strictly greater than π/2 in absolute value, overlap must occur. See
Figure 20.

A

B

A'

C

B'

a b

A

B

A'

B'

C

Figure 20: Fold implies overlap in C3. a. The only possible cylindrical chain of disks with β1 = π/2. The points A’ and B’
are identified to A and B in the cylinder. The figure shows the 3-chain of minimum disk diameter satisfying β1 = π/2 (b = 1/

√
3

since
∣∣∣BA′ ∣∣∣ = 2|AB|). But this is also the only value of b where a 3-chain with β1 = π/2 shows no overlap: the disk at C must

overlap one of the 4 other disks if its diameter is increased. b. Overlap must occur when β1 > π/2. For the given β1, the figure
shows the chain with smallest b. Overlap already occurs here and increasing b would make it worse.

We conclude from Figure 20 that there are only 6 chains that satisfy
∣∣∣βk∣∣∣ = π/2, k ∈ {1,2,3} with

no overlap: the chain in Figure 20a, its reflection about the horizontal axis, and the 4 similar chains
obtained starting the chain at B or C instead of A. These chains form the corners in the boundary of the
admissible region for the no-overlap Condition (11): the configuration in Figure 20a satisfies

∣∣∣β2 − β1

∣∣∣ =
2π/3 &

∣∣∣β3 − β1

∣∣∣ = 2π/3.
Since the gradient vector of the function sin(β1) + sin(β2) + sin(β3) is (1,1,1) at (0,0,0), the tangent

plane of C3 at (0,0,0) has equation β1 + β2 + β3 = 0. To parameterize C3, we use the inverse map of the
orthogonal projection on the tangent plane at the origin. This is possible since the projection is 1-1, as
we prove in Appendix B. Since the 6 planes βk+1 − βk = ±2π/3, k ∈ {1,2,3} (mod 3) are all perpendicular
to the tangent plane, they also bound the domain of the parametrization of C3.

In the rest of this paper, we identify C3 with the domain of its parametrization, the closed hexagonal
region H3 in the tangent plane (with the vertices removed).

6 Dynamics on C3: early iterations

We now explain in detail the effect on 3-chains of the first four iterations of S . Our findings are summa-
rized in Figure 21. Our first step is to reduce the hexagon H3 parametrizing C3 by symmetry. We then
go into the fine geometric conditions that give rise to either rhombic, triangle or pentagon transitions.
These conditions partition C3 with the star of David figure and we then analyse the early dynamics
of S in each region. A subsequent section delves into the asymptotic dynamics of chains in the inner
hexagonal region.
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Figure 21: Early dynamics of S on C3. a. On the left, the space C3 of all 3-chains as represented by the hexagon H3 in the
tangent plane, seen from the axis β1 = β2 = β3 perpendicular to it. On the right, by symmetry considerations, we concentrate
on a kite-shaped sector of H3 corresponding to 1,2-chains with bearing angles β1 ≤ 0,β2 ≥ 0,β3 ≥ 0. A representative sample
of such chains, with their respective offsprings is shown, with the points they correspond to in H3. We use the names of
these points to label their regions. Points in the regions A, A’ and B’, correspond to chains with triangle transitions, which
exit C3 upon the first iterate of S . The regions B, C, C’ correspond to chains that undergo a rhombic transition. The points
corresponding to these chains are reflected about the diagonal axis β2 = β3 upon applying S , as represented by the white
arrows. Chains in Regions C and C’ remain in C3 forever under iterations of S as they are reflected indefinitely with period
2, thus generating rhombic tilings. Points on the darker segment of β2 = β3 correspond to lattices, which are fixed points for
S . All the chains above β2 = β3 (e.g. A’, B’, C’) are reflected across that line (to A, B, C) in 3 iterates. This makes points in the
regions B and B’ periodic of period 4. Chains in the regions A and A’ converge in either finite time, or infinite time to rhombic
tilings chains. The map S is multivalued and discontinuous on the segment of β3 = 0 bounding region A, as well as on its
images under rotations by ±2π

3 .

6.1 Reduction of C3 by symmetry

The definition of S relies entirely on geometry, and as such it interacts naturally with geometric opera-
tions that do not change shapes of chains, or change them in ways compatible with its action.

The shape of a chain is independent of the choice of starting point for the chain. This implies that
relabeling the starting point of a chain is an operation that commutes with S . This relabeling operation
corresponds to circular permutations of the angles β1,β2,β3. In the parameter space H3, such a circular
permutation is equivalent to a rotation by 2π/3 or −2π/3 as the βk-axes (k ∈ {1,2,3}) project to three
evenly distributed rays. This explains the 3-fold rotational symmetry of the partition in the hexagon H3
(see Figure 21, Left).

Hence, without loss of generality we can choose the highest point as first point of our chain. This is
equivalent to restricting our study to the “first” sector, representing 1/3 of of the hexagon H3, satisfying
β1 ≤ 0,and β3 ≥ 0.

This sector has itself a 2-fold symmetry, namely reflection about its bisecting plane β2 = 0, which
separates the sector into 2 kite-shaped regions. As can be seen by following the axes and their reflections
about the line β2 = 0 on the left of Figure 21, this symmetry corresponds to the transformation

χ : (β1,β2,β3) 7→ (−β3,−β2,−β1),

32



which amounts to reflecting about the vertical axis in the planar representation of the chain. Note that,
in particular, χ turns up-vectors into down-vectors and vice-versa, and thus switches the parastichy
numbers as well. In botanical language, χ has the effect of switching the chirality of the pattern. Note
also that, because of its geometric definition, S commutes with χ: applying S to a chain and then χ has
the same result as applying χ and then S . This implies that our findings about the dynamical behavior
of the chains in the lower half kite β1 ≤ 0,β2 ≥ 0,β3 ≥ 0 translate to the upper kite by reflection, as
represented by the color scheme in Figure 21.

Definition 6.1. (Kite region K12) We let K12 be the lower kite region, which correspond to 1,2-chains
whose first point is the highest, that is chains satisfying β1 ≤ 0,β2 ≥ 0,β3 ≥ 0.

In the remainder of the paper, we will study the dynamics of S with initial conditions restricted to
K12. While the kite K12 has a remaining 2-fold symmetry along its long diagonal, we will see that, in
some cases, it coincides with the action of S .

For the record, here are the defining inequalities for the different sub-regions of K12:

Properties 6.1. As subsets of C3, Regions A, B, C, A’, B’ , C’ all satisfy:∣∣∣βk+1 − βk
∣∣∣ ≤ 2π/3, k ∈ {1,2,3} , and sin(β1) + sin(β2) + sin(β3) = 0.

And as subsets of the chosen kite region, they all satisfy

β1 ≤ 0, β2 ≥ 0, β3 ≥ 0.

Individually they further satisfy:

• Region A: β2 − β1 < π/3, β3 < β2 (or τ > 2π/3, γ > π)

• Region A’: β3 − β1 < π/3, β3 > β2 (or τ +γ > 5π/3, γ < π)

• Region B: β2 − β1 > π/3, β3 − β1 < π/3 (or τ < 2π/3, τ +γ > 5π/3)

• Region B’: β2 − β1 < π/3, β3 − β1 > π/3 (or τ > 2π/3, τ +γ < 5π/3)

• Region C: β3 − β1 > π/3, β3 < β2 (or τ > π/3, τ +γ < 5π/3, γ > π)

• Region C’: β3 − β1 < 2π/3, β2 − β1 > π/3, β3 > β2 (or γ + τ > 4π/3, τ < 2π/3, γ < π)

Proposition 6.2. In C3, the maximum distance to the origin, and the maximum value for b are attained at the
points corresponding to each of the 6 vertices of H3. Likewise, on the regions of C3 corresponding bounded by
the inner hexagon and the two regions bounded by the triangles forming the star of David, these quantities are
maximized at the vertices of these regions. The data is as follows:

H3. Vertices ±(−4π
9
,
2π
9
,
2π
9

)
,±

(
−2π

9
,−2π

9
,
4π
9

)
,±

(
2π
9
,−4π

9
,
2π
9

) .
Distance to the origin: 2

3

√
2
3π ≈ 1.71007. b =

(
cos(4π/9) + 2cos(2π/9)

)−1 ≈ 0.586257.
Rays of star of David. Vertices (light and dark triangles respectively):{(

−π
3
,0,
π
3

)
,
(π

3
,−π

3
,0

)
,
(
0,
π
3
,−π

3

)}
,

{(
−π

3
,
π
3
,0

)
,
(π

3
,0,−π

3
,
)
,
(
0,−π

3
,−π

3

)}
Distance to the origin:

√
2π/9 ≈ 1.48096. b = 1/2. (Same for both triangles).

Inner hexagon. Vertices: {
±(p,q,q), ±(q,p,q), ±(q,q,p)

}
where p = cos−1(2/

√
7)) ≈ 0.713724 and q = p −π/3 ≈ 0.33347. b = 1/

√
7.

Distance to the origin:
√

2(π/3− cos−1(2/
√

7))2 + cos−1(2/
√

7)2 ≈ 0.85546.
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The proof is in Appendix C.

Corollary 6.3. In an orbit of S starting in the inner hexagon (e.g. regions A and A’), no chain can have
an offspring with the same parent on the left and on the right.

Proof. For the same point to be the parents of the offspring on the left and on the right, its two represen-
tatives in the unrolled cylinder would have to be at distance less than 2b. Since they are at distance 1,
we should have b ≥ 1/2. But Proposition 6.2 shows, for chains in the inner hexagon, that b is maximized
at the vertices, where b = 1/

√
7 < 1/2.

An immediate consequence of this corollary is that, for a cylindrical 2,2-notch in an orbit of a chain
in A, the parents of its offspring must both be in either its 2,1 or 1,2-sub-notch.

6.2 Partition of K12 in regions of rhombus and triangle transitions

Proposition 6.4. A 1,2-chain in K12 has offspring T1 when β2 − β1 ≤ π/3 (subregions A, A’, B’), and R1 if
β2 − β1 ≥ π/3. On the plane β2 − β1 = π/3 between these two regions, these two offsprings coincide. On the
boundary of K12 there are cases when the map S is multivalued and discontinuous, where it has one or two
more equally possible offsprings other than T1 or R1. The choice of one offspring over the other in these cases
either reflects the configuration about a vertical axis (with change of chirality) or has no effect:

1. On the lower boundary of sub-region A (β3 = 0,0 ≤ β2−β1 ≤ π/3), offsprings: T0 or T1 (chirality change).

2. At the tip (β1,β2,β3) = (0,0,0) of K12, offsprings: T0,T1 or T2 (no long term change).

3. On the vertical boundary β2 − β1 = 2π/3 of K12, offsprings: R1 or T2 (chirality change).

Note that this statement extends to all of C3 by symmetry. For instance, in the upper kite, i.e. for
2,1-chains, the same statement holds by swapping T2 and T0, R2 and R1. For the other sectors of C3
the same 2 types of transitions occur, but with the second or third point of the chain being the highest.
The net effect in C3 is that the region inside the inner hexagon correspond to chains with triangular
offspring, while the region outside of that hexagon corresponds to chains with rhombic offsprings.

Proof. We make repeated use of the angle conditions of Proposition 4.3. We rule out the offsprings
P ,T0,R2 and T2 one by one, in this order (except for some boundary cases).

P The angle condition β3 − β1 ≥ 2π
3 for a pentagon transition is the opposite of one of the equations

defining C3 :
∣∣∣β3 − β1

∣∣∣ ≤ 2π
3 (see Equation 11). In other words, pentagons can only occur at the upper

boundary β3 − β1 = 2π/3 of sub-region C′ of K12, where the points P ,T2 and R1 coincide. Since ∠
−−−→
T2C =

∠
−−−−→
R1C = β1 > −π/2, T2 is to the left of its parents C and D: we don’t consider it a legitimate offspring in

this case, but we interpret this case as an R1 transition.

T0 For T0 to be the offspring, we need τ ≥ 2π
3 ⇔ β2 − β1 ≤ π/3 and

∣∣∣β1

∣∣∣ ≤ β2. If
∣∣∣β1

∣∣∣ < β2, C is higher
than A, and thus higher than D = A+ (1,0), i.e. β3 < 0. This means that the chain is not a 1,2-chain, but a
2,1-chain, which is not in K12. When the equality

∣∣∣β1

∣∣∣ = β2 occurs, the angle β3 must be 0. By symmetry,
the offspring can either be T0 or T1 in this case. The map S is then multivalued, and discontinuous at
these points. Choosing one or the other will affect the rest of the orbit by symmetry about the vertical
line through B, i.e. a change of chirality.
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R2 For R2 to occur, we would need γ ≤ 2π
3 . Since β2 ≥ 0, B is lower than C. But since A andD = A+(1,0)

are at the same height, we must have
∣∣∣β1

∣∣∣ ≥ β3. This in turn implies τ ≤ γ as is readily seen on a sketch,
or via algebra. Since γ ≤ 2π

3 , we obtain τ + γ ≤ 4π
3 , the condition for a pentagon to occur, which we

have already seen can only happen at the at the upper boundary β3 − β1 = 2π/3 of sub-region C′, where
P = R1 = T2, but does not equal R2.

−β1 −(π−τ)/2

τ

(π−τ)/2
β3

(π−τ)/2

A D

B

C

Figure 22: T2 higher than R1.

T2 We now show that, in K12, T2 can only be the offspring
at (β1,β2,β3) = (0,0,0), or at the vertical boundary β2 − β1 =
π/3 of K12.
Assume first that τ > 2π/3. Proposition 4.3 tells us that, for
T2 to be the offspring, we must have 0 ≤ β3 ≤ −β2. Since
in K12, β2 ≥ 0, this implies β2 = β3 = 0, which in turns im-
plies β1 = 0. There, the three triangle offsprings T0,T1,T2 are
equally possible: the map is multi-valued, and discontinu-
ous at this point. But each of these points will eventually be
offspring, and their order is indifferent to the overall, long
range outcome, which is a 3,3-whorled pattern.
Now assume that τ = ∠CBA ≤ 2π/3 ((Figure 6.2). Since there
is no overlap, τ ≥ π/3 and thus AC ≥ CD = b.
This implies that ∠CAD ≥ ∠ADC (law of cosine in 4ACD).
Since ∠CAD = −β1 −

(
π−τ

2

)
and ∠ADC = β3, we obtain β3 ≥

−β1 − (π − τ)/2 which, using τ ≥ π/3, yields:
β3 + β1 ≥ −(π − τ)/2 ≥ −π/3.

When the inequality is strict, Proposition 4.3 implies that T1 is the only offspring. When equality
occurs, τ = π/3 and thus the disks at A and C are tangent, and the offspring of ABCD is the same as for
the 1,1-notch ACD. Since A and D = A + (1,0) are at same height, the offsprings R1 and T2 are equally
possible. Since τ = π/3⇔ β2 − β1 = π/3 this occurs at the right, vertical boundary of K12.

We have shown that, in the interior of K12 only R1 and T1 can be the offsprings: we have ruled out
the other possibilities one by one. Since these two points are offsprings on the 1,1-notch ABC, R1 is the
offspring when τ ≤ 2π/3⇔ β2−β1 ≤ π/3 (corresponding to sub-regions A, A’, B’), and T1 is the offspring
when τ ≥ 2π/3β2 − β1 ≥ π/3. At the boundary 2π/3β2 − β1 ≥ π/3 between these two regions, the two
offsprings coincide. On the boundary of K12, the map may be multivalued, but in each case either T1 or
R1 is a possible offspring.

6.3 S acts as reflection in the right half of K12

As we have seen in the previous section, chains from Regions B, C and C’ of the kite undergo a rhombic
transition, which doesn’t change the parastichy numbers. Hence the new chain is still a 1,2-notch, but
with highest point R1. Taking this point as the starting point of the chain, the set of bearing angles
is the same as for the original chain, but with a permutation of the last two angles: (β1,β3,β2). That
is, a generic point in the regions B,C,C′ corresponds to a chain whose image under S is its reflection
about the bissectrice β3 = β2 of the kite. Since Regions C and C′ are images of one another under this
reflection, any point in these regions correspond to a chain that comes back to itself in two iterates, with
only rhombic transitions: they are (1, 2)-rhombic tilings. A special case is the chains that correspond to
points on the diagonal β2 = β3 separating Regions C and C′. In this case, all the rhombi are identical,
and the chains generate cylindrical lattices. These chains are fixed points in shape space: changing β2
into β3 has no effect on the shape of the chain. Summarizing these statements:
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Proposition 6.5. S acts as reflection about the line β2 = β3 in regions B,C and C′. The regions C and C′

correspond to 1,2 rhombic tilings, which are period 2 orbits for S . The segment of line β2 = β3 separating C
and C′ corresponds to rhombic 1,2-lattices, which are fixed points for S .

6.4 The upper half of K12 reflects into the lower half under S3

Proposition 6.6. Chains in the upper region A′ ∪B′ ∪C′ of K12 are reflected into chains in the lower region
A∪B∪C after 3 iterates of S . Chains in B reflect back to B’ and thus chains in B∪B′ have period 4 under S .
They form Benhardt rhombic tilings. Chains in the boundary between Regions A and A’ have period 3.

More notation For the figures (in this section and next) where disks are numbered, we refer to chains,
angles and polygons by numbers separated by period signs, e.g. 5.6.4.5, ∠4.1.3. To denote the types of
transitions (triangle, rhombic, pentagon), we use the letters T ,R,P together with the indices of the two
parents. Hence T25 is a triangle transition on the two parents 2 and 5, R(11)8 is a rectangle transition
with parents 11 and 8.

B’ 1 2

3
4

56
7

3

65

1 2

3
4

56

7

5

3

6

A’

8

Figure 23: Early dynamics in Regions A’ and B’. Chains corresponding to points in these regions yield, after 3 iterates of S ,
their reflection about β3 = β2 in the kite. Both chains satisfy β2−β1 < π/3 and β3 ≤ β2 and undergo a triangular transition (Point
4) in the first iterate and a rhombic one (Point 5) in the second iterate. The third iterate (Point 6) has the double interpretation
of a rhombus/pentagon transition and yields the chain 6.4.5.6 which has the same vectors as the original 3.1.2.3, but with the
two up-vectors in reversed order: the chain corresponds to the lower kite point which is the reflection of the original around
β2 = β3. The choice of Point 7 is where the two situations differ. The rhombic transition in the chain B’ switches the 2 up
vectors back to their original order, yielding a chain 7.5.6.7 that is a translation of the original one, showing that S is of period
4 on chains of Region B’ (but not on those of Region A’). The next offspring in B’ (Point 8) forms the characteristic double
triangle of Benhardt tilings.

Proof. Take a chain in the upper region of the kite where β3 ≥ β2 (Region A′ ∪B′ ∪C′ in Figure 21). We
first assume that β2 > 0 and will treat the boundary case β2 = 0 later. From Proposition 6.5, a chain in
Region C’ is reflected to one in Region C under one iteration of S . In two more iterations, the chain does
a round-trip C→ C’→ C, reflecting about β3 = β2 each time. Thus our statement is proven in this case.

For chains in A’∪ B’, we proceed step by step, showing that the evolution of their orbit is indeed
universally captured by Figure 23.

Disk 4: T12 A chain A’∪ B’ satisfies β2 −β1 < π/3. Since the chain is a 1,2-notch, β2 ≤
∣∣∣β1

∣∣∣ and by Proposi-
tion 6.4, its offspring Point 4 must be T1 = T12 here.
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5

3

5=R43
R34 R34

Disk 5: R43. The chain 4.2.3.1.4 obtained after this first iteration has
parastichy numbers (2,2) (so S immediately takes the original chain
in C3 to one in the space C4 of 4-chains). We first claim that the next
transition is rhombic. Indeed, there are 2 notches 3.1.4 and 4.2.3 in
the chain 4.2.3.1.4, and the angles of these notches preclude a triangle
transition: ∠4.1.3 < 2π/3 since ∠2.1.3 ≤ π (as β1 ≤ 0 ≤ β2) and ∠4.2.1 =
π/3. Likewise ∠3.2.4 ≤ 2π/3 since β3 ≥ β2, and ∠4.2.1 = π/3 .

When these inequalities become equalities, the offspring can be a triangle, but it can also be inter-
preted as a rhombus. Thus the offsprings of notch 3.1.4 is R34 and that of 4.2.3 is R43

We now show that R43 is lower than R34. The difference of height between R43and Point 1 is the

sum of the y-coordinates of
−−→
14 and

−−−−→
4R43 =

−−→
23 . The height of R34 is the sum of y-coordinates of

−−→
13

and
−−−−→
3R34 =

−−→
14 . Thus the difference of height between R34 and R43 is the difference between the y-

coordinates of
−−→
13 and

−−→
23 , namely

∣∣∣sin(β1)
∣∣∣ − sin(β3). This difference is positive since sin(β2) > 0 and

sin(β1) + sin(β2) + sin(β3) = 0, and thus R43 is the offspring.

1 2

3

4

5

3

5

6=R34 R34

R45

Disk 6: R34. The chain 5.3.1.4.5 is a 2,2-notch. Corollary 6.3 implies
that point 5 can’t be both parent to the left and the right of the off-
spring. Thus we assume that both parents of the offspring are in the
1,2-notch 3.1.4.5 or both are in the 2,1-notch 5.3.1.4. We show that for
both notches, the offspring is R34.
Consider first 3.1.4.5. According to Proposition 4.3, we want to show
that the bearing angles α1,α2,α3 of 3.1.4.5 satisfy

α3 −α1 ≤ 2π/3, α2 −α1 ≥ π/3, α3 +α1 ≥ −π/3. (12)

Note that α1 = β1 (the notches 3.1.2.3 and 3.1.4.5 share their first vector
−−→
31 ), α2 = β2 +π/3 (∠2.1.4 =

π/3) and α3 = β3 (
−−→
45 =

−−→
23 , by rhombic transition). Since β1 ≤ 0 ≤ β2,α2 − α1 = β2 − β1 + π/3 ≥ π/3.

Proposition 6.4 shows that β3 − β1 ≥ 2π/3 (occurrence of a pentagon offspring) can only occur as an
equality in K12, on the upper right boundary segment, which intersects Region B′ at its top point (See
Figure 21). This is also the endpoint of the boundary segment β2 = 0, which we treat at the end of
the proof. In all other cases, we have β3 − β1 < 2π/3 and thus α3 − α1 < 2π/3. We know β2 ≥ 0 and
β2 − β1 ≤ π/3, thus we have β1 ≥ −π/3. Since β3 ≥ 0, α1 + α3 = β1 + β3 ≥ −π/3. Since ∠2.1.3 < π notch
angle ∠4.1.3 = ∠2.1.3 −π/3 < 2π/3 which means α2 − α1 > π/3, and finishes to prove Equations 12 and
thus that R34 is the offspring of 3.1.4.5.

Considering now notch 5.3.1.4. Note that, since
−−→
53 ‖ −−→42 , ∠(

−−→
35 ,
−−→
14 ) = π/3 and we’re in Case (ii)

of Lemma 4.2 where three different possible offsprings coincide. In this notch, this means that the off-
spring is R34 = P54 = T53. This must also be the offspring of the whole chain 5.3.1.4.5.

4th iterate as a reflection. Since
−−→
53 ‖ −−→42 and

−−→
41 ‖ −−→63 , the third sides

−−→
12 and

−−→
56 of equilateral triangles

43.6.5 and 41.2.4 must be parallel. In other words, the chain 6.4.5.6 and the original 3.1.2.3 have same
vectors, with their up vectors’ order switched. If β′1,β

′
2,β
′
3 are the bearing angles of chain 6456, then, in

terms of the original bearing angles, we have β′1 = β1,β
′
2 = β3,β

′
3 = β2. This shows that the two chains

correspond to points that are reflections about β2 = β3 of one another.

Special boundary case. We now look at chains where β2 = 0 (upper left boundary of K12). In this case,
the chain is symmetric about the vertical line x = 1/2 β1 = −β3, and after the first triangle transition,
it remains symmetric with Points 5 and 6 at the same height: S is multivalued at this 2,2-chains. But
whatever the choice of offspring 5 or 6 at this stage, the next will be 6 or 5 respectively, as they don’t
overlap. Our reasoning about the resulting chain having same vectors with the order of the up vectors
switched remains valid, even though one of them really is horizontal. The upper tip of Region B is an
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even more special case: it has bearing angles (−π/3,0,π/3), which means that its offspring is tangent
to all the disks of the notch, and to Disk 3 on both sides, forming a horizontal new chain. This is a
case where all the possible offsprings T0,T1,T2,R1,R2, P coincide. The pattern generated is an hexagonal
packing of circles. In terms of phyllotaxis, it corresponds to a 2,2 whorled pattern.

The fourth iteration of S is where the chains in Regions A’ and B’ behave differently. The two regions
are separated by the plane β3 − β1 = π/3. For chains in A’, we have β3 − β1 ≤ π/3, which turns into
β′2 − β

′
1 ≤ π/3 in the chain 6456. By Proposition 4.3, this means that the notch angle τ ≥ 2π/3 and a

triangle offspring must occur. Likewise, a rhombic offspring must occur at the 4th iterate of S of a chain
in B’. This rhombic transition has for effect another reflection about β3 = β2 which brings the chain back
to its starting shape. Thus chains in B’ are of period 4. And since any chain of B reflects to one in B’
under S , chains of B are also of period 4.

Chains from the diagonal of the kite bounding region A and A’ where β2 = β3 still behave like those
of the upper kite, in that their third iterates is also their image by the reflexion with respect to β2 = β3,
which in this case is themselves. So chains on this axis have period 3 under S .

Benhardt tilings. The chains in B and B’ form Benhardt tilings (see Figure 3 B) under repeated iteration
of S : even though the first transition of a chain in B’ is triangular, each subsequent triangle can be
interpreted as a rhombus, as one triangle is stacked onto another one. For instance, in Figure 23 B’,
Point 8 can be interpreted as a triangle offspring of chain 7.5.6.7, with parents 5 and 6. But it can also
be interpreted as a rhombic offspring of the chain 7.5.3.6.7, also with parents 5 and 6. These double
triangles repeat periodically in the pattern.

7 Non periodic dynamics in Regions A and A’
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Figure 24: Typical orbit of a chain in Region A. Chains in Region A share the same type of transition at each step, at least
until, in some cases (b), the triangle/pentagon pairs disappear at Disk 10. As shown by the color-coding, when the pairs of
triangle/pentagon propagate, the new pair inherits its bottom vectors from the top vectors of the old one. Indeed, the shape of
notch 11.9.7.8 is the same as that of the inverted notch 5.6.4.2, as one is obtained from the other by a translation and rotation
by π. This provides a conserved quantity, namely the distance between Disks 2 and 5, for the dynamics of the sixth iterate S6

of the stacking process.

We have seen in the previous section that a chain in K12 can be periodic of period 1 (for chains at
the boundary between Regions C and C’), of period 2 (in C and C’), period 3 (at the boundary between
Regions A and A’) and period 4 (in Regions B and B’). All these patterns are, at least after 1 iterates
rhombic tilings. In all these cases, our understanding of the dynamics is thus complete. The long
term dynamics in Regions A and A’ (away from the diagonal β2 = β3) remain to be elucidated. As
suggested by our numerical simulations, they display the richest and most surprising behavior of the
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system: either finite or infinite convergence to rhombic tilings via pairs of pentagons and triangles. We
show in this section that the way the pentagons change their geometry along the pattern determines
whether these pairs disappear in finite time or continue for ever. More precisely, the conserved quantity
−−→
25 =

−−−−−→
8(11) = · · · =

−−−−−−−−−−−−−−−→
(2 + 6j)(5 + 6j) , j ∈ N provides the explanation for the shape of the petals in the

rosace: their boundaries are isoline of
∥∥∥∥−−→25

∥∥∥∥ plotted in the proper coordinates.
Since by Proposition 6.6 chains from Region A’ reflect into chains of Region A after 3 iterates, we

concentrate on chains in Region A. We first determine how the pairs of triangles and pentagons come
about in orbits of chains in A in a predictable way. We use the same notation for chains and their
offsprings as in the previous section.

Lemma 7.1. Chains in Region A all share the same transitions up to the 9th disk. Disk 10 is either R98 or T78.
Disk 11 is always R89.

This means that for all chains in Region A, the transitions follow the same combinatorics as shown
on Figure 24, up to Disk 9 included. For instance, for all chains in that region, Disk 7 has parents Disks
4 and 5 and occurs in a quadrilateral transition, i.e. R45.

Proof. This proof refers to Figure 24, out of which we have extracted relevant sections as needed. Most
of our conclusions, are, implicitly or explicitly, based on Proposition 4.3. We start with a chain of disks
in the region A of K12, numbered according to the height order of the disks. The original chain is thus
3.1.2.3, and by definition of region A, τ = ∠2.1.3 > 2π/3 and β2 = ∠

−−→
12 > β3 = ∠

−−→
23 (see Section 6.2). Since

τ = π+ β1 − β2, and β1 ≤ 0 ≤ β3 ≤ β2, these inequalities can also be subsumed as:

0 ≤ β3 ≤ β2 ≤
∣∣∣β1

∣∣∣ ≤ π/3 (13)

We actually know a little more about these angles: let m be the point of intersection of the line through
Points 1 and 2 and the horizontal through 3. Then, in the triangle 43.1.m, ∠3 =

∣∣∣β1

∣∣∣ ,∠m = β2 and ∠1 =
τ ≥ 2π/3, so that

∣∣∣β1

∣∣∣+ β2 ≤ π/3. Since
∣∣∣β1

∣∣∣ ≥ β2, we must have β2 ≤ π/6 and hence:

0 ≤ β3 ≤ β2 ≤ π/6. (14)

We now determine the parents - and thus the type of transition - for each successive offspring up to Disk
11.

R32

T12

3

1
2

3

4

Disk 4: T12. By Proposition 6.4, the chain 3.1.2.3, which is inK12 by as-
sumption, can only have offsprings R1 (= R32 here) or T1 (= T12 here).
By Proposition 4.3 it must be the latter since τ = ∠2.1.3 > 2π/3. Note
that Disk 4 is higher than the other disks in the chain 3:1:4:2:3 ob-

tained, since
∣∣∣∣∠−−→31

∣∣∣∣ ≤ π/3 ≤ ∠−−→14 ≤ π/2. The reader can likewise check
in the rest of this proof that each successive disk is the highest in the
new chain it forms. Hence all chains are fronts here.

R34 T23

3

1
2

3

4
5

T42

Disk 5: T23. The chain 3.1.4.2.3 is composed of the two 1,1-notches,
3.1.4 and 4.2.3, whose offsprings we determine and compare in height.
Since β1 ≤ 0 and β2 > 0,∠2.1.3 < π. This implies that ∠4.1.3 = ∠2.1.3 −
π/3 < 2π/3, and the offspring of notch 3.1.4 is R34. Since ∠3.2.4 =
2π/3 +β2 −β3 > 2π/3, the offspring of notch 4.2.3 must be either T42 or
T23. We now determine which of the two it is. Since the quadrilateral

3.1.2.4 is not rhombic, we have π − ∠−−→24 >
∣∣∣β1

∣∣∣, and by extension

π − ∠−−→24 >
∣∣∣β1

∣∣∣ > β3 = ∠
−−→
23 . This means that

−−→
24 is steeper than

−−→
23 and the offspring of notch 4.2.3 must

be T23. We must now compare the heights of the offsprings R34 of 3.1.4 and T23 of 4.2.3. The height

difference between R34 and Disk 3 is sin(∠
−−→
14 ) = sin(β2 + π/3). The height difference between T23 and
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Disk 3 is sin(β3 +2π/3). From Inequalities (13) we obtain β2 +π/3 ∈ (π/3,2π/3) and β3 +2π/3 ∈ (2π/3,π).
Thus sin(2π/3 + β3) < sin(β2 +π/3), i.e. R34 is higher than T23. Disk 5 is thus at T23.

Summary of properties for 5.3.1.4.2.5. We now take stock of all the angle properties of chain 5.3.1.4.2.5.
They will be crucial to the mechanism of infinite convergence.

0 ≤ ∠−−→25 −π/3 ≤ ∠−−→14 −π/3 = ∠
−−→
42 +π3 ≤

∣∣∣∣∠−−→31
∣∣∣∣ ≤ π/3 (15a)

∠
−−→
25 − ∠−−→53 ≤ 2π/3 (15b)

∠
−−→
14 − ∠−−→53 ≥ 2π/3 (15c)

Inequalities (15a) are a direct consequence of those in (13). Inequality (15b) is actually an equality
here, since 42.3.5 is equilateral, but we will need this more general property for subsequent iterates of

this pattern. Inequality (15c) derives from (15a): ∠
−−→
14 = ∠

−−→
12 +π/3 ≥ ∠−−→23 +π/3 = ∠

−−→
25 = ∠

−−→
53 + 2π/3, as

4235 is equilateral. Thus ∠
−−→
14 − ∠−−→53 ≥ 2π/3.

3
1 2

3

4
5

6
5

R45

2

P54

Disk 6: P54. The chain at hand is now 5.3.1.4.2.5, which has the two
notches 5.3.1.4 and 4.2.5. Inequality 15c is the difference between the
first and third bearing angles of the notch 5.3.1.4. This inequality im-
plies, via Proposition 4.3, that the offspring of this 2,1-notch is P54. We
now show that the offspring of 4.2.5 is R45. From Equation 15a we have

(∠
−−→
24 −2π/3)−(∠

−−→
25 −π/3) = (∠

−−→
42 +π/3)−(∠

−−→
25 −π/3) ≤ π/3, from which

we deduce:

∠5.2.4 = ∠
−−→
24 − ∠−−→25 ≤ 2π/3

and the offspring of 4.2.5 is indeed R45. To compare the heights of these two notches’ offsprings, note
that P54 and R45 have the same parents, 4 and 5 (in the cylinder, but 5 − (1,0) and 5 in the plane). We

show that P54 is lower than R45 by showing that the x coordinate of
−−→
54 is greater than that of

−−→
45 . We

decompose x(
−−→
54 ) = x(

−−→
53 ) + x(

−−→
31 ) + x(

−−→
14 ). Since β3 ∈ (0,π/3), x(

−−→
53 ) > x(

−−→
25 ), as the latter vector is more

horizontal than the former in the equilateral 4235. We’ve seen that
−−→
42 is more vertical than

−−→
31 , which

implies x(
−−→
42 ) < x(

−−→
31 ). Since 4 is between its parents 1 and 2, x(

−−→
14 ) > 0. Putting these inequalities

together, we get: x(
−−→
54 ) = x(

−−→
53 ) + x(

−−→
31 ) + x(

−−→
14 ) > x(

−−→
25 ) + x(

−−→
42 ) + 0 = x(

−−→
45 ).

3
1 2

3

4
5

6
5

6
7

Disk 7: R45. The chain we obtained in the previous step is the 2,2-
notch 6.4.2.5.6. By Corollary 6.3, the offspring can’t be hexagonal, with
parents 6 (left) and 6 (right). The parents of the offspring are thus nec-
essarily in one of the smaller sub-notches: the 2,1-notch 6.4.2.5 and/or
the 1,2-notch 4.2.5.6 (with intersection 4.2.5). To show that notch

6.4.2.5 can’t have P65 as offspring we estimate the difference ∠
−−→
25 −∠−−→64

between its third and first bearing angles.

Using Equation (15)b and the Pentagon Lemma 4.6 applied to the pentagon 3.1.4.6.5, and sides 53 and

64, we have ∠
−−→
25 − ∠−−→64 = (∠

−−→
25 − ∠−−→53 ) + (∠

−−→
53 − ∠−−→64 ) ≤ 2π/3 + 0. Proposition 4.3 implies that P65 can’t

be the offspring of this notch. Likewise, using the Pentagon Lemma with the sides 56 and 14 of the

same pentagon shows ∠
−−→
24 − ∠−−→56 = ∠

−−→
24 − ∠−−→14 + ∠

−−→
14 − ∠−−→56 ≥ π/3 + 0 ≥ π/3 which is equivalent to

∠
−−→
56 − ∠−−→42 ≤ 2π/3 and Proposition 4.3 implies that 4.2.5.6 can’t have P46 as offspring.

Notch 4.2.5.6 has notch angle ∠5.2.4 < 2π/3 as we established in the previous case. Proposition
4.3 tells us its offspring may be either R45 or T56, depending on whether the sum of its first and last

bearing angles is greater or less (resp.) than −π/3. But the first angle is ∠
−−→
42 which is greater than −π/3
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by Equation 15. The last angle, ∠
−−→
56 is positive: ∠

−−→
56 ≥ ∠−−→14 − π/3 ≥ 0 by the Pentagon Lemma and

Equation (15). Thus the offspring of 4.2.5.6 is R45. Similarly to 4.2.5.6, the notch 6.4.2.5 has notch
angle ∠524 < 2π/3, and symmetrically, we can establish T64 is not the offspring by estimating the sum
of the first and last bearing angle of the notch. Summing its first and last bearing angles and using the

Pentagon Lemma and Equation (15), we obtain ∠
−−→
64 + ∠

−−→
25 ≥ ∠−−→31 −π/3 + ∠

−−→
25 ≥ ∠−−→31 ≥ −π/3. Hence the

offspring for this notch is also R45. This must then be the offspring of the greater notch 6.4.2.5.6.

4
5

6 6

7
8 = R76

R67

Disk 8: R76. The chain at hand is now 6.4.7.5.6, composed of the two

notches 6.4.7 and 7.5.6. We have ∠7.4.6 = ∠(
−−→
47 ,
−−→
46 ) = ∠(

−−→
25 ,
−−→
46 ) =

∠(
−−→
52 ,
−−→
64 ) = π/3 + ∠(

−−→
53 ,
−−→
64 ) ≤ 2π/3, the last inequality coming from

the Pentagon Lemma 4.6, and hence the offspring is the rhombic R67 on

notch 6.4.7. Likewise ∠6.5.7 = π/3 + ∠(
−−→
56 ,
−−→
41 ) ≤ 2π/3 by the Pentagon

Lemma, and notch 7.5.6 has offspring R76. We now need to compare
their heights, which can be read off their y-coordinates:

y(R67)− y(R76) = y(
−−−−→
7R67 )− y(

−−−−→
7R76 ) = y(

−−→
46 )− y(

−−→
56 ) > 0,

since 5 is higher than 4, confirming that Disk 8 is R76.

3
1

2 3

4
56 6

7
88

9

Disk 9: R67 The chain is now the 2,2-notch 8.6.4.7.8. The reasoning
for this chain is similar to that for the 2,2-chain 6.4.2.5.6 (see Disk 7).
In particular we can rule out an offspring with parents 8 and 8. The
offspring must then be on either the 2,1-notch 8.6.4.7 or the 1,2-notch
6.4.7.8. We rule out pentagon offsprings in both. For 8.6.4.7, we do this
by estimating the differences between the third and first bearing angle:

∠
−−→
47 − ∠−−→86 = ∠

−−→
25 − ∠−−→42 = β3 +π/3− (β2 −π/3) = β3 −β2 + 2π/3 ≤ 2π/3,

since β3 − β2 ≤ 0 in Region A. To show 6.4.7.8 can’t have P68 as offspring, we show that the sum ∠7.4.6 +
∠8.7.4 of its hinge angles is greater than 4π/3. We know that ∠7.4.6 ≥ π/3 since 6 and 7 don’t overlap.

Since 4 is lower than 5, which is lower than 6, y(
−−→
78 ) = y(

−−→
56 ) < y(

−−→
46 ) ≤ y(

−−→
47 ) which implies ∠

−−→
47 > ∠

−−→
78

and thus ∠8.7.4 > π, proving that ∠7.4.6 + ∠8.7.4 > 4π/3, ruling out a pentagon offspring.
The notch angle for both 8.6.4.7 and 6.4.7.8 is ∠7.4.6 which we showed is less than 2π/3 in the

Disk 8 step. So the offspring of notch 8.6.4.7 is either T86 (a.k.a. T0 for this notch) or R67 (a.k.a. R2);
and the offspring of 6.4.7.8 is either R67 (a.k.a R1) or T78 (a.k.a T2). We rule out T86 as offspring of

8.6.4.7 by estimating the sum of first and last bearing angles of the notch: ∠
−−→
86 + ∠

−−→
47 = ∠

−−→
42 + ∠

−−→
25 =

β2 −π/3 + β3 +π/3 = β2 + β3 ≤ 2π/3 since by Equation (13) 0 ≤ β3 ≤ β2 ≤ π/3. We rule out T78 on 6.4.7.8,
by looking at the difference of the two hinge angles plus two times the second bearing angle:

∠7.4.6− ∠8.7.4 + 2∠
−−→
47 ≥ π/3− 4π/3 + 2π/3,

where the second term is explained by the fact that Disk 5 stops Disks 4 and 8 to be too close, i.e. ∠4.7.8 ≥
2π/3⇔ ∠8.7.4 ≤ 4π/3, and the other terms have already been explained above. So, by elimination, the
offspring of both 8.6.4.7, and 6.4.7.8 is R67, which is thus Disk 9.
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6 67
8

8

9

R89 10=R98 R89

b

6 6
7

8
8

9

R89 R89
10=T78

a

Disk 10: either R98 or T78. The chain at 9 has the 2 notches 8.6.9 and

9.7.8. Since by rhombic transitions
−−→
69 =

−−→
25 and

−−→
68 =

−−→
24 , ∠9.6.8 =

∠5.2.4 ≤ 2π/3, as proven for Disk 6, and hence the offspring of 8.6.9
is R98. As for the offspring of 8.7.9, we have two cases to consider
depending on the sign of ∠8.7.9− 2π/3.
By Proposition 4.1, if ∠8.7.9 ≤ 2π/3, the offspring is R98 (see Figure

b). If ∠8.7.9 > 2π/3,
∣∣∣∣∠−−→97

∣∣∣∣ ≥ ∠−−→78 since 9 is higher than 8, and thus
T78 must be the offspring of notch 9.7.8. We now prove that whether
it is R98 or T78, the offspring of 9.7.8 is lower than the offspring R89 of
9.7.8. If T78 is the offspring of 9.7.8, then ∠

−−→
78 ∈ [0,π/6], since 7 is lower

than 8 and the parents of T78 must be on opposite sides of it (and thus
∠
−−−−→
7T78 ≤ π/2). This means that ∠

−−−−→
8T78 ∈ [0,π/6] + 2π/3 = [2π/3,5π/6].

On the other hand R89 satisfies ∠
−−−−→
8R89 = ∠

−−→
25 = β3 + π/3 ∈ [π/3,π/2].

The properties of the sine function show that sin(∠
−−−−→
8T78 ) < sin(∠

−−−−→
8R89 )

and T78 is lower than R89.

If R98 is the offspring of 9.7.8, then ∠
−−−−→
9R98 = ∠

−−→
78 ∈ [0,π/6] as we argued before. On the other hand,

by rhombic transitions,
−−−−→
9R98 =

−−→
68 = . . . =

−−→
24 = β2 + 2π/3 ∈ [2π/3,5π/6], by Equation (13). Using the

properties of sine, we find that R98 is lower than R89. This finishes to prove that Disk 10 is either R89 if
∠8.7.9 ≤ 2π/3 or T78 if ∠8.7.9 > 2π/3.
Disk 11 = R89. We show, whether Disk 10 = R98 or T78, that 11 = R89.

6
67

8
8

9
10

a 5

T(10)8
R9(10)

11=R8911=R89

Case Disk 10 = T78 The chain at 10 is 8.6.9.7.10.8, with the 2 notches
10.8.6.9 and and 9.7.10. R9(10) is the offspring of 9.7.10: ∠10.7.9 < 2π/3

since otherwise ∠8.7.9 ≥ π and
−−→
97 would not be a down vector.

We now show that notch 10.8.6.9 can’t have a pentagon offspring. Its

first hinge angle ∠6.8.10 = ∠(
−−→
86 ,
−−−−−→
8(10) ) = ∠(

−−→
75 ,
−−−−−→
8(10) ) = ∠(

−−→
75 ,
−−→
78 ) +

∠(
−−→
78 ,
−−−−−→
8(10) ) ≥ π/3 + 2π/3 = π, where the first term comes from the

non-overlap of 5 and 8. As for the second hinge angle, by no-overlap
of 8 and 9, we have ∠9.6.8 ≥ π/3.

The sum of the hinge angles is therefore greater than 4π/3 and the offspring is not a pentagon, by
Proposition 4.3. As we have seen above ∠9.6.8 = ∠5.2.4 ≤ 2π/3, therefore the possible offsprings for
10.8.6.9 are T(10)8 and R89. But the first one is ruled out since we know from the Disk 10 case that

∠
−−→
78 ≤ π/6 and thus ∠

−−−−−−→
T(10)88 = ∠

−−→
78 − 2π/3 ∈ [−2π/3,−π/2]. This in turn implies that

−−−−−−→
T(10)88 is not a

down vector, which it should be for 8 to be the right parent of T(10)8. Hence the offspring of 10.8.6.9 is
R89.

The difference of heights between R89 and R9(10) is

y(
−−−−→
9R89 )− y(

−−−−−−→
9R9(10) ) = y(

−−→
68 )− y(

−−−−−→
7(10) ) = b(sin(∠

−−→
68 )− sin(∠

−−−−−→
7(10) ).

By rhombic transitions, we have ∠
−−→
68 = ∠

−−→
24 = β2 +2π/3 ≥ 2π/3. On the other hand, since ∠6.8.10 ≥ π

(see above), ∠
−−−−−→
7(10) = ∠

−−−−−→
8(10) −π/3 ≥ ∠−−→68 −π/3 ≥ π/3. Since sin is an increasing function in [π/3,π/2]

sin(∠
−−→
68 ) ≤ sin(∠

−−−−−→
8(10) and thus R98 must be the offspring in this case.
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8

8

9

1010

T(10)8

11=R89

Case Disk 10 is R98. In this case the resulting notch is the 2,2 notch
10.8.6.9.10. A hexagon transition with parents 10 and 10 is once again
excluded because of the value of b in Region A. We have shown in the
previous case that ∠9.6.8 ≤ 2π/3, ruling out triangle offsprings there.
To rule out the pentagon offspring P(10)9, we use Remark 4.1 and show

that the hinge angle ∠( ~69, ~8(10) ≥ π/3. But that angle is equal to ∠
−−→
96 −

∠
−−−−−→
(10)8 = ∠6.9.7 which is indeed ≥ π/3 since 6 and 7 do not overlap.

We can also easily dismiss P8(10) and R68 since in this case ∠
−−→
69 −

∠
−−−−−→
9(10) = ∠

−−→
47 −∠−−→78 > 0 where the last inequality comes from our study

of Disk 9.
Finally we rule out T9(10) . Using Proposition 4.3 on notch 8.6.9.10 where

β1 = ∠
−−→
86 = ∠

−−→
42 = ∠

−−→
12 −π/3 ≥ −π/3,β3 = ∠

−−−−−→
9(10) = ∠

−−→
56 > ∠

−−→
23 ≥ 0,

we find that β1 + β3 > −π/3 ruling out the triangle T2 = T9(10) for this notch.

Proposition 7.2. A configuration starting with a chain in Region A, and with ∠564 ≤ 2π/3, becomes a 2,2-
rhombic tiling starting at Disk 6. When ∠564 > 2π/3 , the chain 11.9.7.10.8.11 has the same angle properties
(Equations 15) as chain 5.3.1.4.2.5 and thus undergoes the same transitions for another 4 iterations, after
which it can either yield a rhombic tiling or undergo a triangle/pentagon transition. In all cases, the notch
11.9.7.8 is obtained from the chain 5.6.4.2 by a rotation by π about the midpoint of points 4 and 6 and
translation by vector

−−→
47 .

Proof. This proof, like the previous one, relies heavily on Figure 24. If ∠5.6.4 ≤ 2π/3, then ∠8.7.9 =
∠5.6.4 ≤ 2π/3, and 10 = R98, by Lemma 7.1. But then, since there are only rhombic transitions between

them, Chain 10.8.6.9.10 is a translation of 6.4.2.5.6 by the vector
−−−−−→
6(10) and by symmetry, chains repeat

every 4 iterates, translated by that same vector. Each chain (front) after 5.3.1.4.2.5 is (2, 2), so the
configuration has become (2, 2)-rhombic tiling.

If ∠879 = ∠564 > 2π/3, Lemma 7.1 implies that 10 = T78. We now relate the angles of 11.9.7.10.8.11
to those of 5.3.1.4.2.5, and prove that they satisfy inequalities corresponding to those in Equations 15.
Notice that the indices of points in chain 11.9.7.10.8.11 are obtained by adding 6 to those of 5.3.1.4.2.5.

By rhombic transitions, we have the equalities (shown by matching colors in Fig. 24):

−−−−−→
(11)9 =

−−→
42 ,
−−−−−→
8(11) =

−−→
25 ,
−−→
78 =

−−→
56 ,
−−→
97 =

−−→
64 . (16)

Using these relationships we can now derive the analog to the Inequalities 15a:

0
1
≤ ∠
−−−−−→
8(11) −π/3

2
≤ ∠
−−−−−→
7(10) −π/3 3= ∠

−−−−−→
(10)8 +π/3

4
≤
∣∣∣∣∠−−→97

∣∣∣∣ 5
≤ π/3.

Inequality 1 derives from 0 ≤ ∠−−→25 −π/3 and
−−−−−→
8(11) =

−−→
25 .

For Inequality 2, since β3 ≤ β2, we have ∠
−−−−−→
8(11) = ∠

−−→
25 = β3 + π/3 ≤ β2 + π/3 = ∠

−−→
14 . The Pentagon

Lemma finishes the job since: ∠
−−→
14 ≤ ∠−−→56 +π/3 = ∠

−−→
78 +π/3 = ∠

−−−−−→
7(10) .

Equality 3 is due to 47.8.10 being equilateral. Inequality 4 comes from the fact that Disk 9 is higher

than Disk 8, and thus ∠
−−−−−→
7(10) −π/3 = ∠

−−→
78 ≤

∣∣∣∣∠−−→97
∣∣∣∣. Inequality 5 derives from ∠

−−→
97 = ∠

−−→
64 ≥ ∠−−→53 (Pentagon

Lemma) and ∠
−−→
53 = ∠

−−→
23 −π/3 ≥ −π/3.

The analog of Inequality 15b, namely ∠
−−−−−→
8(11) − ∠

−−−−−→
(11)9 ≤ 2π/3, holds since Disks 8 and 9 do not

overlap.
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Finally the analog of Inequality 15c, that is ∠
−−−−−→
7(10) − ∠

−−−−−→
(11)9 ≥ 2π/3 derives from:

∠
−−−−−→
7(10) − ∠

−−−−−→
(11)9 = ∠

−−→
78 − ∠

−−−−−→
(11)9 +π/3 = ∠

−−→
56 − ∠−−→42 +π/3 = ∠

−−→
56 − ∠−−→41 + 2π/3 ≥ 2π/3,

the last inequality coming from the Pentagon Lemma. Since the type and location of transitions in
the orbit of the chain 5.3.1.4.2.5 derived entirely from Inequalities 15 in Lemma 7.1, the analog angle
inequalities 11.9.7.10.8.11 ensure that it this chain undergoes the same types of transitions for 6 iterates.

As for the last statement of this proposition, note that only rhombic transitions occur between chains
5.6.4.2 and 11.9.7.8. The color coding in Figure 24 makes it clear that 5.6.4.2 and 11.9.7.8 are composed
of the same three vectors, and that the rotation and translation proposed does transform the former
chain into the latter.

Proposition 7.2 can be seen as the first step of some kind of inductive statement: it says that if a 3,
2-chain, with points of same height order as 5.3.1.4.2.5 satisfies the same angle conditions as Equations
15, the pattern will evolve with the same sequence of transitions as those following 5.3.1.4.2.5. To make
that statement more precise, we introduce a short-hand notation for chains. Given a chain of disks of
the configuration n1n2 . . .nN we denote:

n1n2 . . .nN (+K) := (n1 +K)(n2 +K) . . . (nN +K).

We also use this notation for statements involving multiple chains. For instance, Equations 15 (+6k)
means Equations 15 where all the disk indices involved have been translated by 6k. Note that, implicit
in the notation n1n2 . . .nN or n1n2 . . .nN (+K) is the fact that these chains are chain of disks of the given
configuration. In particular they are equilateral, with edge length equal to b.

Proposition 7.3. If Chain 5.3.1.4.2.5(+6j) satisfies Equations 15 (+6j) for all j ≤ k, then if ∠564 (+6k) ≤ 2π/3
the configuration becomes a rhombic tiling, or else, if ∠564(+6k) > 2π/3 the chain yields in 6 iterates a chain
5.3.1.4.2.5 (+6(k + 1)) which satisfies Equations 15 (+6(k+1)). In the latter case the process continues with a
new pair of pentagon/triangle transition. In all cases, the chain 5312 (+6(k + 1)) is obtained from the chain
5.6.4.2 (+6k) by a rotation by π about the midpoint of points 4 and 6 (+6k) and translation by vector

−−→
47 (+6k).

Proof. Just re-index Proposition 7.2 and its proof by adding (+6j) (or (+6k) ) to every disk index.

Remark 7.1. Note that, as a consequence of Proposition 7.3, if the orbit of a chain in Region A satisfies
Equations 15 (+6j) for all j ≤ k, it has exactly k + 2 triangle transitions, and k pentagon transitions up to
Disk 4 + 6k included. Conversely, if a configuration from Region A has k + 2 triangle transitions up to
Disk 4 + 6k, Chain 5.3.1.4.2.5(+6j) must be an equilateral chain of disks of the configuration and must
satisfy Equations 15 (+6j) for all j ≤ k.

7.1 The pentagon deformation map φ(τ,γ) and its relation to S6.

Proposition 7.3 indicates that the dynamics in Region A may yield two types of behavior: the configura-
tion becomes a rhombic tiling in a finite number of iterates or, theoretically, it may continue forever with
pairs of triangle and pentagon transitions every 6 iterates. We now show that the second behavior does
indeed occur, and we circumscribe the sub-region of Region A (i.e. the petal) where it does. We also
show that, in some precise sense, the configuration approaches that of a rhombic tiling when it does not
become one in finite time.

Assuming that, in the language of Proposition 7.3, Chain 5.3.1.2 (+6k) satisfies Equations 15 (+6k),
the key to our analysis is given by the geometric correspondence between Chains 5.3.1.2 (+6k) and
5.3.1.2 (+6(k + 1)) as mediated by the chain 5.6.4.2 (+6k). Chain 5.3.1.2 (+6k) lines the bottom of a trian-
gle/pentagon pair. Chain 5.6.4.2 (+6k) lines the top of the same pair, and (by rotation and translation)
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has the same shape as Chain 5.3.1.2 (+6(k+1)) due in part to the fact that only rhombic transitions sepa-
rate these two chains (see Figure 24). Therefore, to understand how the geometry of these chains evolves,
we need to analyze how the relationship between the bottom and top chains of a triangle/pentagon pair.
We do so by finding the map φ that relates the hinge angles (τ,γ) and (τ ′ ,γ ′) of these two chains.

Lemma 7.4. In a convex equilateral hexagon, if two opposite sides are parallel, all opposite sides are parallel
in pairs. If two opposite angles are equal, all opposite angles are equal in pairs.

Proof. (See Figure 25 a). Let ABCJDPA be a convex equilateral hexagon and suppose the opposite sides
−−→
BC =

−−−→
PD are equal. Then BCPD is a parallelogram, and

−−−→
CD =

−−→
BP . The triangles 4ABP and 4JCD

are isosceles and congruent. Convexity ensures that A lays in the half-plane bounded by line BP which
contains no other point of the hexagon, and likewise for J and line CD. Since these two lines are par-

allel, 4JCD is obtained from 4ABP by a reflection about line BP and translation by
−−→
BC . This in turns

implies that
−−→
AP =

−−→
CJ and

−−→
AB =

−−→
DJ . Now assume that ∠BAP = ∠CJD in the equilateral convex hexagon

ABCJDP . Then BP = CD, and since PD = BC the quadrilateral BCDP is a parallelogram and BC ‖ PD.
Applying the first part of the lemma, opposite sides are parallel, and thus opposite angles are equal.

A

B

C

D

P

J

a b

Figure 25: a. Equilateral hexagon with parallel opposite sides (Lemma 7.4). BC ‖ PD implies that AP ‖ CJ and AB ‖ DJ
in this equilateral, convex hexagon. b. The map φ (Lemma 7.5). The effect on hinge angles of a triangle/pentagon pair of
transitions. Using the Pentagon Lemma, Lemma 7.5 shows that, in this picture τ ′ and γ ′ are determined by τ and γ and τ ′ ≥ τ
and γ ′ ≤ γ , with equality exactly when ∠BAP = ∠DJC = π/3. All chains are disk chains here.

Proposition 7.5. Let ABCJDPA be a closed hexagonal, equilateral chain of disks where ∠CJB = π/3 and where
we denote, as in Figure 25b, τ = ∠CBA,τ ′ = ∠PDJ,γ = ∠JCB,γ ′ = ∠APD. Then the pair (τ ′ ,γ ′) is uniquely
determined by a map (τ ′ ,γ ′) = φ(τ,γ) (see formula in Proposition AD.1).

The map φ has the properties:

1. φ is differentiable and invertible.

2. τ ′ ≥ τ and γ ′ ≤ γ, and these inequalities are strict if and only if no pair of opposite sides are parallel in
the hexagon. In particular, the fixed points (τ,γ) = φ(τ,γ) of φ occur exactly when

−−→
JD =

−−→
BA ⇔ −−−→DP =

−−→
CB ⇔

−−→
AP =

−−→
CJ ⇔ ∠BAP = π/3⇔ τ +γ = 5π/3

3. ∂γ ′

∂γ > 0.

4. The quantity I = ‖AJ‖2 /b2 which, in terms of (τ,γ) is:

I(τ,γ) = (1− cos(τ)− cos(γ))2 + (sin(τ)− sin(γ))2 = 3− 2cos(τ)− 2cos(γ) + 2cos(τ +γ),

is preserved by φ, in the sense that IS1φ(τ,γ) = I(τ,γ).
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Proof. That (τ ′ ,γ ′) is uniquely determined by (τ,γ) can be seen geometrically: the shape of the chain
ABCD is uniquely determined by (τ,γ). In turn, the point P is determined as the only point (when it
exists) such that 4ADP is isosceles with AP = PD = CD and P lies in the open half plane bounded by
line AD and that does not contain any of the points A,B,C,D and J . Given P , and the rest of the chain,
the angles τ ′ = ∠APD,γ ′ = ∠PDJ which are independent of rotation and translation of the figure, are
also uniquely determined. In a symmetric way, the angles (τ ′ ,γ ′) of the chain APDJ determine (τ,γ),
which shows that φ is invertible.

From the computation of φ, i.e. of τ ′(τ,γ),γ ′(τ,γ) in Appendix D, we see that these functions, as
composition of trigonometric functions, are continuously differentiable and thus φ is differentiable.

We prove the other properties of φ geometrically. We refer to Figure 25 b. By the Pentagon Lemma

4.6, ∠(
−−−→
CD ,

−−→
BA ) ∈ [0,π/3]. Hence

∠(
−−→
JD ,
−−→
BA ) = ∠(

−−→
JD ,
−−−→
CD ) + ∠(

−−−→
CD ,

−−→
BA ) = −π/3 + ∠(

−−−→
CD ,

−−→
BA ) ∈ [−π/3,0].

This implies ∠
−−→
JD ≥ ∠

−−→
BA . Likewise, the Pentagon Lemma shows that ∠(

−−−→
DP ,

−−→
CB ) ∈ [0,π/3], which im-

plies ∠
−−−→
DP ≤ ∠

−−→
CB . As a result, we obtain:

τ ′ = ∠PDJ = π − ∠−−−→DP + ∠
−−→
JD

≥ π − ∠
−−→
CB + ∠

−−→
BA = ∠CBA = τ,

with the equality occurring exactly when
−−→
JD =

−−→
BA ⇔ −−−→DP =

−−→
CB ⇔

−−→
AP =

−−→
CJ (see Lemma 7.4). Since

∠DJC = π/3, these equalities are also equivalent to ∠BAP = π/3. From the fact that BCPD is then a
parallelogram, and the triangles 4ABP ,4CDJ are equilateral, one easily deduces that γ + τ = 5π/3 (see
Figure 25a).

As seen in Figure 25b, the role of the pair (γ ′ ,γ) is symmetric to that of (τ,τ ′) (in that order). The
exact same proof thus shows γ ≥ γ ′, with equality occurring exactly when pairs of opposite sides of the
hexagon are equal or, equivalently, ∠BAP = π/3. Hence the fixed points, which are such that τ ′ = τ,γ ′ =
γ, occur exactly in the latter case.

As for the second property, it can be done using Calculus on the explicit formula for φ(τ,γ). We
prefer the following simple geometric proof. In Figure 25b, fix τ and increase γ . This increases AD
which makes the isosceles triangle 4APD flatter, i.e. forces γ ′ to increase.

To prove the third property, note that the chains ABCJ and APDJ of Figure 25b have same endpoints
whose normalized distance squared I = ‖AJ‖2 /b2 can be computed by the same trigonometric formula
(see Lemma D.2) using either of these two chains, i.e. either (τ,γ) or (τ ′ ,γ ′).

Correspondence betweenφ and S6 We can now apply Proposition 7.5 to spell out the correspondence
between φ and the sixth iterate of S on the chains 5.3.1.4.2.5 (+6k). Theses chain (up to translation) have
the bearing angles (see Figure 26):

(ρ,ρ+ (π − τ),ρ+ (π − τ) + (π −γ) +π/3,ρ+ (π − τ) + (π −γ)− 2π/3,α),

where, as in the previous section, we use the hinge angles notation τ = ∠135 (+6k),γ = ∠213 (+6k).

The last bearing angle α = ∠
−−→
25 (+6k) is constant under S6, and is determined by the initial value of

(τ,γ). In other words, 5.3.1.4.2.5 (+6k) can be parametrized by (τ,γ,α) and, from Propositions 7.3 and
7.5, the map S6 on these chains and in these coordinates is given by

S6((τ,γ),α) = (φ(τ,γ),α). (17)
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α’3

1
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4
55

Figure 26: a. Chain 5.3.1.4.2.5 + 6k from an orbit of a chain in region A. b. The projection of the chain in a. into C3. The
angles τ,γ remain the same, but α and b usually change. The correspondence between the parametrizations by (τ,γ,α′) and
(β1,β2,β3).

7.2 Partition of Region A into finite and infinite convergence

To explain the distinct convergence behaviors in Region A, we use another change of coordinates which
project chains 5.3.1.4.2.5 (+6k) into C3, see Figure 26. In general Disks 2 + 6k and 3 + 6k are not tangent.
By rescaling 3.1.4.2 (+6k) together with the diameter b of the disks until 2 + 6k and 3 + 6k are tangent,
keeping 5 + 6k as their child, we obtain a chain 5.3.1.4.2.5 such that 3.1.2.3 is in C3. Since rescaling
does not change hinge angles, this new chain has angle (τ,γ,α′). For this new chain, the bearing angles
(β1,β2,β3) of 3.1.2.3 and the coordinates (τ,γ,α′) can be readily checked on Figure 26b:

(τ,γ,α′) =
(

2π
3

+ β3 − β1,π+ β1 − β2,β3 +
π
3

)
⇔ (β1,β2,β3) =

(
α′ − τ +

π
3
,α′ −γ − τ +

4π
3
,α′ − π

3

)
(18)

When projected down from C3 to its tangent plane β1 + β2 + β3 = 0, in the coordinates (x,y) from the
orthonormal basis

−→v 1 =


− 1√

2
1√
2

0

 , −→v 2 =


− 1√

6
− 1√

6√
2
3

 ,
we obtain (taking the dot product with −→v 1 and −→v 2 respectively) the change of variables :

(x,y) =
(
π −γ
√

2
,
3γ + 6τ − 7π

3
√

6

)
⇔ (τ,γ) =

x+
√

3y
√

2
+

2π
3
,π −
√

2x

 (19)

Note that α′ has disappeared in the process, and that (τ,γ) can be used to parametrize Region A, which
can in turn be used to vizualize the dynamics of φ and, therefore S6. The boundaries of Region A are
(see Figures 21, 27), in the two sets of coordinates:

β3 = 0⇔ 3γ + 6τ − 7π = 0⇔ y = 0 (bottom)

β2 − β3 = 0⇔ τ +γ = 5π/3⇔ y = x/
√

3 (top)

β2 − β1 = π/3⇔ γ = 2π/3⇔ x =
1

3
√

2
(right)

From which we obtain the coordinates of the vertices of the triangular region A:{
(0,0),

(
π/3
√

2,0
)
,
(
π/3
√

2,π/3
√

6
)}
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in the (x,y) coordinates and {(2π/3,π), (5π/6,2π/3), (π,2π/3)} in the (τ,γ) coordinates. Note that the
equation τ + γ = 5π/3 of the top boundary confirms that it corresponds to the limit of existence of the
pentagon 5.3.1.4.6.5, as the sum of the hinge angles of 5.3.1.4, ∠135 + ∠413 = τ +γ −π/3 = 4π/3. Propo-
sition 7.5 also shows that these chains correspond to fixed points of φ. Likewise, the right boundary,
where ∠213 = γ = 2π/3, is the limit of existence of the triangle 4124.

The functions I andφ in Region A The change of coordinates above allows us to express the functions
φ and I in the variables x and y. The connection between φ and S6 disappears for points outside of
Region A: above it, the corresponding chain 5.3.1.4.2.5 cannot produce a pentagon, to the right, 3.1.2.3
cannot produce a triangle, and below, the chain 3.1.2.3 is not a 1, 2-chain anymore but a 2, 1-chain.
Figure 27A and B show the isolines of I in Region A, in the coordinates (τ,γ) and (x,y) respectively. The
arrows and dots in B indicate the direction of the dynamics under φ, a.k.a. S6.

b

a
exit1xy,

I=7

C
P

Qτ

γ x

y

BA

Figure 27: A. The isolines of I(τ,γ) in Region A represented in the (τ,γ)-plane. The line of symmetry (dashed) τ = γ is the
perpendicular bisector of the top boundary. The isoline I = 7 is marked in red. B. The isolines of I(x,y) in Region A, with
the (x,y) coordinates. The perpendicular bisector of the top boundary remains the line of symmetry. The arrows indicate the
direction that S6 maps points on the isolines. Each point in the top boundary is a fixed point. The points represented by empty
circles repel points in the interior of Region A, the points with filled circles attract them. The isoline I = 7 (in red) partitions
Region A into 2 regions: in the top one, points take infinitely many iterations to converge to a fixed point; in the bottom
region, points exit Region A in finite time. The black line represents the pre-image by S6 of the boundary x = π/(3

√
2). C. The

isolines are superimposed onto the the numerical sweep of Figure 3, where the redder the point, the more pairs of triangles
and pentagons its orbit contains. The petal like red region discovered numerically has boundary the isoline I = 7, confirming
that it contains chains that converge to rhombic tilings in infinite time. The coloring of the region below the petal, with the
darker blue region exiting Region A in one iterate, is also consistent with the dynamics of S6.

Theorem 2. The isoline φ = 7 splits Region A in two subregions. The top one, (coinciding with half a red petal
in Figure 3), corresponds to chains converging, under infinitely many iterations of S , to 2,3-rhombic tilings .
The bottom subregion corresponds to chains that become in finite time chains of 2,2-rhombic tilings.

Proof. For simplicity, we use the (τ,γ) coordinates. The points P = (2π/3,π) and Q = (π,2π/3) are the
top and right vertices of Region A in those coordinates. Substitution in I(τ,γ) = 3− 2cos(τ)− 2cos(γ) +
2cos(τ+γ) yields I(P ) = I(Q) = 7. That these values are the same is no surprise as the function I is clearly
invariant under the reflexion (τ,γ)→ (γ,τ) about the line τ = γ . 8

We show that the isoline I = 7 restricted to Region A forms one single curve connecting P and Q and
projecting 1 to 1 on the boundary segment PQ.

We first show that, on the boundary of Region A, I = 7 only occurs at P and Q. The segment PQ
affords the parametrization (τ,5π/3 − τ), τ ∈ [2π/3,π]. Restricting I to PQ yields I(τ,5π/3 − τ) = 4 −
3cos(τ) +

√
3sin(τ). Calculus and trigonometry show that this function is symmetric about the midpoint

5π/6 of the interval [2π/3,π], it increases on the first half of the interval to a maximum of 2(1 +
√

2) and

8Under the affine change of coordinates to (x,y), the reflection becomes the one about the line y = −
√

3x +
√

2/27π, which
is also the perpendicular bisector of the top boundary in these coordinates. I is also invariant under this reflection in those
coordinates, as is clear in Figure 27B
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decreases on the second half. In particular, the minimum is attained exactly at τ = 2π/3 and π (i.e. at
P and Q), at which we know I = 7. Thus P ,Q are the only elements of I = 7 on the boundary segment
PQ. Likewise, the restriction of I on the left boundary is I(τ,7π/3−2τ) =

√
3sin(τ)−

√
3sin(2τ)−cos(τ)−

cos(2τ) + 3, τ ∈ [2π/3,5π/6], which has a unique maximum 7 at τ = 2π/3, i.e. at P . Finally, on the lower
boundary I(τ,2π/3) = −

√
3sin(τ)− 3cos(τ) + 4, τ ∈ [5π/6,π] which has maximum 7 at (only) π, i.e. at Q.

We now show that all isolines of I restricted to Region A project injectively on PQ, by showing that
they are all transverse to the lines of slope 1, which are perpendicular to PQ. We do so by computing
the minimum of the directional derivative ∇−→

d
I(τ,γ) = 2sin(τ)+2sin(γ)−4sin(τ +γ) in Region A, where

−→
d = (1,1). The Lagrange multiplier method (or a computer algebra software) shows that the minimum
of 2
√

3 for this derivative function is attained at P andQ. That this minimum is greater than 0, has three
consequence: 1) there are no critical points for I in Region A; 2) no isoline has tangent vector (1,1) in
Region A; 3) These isolines project injectively to the top boundary PQ. Note also that each isoline is
compact, as a pre-image in the compact Region A of a singleton, under the continuous I .

We now show that I = 7 has a unique connected component, which therefore mus connect P and Q.
By continuity, the set {I = 7} ∩A is closed and bounded, and hence compact, and the same holds for its
connected components. By continuity, the orthogonal projection of the connected component of P in
I = 7 on PQ is compact, and attains a minimum in height, sayM. We must haveM ,Q, since no point of
Region A projects on Q other than Q itself. The unique point of I = 7 in Region A that projects onto M
is either on the boundary, tangent to the perpendicular to PQ, or a critical points - all three possibilities
have been ruled out above. The same reasoning, looking at the highest point of the projected component
proves that P belongs to the component. Hence the isoline I = 7 connects P and Q within Region A, and
splits the region in two sub-regions. Since ∇−→

d
I(τ,γ) = 2

√
3 > 0, I > 7 above I = 7 and I < 7 below.

The same proof that we used for I = 7 can be used to show that the isoline I = s for s ∈ [7,2(1 +
√

2))
is a curve that connects two points Ps and Qs on PQ, symmetrically located on opposite sides of its
midpoint. The region enclosed by I = 7 and PQ is thus foliated by these isolines, and we now claim
that points inside that region correspond to chains of K12 that converge in infinite time to 2,3-rhombic
tilings. Since they are on PQ, the points Ps and Qs are fixed points. A point Ms of coordinates (τ,γ) on
I = s and in the interior of Region A will have iterate (τ ′ ,γ ′) = φ(τ,γ) where τ ′ > τ and γ ′ < γ according to
Proposition 7.5. Hence points travel down and right along the curve I = s, under φ (a.k.a S6). Moreover,
according to the same proposition, since ∂γ ′

∂γ > 0, and since γ(Ps) < γ(Ms) < γ(Qs), φ(Ms) must remain
between Ps and Qs on I = s. Since γ ′ ≤ γ , the sequence γ(φn(Ms)) is decreasing and bounded. It must
converge to a point where γ ′ = γ , i.e. a fixed point which can only be γ(Qs). Thus limn→∞φ

n(Ms) =Qs.
This convergence can’t occur in finite time: if φn(Ms) =Qs for some n ∈N, replacing Ms by its iterate

φ(n−1)(Ms), we get φ(Ms) = Qs. But, since ∂γ ′

∂γ ≥ 0 (with equality only at fixed points) any point in the
segment

{R ∈ {I = s} | γ(Ms) ≤ γ(R) ≤ γ(Qs)}

must then be mapped to Qs by φ. But this is impossible since φ is invertible.
To see that the orbit of Qs can be interpreted as a 3,2 rhombic tiling, note that, since β2 = β3 for these

chains, we have
−−→
14 =

−−→
25 (see Figure 28). As is characteristic of fixed points of φ (see Proposition 7.5),

the quadrilateral 1463 is a rhombus, so we also have
−−→
14 =

−−→
36 and

−−→
31 =

−−→
64 . As a result, Disks 4, 5 and

6 form a lign of tangent disks, i.e.
−−→
45 =

−−→
56 =

−−→
12 =

−−→
23 . In other words, Chain 6456 is Chain 3.1.2.3

translated by
−−→
14 , and the pattern is periodic of period 3. The same kind of reasoning implies that the

quadrilaterals 2.5.7.4.2 and 3.6.8.5.3 are rhombi and the 3,2-Chain 6.4.2.5.3.6 can be seen as a chain
generating a 2, 3-rhombic tiling, of period 6, but reducible to period 3 in this case, since the up vectors

are identical, and so is a pair of down vectors (
−−→
42 =

−−→
53 ).

We now prove that points on I = s, s < 7 must converge to 2,2 rhombic tilings in finite time. Since
the compact isoline I = s is separated from PQ by I = 7, there are no fixed points for φ on I = s. Hence
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Figure 28: Fixed points of the map S6. A configuration to which the chains in isoline I = 7.283 converge. This configuration
can be seen as a 2,3-rhombic tiling (blue edges, superimposed to the dynamically defined gray edges), which are generally of
period 6. It is also of period 3 here: because of triple tangencies, it has a pair of equal down vectors, and its two up vectors are
the same. Some of its transitions can also be seen as triangle (e.g. at 7 or 8) and pentagons (e.g. at 9 or 12). Note the line-slip
structure [21] of 3 interlocked, straight and parallel up-parastichies, a characteristic feature of these fixed points.

function = γ(φ(τ,γ))−γ = γ ′(τ,γ)−γ < 0 on I = s and must attain a strictly poisitve lower bound. Given
any point Ms of I = s, Since γ(Ms) ∈ [2π/3,π], there exists a positive integer n for which γ(φn(Ms)) <
2π/3 and γ(φ(n−1)(Ms)) ≥ 2π/3. The point φn(Ms) corresponds to a chain 5.3.1.4.2.5(+6n) where γ ′ =
∠5.6.4(+6n) = ∠8.7.9(+6n) < 2π/3, which must yield a rhombic transition 10(+6n) = R98(+6n) and a 2,2
rhombic tiling chain 10.8.6.9.10(+6n), as seen in Figure 24B of Proposition 7.3.

8 Concluding remarks

Summary of the different assymptotic dynamics. We have rigorously confirmed the classification of
Figure 3. Namely, we have shown that the disk stacking map S when iterated with initial conditions
within the petals inside the inner hexagon of C3 converge in infinite time to 3,2 of 2,3 rhombic tilings
that are lattices with a line slip. The axes of the petals are made of these rhombic tilings, and are period
3 orbits for S . The orbits of chains in the inner hexagon, but outside the petals converge in finite time
to 2,2 rhombic tilings. The orbit of chains outside the inner hexagon, in the rays of the star of David,
are Bernhardt tilings, which can be interpreted as 2,2 rhombic tilings with some extra triple tangencies.
Chains in the regions outside the inner hex and the star of David’s ray are 1,2 or 2,1 rhombic tilings, with
the particular case, on the axes of C3 joining the center to the vertices, where the chains yield rhombic
lattices that are fixed points of S . These results put together finish the proof of Theorem 1: all chains
from C3 have their orbits converging to rhombic tilings.

From the rhombic lattices to the rhombic tilings paradigm in phyllotaxis. Rhombic lattices are the
descriptive model central to much of the theoretical work on phyllotaxis, starting with the seminal work
by the Bravais in 1837 ( [16], [33], [11], [17], [27], [23] ). van Iterson used rhombic lattices as the back
bone of the route to the golden angle divergence through Fibonacci transitions. This route is splendidly
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Figure 29: Partial rendition of the attractor (courtesy Scott Hotton). The black lines correspond to the van Iterson diagram,
representing rhombic lattices. The vertical axis corresponds to the radius of the disks in a chain. Starting with a 1,1 chain (on
the orange vertical line) and decreasing the radius, a chain goes down, hugging the attractor, branching out to the successive
Fibonacci branches. The surfaces and solids around the diagram are a rendition of the chains of appropriate lengths. Rhombic
tilings are subsets of these sets of chains.

illustrated by the van Iterson diagram, which is the locus of rhombic lattices in the parameter space of
their generators z = α + iy (where α ∈ S1 is the divergence angle, y ∈ R+ is the plastochrone), unrolled
in the upper half plane. According to van Iterson, who was also using the disk stacking model, as the
disk diameter b decreases, the structure would stabilize from (square) lattice with Fibonacci parastichy
numbers to one with the next pair of Fibonacci numbers. This kind of approach, but with different mod-
els, was taken on, numerically by [29, 30], analytically by [18, 23] where a set of lattices close (or equal
in [23]) to rhombic lattices, are indeed attractors, and meander down to the golden angle. Unfortunately,
in the disk stacking model, rhombic lattices are not attractors. This can easily be seen from the results of
this paper: take a fixed point lattice in C3, e.g. one with β2 = β3 and τ < 2π/3. It lives on the blue portion
of C3, on the axes of the hexagon. But it is surrounded by 1,2 rhombic tilings that are periodic orbits.
So the least perturbation of the lattice making β3 slightly different from β2, yields a 1,2 rhombic tilings,
whose orbit, while staying close to that of the lattice, never converges back to it: the lattice is neutrally
stable but not asymptotically so. However, if Conjecture 1 is generally true, the set of rhombic tilings is a
global attractor and therefore nearby orbits with sufficiently slowly varying b will remain in the vicinity
of that attractor. One then needs to argue that the different branches of m,n rhombic tilings fit together
in a way that, starting with Fibonacci pair m,n, one is channeled by the attracting set of rhombic tilings
through the Fibonacci sequence. Although this not impossible to imagine, the technicalities involved in
using this as the structure of a rigorous proof raises enormous technical difficulties: the same way that
the set of 1,2 rhombic tilings (with varying b) is 2-dimensional, the set of m,n rhombic tilings is (m+n-
1)-dimensional. Understanding the topology of these sets, and how they fit together can be a daunting
task. Indeed, classifying the topology of cylindrical disk chains can be daunting, even for shorter chains.
As an intriguing example, the set 4-chains of fixed diameter b, for b ∈ [1/4,1/2] has the topology of a
projective plane ( [22] ).

A more local approach, using fronts and their transitions as b varies, seems to capture the Fibonacci
transition process in a much more concrete way [12] that seems more promising for a rigorous proof of
Fibonacci transitions in the disk stacking process with slowly varying b.9

9This approach is not too dissimilar to van Iterson’s use of fragments of transitioning configurations and his brilliant in-
troduction of a renormalization argument, many decades before any such thing was formally introduced in Nobel prize level
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Concluding words We wish this paper demonstrates that the field of phyllotaxis, or plants patterns, is
still rich of potential mathematical discoveries. In this particular case we have shown that even though
geometrically packed discs on a cylinder seem to form rigid configurations, there is a richness of dynam-
ics in the stacking process to allow the system to converge toward a periodic structure in either finite
and infinite time. This shows the inherent stability of such patterns.

We hope to have established enough of the elementary tools and vocabulary to help other researchers
understand disk pilings in a different, more dynamical way, that could be useful in other contexts than
phyllotaxis.

A Classification of 3-notches: proof of Lemma 4.2.

We remind the reader that this lemma states the conditions that partition the shape space of 3-chains in
terms of their possible offsprings. We now give the proof of the lemma, repeated each of the statement
as we proceed. The reader is urged to visualize the situations described by using this online, interactive
version of Figure 4.2, https://ggbm.at/prevpdfk (a Geogebra applet).

Proof. As usual, we denote by b the length of the edges of the chain of disks.
(i) τ ∈ [π/3,5π/3], γ ∈ [π/3,5π/3], τ +γ ≥ π

Remember that, in a chain of disks, no two points overlap. The condition τ ∈ [π/3,5π/3] (resp. γ ∈
[π/3,5π/3]) is a direct consequence of the non-overlap of A and C (resp. B and D). Likewise, τ +γ ≥ π is
equivalent to the non-overlap ofA andD: a lesser sum of angles would mean that the distance betweenA

and D would be less than b. Indeed, the rays obtained by continuing vectors
−−→
BA and

−−−→
CD must intersect

at some point I , where A ∈ BI,D ∈ IB. Now use the law of cosine for the triangles 4IBC and 4IAD and
their common angle at I to conclude that τ +γ < π⇒ AD < BC = b.

(ii) τ +γ = 4π/3⇔ R1 = T2⇔ R2 = T0⇔ P and P ′ exist and {T0,T2} = {P ,P ′}
(boundary between the yellow and blue regions in Figure 4.2). If R1 = T2, ∠R1CB = γ −π/3. This angle is
also adjacent to ∠CBA = τ in the rhombus ABCR1 and thus π−τ = γ −π/3 or, equivalently, τ +γ = 4π/3.
Conversely, if τ + γ = 4π/3 then ∠R1CB = π − τ = γ −π/3, which means ∠DCR1 = π/3 and R1 = T2. The
same reasoning shows R2 = T0⇔ τ +γ = 4π/3. By transitivity, R2 = T0⇔ R1 = T2.

For the last equivalence note that, since R1 ∈ CA ∩CC and T2 ∈ CC ∩CD , R1 = T2 implies that T2 ∈
CA ∩CD = {P ,P ′}. In particular P ,P ′ exist in this case. At the same time, we must have R2 = T0 which
implies T0 ∈ CD ∩ CA = {P ,P ′} so the we must have {T0,T2} = {P ,P ′} (as sets) whenever one of these
equalities occur. Conversely, if P = T0, then P B = T0B = b and the quadrilateral DPBC is equilateral,
hence a rhombus. This implies P = R2 and hence T0 = R2. The same proof shows that when P = T2, then
T2 = R1.

(iii) τ + γ < 4π/3⇔ R1 overlaps with D ⇔ T2 overlaps with A⇔ R2 overlaps with A⇔ T0 overlaps
with D. (Yellow region, Figure 4.2P).

Note that
−−−→
BR2 =

−−−→
CD (as opposite sides of rhombus BCDR2) and ∠(

−−→
BA ,
−−−→
BT0 ) = π/3 (4ABT0 is equilat-

eral). Note also that

τ +γ −π = ∠(
−−→
BA ,
−−−→
CD ),

as can be checked by using the relationship between bearing and hinge angles (Equation 1). Using the

fact that
−−−→
CD =

−−−→
BR2 ,

∠R2BT0 = ∠R2BA− ∠T0BA = ∠(
−−→
BA ,
−−−→
CD )− ∠T0BA = τ +γ − 4π/3,

and τ+γ < 4π/3⇔ ∠R2BT0 < 0. But this is equivalent to R2 being in the arc
_
T0A ofCB, which is insideDA,

which is itself equivalent to R2 overlapping with A. Likewise ∠R2BT0 < 0 is equivalent to T0 ∈
_
R2D⊂ DB,

that is, T0 overlaps with D. The proofs of the next two equivalences are identical.

physics and math!
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(iv) τ + γ ≤ 4π/3⇔ P exists and does not overlap with any point in the chain (Again: yellow region,
Figure 4.2P).
The reader should brace themselves: this is by far the most involved case. As seen in (ii) and (iii)
above, γ + τ ≤ 4π

3 ⇔ T0 = R2 or T0 overlaps with D. In either case, since T0 ∈ CA,R2 ∈ CD this implies
CA ∩CD , ∅ and P ,P ′ exist. P overlaps with B exactly when ∠BAP < π/3, and P overlaps with C exactly
when ∠PDC < π/3. So we want to show the opposite inequalities hold when γ + τ ≤ 4π

3 . Note that, when
P and P ′ exist, the measures of the angles ∠BAP and ∠PDC are continuous functions of the variables τ
and γ . This can be seen by using simple trigonometry. Accordingly, the function

m(τ,γ) = min(∠BAP (τ,γ),∠PDC(τ,γ))−π/3

is also a continuous function of (τ,γ), which is strictly negative exactly when P overlaps one of B or C,
positive otherwise. We claim that m is 0 on the line (see Figure 4.2)

L = {(τ,γ) | τ +γ = 4π/3},

and m is strictly positive below, and strictly negative above, which will prove our claim. By (ii), we
know that L is the locus of chains for which P = T0 (⇔ ∠BAP = π/3) or P = T2 (⇔ ∠PDC = π/3). To
prove that m = 0 on L, we show that, on L , ∠BAP > π/3 whenever ∠PDC = π/3, and vice versa, so
min(∠BAP (τ,γ),∠PDC(τ,γ)) = π/3, and m = 0 there.

Take (τ,γ) ∈ L and assume without loss of generality that τ ≤ γ . Since τ + γ = 4π/3, we must have
τ ≤ 2π/3 and thus

∠CBT0 = ∠CBA− ∠T0BA = τ −π/3 ≤ π/3.

Since T0 = R2 on L, ∠CBT0 = ∠T0DC as these angles are opposite in the rhombus BCDT0. So ∠T0DC ≤
π/3 = ∠T2DC and, since {P ,P ′} = {T0,T2} on L, we must have T0 = P ′ and T2 = P (when equality holds
these three points coincide). The same reasoning shows that T0 = P and T2 = P ′ when τ ≥ γ . Now assume
∠PDC = π/3. This implies P = T2 = R1 and thus, as we just proved, τ ≤ 2π/3 ≤ γ . We have ∠BAP = ∠P CB
as they are opposite angles in the rhombus ABCP = ABCR1 and thus, on L,

∠BAP = ∠P CB = ∠DCB− ∠DCP = γ −π/3 ≥ 2π/3−π/3 = π/3.

So ∠PDC = π/3⇒ ∠BAP ≥ π/3. The same proof would show ∠BAP = π/3⇒ ∠PDC ≥ π/3. This finishes
showing that m(τ,γ) = 0 on L. Conversely, if m(τ,γ) = 0, then either ∠BAP = π/3 or ∠PDC = π/3. But
∠BAP = π/3 implies that 4BAP is equilateral, i.e. P = T0, and consequently P ′ = T2. Using (ii), we get
that τ +γ = 4π/3, and we’re on L.

We now show that m is strictly greater than 0 below L and, where it is defined, it is strictly less than
0 above L. The function m is defined wherever P is, which is whenever AD ≤ 2b. Simple trigonometry
shows that

AD
2

= b2
[
(1− cos(τ)− cos(γ))2 + (sin(τ)− sin(γ))2

]
= b2(3− 2cos(τ)− 2cos(γ) + 2cos(τ +γ)),

and hence, AD ≤ 2b⇔ AD
2 ≤ 4b2⇔−1−2cos(τ)−2cos(γ)+2cos(τ +γ) ≤ 0. The boundary of the region

of existence of P is thus the 0-isoline of the function

p(τ,γ) = −1− 2cos(τ)− 2cos(γ) + 2cos(τ +γ).

Using the computer, one observes that the curve p(τ,γ) = 0 is is convex above L, and that it is tangent
to the lines τ = π/3,γ = π/3 and L (The white curve in Figure 16.) These properties can also be checked
using Calculus). Together with the lines given by the general no-overlap constraints on chains of disks
((i)), the curve p = 0 bounds two connected, arrow-shaped regions above L and a (connected) trapezoidal
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(yellow) region below where P is defined. To finish proving that m is positive only below L, we use
continuity and check that m is negative at one point in each of the arrow-shaped regions above L and
positive at one point in the trapezoidal region below.

Pick the point (τ,γ) = (π/2,π/2) below L. Then the quadrilateral ABCD is a square and the triangle
ADP is equilateral. Consequently ∠BAP = ∠PDC = π/2 + π/3 and m(π/2,π/2) = π/2 > 0. Thus indeed
m > 0 below L. Now pick a point (τ,γ) with γ + τ > 4π/3, such that AD = 2b. This point is on the curve
p = 0, and can thus be on the upper boundary of either arrow-shaped region above L, serving as test case
for either region. In this case the pentagon ABCDP is indistinguishable from the quadrilateral ABCD as
P = P ′ is the midpoint of AD. Since the angles of this quadrilateral sum up to 2π, ∠BAP +∠PDC+τ+γ =
2π and, because of ((i)) this implies ∠BAP +∠PDC < 2π/3. Thusm(τ,γ) < 0 in this case, and by continuity
for all the points above Lwhere it is defined. This finishes to prove that P is defined and does not overlap
other points of the chain in exactly the (yellow) trapezoidal region below L. Note that, because of (iii),
this implies that P is the only possible offspring in that region.

(v) τ +γ > 4π/3 and τ < 2π/3⇔ T0,T1,R2 and P overlap with some point of the chain, and T2,R1 do not.
(The proof of the statement when γ < 2π

3 is identical. This corresponds to the blue regions in the figure).
Assume γ + τ > 4π

3 , τ <
2π
3 . By (iv), we know that P , if it exists, overlaps with either B or C. On

the other hand τ < 2π
3 ⇒ ∠CBT0 = τ − ∠T0BA = τ − π

3 < π
3 and thus T0 overlaps with C. Likewise T1

overlaps with A. In the rhombus ABCR1 the angle ∠CBA = τ < 2π
3 , and thus the complementary angle

∠BAR1 > π/3 and R1 does not overlap with B. The same reasoning shows that, since γ > 2π
3 ,R2 overlaps

with C when γ < π. When γ ≥ π, R2 = C, the ultimate overlap. From (iii) we also know that R1 and T2
cannot overlap with D and A respectively. Finally, T2 can’t overlap with B since γ > 2π

3 .
(vi) τ +γ > 4π/3 and τ > 2π/3,γ > 2π/3⇒ P does not exist and R1 and R2 overlap with some point of the

chain, whereas T0,T1,T2 do not.(Red region)
Assume τ+γ > 4π/3, τ > 2π/3, and γ > 2π/3. It can be visually checked (and proven by calculus) that this
region is above the elliptically shaped curve p = 0, and thus out of the domain of existence of P .10 The
first inequality insures that T0 does not overlap with D, nor T2 with A. The inequality τ > 2π/3 shows
that T0 does not overlap with C, and thus does not overlap with any notch point. Likewise γ > 2π/3
implies that T2 does not overlap with any point in the chain. As we have seen in the previous case,
τ > 2π/3 implies that R1 overlaps with B (and coincide with it if τ ≥ π). Likewise γ > 2π

3 implies R2
overlaps with C (and coincides with it if γ ≥ π). Thus these angle conditions leave only T0,T1,T2 with
no overlap with points in the chain.

(vii) τ + γ > 4π/3 and τ = 2π/3⇒ R1 = T0 = T1 and this point does not overlap with any vertex of the
chain and neither does T2, but R2 and P do. And a similar statement when γ = 2π/3.
Assume τ + γ > 4π/3 and τ = 2π/3 (vertical boundary between the red and blue region). The first
inequality implies that P , if it existed (which it does not on this set), it would overlap with either B or C.
the equality τ = 2π/3 is equivalent to R1 = T0 = T1, as the rhombus ABCR1 has angles π/3 and 2π/3. In
particular this point does not overlap with A,B or C. Since γ > 2π/3, ∠DCT1 = γ −π/3 > π/3 and T1 does
not overlap with D, and thus T1 = R1 = T0 does not overlap with any vertex of the chain. Since γ > 2π/3,
R2 overlaps with C (or coincides with it when γ ≥ π). The proof of the other statement is obtained by
symmetry.

B Parameterization of C3

This appendix completes Section 5. We parameterize C3 using the inverse of the projection on its tangent
plane T0 at (0,0,0). We will show that this projection is indeed 1-1. T0 is perpendicular to the gradient

10The reader uncomfortable with this argument can note that τ +γ > 4π/3 implies that, if it existed, P would overlap in that
region.
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n := (1,1,1) of the function sin(β1) + sin(β2) + sin(β3) at (0,0,0), and thus has equation:

T0 = {(β1,β2,β3) | β1 + β2 + β3 = 0}.

We choose the basis for T0 given by the two vectorsm1 = (−1,1,0),m2 = (0,−1,1). We can extend this pair
to the basis {m1,m2,n} of R3, adding the normal vector n. If u,v,w are the coordinates in this basis, the
change of coordinates is given by (β1,β2,β3) = um1 + vm2 +wn, that is:

β1 = −u +w

β2 = u − v +w

β3 = v +w

(20)

Hence, a parameterization of C3 is given by finding the function w(u,v) which solves the implicit
equation:

sin(w −u) + sin(u − v +w) + sin(v +w) = 0, (21)

and replacing w by w(u,v) in Equation 20. Note that in the basis {m1,m2,n}, the orthogonal projection
on T0 is given by um1 + vm2 + wn 7→ um1 + vm2. The map (u,v) 7→ (u,v,w(u,v)) obtained is then by
construction an inverse of the orthogonal projection of C3 onto T0.

Using trigonometric identities, Equation 21 can be factored as:

cos(w)(sin(v)− sin(u) + sin(u − v)) + sin(w)(cos(u) + cos(u − v) + cos(v)) = 0,

from which we obtain (when defined!):

w(u,v) = tan−1
(

sin(u)− sin(v)− sin(u − v)
cos(u) + cos(u − v) + cos(v)

)
(22)

We now show that the domain of w(u,v) indeed contains the projection of C3 on T0. This will finish
proving that, in the appropriate domain, the inverse of the projection (u,v) 7→ (u,v,w(u,v)) is a parame-
terization of C3 .

To determine the domain of w(u,v), we look for the point in T0 closest to the origin for which w is
not defined, that is, which satisfies cos(u) + cos(u − v) + cos(v) = 0, the denominator in its definition (see
Equation 22). To this effect, we numerically minimize the Euclidean distance (given, in terms of in terms
of (u,v) by ‖um1 + vm2‖ =

√
u2 + (u − v)2 + v2 with the constraint cos(u)+cos(u−v)+cos(v) = 0 and obtain

(with Wolfram Alpha, e.g.) an approximate value of 2.92974 at (u,v) = (±2.39212,1.19586). In other
words, the domain of the function w(u,v) contains a Euclidean disk of radius 2.92974 in the plane T0.

We now show that the hexagon H3 is within that disk, and by extension, within the domain of w, by
computing the distance between the vertices of H3 and the origin. To find the coordinates of the points
corresponding to the vertices, remember that the hexagon is the region of T0 bounded by the 6 planes
given by:

βk − βj = 2π/3, k, j ∈ {1,2,3}, k , j.

Each of these planes is perpendicular to T0. The vertices are thus given by the solutions of the systems
of six linear equations:

β1 + β2 + β3 = 0

βk − βj = ±2π/3

βl − βj = ±2π/3

for k, l, j distinct elements of {1,2,3}, which have solutions

±
(
−4π

9
,
2π
9
,
2π
9

)
,±

(
−2π

9
,−2π

9
,
4π
9

)
,±

(
2π
9
,−4π

9
,
2π
9

)
(23)
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These points are all at distance (2
3 )( 3

2 )π ≈ 1.71007 of the origin, which is less than 2.92974. Thus the H3
does not contain any point where w is undefined, and the map

(u,v) 7→m1u +m2v +w(u,v)n

is well defined on the hexagon and parametrizes C3. As mentioned above, this map is the inverse of the
projection from C3 to T0.

C Proof of Proposition 6.2
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Figure 30: Contour plot of the distance function on C3. The Euclidian distance on C3 was pulled back under its
parametrization, to T0. The regions bounded by the contours are star shaped around the origin, as evidenced by the figure
(each element can be connected to some center point by a line segment), which implies that distance grows along any ray from
the origin. This in turns implies that the vertices of the (also star shaped) triangles and hexagon achieve the maximum distance
from the origin for their respective regions.

Proof. The points corresponding to the vertices of the hexagon can be computed numerically using Equa-
tions 20 and 22. But they also can be found exactly by observing that one of the angles βk is increasing
(in absolute value) along the axes through the vertices: they are the projections of the 3D axes to T0.
The vertices must then be at the maximum (or minimum) possible value of that angle in C3, namely
±π/2, Looking at the vertex in the kite, we see that it corresponds to β1 = −π/2 since the vertex is on the
projection of the negative β1 axis. This vertex also satisfies β2−β1 = 2π/3 = β3−β1 from which we obtain
the coordinates (−π/2,π/6,π/6) of the vertex. One can indeed check that this satisfies the two equations
above, as well as

∑3
k=1 sin(βk) = 0. By symmetry, the vertices of C3 have coordinates

±(−π/2,π/6,π/6),±(π/6,−π/2,π/6),±(π/6,π/6,π/2).

All these points are at distance
√

11π/6 ≈ 1.73658 of the origin. The corresponding value of b, obtained
from b

∑3
k=1 cos(βk) = 1 is b = 1/(2cos(π/6)) = 1/

√
3.

As seen on Figure 21, the vertex of the lighter triangle of the star of David in the positive quadrant
is given as the intersection of the three planes of equations β3 = 0,β3 − β1 = 2π/3 and β3 − β2 = π/3. This
easily solved system of equations yields (β1,β2,β3) = (−π/3,0,π/3). By symmetry the 2 other points are
(π/3,−π/3,0), (0,π/3,−π/3). The vertices of the darker triangle are obtained by reflecting about the β3 =
β2 plane, i.e. by transposing the last two coordinates, which yields (−π/3,π/3,0), (π/3,0,−π/3), (0,−π/3,π/3)
as advertised. The angles at each of these six points satisfy

∑3
k=1 sin(βk) = 0 so they belong to C3.

These points all are at distance
√

2π/3 ≈ 1.48096 from the origin. The corresponding disk diameter
is b = 1/(cos(0) + 2cos(π/3)) = 1/2.
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As for the vertices of the inner hexagon, intersection of the two triangles of the star of David, its
representative in the kite is at the intersection of the planes β3 − β1 = π/3,β2 − β1 = π/3. Since β2 = β3,
the chain has the a triangular shape, with sides of length 1,b and 2b. The notch angle of this chain
is π + β1 − β2 = 2π/3 and the Law of Cosines gives 1 = b2(5 − 4cos(2π/3)) which yields b = 1/

√
7.

The Law of Cosine can then be applied to compute β1, which (in absolute value) is an inner angle of
the same triangle: 4b2 = b2 + 1 − 2bcos(β1) which gives β1 = −arccos

(
(1− 3b2)/2b

)
= −arccos(2/

√
7) ≈

−0.713724. From this we get β2 = β3 = −arccos(2/
√

7) + π/3 ≈ 0.33347. So the inner hexagon ver-
tices can be numerically given approximately as ±(−0.7137,0.333547,0.33347) and the permutations
±(0.33347,−0.71372,0.33347),±(0.33347,0.33347,−0.71372). The distance from the origin for all these

points is
√

(π/3− arccos(2/
√

7))2 + arccos(2/
√

7)2 ≈ 0.85546
The visual proof that the vertices of the triangles and hexagons achieve the maximum distance in

those regions is contained in Figure 30. To show that the value of b is maximized at the vertices of
these respective regions, it is enough to show that b increases along rays from the origin in T0. As the
value b is computed from Equation 4, b

∑3
k=1 cos(βk) = 1, we show that the sum of cosine decreases

along rays. The directional derivative −β1 sin(β1) − β1 sin(β1) − β1 sin(β1) of this sum along the radius is
always negative since βk and sin(βk) have same sign for βk ∈ (−π/2,π/2). Thus

∑3
k=1 cos(βk) decreases

as the point (β1,β2,β3) moves away from the origin, and b must increase. Since we have proven that
the points of C3 corresponding to the vertices of the triangles and hexagons are the farthest away from
the origin in their respective region, they must achieve the maxima of b for these regions. Equation 4,
b
∑3
k=1 cos(βk) = 1,

D Computation of the map (τ ′,γ ′) = φ(τ,γ)

Proposition D.1. The map φ(τ,γ) defined in Proposition 7.5 is given by:

τ ′ = 2tan−1

v +
√
u2 + v2 −w2

u +w

+π/3,

γ ′ = cos−1 (c) ,

(24)

where the functions c,u,v and w of (τ,γ) are given by:

c = cos(τ)− cos(γ −π/3) + cos(τ +γ −π/3)− 1/2

u = 2− 2c, v = 2
√

1− c2, w = 1 + 2cos(τ)− 2c.

We refer to Figure 25. To compute τ ′(τ,γ),γ ′(τ,γ), we need the following generalization of the law
of cosines to quadrilaterals:

Lemma D.2. Given a 3-chain ABCD with hinge angles α, and β, and edges of equal length b we have:

AD
2

= b2(3− 2cos(α)− 2cos(β) + 2cos(α + β)) (25)

Proof. Assuming b = 1 and rotating the chain so that B = (0,0),C = (1,0), we obtainA = (cos(α),sin(α)),D =
(1 + cos(π − β),sin(π − β)) = (1− cos(β),sin(β)) and thus

AD2 = (1− cos(β)− cos(β))2 + (sin(β)− sin(α))2 = 3− 2cos(α)− 2cos(β) + 2cos(α + β),

where the last equation is given by trigonometric identities. Clearly this formula rescales with the square
of the edge length.
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Assume now that ABCJDPA is a chain of disks and the angles τ,γ,τ ′ ,γ ′ are as in Figure 25b. Evalu-
ating AD2 by using the law of cosines on the triangle 4APD, as well as the previous lemma applied to
the chain ABCD, we obtain:

b2(2− 2cos(γ ′)) = AD
2

= b2(3− 2cos(τ)− 2cos(γ −π/3) + 2cos(τ +γ −π/3))

from which we extract

γ ′ = cos−1
(
cos(τ)− cos(γ −π/3) + cos(τ +γ −π/3)− 1/2

)
.

We repeat the same process, using triangle 4ABC and the 3-chain APDC this time, introducing the angle
λ = ∠CDP = τ ′ −π/3 and obtain:

AC2 = b2(2− 2cos(τ)) = b2(3− 2cos(γ ′)− 2cos(λ) + 2cos(γ ′ +λ))

= b2(3− 2cos(γ ′)− 2cos(λ) + 2cos(λ)cos(γ ′)− 2sin(λ)sin(γ ′)).

This is of the form
u cos(λ) + v sin(λ) = w, (26)

where
u = 2− 2cos(γ ′), v = 2

√
1− cos2(γ ′), w = 1 + 2cos(τ)− 2cos(γ ′)

We use the formulas involving the tangent of the 1/2 angle: cos(x) = 1−tan2(x/2)
1+tan2(x/2) , sin(x) = 2tan2(x/2)

1+tan2(x/2)
which transforms Equation 26 into a quadratic equation in t = tan(λ/2):

u(1− t2) + 2vt = w(1 + t2).

We solve for t, and plug the solution in τ ′ = λ+π/3 = 2tan−1(t) +π/3, yielding:

τ ′ = 2tan−1

v +
√
u2 + v2 −w2

u +w

+π/3,

the other solution making no sense in our setting.
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