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Summary

The detection of areas in which the risk of a particular disease is significantly elevated, lead-

ing to an excess of cases, is an important enterprise in spatial epidemiology. Various frequentist

approaches have been suggested for the detection of “clusters” within a hypothesis testing frame-

work. Unfortunately, these suffer from a number of drawbacks including the difficulty in specifying

a p-value threshold at which to call significance, the inherent multiplicity problem and the pos-

sibility of multiple clusters. In this paper we suggest a Bayesian approach to detecting “areas of

clustering” in which the study region is partitioned into, possibly multiple, “zones” within which

the risk is either at a null, or non-null, level. Computation is carried out using Markov chain

Monte Carlo, tuned to the model that we develop. The method is applied to leukemia data in

Upstate New York.
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1. Introduction

The detection of disease clusters has a long and controversial history in spatial epidemiology. A

major area of debate is on the definition of a cluster, with initial efforts examining all pairs of

cases to see if they are “close” or “not close” in space and time (Knox, 1964). Following Wakefield

and others (2000) we define cluster detection as, “the identification of areas of high residual risk”.

Residual here acknowledges that we have controlled for known risk factors (e.g., age and gender).

This definition requires a specification of what we mean by “high”, which will be disease specific.

The method we describe recognizes that even in the absence of any true elevated risk, area-level

relative risks will “wobble” around the value 1, and we do not wish to highlight every small

fluctuation. The interpretation of cluster detection studies is hazardous since data anomalies

(problems with population estimates, under- or over-count of disease cases) may be responsible

for apparent increased risk (Besag and Newell, 1991). The situation on which we concentrate

considers a study region containing n areas (with associated geographical centroid), typically

administrative subdivisions, with each providing an aggregate disease count and an associated

population count or expected number of disease cases.

There is a large literature on spatial scan statistics, in which a (usually) circular window is

passed over the study region and the significance of the observed number of cases in the window

is determined. Different proposals base the circle size on distance (Openshaw, 1984), the number

of cases (Besag and Newell, 1991) or the population (Kulldorff, 1997). By far the most popular

cluster detection method is based on the latter, in part because of the availability of the easy-

to-use software, SatScan (http://www.satscan.org/). The method allows the circular clusters

to be centered on each of the n area centroids, with varying radii, up to a maximum that gives

a circle with no more than a certain proportion of the total population (common choices include

20% and 50%). We refer to the circles as “zones”. In the unconditional version of the test, a

Poisson likelihood is assumed, while the conditional version conditions on the total number of

http://www.satscan.org/
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cases, and uses a binomial likelihood. A likelihood ratio statistic is then computed for each zone;

for example, in the unconditional version of the test the null and alternative consist of the relative

risk being either 1, or greater than 1. Clearly this strategy leads to a large number of tests, and

the multiplicity problem is circumvented by evaluating the significance of only the maximum

of the likelihood ratio statistics over all circles, using a Monte Carlo p-value. The method we

describe has elements in common with that of Kulldorff (1997), in particular in the way in which

we describe cluster configurations in terms of zones, but attempts to rectify a number of the

drawbacks that we discuss in Section 2. In this section we also apply the SatScan method to

leukemia data in upstate New York. Our model is described in Section 3 and Section 4 briefly

outlines computation. We return to the New York State data in Section 5 and conclude with a

discussion in Section 6.

2. Deficiencies of the Scan Statistic

Clearly a key component of cluster detection using SatScan is deciding upon a threshold for

significance at which to call a collection of areas (a zone) a “cluster”. A review of the literature

reveals that current practice is the use of a 0.05 threshold, regardless of the number of areas, or the

distribution of expected numbers within those areas, both of which affect the power. Appendix

A of the Supplementary Material (http://www.biostatistics.oxfordjournals.org) gives ex-

amples of the use of SatScan. This appendix also contrasts the use of p-values and Bayes factors,

in particular showing that the latter is a consistent model selection procedure in a simplified

hypothesis testing setting.

A further difficulty arises when the possibility of multiple clusters is entertained. In both

Kulldorff and others (1997) and Jemal and others (2002) secondary clusters were reported with

an informal measure of significance. In an investigation one would not expect a large number

of clusters (at least not in the way in which we have defined a cluster), but a cluster detection

http://www.biostatistics.oxfordjournals.org
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method should not be restricted to finding a single cluster only. In Kulldorff and others (1997)

and Jemal and others (2002) (and numerous other studies) p-values for secondary clusters are

computed by comparing their likelihood ratios to the simulated null distribution of the likelihood

ratios of the most likely cluster. This procedure is conservative since the secondary p-values are

being calculated by comparison to the null distribution of the maximum statistic and not the

second highest which is the correct reference. More recently, Zhang and others (2010) proposed a

modification to the original approach in which, after identifying a statistically significant cluster,

they drop the data corresponding to that cluster (possibly along with some neighboring areas),

recompute the internally standardized expected numbers for the new reduced dataset, and repeat

the Kulldorff procedure until no statistically significant further cluster is found. The resulting

sequentially computed p-values are not necessarily monotonically non-increasing but are less

conservative than those of the original method. However, a major problem is that the p-values

are not directly comparable since they are based on different sample sizes and hence have different

power. One should also consider the multiple testing aspect of the multiple comparisons that are

being made but it would be very difficult to determine the appropriate error rate of the sequential

procedure defined by Zhang and others (2010).

As a motivating example we consider leukemia data in eight counties of upstate New York

State, and described by Turnbull and others (1990). These data have provided a test bed for a

number of methods. We consider data collected from 1978–1982 in n = 277 census tracts from the

1980 census. Using an upper limit of 15% of the total population, the spatial scan statistic was

evaluated over 12,675 zones (circles). In Figure 1 we present the results of Zhang et al. (2010)’s

method on the Upstate New York leukemia data with α = 0.05 and p-values calculated from

99,999 Monte Carlo simulations under the null. In order of discovery the significant clusters

were: (1) the area surrounding Binghamton in Broome County, (2) the western half of Cortland

County, (3) the area surrounding Syracuse in Onondaga County, (4) Central Cayuga County and
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(5) the area surrounding Ithaca in Tompkins County. Appendix G of the Supplementary Material

(http://www.biostatistics.oxfordjournals.org) contains a figure in which the counties are

labeled, to aid in identifying areas of interest. The p-values cannot be interpreted independently as

they are computed sequentially, e.g. the interpretation of the third p-value is that: after removing

the first two significant clusters we obtained a cluster with observed significance level 0.024.

3. A Bayesian Partition Model for Cluster Detection

3.1 Notation

Let yi and Ei denote disease counts and expected counts in i = 1, ..., n areas that partition a study

region. Following Kulldorff (1997) we define single zones as contiguous collections of areas that

form “jagged circles”. We create the list of single zones by sequentially aggregating neighboring

areas, by taking each area in turn, and continually adding the areas whose centroids are closest

to the area center. For each area this procedure is continued until the zone’s population reaches

a pre-specified maximum allowable proportion of the total study region’s population. Suppose

there are N1 single zones; we emphasize that there are multiple zones centered on each area

centroid. The model that we define partitions the study region so that each area is either in

a cluster/anti-cluster, or is at a null level. Areas within a cluster are associated with increased

relative risk, while areas within an anti-cluster are associated with decreased relative risk.

The number of clusters/anti-clusters is j = 0, ..., J , where J is specified in advance. Each of

the clusters/anti-clusters corresponds to a single zone though for a partition with j > 2 single

zones, the constituent single zones are not allowed to overlap. We define a configuration as a

set of non-overlapping single zones; for j = 1, ..., J suppose there are Nj configurations of such

zones. For j = 0 we set N0 = 1 for notational consistency. We label the null (i.e., no lows/highs)

configuration as c0N0 and cjl as the l-th configuration of j single zones, for j = 1, 2, ..., J , and

l = 1, ..., Nj . More precisely, cjl consists of the j single zone labels that constitute configuration

http://www.biostatistics.oxfordjournals.org


6 J. Wakefield and A. Kim

l. For example c2l = {z(l)
1 , z

(l)
2 } is the pair of (non-overlapping) single zones that correspond to

configuration l; these labels range over the set of all pairs that are “legal”, i.e. non-overlapping,

with N2 such pairs. For the null configuration c01 = ∅. Examples of cjl are contained in Appendix

B of the Supplementary Material (http://www.biostatistics.oxfordjournals.org). There

are
∑J

j=0 Nj possible values of cjl, which grows very quickly as J increases. For the New York

State data N1 = 12, 675 and N2 = 59, 455, 392.

Define Sz as the set of area indices associated with (single) zone z, z = 1, ..., N1. Finally, let

yz
z =

∑
i∈Sz

yi and Ez
z =

∑
i∈Sz

Ei be the observed and expected numbers of cases in single zone

z, with yz
z = {yi, i ∈ Sz} and Ez

z = {Ei, i ∈ Sz} the vectors of observed and expected numbers,

respectively, for z = 1, ..., N1 (the superscript z therefore distinguishes observed and expected in

single zones from observed and expected in areas).

3.2 A Model For Clusters and Anti-Clusters

For a rare disease we assume that counts are conditionally independent to give: yi|θi ∼iid

Poisson(Eiθi), where θi is the relative risk associated with area i. The prior we assign to θi

depends on whether area i lies within a cluster/anti-cluster or not. If in a cluster/anti-cluster a

“wide” gamma prior is assumed while if null, a “narrow” gamma prior is assumed. The narrow

prior reflects variation around 1 that is due to small levels of confounding and small data anoma-

lies (errors in the population and disease counts). These two specifications are what allows us

to distinguish between “null” areas and “non-null” areas contained within clusters/anti-clusters.

For all i ∈ Sz, that is areas in single zone z, we have θi = θ?
z ∼ Gamma(aw, bw), i.e. a common

relative risk. Therefore, consistent with our earlier definition, an area is in a cluster/anti-cluster if

its relative risk is deemed high/low. The choices of an, bn, aw, bw are study specific since different

diseases have differing inherent “null” spatial variability. The wide model assumes that for single

zone z in configuration cjl, all the constituent areas of the single zone share a common relative

http://www.biostatistics.oxfordjournals.org
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risk θ?
z , and the counts {yi, i ∈ Sz} are conditionally independent given θ?

z . For null areas i,

θi ∼iid Gamma(an, bn).

We may integrate the θ parameters from the model so that the distribution for a generic null

area with count y and expected number E, Prn(y), is Neg-Bin (an, bn/(E + bn)), i.e.

Prn(y) =
Γ(y + an)
y!Γ(an)

(
E

E + bn

)y (
bn

E + bn

)an
.

Similarly, for a non-null area Prw(y) is Neg-Bin (aw, bw/(E + bw)). Under this construction, the

only unknown parameter in the model is the configuration {cjl, j = 1, ..., J ; l = 1, ..., Nj}, a

discrete parameter with
∑J

j=0 Nj possible values.

Given these specifications we can derive the likelihood. For the null configuration, the study

region is entirely comprised of null areas:

Pr(y|c01) =
n∏

i=1

Prn(yi).

Non-null configuration cjl, j > 1, contains j single zones each with summed counts yz
z and

expected numbers Ez
z , for z ∈ cjl. We assume that the vectors of counts yz

z associated with each

single zone z ∈ cjl are independent. Therefore, the likelihood for the set of counts y is:

Pr(y|cjl) =
∏

z∈cjl

{
Prw(yz

z )× Pr(yz
z |yz

z )
}
×

n∏
i=1

i/∈{Sz,z∈cjl}

Prn(yi),

for j = 1, ..., J ; l = 1, ..., Nj . The first term on the right hand side contains a product of j terms

for the cluster/anti-cluster contribution and the second term is for the remaining null areas. The

distribution Pr(yz
z |yz

z ) is multinomial with dimension equal to the number of areas in zone z, |yz
z |,

with total counts yz
z and vector of probabilities Ez

z/Ez
z . It is useful to define the Bayes factor

comparing the probability of the data under configuration cjl to the probability of the data under

the null:

BF =
Pr(y|cjl)
Pr(y|c01)

=
∏

z∈cjl

BFz, (3.1)
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a product over zones, where

BFz =
Prw(yz

z )× Pr(yz
z |yz

z )∏
i∈Sz

Prn(yi)
(3.2)

is the Bayes factor comparing the distribution of the data within single zone z under the non-null

cluster/anti-cluster model to that under the null model.

One consequence of (3.1) is that computation for our model is vastly simplified since we only

need to consider calculations for single zones. In the case of a single zone, (3.1) may be compared

with the likelihood ratio statistic

LR(z) =
Pr(y| alternative )

Pr(y| null )
=

∏
i/∈Sz

Pr(yi|θi = 1)× Pr(yz
z |θ̂z)∏n

i=1 Pr(yi|θi = 1)

=
Pr(yz

z |θ̂z)∏
i∈Sz

Pr(yi|θi = 1)

of the scan statistic used within SatScan. In the denominator the scan statistic conditions on θ = 1

while the Bayes approach integrates over the narrow prior. In the numerator, up to a constant,

the scan statistic maximizes over θz (subject to θz > 1) while the Bayes approach integrates

over the wide prior. The multiple zone version of SatScan looks at sequential likelihood ratio

statistics (removing parts of the data), whereas the Bayes approach (roughly speaking) averages

over products of Bayes factors.

3.3 Prior Distribution

In this section we describe the priors we place on the
∑J

j=0 Nj possible configurations cjl.

This choice implies a prior on the number of non-overlapping single zones in the partition,

τ ∈ {0, . . . , J} since Pr(τ = j) =
∑Nj

l=0 Pr(cjl). When constructing the probabilities Pr(cjl)

there are a number of considerations. We wish to pay particular attention to the j = 0 case

and set Pr(τ = 0) = π0, which is the prior probability of the null configuration c0N0 . This value

will be typically close to 1 given the rarity of true clusters/anti-clusters. Given the existence of

one cluster/anti-cluster (τ = 1), the probabilities should reflect our prior belief of each of the
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N1 single zones being the cluster/anti-cluster. When extending to combinations of j > 2 single

zones, configurations of non-overlapping single zones are assigned prior probability proportional

to the prior probability of each of the component single zones being a cluster/anti-cluster. All

combinations of single zones with overlap are dropped from consideration.

The simplest form is to take a uniform prior over the total number of single zones, i.e. πz =

1/N1. This is consistent with SatScan within which all single zones are treated equally. In what

follows this form is labeled the uniform prior. A second specification is based on ideas of Gangnon

and Clayton (2003) in which an area center is selected with probability proportional to its area

with a radius then selected with probability proportional to its size. Suppose that there are mi

single zones centered on area i so that
∑n

i=1 mi = N1. A single zone is defined by its center and

its radial area and let l = 1, . . . ,mi index the radial area of single zone z(i, l) centered at area i.

Now let ri,1 < ... < ri,mi denote the distances of the centroids of each of the mi possible radial

areas to centering area i, with ri,1 = 0, and let ri,mi+1 denote the distance to the next area

beyond area mi. Then the prior for the single zone centered on area i with radius ri,l is

πz(i,l) =
Ai

A

ri,l+1 − ri,l

ri,mi+1
(3.3)

where Ai is the surface area of area i, i = 1, ...,m and A is the total surface area of the study

region. We label this form the modified dartboard prior.

The prior on configurations of two or more single zones, i.e. cjl, is specified in two stages.

First, a partition (cluster/anti-cluster) size is selected with probability Pr(S = j) = λj for known

λj , j = 0, ..., J . Second, given S = j, a set of j zones are sampled, with replacement, from the

N1 single zones with probabilities πz, z = 1, ..., N1, using one of the two forms just described.

If the j randomly generated zones are “non-overlapping” this j and configuration are retained,

otherwise we repeat this procedure until a legal configuration is sampled.
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Let

qj =
∑

l1,...,lj∈Lj

πl1 × ...× πlj (3.4)

be the probability that the j randomly selected zones are non-overlapping, with Lj the set of

indices of j non-overlapping zones, for j = 2, ..., J . Define q0 = q1 = 1 since there is no concept

of overlapping for j = 0, 1. Then, given the construction of our prior,

Pr(τ = j) =
λjqj∑J

j′=0 λj′qj′

and Pr(cjl|τ = j) = q−1
j

∏
z∈cjl

πz. Consequently, the required prior probabilities are

Pr(cjl ∩ τ = j) = Pr(cjl) =
λj

∏
z∈cjl

πz∑J
j′=0 λj′qj′

∝ λj

∏
z∈cjl

πz.

If we choose the λj ’s as

λ1 = . . . = λJ =
1− π0

(1− π0)× J + π0 ×
∑J

j=1 qj

, λ0 = 1−
J∑

j=1

λj ,

then, as detailed in Appendix E of the Supplementary Material (http://www.biostatistics.

oxfordjournals.org), we obtain Pr(τ = 0) = π0 and Pr(τ = j) = (1 − π0) × qjPJ
l=1 ql

∝ qj

for j = 1, . . . , J . Therefore, after dropping all combinations of single zones with overlaps, the

prior probability of no clusters/anti-clusters is π0, as desired, and the prior probabilities for

j = 1, ..., J are defined in a natural fashion (as proportional to the probabilities of obtaining j

non-overlapping single zones under random sampling of single zones).

The model that we have described is closest to that of Gangnon and Clayton (2003) and we

describe this approach here in some detail. Other approaches (Gangnon and Clayton, 2000; Knorr-

Held and Raßer, 2000; Denison and Holmes, 2001; Neill and others, 2006) are described in Ap-

pendix F of the Supplementary Material (http://www.biostatistics.oxfordjournals.org).

We emphasize that the detection of disease clusters is a very different endeavor to disease map-

ping. In contrast to cluster detection, Bayesian approaches to disease mapping are commonplace,

but the usual random effects models that are fitted (for example, Besag et al. 1991) produce both

http://www.biostatistics.oxfordjournals.org
http://www.biostatistics.oxfordjournals.org
http://www.biostatistics.oxfordjournals.org


A Bayesian Model for Cluster Detection 11

strong global shrinkage of relative risk estimates and strong local smoothing across neighboring

areas; the latter is undesirable in a cluster detection context. In particular, the spatial smoothing

of abrupt changes/discontinuities in the relative risk surface is not desirable. For evidence of this

behavior, see the simulation results of Richardson and others (2004).

Our model differs from that of Gangnon and Clayton (2003) in the following respects. We

assume conjugate gamma priors for the “small” and “wide” components while Gangnon and Clay-

ton (2003) assume lognormal random effects. We exclude overlapping zones when constructing

configurations of zones; this is not done by Gangnon and Clayton (2003) and it is even possible

for the same zone to be included twice in the same configuration, which is clearly not appealing.

The priors on the number of clusters/anti-clusters are quite different. We construct a prior to

have a user-specified value on the null, and then the mass on j = 1, ..., J clusters/anti-clusters is

spread out in a way that is consistent with our prior construction for multiple non-overlapping

zones. Gangnon and Clayton (2003) emphasize a uniform distribution on the number of zones

(including the null configuration) in the methods description of their paper, but then also use a

geometric prior in their analysis of the New York data. The computation required for the Gangnon

and Clayton (2003) model is more complex that for our model since they use a non-conjugate

formulation. In particular, reversible jump MCMC (Green, 1995) is used, which is difficult to

implement (for the uninitiated) and there are no available implementations (as far as we know).

We only have to sample configurations which makes the computation far more straightforward.

3.4 Summaries of the Posterior Distribution

The posterior distribution can be expressed as

Pr(cjl|y) =
Pr(y|cjl)× Pr(cjl)

Pr(y)
=

λj

∏
z∈cjl

BFzπz∑J
j′=0

∑Nj′

l′=1 λj′
∏

z′∈cj′l′
BFz′πz′

(3.5)
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where the BFz terms are given by (3.2); see Appendix D of the Supplementary Material (http:

//www.biostatistics.oxfordjournals.org) for this derivation. This form for Pr(cjl|y) em-

phasizes that for any configuration cjl the posterior is proportional to a product BFz × πz over

the component unit zones, multiplied by λj .

A first summary of interest is the posterior on the number of clusters/anti-clusters, τ :

Pr(τ = j|y) =
Nj∑
l=1

Pr(cjl|y) (3.6)

and this may be compared with the prior on this quantity. If there are clusters in the data the

posterior distribution of any one cjl will be small, because many configurations are overlapping

and, if a non-null region exists, the posterior probability will be spread over similar alternatives. A

number of summaries are informative, however. We may evaluate the posterior probability that an

area lies in a cluster/anti-cluster. Let Ci = { the event that area i is in a cluster/anti-cluster } ≡{∑J
j=1

∑Nj

l=1 1(i ∈ Sz, z ∈ cjl)
}

. Then,

Pr(Ci|y) =
J∑

j=1

Nj∑
l=1

Pr(Ci|cjl,y) Pr(cjl|y) =
J∑

j=1

Nj∑
l=1

1(i ∈ Sz, z ∈ cjl) Pr(cjl|y). (3.7)

Often we will be specifically interested in clusters (i.e., highs), and so we define

CH
i = { the event that area i is in a cluster } ≡


J∑

j=1

Nj∑
l=1

1(i ∈ Sz, z ∈ cjl) ∩ θi > θH
c

 ,

where the high crossover point θH
c is a threshold that we take as the larger of the two intersection

points of the narrow and wide priors. The posterior probability of area i being in a cluster is

Pr(CH
i |y) =

J∑
j=1

Nj∑
l=1

∫ ∞

θH
c

Pr(CH
i |cjl,y)p(θi|cjl,y)dθi Pr(cjl|y)

=
J∑

j=1

Nj∑
l=1

1(i ∈ Sz, z ∈ cjl) Pr(θi > θH
c |cjl,y) Pr(cjl|y) (3.8)

where

Pr(θi > θH
c |cjl,y) =

∫ ∞

θH
c

p(θi|cjl,y)dθi

p(θi|cjl,y) =
Pr(yi|θi)p(θi|cjl)

Pr(yi|cjl)
,

http://www.biostatistics.oxfordjournals.org
http://www.biostatistics.oxfordjournals.org
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Pr(yi|θi) is Poisson, and the prior p(θi|cjl) is Gamma(an, bn) if j = 0 (i.e., under the null model)

and is Gamma(aw, bw) otherwise. We note that the conditional posterior p(θi|cjl,y) is gamma

also, by conjugacy.

The probabilities Pr(CH
i |y) are therefore straightforward to evaluate, and may be mapped to

indicate areas of clustering. If one wishes to remove the effect of the prior, we may consider the

Bayes factor of area i being in a cluster CH
i versus not being in a cluster C

H

i :

BFH
i =

Pr(y|CH
i )

Pr(y|CH

i )
=

Pr(CH
i |y)/[1− Pr(CH

i |y)]
Pr(CH

i )/[1− Pr(CH
i )]

, (3.9)

where Pr(CH
i ) is the prior counterpart to (3.8)

We may also provide a map of E[θi|y] =
∑J

j=1

∑Nj

l=1 E[θi|cjl,y] Pr(cjl|y) which gives the

expected relative risk surface based on the cluster model and aids in interpretation of clusters.

In addition, this surface may be compared with maps of the raw SMRs and other modeled

summaries. Each of these summaries help to give a context within which public health decisions

may be considered. Finally, we may map Pr(CH
i |y) > c, for different thresholds 0 < c < 1, to

provide a more succinct visual summary of areas of clustering.

4. Computation

Recall from Section 3.3 that we specify the prior up to a normalizing constant. For sampling

from the posterior we do not require this constant, but its calculation is required to achieve the

prior on the null configuration π0 = Pr(τ = 0). Normalization of the posterior probability of

configuration cjl requires estimation of qj , as given by (3.4), which we achieve using importance

sampling; details are available in Appendix E of the Supplementary Material (http://www.

biostatistics.oxfordjournals.org).

We now turn to simulation from the posterior for cjl, a discrete parameter that can take a very

large number of values (
∑J

j=0 Nj). We implement an MCMC algorithm whereby the current con-

figuration is perturbed via one of five moves. A detailed description of the algorithm is presented

http://www.biostatistics.oxfordjournals.org
http://www.biostatistics.oxfordjournals.org
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in Appendix G of the Supplementary Material (http://www.biostatistics.oxfordjournals.

org) and here we provide an outline of the main steps. Recall that cjl consists of a set of j single

zone labels with Sz the set of area labels within zone z. The moves are:

1 Growth: The index set for a particular single zone z {i ∈ Sz, z ∈ cjl}, is increased by

aggregating the nearest free neighboring area (in terms of distance to its center) single

zone. If the zone selected is the largest single zone with this particular center then a growth

move is not possible.

2 Trim: The index set for a particular single zone z {i ∈ Sz, z ∈ cjl}, is reduced by dropping

the area that is furthest from the centering area from the single zone selected for trimming.

If the single zone consists of only one centering area, then such a move is not possible. Trim

moves are reciprocal to growth moves.

3 Replacement: Replace a single zone z ∈ cjl with another single zone with a different centering

area.

4 Death: Drop one of the j single zones z ∈ cjl to form a configuration with j−1 single zones.

5 Birth: Add a new single zone to cjl to form a new configuration of j + 1 single zones. Birth

moves are reciprocal to death moves.

In the first three moves, the newly adjusted single zone that modifies cjl must not overlap the

remaining j − 1 single zones in cjl and in move 5 the newly added single zone must not overlap

the existing j single zones. The first three moves are such that the number of single zones remains

the same, whereas moves 4 and 5 modify j. In the application to the upstate New York data

each of the five the moves are proposed with equal probability. The above represents a generic

scheme, but we tune to the cluster model. Specifically, single zones are proposed randomly via

one of two mechanisms: uniformly from the N1 single zones, or proportional to the posterior

http://www.biostatistics.oxfordjournals.org
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probabilities Pr(cjl|y) with j = 1. The latter are known, up to a normalizing constant, and so are

available for sampling. Convergence is monitored via examination of the sample paths of various

key summaries, including the number of clusters/anti-clusters.

5. Example: Leukemia in Upstate New York State

We use the uniform prior on single zones, set π0 = 0.95 and take J = 7 as the maximum number

of clusters/anti-clusters. We first calibrated the prior (i.e. chose the λ’s) to give π0 = 0.95, which

lead to the histogram of prior probabilities (black columns) in Figure 3. For these data we choose

the priors on θ in the following way. For both the narrow and wide choices we require the mode to

be at 1 so that the prior is decreasing either side of this “null” value. We further require the upper

95% points of the narrow and wide priors to be 1.03 and 4, respectively. This specification leads

to the choices (an, bn) = (2976.3, 2977.3) and (aw, bw) = (2.31, 1.31). These choices are shown

in Appendix C of the Supplementary Material (http://www.biostatistics.oxfordjournals.

org). The high crossover point θH
c is 1.05.

We ran the importance sampling algorithm to estimate the (λ0, λ1, . . . , λJ) using 105 points

and the Markov chain algorithm for estimating Pr(CH
i ) and Pr(CH

i |y) for 105 and 106 iterations,

respectively. We picked each of the five moves types with probabilities 0.2, and sampled zones

alternately using probabilities proportional to the single zone posterior and from a uniform dis-

tribution on the number of legal single zones. The analysis took 66 minutes on a 2 Ghz Intel Core

i7 processor with 8 GB of 1333 MHz DDR3 RAM. Appendix I of the Supplementary Material

(http://www.biostatistics.oxfordjournals.org) contains details and plots of how conver-

gence of the Markov chain was assessed in this example and also reports the acceptance rates of

the different MCMC moves.

Using the uniform prior N−1
1 we plot Pr(CH

i ) for each area in Figure 2, with all areas sur-

rounding Syracuse and Binghamton zoomed in on the right hand panels. We see that our model

http://www.biostatistics.oxfordjournals.org
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puts higher prior probability on urban areas, most notably the areas surrounding Syracuse, Bing-

hamton and Cortland. This is primarily because urban areas tend to be smaller in geographic

size, and hence have a higher degree of overlap of single zones from different configurations in

urban compared to rural areas.

Figure 3 compares the posterior probabilities Pr(τ = j|y) (grey columns) against the prior

probabilities for j = 0, 1, ..., 7. We see that around 80% of the prior probability on the null has

moved to 1,2,3,4 clusters/anti-clusters, strongly indicating that there are clusters and anti-clusters

in these data. In Figure 4, we display the estimated posterior probability Pr(CH
i |y) of cluster

membership for each area i. We observe that even with a prior that is skeptical to the existence

of clusters (π0 = 0.95), there is strong evidence that areas surrounding Binghamton in Broome

County and areas in the western half of Cortland County are in a cluster, while there is milder

evidence of cluster areas in Syracuse in Onondaga County.

In Figure 5 we plot the log Bayes factors BFH
i of each area being in a cluster, as defined in

(3.9). We observe that even after accounting for the prior Pr(CH
i ), which favors urban areas, there

is still relatively strong evidence of clusters. Appendix H of the Supplementary Material (http:

//www.biostatistics.oxfordjournals.org) provides further summaries for these data, with

sensitivity analyses to the various tuning parameters including the crucial choice of π0 (Appendix

D of the Supplementary Materials contains details of how prior sensitivity to π0 can be computed

efficiently). Also included are relative mapped risk summaries from our model and a comparison

with the SMRs, an empirical Bayes model and the ICAR model of Besag and others (1991).

Appendix J of the Supplementary Material (http://www.biostatistics.oxfordjournals.org)

compares our conclusions with those reported by previous analyses of these data.

http://www.biostatistics.oxfordjournals.org
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6. Discussion

In this paper we have described a Bayesian model for cluster detection. The model is designed

so that the computation is relatively efficient. In particular, we lean on conjugacy so that the

unknown parameter is a single discrete parameter, the configuration cjl. By defining multiple

zones as the product of independent non-overlapping single zones the posterior is an interpretable

function of single zone Bayes factors. The prior is built in a natural way, given our multiple non-

overlapping single zone construction. The methods described in the paper are implemented within

the SpatialEpi R package. The code to reproduce the upstate New York example can be found

in Appendix H of the Supplementary Material (http://www.biostatistics.oxfordjournals.

org).

Our aim was to provide a Bayesian version of the approach considered by SatScan and to

this end we have only considered circular windows. A critical feature of our model is that we can

account probabilistically for the presence of more than one cluster in the study region. Recently

there has been increased interest in constructing methods for arbitrarily shaped clusters, see

for example Duczmal and Assunção (2004) and Kulldorff and others (2006). Our model can be

extended to allow for non-circular regions by redefining the set of single zones from which the

multiple zones are constructed.

The model we have proposed does not lead to each area having a uniform prior probability of

lying within a cluster/anti-cluster. The non-uniformity arises from our definition of single zones

and how single zones are combined to form configurations. The limit on zone size (in terms of

population) also has implications. One way in which the effect of these factors can be determined

is by plotting the posterior to prior odds ratio of lying in a cluster, i.e. the Bayes factor, and the

use of this measure was illustrated in Section 5. The number of clusters is critically dependent

on the prior on the null configuration π0, and addressing the sensitivity to this choice is a key

step. If one has area-level covariates then these may be incorporated in the expected numbers.

http://www.biostatistics.oxfordjournals.org
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The introduction of a log-linear model is possible, but would break the conjugacy of the model

and hence increase computation.

In terms of “cluster detection” one may proceed in a variety of ways but examining multiple

posterior summaries is recommended. A starting point will always be comparison of the prior and

posterior on the number of clusters/anti-clusters. Following this step, the posterior probabilities

of each area falling in a cluster can be mapped. These maps may be thresholded to reveal more

clearly areas of high relative risk. “Clusters” in our model are determined with respect to the

narrow (null) and wide (non-null) priors and careful thought is required in these specifications,

since these choices are defining the key epidemiological question: what is a “high” relative risk?

Supplementary Materials

Supplementary materials, including extensive sensitivity analyses for the New York data and R

code to reproduce the example, are available at http://www.biostatistics.oxfordjournals.

org.
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Fig. 1. Highlighted clusters for leukemia in upper New York State, under the spatial scan statistic of
Zhang and others (2010), and with a significance level of 0.05.
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Fig. 2. Prior probability of clusters for New York State.
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Fig. 3. Prior and posterior probabilities on the number of clusters/anti-clusters for the New York data.
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Fig. 4. Posterior probability Pr(CH
i |y) of cluster membership for each area i, using π0 = 0.95.
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