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Abstract

Peers are often able to provide important additional information to supplement self-reported 

behavioral measures. The study motivating this work collected data on alcohol in a social network 

formed by college students living in a freshman dormitory. By using two imperfect sources of 

information (self-reported and peer-reported alcohol consumption), rather than solely self-reports 

or peer-reports, we are able to gain insight into alcohol consumption on both the population and 

the individual level, as well as information on the discrepancy of individual peer-reports. We 

develop a novel Bayesian comparative calibration model for continuous, count and binary 

outcomes that uses covariate information to characterize the joint distribution of both self and 

peer-reports on the network for estimating peer-reporting discrepancies in network surveys, and 

apply this to the data for fully Bayesian inference. We use this model to understand the effects of 

covariates on both drinking behavior and peer-reporting discrepancies.

Keywords

Alcohol Use; Bayesian Comparative Calibration; Multiple Sources; Peer-Reports; Self-Reports

1 Introduction

Gold-standard measurements of individual-level alcohol consumption are rarely collected [1; 

2; 3]. In the absence of a gold standard, self-reports or peer-reports are utilized as proxies 

[3]. The utility of peer-reports, termed collateral reports in the alcohol literature, has been 

extensively studied and reviewed in both non-college settings [4] and in the college setting 

[5]. In the college setting, while self-reports and peer-reports are often in agreement [4; 5], 
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peer-reports of drinking tend to be higher than self-reports [6]. There is general agreement in 

the alcohol literature that college students’ peer-reports of alcohol consumption are biased 

towards over-reporting [7; 8]. Hence both self-reports and peer-reports contain information 

about the true level of alcohol consumption, particularly if the discrepancies (i.e., the 

amount of over or under-reporting) contained within the peer-reports can be accounted for.

Measurement error due to self-reports of health behaviors, such as physical activity [9], food 

consumption [10], and alcohol consumption [11], is an important issue because ignoring 

measurement error may lead to incorrect inference [12; 13]. Existing measurement error 

models typically assume self-reports are unbiased [10] or contain systematic biases [14; 9; 

15; 16]. In the presence of self-report error, another type of data on the health-related 

behavior is collected on each individual. Using both types of data, a method of estimation 

(i.e. method of moments) is employed to estimate all parameters in the measurement error 

models as well as the quantity of interest.

Another way of dealing with measurement error is absolute calibration [17; 18; 19], in 

which both a gold standard and error-prone measures are collected on a limited number of 

data points in order to infer the relationship between the gold standard and the error-prone 

measures. This relationship is then exploited to allow for measurement with the error-prone 

measure. Comparative calibration, which uses information from two or more error-prone 

measurement instruments, is applied when a gold standard is not available but there is prior 

information about the structure of the measurement error of each of the instruments [20; 18]. 

Comparative calibration has been implemented in both the frequentist [20; 21; 22; 23] and 

the Bayesian setting [24]. [18] has an extensive review of both absolute and comparative 

calibration approaches.

Both measurement error and calibration models deal with the situation where we are 

interested in variable Y , but instead we observe a proxy variable X that is related to Y [25], 

and both types of models allow that X may be biased for Y , prone to error, or both. One 

contrast between the two methods is that calibration models require more than one proxy 

variable for Y , say X and W, whereas measurement error models do not require this [26]. 

Further, measurement error models seek to identify and decompose the different sources of 

bias and variation that are included in the proxy measurements [27], whereas calibration 

models aim to learn about the measurement errors, but do not decompose these different 

sources of bias and variation included in the proxy measurements. Further, measurement 

error models may investigate measurement error by incorporating covariates into the 

estimation of the underlying values of interest in a linear mixed effects model [28], akin to a 

calibration model with a zero-bias assumption. Alternately, when multiple sources of 

information are available, measurement error models may allow for the measurement error 

to be modeled with covariates [29]. However, these measurement error models do not jointly 

estimate the relations between covariates and the underlying values of interest and the 

unknown bias, as we do in our Bayesian peer calibration with covariates model which we 

present below. Further, among measurement error models that make use of multiple sources, 

none are situated in a social network context which necessarily implies that individuals only 

report on their associates (those with whom they share a connection in the network, here 

representing a friendship) rather than all members of the network.
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Social networks provide a setting in which there are multiple sources of information which 

are not gold-standards. Consider a social network in which individuals report on both 

themselves and their peers in the network. Neither self nor peer-reports are ideal 

measurements, but both types of reports contain information about the quantity of interest. 

In this paper we present a novel Bayesian comparative calibration model framework: 

Bayesian Peer Calibration (BPC) which utilizes both self-reports and peer-reports of alcohol 

consumption. We assume self-reports are unbiased but measured with error. Peer reports 

may be biased and are also assumed to be measured with error.

1.1 Motivating Study

The data motivating this analysis are drawn from a study of alcohol and drug use in a social 

network formed by college students residing in a freshman dormitory [30]. The primary 

objective of our analysis is to characterize the alcohol consumption of the participants 

through the use of self and peer-reports of the number of alcoholic drinks consumed on 

drinking days. In particular, this study seeks to identify characteristics that are associated 

with alcohol consumption. Though previous studies have collected both self and peer-reports 

of alcohol consumption, few have used both sources of information to estimate alcohol 

consumption. This paper is concerned with how to use both information sources which may 

provide contradictory information on alcohol consumption. In order to address this question 

we use a Bayesian Peer Calibration (BPC) model on the social network from the motivating 

study to generate the posterior distributions of individual-level alcohol consumption while 

using both sources of information. In Section 2 we develop the BPC models (both with and 

without covariates) for binary, count, and continuous data, in Section 3 we apply these 

models to the data, in Section 4 we perform a simulation to investigate the model’s 

sensitivity to assumptions, and in Section 5 we present a brief discussion.

2 Bayesian Peer Calibration Models

2.1 Overview

We consider data drawn from a network of n nodes (representing members of the social 

network) with e directed edges (representing the presence or absence of peer nominations), 

represented by an n × n adjacency matrix A, where Aij ∈ {0, 1} and equals 1 if node i 
reports on node j (denoted as i → j). For each of the n nodes in the network we have a self-

report on a quantity of interest, denoted by zi. Furthermore, for each node, there are reports 

on the same quantity of interest of their nominated alters, denoted by yij which is the peer-

report of node j on node i. The observed data at each node i is (zi, yij : j → i). We assume 

self-reports are made with mean-zero error and peer-reports are potentially subject to some 

systematic bias which we call a discrepancy. We assume that the true underlying quantity of 

interest is θi. The self-report zi is an unbiased but possibly error-prone proxy for θi, such that 

E(zi) = θi. The peer-reports yij are subject to a systematic discrepancy that can be additive, 

multiplicative, or exponential depending on the type of outcome. Specifically, if we denote 

the discrepancy by γij, the peer-reports can follow E(yij) = θi + γij, E(yij) = θiγij, or 

.
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We now introduce a three-level model which may include covariates, which we call the 

Bayesian Peer Calibration with Covariates(BPCC) model, or not include covariates, which 

we call the Bayesian Peer Calibration model (BPC). The first level of the model specifies the 

joint distribution of the observed data at each node, conditional on parameters θi and γj that 

respectively capture the node-specific mean and the alter-specific discrepancy. The second 

level characterizes variation in θi and γj, potentially allowing both to be influenced by 

covariates. At the third level, priors are introduced as needed.

We provide specific model formulations for continuous, binary, and count versions of z and 

y. In our application to the available data, we have interval-censored count data; hence we 

focus on posterior inference for Poisson distributed data. The appendices (Section 6) contain 

information about posterior inference for binary and continuous data.

2.2 Bayesian Peer Calibration Model

The general form of the first level of the BPC model is

(1)

(2)

where the distributions F, G and the support of θi and γij depend on the choice of the model. 

We treat three parametric formulations here. For Normal y and z, we assume

(3)

(4)

where  and  are the variance parameters, and θi and γij are real numbers. If y and 

z are Bernoulli distributed,

(5)

(6)
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where θi is between 0 and 1, and γij is a positive real number. Lastly, if y and z are Poisson 

distributed,

(7)

(8)

and θi and γij are positive real numbers. In each of these model formulations, the self-

reports are assumed to be unbiased.

Level 1 can be parameterized in terms of generalized linear models for z and y, where

(9)

(10)

where g(·) is an appropriate link function. The GLM parameters map directly to the 

parameters in the cases above. For the normal case and identity link g(x) = x, αi = θi and ϕij 

= γij. For binary data and log-log link g(x) = log{− log(x)}, we have αi = log{− log(θi)} and 

ϕij = log(γij). Finally, in the case of count data, using the link g(x) = log(x) yields αi = 

log(θi), and ϕij = log(γij). These relationships are summarized in Table 1.

The GLM formulation easily accommodates covariate information, and allows the analyst to 

put separate priors on the mean and variance parameters. For example we would recommend 

a diffuse Normal prior on the α and ϕ parameters, and a flat uniform prior on the variance 

parameters. However, except for the normal case, the scaling of the GLM parameters may 

not always be natural for the application at hand. The parameterizations given above allows 

for more natural interpretation of model parameters and use conjugate priors for easier 

computation. Additionally, the posteriors for the model parameters have intuitive forms that 

transparently show from where the information is derived. Incorporation of covariates needs 

to be done carefully, but we provide full details for each formulation of the model.

In addition to assuming that self-reports are unbiased, we also assume that for all i, j γ1j = 

γ2j = · · · = γnj = γj, where ij, 2j, . . . , nj are the indices for the nodes on which j provided a 

peer-report, which implies that each individual j has a constant discrepancy γj when 

reporting on peers. Finally we assume θi ╨ γj, θi ╨ θj and that γi ╨ γj. These constraints 

impose structure that is most easily understood in the continuous-data normal distribution 

case. Specifically, we have E(zi | θi) = θi, , Cov(yij, yik | θi) = Var(θi), Cov(yij, 

zi | θi) = Var(θi), Cov(yij, zi | θi, γj) = 0, and Cov(yij, yik | θi, γj, γk) = 0.
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We proceed by specifying level two of the BPC model. We focus on the formulation for 

count data (which we assume to be Poisson distributed) due to our application. We assume 

that both θi and γj are each independent and Gamma distributed with shape parameters τθ, 

τγ and rate parameters κθ, κγ such that E(θi) = τθ/κθ, E(γj) = τγ/κγ; this is denoted by

(11)

(12)

The third level of the model specifies the priors. In our application, we use diffuse Gamma 

priors with hyperparameters a, b on τθ, κθ, τγ, κγ where a is the shape parameter and b is 

the rate parameter. Details regarding the full conditionals are in the appendices (Section 6).

The BPCC model is elaborated to include covariate effects in the components characterizing 

both the quantity of interest θ and the peer-reporting discrepancy γ. Carrying forward the 

Poisson formulation, we again assume that both θ and γ are Gamma distributed, the 

difference being that the expected value of both θ and γ are now functions of the covariates:

(13)

(14)

Hence, log E(θi) = Xiβ and log E(γj) = Xjα. The ωθ and ωγ parameters help determine the 

variance of θ and γ respectively such that the Var(θi) = eXiβ/ωθ. For instance, if ωθ is large 

relative to eXiβ then Var(θi) is small. This BPCC model specification also allows us to gain 

insight into the relationship between the covariates and θi and γj

In the third level of the BPCC model, we specify diffuse zero-mean Normal priors for β and 

α with a large variance σ2, and diffuse Gamma priors for rate parameters ωθ and ωα with 

hyperparameters f and g. The full conditionals are detailed in the appendix (Section 6).

2.3 Posterior inference for count data

Under the BPC model framework (which does not include covariates), for each iteration of 

the MCMC we draw from the posterior distribution using full conditionals which have the 

following Gamma distributions:

(15)
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(16)

Full conditionals of the other parameters in this model are detailed in the appendices 

(Section 6. The expected value of the full conditionals of θi can be instructive:

(17)

which is a weighted average of the self-report of person i (zi), the discrepancy corrected 

peer-reports on person i, , and the prior information about the mean value of the θ 
parameters, τθ/κθ. We also obtain full conditionals of γj which have the expected value:

which is a weighted average of  and τγ/κγ, the prior information about the mean 

value of the γ parameters.

We note that when an individual i has multiple peer-reports, and those peers have a high-

level of agreement on the quantity of interest thetai, then this high agreement would impact 

both the posterior distribution of θi, as well as the posterior distribution for each of the 

discrepancy parameters γj. First, the posterior distribution of θi will be pulled from the self-

report value to the peer-reports, and should the peer-reports and self-reports be in high 

agreement, then the posterior distribution of θi will be quite narrow. Secondly, the 

discrepancy parameters for those reporting on individual i will be shrunk closer to zero.

In the BPCC model, which includes covariates, for each MCMC step we draw from the 

posterior distribution using full conditionals having the following Gamma distributions:

In the BPCC model, we obtain posterior draws of θi which are weighted averages of the self-

report of person i (zi), the discrepancy corrected peer-reports on person i , and the 

information about the mean value of the θ parameter for those with covariate profile Xi, 
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eXiβ. We also obtain posterior draws of γj which are weighted averages of the peer-reports’ 

discrepancy for person j, , with eXjα, the posterior the mean value of the peer-

reporting discrepancy for those with covariate profile Xj. Similar to the BPC, the posterior 

distributions of the θ parameters are less diffuse when there is more precise information 

about the γ parameters, and vice-versa.

With the use of covariates in the BPCC model, we can gain insight into the relationships 

between the covariates with the peer-reporting discrepancies γ and the quantity of interest θ. 

Additionally, by including covariates to model θ and γ we are relaxing the independence 

assumption in the BPC model by only imposing conditional independence between θ and γ 
such that θi ⊥ γj|Xi, Xj.

It is important to note that these models are subject to several assumptions. The assumption 

that the θ and γ parameters are independent (in the BPC model) or conditionally 

independent (in the BPCC model), may not hold. Additionally, the assumption that all self-

reports have no systematic bias may not be true. We proceed with these assumptions and 

will address them in Section 4 and Section 5.

3 Application

The objective of this analysis is to learn about the unknown average number of alcoholic 

drinks consumed on drinking days, and the association between certain personal 

characteristics and alcohol consumption among study participants. To do so, we formulate 

Bayesian comparative calibration models (BPC, BPCC) that allow for drawing from the 

posterior distribution of peer-reporting discrepancies, in reports of alcohol consumption, and 

use the peer-reports corrected for the posterior draws of the discrepancies along with self-

reports to learn about the posterior distribution of the number of alcoholic drinks consumed 

on drinking days for each participant in the study. We wish to learn how covariates are 

associated with the number of alcoholic drinks consumed on drinking days as well as which 

covariates are associated with over or under reporting the alcohol consumption of peers. All 

simulations and analyses are performed in the R statistical programming language [31]. 

Please contact the corresponding author if you are interested in the R code.

3.1 Data

In the social network study, data are collected from residents of a freshman dormitory. Each 

participant is 18 years old or older when the survey is administered and is asked to report the 

number of alcoholic drinks they consume on drinking days (self-reports) as either 0, 1–2, 3–

4, 5–6, or 7 or more drinks. Further, participants are asked to provide demographic 

information, including their age, sex, race, sexual orientation, and whether or not they intend 

to join a fraternity or sorority. Additionally, each participant is asked to nominate which of 

the other participants are important to them. If participant A nominates participant B as 

important to them, then B is an alter of A. Each participant can nominate alters and serve as 

an alter for other participants. Lastly, each participant is asked to report the number of 

alcoholic drinks each of their alters consume on drinking days (0, 1–2, 3–4, 5–6, or 7 or 
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more drinks), which we refer to as peer-reports. By using nominations to connect 

participants, we construct a network of social relationships.

Of the 129 participants included in the sample, 4 did not nominate alters and were not 

nominated, and are excluded from the present analysis. This leaves 125 participants who are 

included in the analysis, with 507 nominations. Of these 507 nominations, there are 366 

peer-reports on alcohol consumption on 108 different dorm residents. In the sample of 125 

participants, 47.2% are male, 24% report considering joining a fraternity or sorority, 90.4% 

identify as heterosexual, and 59.2% identify as white. Among the 108 participants whose 

alters report on their alcohol consumption, 48.1% are male, 23.1% report considering 

joining a fraternity or sorority, 88.9% identify as heterosexual, and 62.0% identify as as 

white. Self-reports and peer-reports of alcohol consumption are presented in Figure 1, and 

peer-reports stratified by self-reports are presented in Figure 2. The most common self-

report of alcohol consumption was 3–4 drinks on drinking days, with 47 out of 129 

providing this self-report (Figure 1). Further information about the UrWeb Study can be 

found in [30].

We treat the number of drinks as a count, and as such will apply the Poisson formulations of 

the BPC and the BPCC. However, because the number of drinks are reported in intervals (0, 

1–2, 3–4, 5–6, 7+) we are not certain of the exact number of drinks. In order to incorporate 

this loss of information in the data collection in the model, we perform a data augmentation 

step for each of the 35,000 iterations which allows us to apply the Poisson models. The data 

augmentation proceeds as follows. For iteration t, the self-report for i is generated from a 

truncated Poisson distribution zit ~ Poi(θit−1) such that each zit value is within the specified 

interval of the self-report. Similarly, for iteration t, the alter report made by j on i is 

generated yijt ~ Poi(θit−1γjt−1). Once we generate the count from the truncated Poisson 

distribution, we are able to apply the Poisson formulation.

3.2 Model Specification Without Covariates

In the BPC model θi and γj are the parameters of primary interest. The distribution of 

posterior means for these parameters is shown in Figure 3. The posterior draws of each θi 

stratified by self-reported drinks on drinking days are presented in the first column of Figure 

4; we see that while the posterior distributions of the θi parameters are related to the self-

reported number of drinks on drinking days, there is variation within strata which indicates 

that the information from the peer-reports and the self-reports has been combined to give us 

a different result than if we had ignored the peer-report information. For the BPC model, we 

carry out 35,000 iterations of Gibbs Sampling, and of these, discard the first 10,000 as burn-

in and use every fifth of the final 25,000 simulations, leaving us with 5,000 simulations to 

calculate our posterior values of parameters. We assumed diffuse priors by specifying the 

hyper-parameters a = 0.02 and b = 0.02.

3.3 Bayesian Peer Calibration with Covariates

We specify diffuse priors on ωθ, ωγ, β, and α by specifying the hyper-parameters f = 0.2 

and g = 0.2 and σ2 = 1000. The f and g values specify a prior mean of 0.2/0.2 = 1 and a prior 

variance of 0.2/0.22 = 5 for both ωθ,ωγ . As with the BPC model, for the BPCC model we 
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have 35,000 iterations of Gibbs Sampling, discard the first 10,000 as burn in, and use every 

fifth of the remaining simulations, leaving us with 5,000 simulations to calculate our 

posterior values of parameters.

The parameters of most interest in the BPCC model are β and α which indicate the extent to 

which being male, having an interest in joining a fraternity or sorority, having a heterosexual 

sexual orientation, being white, and self-reporting zero drinks(used for α only) are 

associated with alcohol consumption and peer-report discrepancies respectively. We present 

the posterior values of β and α in Table 2. As the posterior distributions for β and α have no 

closed form, we used MCMC to draw the posterior values. For the posterior means of the β 
parameters, we can see that being male, interest in joining a fraternity or sorority, 

heterosexual sexual orientation and white race are associated with higher number of drinks 

on drinking days, though only interest in joining a fraternity or sorority and white race have 

95% credible intervals that does not contain zero. For example, average consumption for a 

white male who is heterosexual and is interested in joining a fraternity is exp(0.44 + 0.26 

+ 0.36 + 0.00 + 0.55) = 5.00 drinks on drinking days, whereas we expect a non-white male 

who is heterosexual and is interested in joining a fraternity or sorority to drink exp(0.44 

+ 0.26 + 0.36 + 0.00) = 2.89 drinks on drinking days. For the posterior means of the α 
parameters, we can see that interest in joining a fraternity or sorority and self-reporting zero 

drinks on drinking days are both associated with having discrepancies that could represent 

under-reporting, assuming that self reports are unbiased. For example, we expect that a 

white male who is heterosexual, is interested in joining a fraternity, and reported drinking 

zero drinks would have multiplicative peer-reporting discrepancies of exp(0.52 + 0.24 − 0.30 

− 0.25 − 0.02 − 0.81) = 0.54, or under-reporting peer-alcohol consumption by about half.

Next we turn our attention to the distribution of the posterior values of the θ and γ 
parameters which represent the number of drinks consumed on drinking days, and 

discrepancies in reporting on an alter’s drinks on drinking days respectively. These are 

displayed in Figure 5. The posterior distributions of θ stratified by self-reported drinks on 

drinking days are presented in the second column of Figure 4. Similar to the BPC model, we 

can see that the comparative calibration has utilized information from both the self and peer-

reports since dorm-residents with the same self-reports have varying posterior predictive 

distributions of the θ which reflect the influence of the peer-reports.

3.4 Role of Peer-Reports

To understand the role of peer-reports we look at a model with only self-reports (naive 

model). We present results from the BPCC where we ignore the peer-report information, so 

that we can learn about the effect of peer reports on both covariates as well as on the model 

fit. Since only self-reports are considered, this Naive model is not a calibration model. In 

this model we are primarily interested in the β parameters, and present the posterior means 

and credible intervals for these parameters in the third column of Table 2. For the posterior 

means of the β parameters, we can see that male sex, interest in joining a fraternity or 

sorority, heterosexual sexual orientation and white race are associated with higher number of 

drinks on drinking days, though only white race has a 95% credible interval that does not 

contain zero. Comparing the posterior distributions for the β parameters from the model 
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without peer-reports to the β parameters from the BPCC model (Table 2), we see that there 

are some differences. Most notably, the 95% credible interval for the β corresponding to 

interest in joining a fraternity or sorority does not contain zero in the posterior distribution 

from the BPCC model, but does contain zero in the posterior distribution from the model 

without peer-reports. In other words, if we only used self-reports we expect that those 

interested in joining a fraternity or sorority drink e0.12 = 1.13 times the number of drinks 

than someone who is not considering joining a fraternity or sorority with a 95% credible 

interval that includes 1: (0.81, 1.57), whereas if we consider both self-reports and peer 

reports, we expect that those joining a fraternity or sorority have a e0.36 = 1.43 times the 

number of drinks as someone not interested in joining a fraternity or sorority with a 95% 

credible interval that does not include 1: (1.02, 2.01). This demonstrates that the inclusion of 

the peer-reports may result in different inferences than had we not included peer-reports in 

our models.

3.4.1 Comparing Model Fit—We utilized posterior predictive draws to assess the fit of 

these models [32]. At each step of the Gibbs sampler, we use the relevant parameters to 

“predict” self-reports z according to our model, which are posterior predictive draws. For 

example, if at the tth step of the Gibbs sampler, we have θit would generate predictive values 

for the self-reports as zi ~ Poisson(θit) for each self-report observed in the data. A well-fitted 

model will produce posterior predictive draws that closely approximate the data that were 

used to fit the model, while a poorly-fitted model will produce posterior predictive draws 

that diverge from the data used to fit the model. By comparing the posterior predictive 

distribution of different models, we are able to compare the fit of different models. 

Specifically, we generated 5,000 posterior predictive draws of the self-reports z. In order to 

compare the fit of the BPC and BPCC models, we found the proportion of posterior 

predictive z values that were within the interval observed in the data (0, 1–2, 3–4, 5–6, 7+). 

These are presented in the first two columns of Table 3. We also found the proportion of 

posterior predictive z and values that were within the interval observed in the data for the 

model without peer-reports, and present these in the third column of Table 3.

By comparing the posterior predictive z’s to the observed z’s, we can determine whether the 

fit of the model seems reasonable, and compare the model fits for the models, keeping in 

mind that the BPCC model requires estimation of additional parameters. Here we can see 

that the BPC and BPCC models have a comparable fit to the data. For example, about 46% 

of the posterior predictive z values for participants reporting 1–2 drinks were 1 or 2 for both 

the BPC and BPCC models. While the use of covariates does not seem to markedly change 

the model fit, the use of peer-reports seems to improve the model fit, particularly for 

participants who reported zero drinks.

4 Simulations Allowing for Self-Report Bias

We carried out simulations to investigate how the BPCC model performs when the 

assumption of unbiased self-reports is violated. We base these simulations on the UrWeb 

data (n=125 individuals), and we only use the Fraternity/Sorority covariate. We then 

generated simulated data under three conditions: 1.) self-reports are unbiased, 2.) self-

reports are positively biased, with bias unrelated to the covariates in the BPCC model, and 
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3.) self-report bias is a function of the covariates included in the BPCC model. In each 

simulation we set α1 = 0.52, α2 = −0.30, β1 = 0.44, β2 = 0.35, which are the posterior means 

for the intercepts and the Fraternity/Sorority parameters. We set both ωθ and ωγ equal to 2.

In each simulation we first generate θ and γ values from θ ~ Gamma(ωθeXβ, ωθ) and γ ~ 
Gamma(ωγeXβ, ωγ). Next we generate the self reports (z) and the peer-reports (y) from zi ~ 
Pois(δiθi) and yij ~ Pois(θiγj). In the case of the simulations where self-reports are unbiased, 

we set δi = 1. When self-reports are positively biased but that bias is unrelated to the 

covariates in the model, we set δi ~ Unif(1, 1.5). Finally, where self-report bias is a function 

of the covariate δi, we have ~ (1 − Xi) + XiUnif(1, 1.5). One hundred simulated datasets 

were generated under each of the 3 different settings of self-report bias.

For each simulated dataset we carried out 5,200 iterations of Gibbs sampling, and discarded 

the first 200 of these, leaving 5,000 simulations to calculate posterior mean values of the α 
and β parameters. We present the empirical mean of the posterior means, the bias, and the 

empirical standard deviation of the posterior means in Table 4.

We can see that in the simulations in which self-reports are generated without bias, the 

BPCC performs well with relatively small biases, and standard deviations. In the second set 

of simulations, where self-reports are generated with a bias that is unrelated to the 

covariates, we find that the posterior means of the intercept terms are biased but the posterior 

means of α2 and β2 seem to have very small biases, indicating that covariate effects are 

accurately captured. Finally, in the set of simulations where self-report bias is a function of 

the covariate in the model, we see that the intercept terms seem to have very small biases, 

but the posterior means of α2 and β2 seem to be affected by the self-report bias. This 

simulation suggests that BPCC properly captures the relationship between covariates and the 

quantity of interest when there is no self-reporting bias, and when self-reporting bias is not a 

function of the covariates of interest, but that regression coefficients may be biased when 

self-report bias is related to the covariates.

5 Discussion

We show how to use self and peer-reports to learn about both individual level alcohol 

consumption and peer-reporting discrepancies. Further, we show that the use of peer-reports 

improves model fit. Among college students, peer-reports of alcohol consumption are often 

thought to be overestimates [6]. Under the assumptions of the BPC model framework, we 

have found that a vast majority of the peer-reports indeed had positive discrepancies. Males 

tended to have larger discrepancies than females. Those intending to join a fraternity or 

sorority, and those who self-reported zero drinks on drinking days tended to have more 

negative discrepancies than those who do not intend to joining a fraternity or sorority or 

reported at least one drink on drinking days, respectively. We also found that people who 

identified as white had higher levels of alcohol consumption than those who did not, and that 

those intending to join a fraternity or sorority have a higher level of alcohol consumption 

than those not intending to join.
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This method may be applied to any situation where members of a network report 

measurements on the same quantities of interest for peers as well as themselves. Any 

network study that asks for self and peer-reports, and has a similar error structure, could 

make use of this method. Consider, for example, an online rating system wherein users 

provide ratings of different products or services. By applying a BPC model, the network of 

users and ratings could be leveraged to learn about both raters’ reporting biases as well as an 

underlying “true” rating. By applying this method to an online-rating system, products or 

services that were rated by those with a negative bias could have their over-all rating 

corrected, thereby reflecting its true quality rather than the biases of the raters.

With the increase of available network data [33], there is a growing need to develop methods 

that allow for the integration of information from different sources within the network. 

Bayesian comparative calibration offers a coherent way to utilize data on the same quantity 

which come from many sources. Prior comparative calibration formulations assumed that 

there are p > 1 imperfect measurement instruments, and that each of these instruments are 

used to measure the same quantity from n objects, resulting in n × p measurements [22; 24]. 

In our models, we generalize prior work in Bayesian comparative calibration in three ways 

1.) we do not require that each measurement instrument(either a self-report or a peer-report) 

is applied to measure the quantity of interest from each object (the members of the social 

network) 2.) we have formulated models for continuous, count, and binary data 3.) we 

jointly model the covariate effects between both discrepancies and the quantity of interest.

We plan to extend these models in order to relax some of the assumptions that are made. In 

this paper, we assume that self-reports are unbiased on average. In future work we will allow 

for self-reports to contain a systematic bias by placing a prior on a self-report discrepancy. 

Our simulations of data that contain both peer-report and self-report bias show that the 

BPCC model performs well when self-reporting bias is independent of the covariates 

included in the models. In the BPCC model, we make the assumption that alcohol 

consumption and peer-reporting discrepancies are independent given covariate values. 

Following [34], we could allow for marginal correlations, and since we know the network 

structure of this data, we could allow for there to be correlation of these quantities between 

individuals who are connected in the network.
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6 Appendix

6.1 Model Specification and Full Conditions for Normal Data Bayesian Peer 

Calibration

We assume that θ and γ are independent and Normally distributed, 

 that the self-reports are on average error-free, and that the peer-

reports are subject to an additive systematic discrepancy γj.

We assume conjugate prior distributions for μθ, μγ,  and  specifying diffuse prior 

distributions. Normal zero-centered priors are placed on μθ and μγ, with variance term ϕ. 

The variance terms  and  are given Inverse-Gamma prior with shape a and rate s. 

These prior specifications result in the following full conditionals, where 

, pi = number of peer-reports on person i, rj = number of reports 

that person j gave, , and g = the number of people who made reports. This 

yields full conditionals:
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6.2 Model Specification and Full Conditionals for Normal Data Bayesian 

Peer Calibration with Covariates

Here, we specify θi and γj as being Normally distributed with means and variances Xiβθ, 

and Xjαγ,  respectively. Assuming diffuse prior distributions such that: 

, and 

we get the following full conditionals:

where βθ̂ = (X′X)−1X′θ, , k is the number of parameters used in the 

model, , and .

6.3 Model Specification and Full Conditionals for Bayesian Peer Calibration 

with Bernoulli data

We assume that θ and γ are independent and Bernoulli distributed, that the self-reports are 

on average error-free, and that the peer-reports are subject to an exponential systematic 
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discrepancy given by γj such that: zi ~ Bern(θi) and . Further, θi ~ Beta(a, b) 

and γj ~ Gam(c, d). We specify diffuse Gamma priors for a, b, c, d with shape and rate 

parameters ω and ψ. This results in the following full conditionals:

6.4 Model Specification and Full Conditionals for Bayesian Peer Calibration 

with Covariates with Bernoulli data

We assume that θ and γ are independent and Bernoulli distributed, that the self-reports are 

on average error-free, and that the peer-reports are subject to an exponential systematic 

discrepancy given by γj, as with the BPC model. We specify distributions on θi and γj that 

make use of covariate information: , γj ~ Gam(ωγeXα,ωγ), such that the 

expected value of θi equals . We specify diffuse Gamma priors for a, ωγ with shape 

and rate parameters, and diffuse Normal priors on a, β which result in the following full 

conditionals:

6.5 Full Conditionals of Bayesian Peer Calibration for Count Data
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6.6 Full Conditionals of Bayesian Peer Calibration with Co-variates for 

Count Data
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Figure 1. 
Self-reports and peer-reports of number of drinks on drinking days
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Figure 2. 
Peer-reports on number of drinks on drinking days by self-reported number of drinks on 

drinking days
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Figure 3. 
Posterior θs and posterior γs from BPC model
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Figure 4. 
Posterior densities of θs stratified by observed self-reports
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Figure 5. 
Posterior θs and Posterior γs from BPCC Model
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Table 1

Relationships between θ, γ and GLM parameterizations

Normal Bernoulli Poisson

Link identity log − log log

αi = θi log{− log(θi)} log(θi)

ϕij = γij log(γij) log(γij)
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Table 2

Posterior Mean Values and 95% CI of β and α

Discrepancy Drinks Per Day Drinks Per Day

Effect BPCC α BPCC β Naive β

Intercept 0.52 ( 0.09, 0.97) 0.44 (−0.15, 1.01) 0.53 (−0.10, 1.10)

Male 0.24 (−0.01, 0.50) 0.26 (−0.06, 0.57) 0.28 (−0.03, 0.58)

Frat/Sorority −0.30 (−0.59, −0.02) 0.36 ( 0.02, 0.70) 0.12 (−0.21, 0.45)

Heterosexual −0.25 (−0.64, 0.10) 0.00 (−0.47, 0.52) −0.06 (−0.55, 0.48)

White Race −0.02 (−0.29, 0.25) 0.55 ( 0.22, 0.90) 0.57 ( 0.25, 0.93)

Self-Reported 0 −0.81 (−1.46, −0.28)
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Table 3

Posterior Predictive z, generated by Posterior θ

% of posterior z in interval

Reported Interval Without Covariates With Covariates Without Peer-Reports

0 75 71 40

1 – 2 46 46 46

3 – 4 33 32 32

5 – 6 25 26 24

7+ 45 41 36
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Table 4

Effect of self-report bias on posterior means from BPCC with 100 simulated datasets

Simulation Empirical mean of posterior means Absolute Bias Empirical SD of posterior means

Unbiased self-reports

 α1 0.521 0.001 0.101

 α2 −0.296 0.004 0.166

 β1 0.433 −0.007 0.097

 β2 0.350 −0.009 0.141

Self-report bias ⊥ X

 α1 0.728 0.208 0.085

 α2 −0.306 −0.006 0.161

 β1 0.652 0.212 0.085

 β2 0.371 0.011 0.112

Self-report bias function of X

 α1 0.520 <0.001 0.166

 α2 −0.079 0.221 0.097

 β1 0.432 −0.008 0.093

 β2 0.570 0.210 0.117
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