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Abstract: There is interest in peptide drug design, especially for targeting intracellular protein–protein
interactions. Therefore, the experimental validation of a computational platform for enabling peptide
drug design is of interest. Here, we describe our peptide drug design platform (CMDInventus)
and demonstrate its use in modeling and predicting the structural and binding aspects of diverse
peptides that interact with oncology targets MDM2/MDMX in comparison to both retrospective
(pre-prediction) and prospective (post-prediction) data. In the retrospective study, CMDInventus
modules (CMDpeptide, CMDboltzmann, CMDescore and CMDyscore) were used to accurately
reproduce structural and binding data across multiple MDM2/MDMX data sets. In the prospective
study, CMDescore, CMDyscore and CMDboltzmann were used to accurately predict binding affinities
for an Ala-scan of the stapled α-helical peptide ATSP-7041. Remarkably, CMDboltzmann was used
to accurately predict the results of a novel D-amino acid scan of ATSP-7041. Our investigations
rigorously validate CMDInventus and support its utility for enabling peptide drug design.

Keywords: peptide design; free energy calculation; d-amino acid scan; alanine scan

1. Introduction

A renaissance in peptide drug discovery is underway, especially as it pertains to selectively
targeting disease associated intracellular protein–protein interactions. Not surprisingly, many new
chemical and biological technologies have been developed and are being used to enable the design
and discovery of peptide research tools and drug candidates. Recent work points to an emerging
role for information-based and physics-based computational methods to advance novel linear and
macrocyclic peptide drug discovery. Here, we take an important step in that direction and describe the
rigorous experimental validation of multiple computational methods and predictions in retrospective
and prospective peptide conformational modeling and binding affinity studies on the well-known and
clinically important p53-MDM2/MDMX systems. Our study is instructive in that it includes a broad
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range of MDM2/MDMX associated data—including data from linear peptides, D-peptides, stapled
peptides, bicyclic peptides, and N–C cyclized peptides—and includes a prospective binding affinity
study with computational predictions made using a range of methods prior to experimental testing.
Importantly, the prospective binding affinity study strongly validates the use of our computational
methods in guiding the design of α-helical peptides and shows how such computational methods,
especially when combined with scientific ingenuity, can be used to model and propose novel peptide
synthetic modifications.

For nearly three decades, MDM2 and MDMX have been aggressively pursued as oncology drug
targets [1]. Briefly, p53 acts as a tumor suppressor by causing cell-cycle arrest and apoptosis in response
to DNA damage. For this reason, it is often referred to as the guardian of the genome [2]. In many
forms of cancer, p53 is inactivated either through mutation or through the over-expression of negative
regulators, including MDM2 and MDMX. MDM2 and MDMX act to regulate p53 via interaction
with its N-terminal transactivation domain, which corresponds approximately to residues 17–29.
Thus, blocking the MDMX/MDM2/p53 interactions has been and remains a focal point in cancer drug
discovery. Indeed, both biotech and pharma have serious interest in developing stapled α-helical
peptide drugs to target the p53 binding sites of MDMX and MDM2. Specifically, Aileron Therapeutics
is currently testing ALRN-6924, a dual MDM2/MDMX inhibitor in Phase I/II clinical trials [3].

Due to the intense interest over such a long period of time, a rich and complex data set has
emerged around inhibitors of the MDM2/p53 and MDMX/p53 interactions. Collectively, this may
represent the most extensive target data set available for novel peptide-based drug discovery. For
example, there are at least 19 MDM2 and 9 MDMX crystal structures with co-crystallized peptides
available in the Protein Data Bank (PDB). Further, many of the co-crystal structures have corresponding
structure activity relationship (SAR) data available in the literature (see Table 1), with many having
both MDM2 and MDMX SAR data.

Table 1. Datasets used as starting points for binding affinity scoring calculations.

Article Peptide Ligand MDM2 MDMX

Li PMI 3eqs 3eqy
Li p53 4hfz 3dab

Liu D-α-helix 3lnj 3lnj/3eqy *
Sawyer Stapled α-helix 3v3b 4n5t
Fasan N–C cyclic peptide 2axi

* 3lnj peptide docked in 3eqy.

The first major MDM2/MDMX-targeted SAR study used linear α-helical peptides comprised of
all L-amino acids. Li and co-workers [4] published an extensive mutational analysis of MDM2 and
MDMX binding to both p53 (residues 17–28 ETFSDLWKLLPE) and the more potent linear peptide
PMI (TSFAEYWNLLSP). This dataset consists largely of an alanine scan of each peptide along with a
handful of truncated peptides. Both peptides have been crystallized with MDM2 (p53 in 1ycr [5] and
4hfz [6], and PMI in 3eqs [7]). PMI has additionally been co-crystallized with MDMX (3eqy [7]).

A noteworthy MDM2/MDMX-targeted SAR dataset with peptide ligands comprised of all
D-α-helices is provided by Liu and coworkers [8]. In this work, mirror image phage display was used
to find an all D-peptide, referred to as PMI-α, that binds potently to MDM2. Importantly, there are
three MDM2 crystal structures with all D-amino acid α-helical peptides (3iwy [8], 3lnj [8] and 3tpx [9]).
Interestingly, the SAR for the all D-amino acid α-helices differs markedly from that of the L-amino
acid α-helices. For example, while the same three MDM2/MDMX pockets are filled by three critical
residues of each peptide, the specific nature of the residues is quite different: F-W-L for the L-α-helices
and W-L-L for the D-α-helices (Figure 1). Further, the L-α-helices described in the previous paragraph
lose 2–5 fold in binding affinity for MDMX relative to MDM2 whereas the D-α-helical peptides lose
nearly 100–1000 fold in binding affinity [9].
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Figure 1. A comparison of the critical binding element of an L-α-helical peptide compare to those of 
a D-α-helical peptide. (A) The L-helical peptide (3jzs [4]). (B) The D-helical peptide (3lnj [8]). The 
preferred residues of the L-α-helix for the three critical pockets are Phe, Trp and Leu whereas the 
three corresponding interactions of the D-α-helix are Trp, Leu and Leu. In both cases MDM2 is shown 
in the same orientation. 

A significant MDM2/MDMX-targeted α-helical peptide SAR dataset was developed using 
stapled α-helical peptides. Stapled α-helical peptides are engineered by chemically connecting two 
side-chains (i and j) in a helix, typically using an alkyl chain, which can result in stabilization of the 
α-helical conformation. There are five MDM2/MDMX structures with bound stapled α-helical 
peptides: (1) 3v3b [10] (1–7 stapled α-helix bound to MDM2), (2) 4ud7/4ue1 [11] (1–4 stapled α-helix 
bound to MDM2), (3) 4umn [12] (1–7 stapled α-helix bound to the M62A MDM2 mutant), (4) 4n5t 
[13] (the 1–7 stapled α-helix ATSP-7041 bound to MDMX), and (5) 5afg [14] (a more complicated 1–7 
stapled α-helix bound to MDM2). These structures come with excellent SAR, including investigations 
into the effects of different staples on p53 [15], the impacts of a number of single residue changes, and 
a full alanine scan around the stapled L-α-helix ATSP3900 [13,16]. 

In addition to the structures with stapled α-helices, there is a single structure, 3iux [17], with 
MDM2 bound to a bicyclic peptide with two disulfide bonds, referred to as stingin. Also, there is a 
single structure of a non-α-helical peptide bound to MDM2, 2axi [18]. This peptide is a 10 residue N–
C cyclic peptide adopting a β-hairpin conformation which is capped by a Pro-D-Pro motif. This data 

Figure 1. A comparison of the critical binding element of an L-α-helical peptide compare to those
of a D-α-helical peptide. (A) The L-helical peptide (3jzs [4]). (B) The D-helical peptide (3lnj [8]).
The preferred residues of the L-α-helix for the three critical pockets are Phe, Trp and Leu whereas the
three corresponding interactions of the D-α-helix are Trp, Leu and Leu. In both cases MDM2 is shown
in the same orientation.

A significant MDM2/MDMX-targeted α-helical peptide SAR dataset was developed using stapled
α-helical peptides. Stapled α-helical peptides are engineered by chemically connecting two side-chains
(i and j) in a helix, typically using an alkyl chain, which can result in stabilization of the α-helical
conformation. There are five MDM2/MDMX structures with bound stapled α-helical peptides:
(1) 3v3b [10] (1–7 stapled α-helix bound to MDM2), (2) 4ud7/4ue1 [11] (1–4 stapled α-helix bound to
MDM2), (3) 4umn [12] (1–7 stapled α-helix bound to the M62A MDM2 mutant), (4) 4n5t [13] (the 1–7
stapled α-helix ATSP-7041 bound to MDMX), and (5) 5afg [14] (a more complicated 1–7 stapled α-helix
bound to MDM2). These structures come with excellent SAR, including investigations into the effects
of different staples on p53 [15], the impacts of a number of single residue changes, and a full alanine
scan around the stapled L-α-helix ATSP3900 [13,16].

In addition to the structures with stapled α-helices, there is a single structure, 3iux [17], with
MDM2 bound to a bicyclic peptide with two disulfide bonds, referred to as stingin. Also, there is a
single structure of a non-α-helical peptide bound to MDM2, 2axi [18]. This peptide is a 10 residue N–C
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cyclic peptide adopting a β-hairpin conformation which is capped by a Pro-D-Pro motif. This data
set is remarkable in that it includes MDM2 binding data for >70 analogue peptides, many of which
contain non-natural amino acids in addition to the invariant D-Pro.

In what follows, we describe the use of several of the computational tools that comprise our
integrated computational peptide design platform (CMDInventus) to investigate the extent to which
they can reproduce the aforementioned p53/MDM2/MDMX SAR data and prospectively predict the
binding effects of conservative and non-conservative peptide ligand modifications. Toward this end,
we first describe the use of our physics-based conformational sampling algorithm to successfully model
and reproduce the observed bound conformations of several peptide ligands. Second, we describe
the utility of our binding free energy estimation methods to reproduce the measured binding and
activity trends present in the various data sets. Importantly, all retrospective or post-data collection
calculations were performed without explicit fitting or re-parameterization of any kind. Of course,
the most demanding test of any method is its accuracy at predicting future observations. Hence, we
describe the use of the various computational methods to model and prospectively calculate or blindly
predict prior to data collection binding affinities for two series of peptides, one corresponding to an
alanine scan and the second to a D-amino acid scan of a stapled α-helical peptide. The prospective all-D
scan study is of special importance, as it is experimentally novel and resulted in some nonintuitive
computational predictions being confirmed by experiment.

2. Results and Discussion

Because a typical CMDInventus peptide modeling and design work-flow integrates the use
of CMDpeptide, CMDescore, CMDyscore and CMDboltzmann, we deemed it important to test
all approaches wherever possible in retrospective and prospective analyses. The strength of the
retrospective analysis is that it allows the methods to be tested against a large and diverse amount of
data. The problem with retrospective testing, however, is that it may suffer from various biases. It is
hoped that prospective testing will help mitigate these biases. By testing methods retrospectively and
prospectively, it is hoped that information will be gained about the role each method can play in a
CMDInventus design work-flow.

2.1. Retrospective Study

Conformational sampling calculations with CMDpeptide. CMDpeptide calculations start from
peptide sequences and, when appropriate, inter-residue bonding information such as disulfide bonds.
In particular, they do not employ any structural information. The results of the peptide conformational
analysis are shown in Table 2 and Figure 2. All RMSDs reported are calculated over the backbone
atoms and Cβ atoms. This provides a more demanding measure of structural similarity than does
the more typical RMSDs over just Cα atoms because including the Cβ atom captures side-chain
orientation. An assumption behind CMDpeptide is that calculated ensembles will include a broad
range of biologically relevant peptide conformations, including protein binding conformations. As will
be shown below, this assumption is validated by our results.

In all cases studied, there is at least one peptide conformation among the low-energy conformations
(within 15 kcal/mol of the lowest energy conformation) within an RMSD < 1.6 Å of the co-crystallized
peptide ligand conformation with an overall average RMSD of 1.12 Å. In fact, for seven of the
sixteen cases conformations with RMSDs < 1.0 Å were identified. Hence, CMDpeptide can be used
to consistently sample conformations close to the bound conformation observed in MDM2/MDMX
cocrystal structures. This is an encouraging result, especially given that a range of peptide lengths
(8–18 resides) and chemical types (L-linear, N–C cyclized, bicyclic, D-linear, and L-stapled) were
studied and that much of the calculated RMSD values result from conformational deviations at N and
C termini. Similarly, it is worth pointing out that there is a relatively weak but non-trivial correlation
between peptide length and best low-energy RMSD (R ≈ 0.46). In fact, a simple two term regression
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model that includes peptide length and the presence or absence of a staple as independent descriptors
can be used to account for ≈ 68% of the measured variation in lowest RMSD.

Table 2. CMDpeptide results: Here, we summarize the full results of the CMDpeptide conformational
analysis calculations. Each of these calculations begins with only sequence and inter-residue bonding
information, i.e., only topological information. The “Number of AA” column lists the number of
amino acids (not including the capping groups) and in parentheses lists the number of non-standard
amino acids. The “Min RMSD” column gives the minimum RMSD conformation (Å) relative to
the corresponding X-ray conformation of all conformations within 15 kcal/mol of the lowest energy
conformation. Finally, the results from clustering with a radius of 1.0 Å are shown, including the
total number of clusters (Size) and the lowest RMSD conformations within the top 25, 100 and 500
ranked clusters. All RMSDs are calculated over backbone atoms plus the Cβ atoms. Average values
are provided (the average value for cluster size has been rounded up to a whole number).

PDB Description Number
of AA

Min
RMSD (Å)

Cluster 1.0 Å

Size 25
(RMSD)

100
(RMSD)

500
(RMSD)

1ycr L-α-helix
(p53 17-29) 13 (0) 1.29 9547 2.9 2.2 2.1

2axi N–C cyclic
β-hairpin 10 (1) 0.77 744 1.4 1.3 1.3

2gv2 L-α-helix 8 (4) 1.17 3595 1.9 1.4 1.4
3eqs L-α-helix 11 (0) 0.75 11,112 1.7 1.7 1.4
3g03 L-α-helix 11 (0) 0.94 9175 2.5 2.1 1.4

3iux Stingin–2
disulfide bonds 18 (0) 1.34 4721 2.3 2.2 1.7

3iwy D-α-helix 12 (12) 0.95 8074 2.1 1.8 1.5
3jzo L-α-helix 12 (0) 1.02 7743 2.6 2.2 1.3
3jzs L-α-helix 12 (0) 0.92 5368 2.6 2.6 1.5
3lnj D-α-helix 11 (11) 0.88 3091 2.8 1.5 1.0
3tpx D-α-helix 11 (11) 0.88 4784 2.4 1.7 1.1
3v3b. Stapled α-helix 13 (2) 1.40 3674 2.5 2.3 1.8
4n5t Stapled α-helix 14 (3) 1.44 4310 2.6 2.0 1.5
4ud7 Stapled α-helix 14 (2) 1.32 6484 3.2 2.5 1.5
4umn Stapled α-helix 11 (2) 1.54 3201 2.2 1.9 1.7
5afg Stapled α-helix 12 (2) 1.36 4354 2.4 1.5 1.5

Average 1.12 5624 2.38 2.16 1.48

Not surprisingly, the average best peptide conformation RMSD trends down from 2.38 Å, to 2.16 Å,
to 1.48 Å as the number of as the number of conformations allows increases from 25, to 100, to 500.
Importantly, even at 500 clusters the best low-energy RMSD peptide identified is never present.
So, while the results are encouraging, they suggest that the improvements in the scoring strategy are
still needed for identifying and ranking best RMSD peptide binding conformations. This conclusion is
reinforced by the fact that our current force field scoring and clustering protocols failed to pick out
best RMSD conformations where sampling does not appear to be an issue (sampled conformations
within ≈ 0.8 Å of X-ray). It remains a possibility, however, that incomplete sidechain sampling failed to
identify a sidechain interaction that would have led to the ranking of those conformation close to the
X-ray conformation near to the top of the ensemble. Indeed, the combination of the large sampling
space with the scoring problem makes the peptide conformational analysis a difficult challenge.
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Figure 2. Selected conformations from CMDpeptide calculations. Here, we show select results from
Table 2. For this figure, we took the peptides from the PDB structures below. The first column of
images shows the conformations in the top 25 ranked conformations with the lowest RMSDs to the
bound conformations. The second column of images shows the conformations in the top 100 ranked
conformations with the lowest RMSDs. The third column of images shows the conformations in the
top 500 ranked conformations with the lowest RMSDs. In each case a conformational ensemble was
generated starting from a sequence using the default parameters of CMDpeptide. In each case, the
bound conformation is shown in green and the CMDpeptide conformation in cyan. Each peptide is
shown as a ribbon with the Cα-Cβ bond. Additionally, for the stapled helices the staple is shown.

MDM2-peptide binding affinity calculations with CMDboltzmann. As described in detail in the
Materials and Methods section, CMDboltzmann is a tool for estimating the binding affinity of a peptide
given knowledge of the binding mode of a portion of its backbone. It particular, it locally samples
a peptide conformation in the binding site of a protein producing a calculated binding affinity that
is based on numerous similar binding modes of the peptide. As a result, it tends to be less sensitive
to the exact details of the starting binding mode. The results of the CMDboltzmann calculations on
the various data sets are shown in Figure 3. In all, six MDM2/MDMX SAR datasets were analyzed:
(1) p53 L-helix variants, (2) PMI L-α-helix variants, (3) PMI-α D-α-helix variants, (4) ATSP-3900 stapled
L-α-helix ala scan variants, (5) p53 L-α-helix staple variants, and (6) N–C cyclized variants. Hence, the
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CMDboltzmann binding affinity calculations cover diverse peptide chemistries and topologies. The
CMBboltzmann calculations were all performed using the 3eqs structure of MDM2 using the binding
mode extracted from the corresponding co-crystal structures with the respective peptide.
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Figure 3. The CMDboltzmann calculations on the individual data sets—All figures show
CMDboltzmann calculated binding affinities recorded on the X-axis and experimental binding affinities
(typically pKd) recorded on the Y-axis. (A) Structure activity relationship (SAR) around the L-α-helix
p53 [4]. (B) SAR around the L-α-helix PMI [4]. (C) SAR around the D-helix PMI-α [8]. (D) SAR around
the stapled L-α-helix ATSP-3900 [16]. (E) SAR around L-α-helix p53 stapled variants SAR [15]. (F) SAR
around the N–C cyclic peptide from the 2axi structure [18].
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As can be seen from Figure 3, the R2s between calculated and experimental binding affinities
vary from 0.43 to 0.93. Hence, the CMDboltzmann calculations can account for some 43%–93% of the
measured binding affinity variation. This is an encouraging result, especially given the diverse sizes
and topologies of the peptides studied and the large changes in amino acids found in the data sets
particularly the N–C cyclized variants.

Further, Figure 4 shows calculated binding affinities versus measured pKd values for all peptides
studied, color coded by data set. Once again, the results are encouraging, as a fairly straight line can
be drawn through the calculated and measured binding affinities for all of the PMI L-α-helix, PMI-α
D-α-helix, ATSP-3900 stapled L-α-helix, and N–C cyclized peptides. With just these four data sets,
i.e., omitting the p53 peptide analogs, the overall R2 is 0.75. By including the p53 peptide analogs,
the R2 falls to 0.48. The p53 peptide analogs show higher calculated binding affinities than expected,
suggesting that a penalty contribution of some kind is missing from the CMDboltzmann model.
The missing penalty contribution likely derives from two missing factors. The first factor is the inability
of the solvation model to adequately counter balance the electrostatic binding interactions. P53 is a
highly negatively charged peptide, as it contains four charged residues and both termini are free and
ionized, and the high charge may pose a serious challenge to the EEF1 solvation model. In essence,
CMDboltzmann overestimates the electrostatic contributions from charged amino acids. The second
missing factor has to do with the conformational penalty associated with the p53 peptide “climbing”
into its binding conformation. Indeed, p53 and direct analogs are known to be disordered in water and
only adopt an α-helical conformation in the context of MDM2/MDMX binding sites. In fact, p53 has
been shown to be approximately 11% α-helical in solution [15]. By comparison, PMI has been shown
to readily adopt an α-helical conformation in water as well. Hence, it is reasonable to assume that
p53 will suffer a greater free energy cost upon binding when compared to the other peptide ligands.
Thus, future work might focus on improving the CMDboltzmann electrostatic solvation model and
extending CMDboltzmann to include sampling of unbound conformations to better estimate the free
energy penalties associated with burying charged groups and flexible ligand binding.

Calculating MDM2/MDMX binding selectivity with CMDboltzmann. As a final test of the
CMDboltzmann procedure for estimating binding affinities, we examined the differences in MDM2
and MDMX binding affinities. The MDMX calculations were all performed using the MDMX structure
from 3jzo [19]. For the PMI analogs [4] and L-α-helices the differences in binding affinities are
modest. In particular, on average the PMI analogs show two-fold more affinity for MDM2 over MDMX
(see Figure 5). Encouragingly, with the exception of a single peptide, our calculations qualitatively
agree with experiment as they show very small differences between calculated binding affinities
between PMI and MDM2 and MDMX. In contrast, the two most potent of the D-α-helical peptides have
been shown to be essentially inactive versus MDM2 [9]. As can be seen in Figure 5, we find substantial
differences between the calculated MDM2 and MDMX binding affinities for the D-α-helical peptides.
Thus, the MDM2/MDMX affinity selectivity calculations are in encouraging qualitative agreement with
the available experimental data for the D-α-helical peptides as well.

Calculating binding affinities from single structures using CMDescore and CMDyscore.
CMDescore and CMDyscore, as described in the Materials and Methods section, score peptide
binding modes based on a single fixed complex structure. All CMDescore and CMDyscore scoring
methods were used to calculate MDM2/MDMX-peptide binding affinities for the datasets summarized
in Table 3. For comparative purposes, the Vina and X-score scoring functions and simple surface area
and packing empirical functions were also used on the same datasets. Binding affinity and binding
energy calculations are shown either ignoring inactive peptides or accounting for them by giving them
a very low binding affinity with results summarized in Table 3A,B, respectively. The latter only affects
the Li p53 data, but adds information on the ability of the methods to distinguish good from very poor
binders. Hence, our focus will be more focused on analyzing the results from Table 3B.
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Figure 4. Boltzmann calculations on the entire MDM2 data set. Each of the four data sets shown in
Figure 3 above is plotted as a separate color. As is apparent the Li-p53 data set stands out as having
higher than expected calculated binding affinities in comparison to the other data sets. There are two
reasonable explanations for why the affinity of the p53 analogs is generally overestimated relative to
the rest of the peptides. First, these peptides are highly negatively charged while MDM2 has a net
positive charge and the empirical solvation model used may not be adequate to address the difference
in charge. Second, p53 is known to be highly disordered in solution thereby encurring a large free
energy penalty upon binding in the α-helical conformation whereas the other peptide families are
known to be more stable and structured in solution.

As indicated in Table 3B, CMDescore generated useful binding affinity estimates for all seven
datasets, resulting in an average R2 of ≈ 0.69. This is an encouraging result, especially given its
simplicity, physical intuitiveness, and rapid speed of calculation. Comparing the various CMDyscore
results (Table 3B), one can see the clear benefit of adding a solvation term to the force field. Indeed,
CMDyscore, when combined with solvation, posted some good correlations and, with two exceptions,
consistently outperformed all other scoring procedures resulting in an impressive average R2 of 0.81.
Using uncharged amino acids with CMDyscore resulted in an average R2 of ≈ 0.73. The simple
implementation of CMDyscore produced an R2 of ≈ 0.62. This pattern suggests the hypothesis that
mitigating the impact of charged residues on binding is of considerable importance and that, in the
present study, this is best achieved with an implicit solvation model. Our attempt to consider strain in
the bound conformation with CMDyscore calculations resulted in the poorest average CMDyscore
result (R2

≈ 0.60).
It is interesting to note how well the simple packing scoring function performed, yielding an

average R2 of ≈ 0.75 (Table 3B). The packing score is a quality metric available in YASARA [5]. It is a
weighted average of three individual metrics: normality of dihedral angles (0.145), normality of 1D
distance-dependent packing interactions (0.390), and normality of 3D direction-dependent packing
interactions (0.465). The metrics are knowledge-based potentials. The dihedral potential is based on
the probability of finding the observed dihedral in a reference PDB database. The 1D potential is based
on probabilities of finding specific atom–atom distances. The 3D potential is based on probabilities of
finding atoms in a specific direction where the coordinate system is based on a central heavy atom and
two of its bonded neighbors. All probabilities are converted to energies which are then converted to
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Z-scores. Perhaps this is not too surprising for the MDMX and MDM2 systems, as binding to both
targets is dominated by the three hydrophobic hot spot residues. Moreover, success for a simple
packing scoring function reproducing affinity trends for known binders to known interfaces does
not entail success at predicting hypothesized binders to hypothesized interfaces—a key aspect of
computational peptide drug design—where tight packing can be offset or reinforced by electrostatic
and desolvation effects, etc. Considerations like these caution against generalization and justify
the continued development and use of more complicated multi-term scoring functions, even when
correlations prove to be similar on specific datasets.Molecules 2019, 24, x FOR PEER REVIEW 10 of 29 
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Figure 5. Selectivity Calculations with CMDboltzmann—Here, we compare measured MDM2/MDMX
selectivity to calculated selectivity. (A) The left panel shows the experimental pKd of MDM2 versus
the experimental MDMX pKd for PMI analogs [4]. The dashed line shows the line where the MDM2
and MDMX are identical. The solid line shows the best fit line to the MDM2/MDMX data. Clearly,
the MDM2 and MDMX binding affinities are very close to one another. The right panel shows the
comparison of the MDM2 and MDMX calculated binding affinities for the same peptides. Again, the
dash line shows where the MDM2 and MDMX calculated binding affinities are identical and the solid
line is the best fit between the two. In the calculated case, we see a slight preference for MDM2 over
MDMX. (B) This panel shows a comparison of the MDM2 and MDMX calculated binding affinities for
the D-α-helical analogs [8]. Here, we see a large preference for MDM2 over MDMX. In this case, the
experimental binding affinities are not known for all of the peptides. It is known, however, that the two
that are most potent for MDM2 are much weaker for MDMX [9]. Thus, the selectivity calculations are
in encouraging qualitative agreement with the available experimental data for the D-α-helical peptides
as well.
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Table 3. Retrospective single pose scoring results.

A. Mutation + scoring (exluding inactives).

Method

R2 MDM2 R2 MDMX Statistics

Li
PMI Li p53 Liu

D-α
Guerlavais

Stpl-α
Fasan
Stpl-α

Li
PMI Li p53 Guerlavais

Stpl-α Avg Stdev

CMDescore 0.831 0.031 0.933 0.556 0.420 1 0.799 0.245 0.829 0.581 0.325

CMDyscore
(minimize) 0.775 0.033 0.445 0.475 0.683 0.906 0.013 0.823 0.519 0.345

CMDyscore 0.837 0.027 0.463 0.507 0.705 0.908 0.007 0.837 0.536 0.357

CMDyscore
(uncharged) 0.920 0.374 0.574 0.484 0.624 0.884 0.005 0.831 0.587 0.306

CMDyscore
(solvation) 0.930 0.485 0.775 0.609 0.518 0.958 0.575 0.884 0.717 0.193

Xscore 0.890 0.290 0.726 0.540 0.442 0.850 0.434 0.816 0.624 0.226

VINA 0.912 0.300 0.682 0.493 0.534 0.893 0.233 0.833 0.610 0.263

Packing 0.870 0.330 0.677 0.551 0.418 1 0.804 0.566 0.921 0.642 0.213

Buried SA 0.795 0.001 0.537 0.289 0.338 0.747 0.022 0.548 0.410 0.301

Bold means the largest in each column; Italics mean an inverse correlation; best prediction in bold; 1 CMDescore
and packing interface score are not parameterized for non-canonical amino acids and so these were not included in
the correlation; “Stpl-α” stands for stapled alpha helical peptide and “D-α” stands for D alpha helical peptide.

B. Mutation + scoring (including inactives).

Method

R2 MDM2 R2 MDMX Statistics

Li
PMI Li p53 Liu

D-α
Guerlavais

Stpl-α
Fasan
Stpl-α

Li
PMI Li p53 Guerlavais

Stpl-α Avg Stdev

CMDescore 0.831 0.466 0.933 0.556 0.420 1 0.799 0.692 0.829 0.690 0.189

CMDyscore
(minimize) 0.775 0.334 0.445 0.475 0.683 0.906 0.317 0.823 0.595 0.230

CMDyscore 0.837 0.332 0.463 0.507 0.705 0.908 0.328 0.837 0.615 0.236

CMDyscore
(uncharged) 0.920 0.815 0.574 0.484 0.624 0.884 0.717 0.831 0.731 0.157

CMDyscore
(solvation) 0.930 0.891 0.775 0.609 0.518 0.958 0.909 0.884 0.809 0.163

Xscore 0.890 0.835 0.726 0.540 0.442 0.850 0.863 0.816 0.745 0.166

VINA 0.912 0.835 0.682 0.493 0.534 0.893 0.801 0.833 0.748 0.161

Packing 0.870 0.859 0.677 0.551 0.418 1 0.804 0.883 0.921 0.748 0.182

Buried SA 0.795 0.523 0.537 0.289 0.338 0.747 0.545 0.548 0.540 0.174

Bold means the largest in each column; Italics mean an inverse correlation; best prediction in bold; 1 CMDescore
and packing interface score are not parameterized for non-canonical amino acids and so these were not included in
the correlation; “Stpl-α” stands for stapled alpha helical peptide and “D-α” stands for D alpha helical peptide.

Also, worth commenting on is that the scoring functions provide quantitative binding affinity
values for all peptides, whereas in the Li dataset some peptides are only listed as qualitatively ‘inactive’.
In order to include information from inactive peptides, the Kd for these peptides was set to−2.0 kcal/mol.
A comparison of the results summarized in Table 3A,B shows that this addition significantly affects
the calculated R2 values for the p53 dataset, illustrating that it is much easier for a scoring function
to determine active from inactive compounds than it is to quantitatively discriminate among a set of
active compounds.

A plot of the PMI, p53, D-α-helix, and stapledα-helix predictions for the best single scoring function
(CMDyscore with solvation) and a consensus scoring function are shown in Figure 6. The consensus
score was created by combining the predictions of CMDescore, CMDyscore, VINA, and Xscore. For each
score, the values were normalized between zero (worst score) and one (best score). The consensus score
then was taken as the mean of these four normalized scores. This consensus score was then plotted
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against the normalized binding energies. In the case of MDM2, the best single function outperformed
the consensus. For MDMX, however, the consensus score proved to be superior. Note also that the
overall correlation across the data sets is not as strong as with any individual dataset. This is not
surprising, given the data was collected by different groups.Molecules 2019, 24, x FOR PEER REVIEW 13 of 29 
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Figure 6. Single pose scoring results with CMDyscore with solvation (A) and the consensus score (B).

Unlike CMDescore, CMDyscore is parameterized for non-standard amino acids. Hence, a plot
of the CMDyscore results with N–C cyclized mutants included was also prepared and is provided
in Figure 7. Including the cyclic peptides, with the primarily alanine, scanning results of the other
datasets (PMI, p53, D-α-helix, and stapled α-helix), adds a number of complications for making realistic
comparisons using single point calculations. One complication is that for the earlier calculations, only
a single residue was mutated and, in general, the mutation was to a residue smaller in size than the
original. All the cyclic peptides were built from a single starting template and multiple mutations
involving both larger and smaller residues were required. As a result, more extensive minimization of
the starting structure was carried out. The cyclic peptides also involved more variation in the number
and type of charged residues.
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Figure 7. CMDyscore with solvation on the full data set. (A) CMDyscore with solvation with default
CMDyscore settings. (B) CMDyscore after more extensive minimization of all datasets using solvation
(C) or default settings (D).

Figure 7 summarizes the CMDyscore results with the combined datasets. It is apparent in
Figure 7A that despite reasonable correlations in the individual datasets, cyclic peptides are shifted to
the right with respect to the other datasets, i.e., their calculated affinities are over estimated relative
to the helical peptides. In the combined dataset, the default CMDyscore parameters show good
correlation with the combined data set. It was thought that part of the problem was that different
protocols were used to minimize the complexes. All complexes were therefore run through another
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series of minimizations and rescored. First all but the peptide side chains were fixed and the complex
minimized. A second minimization step was done allowing all side chains to relax. Finally, a third
minimization was done with the protein fixed and the peptide completely free. The correlations did
improve. The R2 for CMDyscore with solvation improved from 0.18 to 0.27. More impressive was the
performance of the default CMDyscore, which improved from an already respectable R2 of 0.59 to 0.67.
To a large extent, this is because the default method better predicts the large cyclic peptide data set, but
one can also see from the graph for the default method, that the cyclic peptides are no longer shifted to
the right.

The most likely reason for the observed results is that the PBSA in YASARA uses a somewhat
ad hoc value for scaling the surface area. When used on data sets of similar size and composition, it
improves the correlation. For a more diverse data set it is not helpful. The results may improve by
better parameterization of the SA term. However, the focus of the article is on a rigorous examination
of the existing methods and exploring methods to improve the results after the fact is outside the scope.
Nevertheless, mutation and single point energy calculations following a mild minimization protocol
do provide reasonably good correlation with experiment.

2.2. Prospective Study

In addition to the retrospective calculations, the same methods were used to prospectively
estimate or to blindly predict the binding affinities of a series of analogs of ATSP-7041 (A8Q, Q9L) to
MDM2. In particular, the calculations were performed on an Ala scan and novel D-amino acid scan
of an ATSP-7041 analog (having A8Q and Q9L modifications) prior to synthesis and experimental
binding affinity measurements. Undoubtedly, putting blind predictions in jeopardy of observational
falsification provides a more rigorous test of a computational method.

The predictions made using the sampling-based CMDboltzmann method and the single pose
scoring functions CMDyscore and CMDescore are shown in Table 4 and Figure 8. Importantly, all
three computational binding affinity prediction methods produced generally good agreement with the
experimentally measured Ala scan data of the ATSP-7041 analog binding to MDM2, with the R2s for
CMDescore, CMDyscore and CMDboltzmann being 0.67, 0.84 and 0.82, respectively.

Surprisingly, all three methods predicted that the mutation of Trp7 to dTrp7 would lead to only a
modest drop in potency. This prediction was eventually confirmed by experimental measurements.
Interestingly, CMDescore and CMDyscore were used to predict that the Phe3 to dPhe3 mutation would
have a small effect, while the application of CMDboltzmann predicted a strongly destabilizing effect.
The CMDboltzmann prediction was later confirmed by experimental measurement. Subsequently, a
crystal structure, 6aaw [20], was solved further validating the fit of the dTrp sidechain. The differential
prediction successes of CMDescore, CMDyscore and CMDboltzmann on the Phe3 and Trp7 mutants
helps to account for the R2 values and trend obtained for the full MDM2-ATSP7041 D-amino acid scan
results (0.30, 0.09 and 0.38 for CMDescore, CMDyscore and CMDboltzmann, respectively).

When Phe3 is mutated to dPhe3, the aromatic rings of the two cases overlap almost completely.
It is thus not surprising that the empirical CMDescore scoring function displays problems here, as the
number of carbon–carbon contacts is identical. The dPhe3 mutation does result in short van der Waals
contacts with two residues in the protein, which ideally a physics-based force-field would identify as
unfavorable. As part of the CMDyscore binding energy calculation, however, the peptide was fully
minimized in the binding site which may have removed the bad contacts, resulting in a failed prediction.
Interestingly, the correlation obtained with CMDyscore without the minimization step is significantly
better (0.74) and still predicts that a mutation to dTrp will have little effect. The differences between
the minimized and un-minimized predictions might be because the strain in dPhe3 is propagated to
the backbone upon minimization, where it will not have an effect on a single point binding energy
calculation. It must be admitted, however, that all of this may be coincidence, as the un-minimized
correlation result is not the result of a blind study. It does, however, suggest that generating affinity
predictions from a conformational ensemble, as is done with CMDboltzmann, captures more subtle
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structural effects and can be worth the extra computational expenditure. The sub-optimal R2 obtained
with CMDboltzmann on the D-scan data stems from the Thr2 to dThr mutation, where the measured
drop in potency is just over a log unit whereas the CMDboltzmann prediction is of a slight increase
in binding affinity. Recall that the CMDboltzmann procedure allows the two residues at the N-
and C-termini to be fully flexible (they are not constrained whatsoever). Indeed, this might have
allowed too much flexibility to be incorporate into the simulation, resulting in the poor Thr2 to dThr2
prediction results.

Table 4. Prospective Testing Data.

Residue

Experimental
MDM2

Experimental
MDMX Calculated MDM2 Calculated Binding *

Kd
(nM)

∆∆G
(kcal)

Kd
(nM)

∆∆G
(kcal)

CMDescore
∆∆G (kcal)

CMDyscore
∆∆G (kcal)

CMDboltzmann
∆∆G

WT 18.6 12.5
L1A 19.3 0.03 9.6 −0.16 0.2 −0.30 1.2
T2A 155.3 1.73 −0.2 −0.91 1.3
F3A 9585.9 5.09 4873 3.53 1.8 27.28 7.8
E5A 29.8 0.38 45.6 0.75 0.0 1.81 −1.4
Y6A 51.5 0.83 130.3 1.37 0.7 9.42 0.4
W7A 5145.9 4.58 11161 4.02 3.8 36.41 11.6
Q8A 32.6 0.46 57.1 0.88 0.3 1.71 −1.0
L9A 15.8 −0.13 13.4 0.00 0.2 0.42 −0.7

Cba10A 413.7 2.53 94.7 1.18 0.8 10.74 7.1
S12A 20.4 0.08 43.9 0.73 0.2 −2.29 1.3
L1dL 27.5 0.23 21.8 0.31 0.0 −1.90 −1.3
T2dT 217.8 1.46 0.3 −2.24 −2.6

F3dF b 6385.1 3.47 7397 3.77 −0.2 −4.04 5.7
E5dE 36.8 0.41 −0.5 −2.44 1.5
Y6dY 365.1 1.77 921.2 2.53 0.7 5.91 0.7

W7dW b 32.9 0.34 63.4 0.94 0.2 −1.73 2.2
Q8dQ 26.5 0.20 36.6 0.62 0.2 −0.93 2.3
L9dL 32.2 0.32 38.8 0.65 0.0 −1.08 −2.5

Cba10dCba 3809.5 3.17 805.1 2.45 1.3 8.21 3.5
S12dS 10.7 −0.31 36.9 0.62 −0.5 −2.45 0.1
A13dA 17.2 −0.05 34.9 0.59 0.3 −0.69 0.0
A14dA 18.4 −0.02 4.9 −0.57 −0.3 4.31 −1.9

* The MDM2 and MDMX data are very similar; MDMX data is excluded to avoid redundancy and minimize
clutter. b All three methods were used to make the successful but surprising prediction that the chiral amino acid
substitution W7→ dW7 would be weakly destabilizing; only CMDboltzmann was used to successfully predict
the strongly destabilizing effect of F3→ dF7. This nicely illustrates the important role a more computationally
expensive algorithm like CMDboltzmann can play in prospective peptide ligand candidate design and optimization.

In summary, the Ala scan data of the ATSP-7041 analog (see Table 4) closely mirrored that of
ATSP-3900 [16], with large losses in potency for any of the F3A, W7A or Cba10A mutations and modest
to no loss in potency when other residues are mutated to Ala. Importantly, CMDescore, CMDyscore
and CMDboltzmann were used to generate Ala scan predictions that were ultimately shown to agree
nicely with experimental measurements.

The corresponding D-amino acid scan of the ATSP-7041 analog, however, produced an
experimental surprise, namely that the change of Trp7 to dTrp7 led to a small drop in binding
affinity. Based on Figure 8C it is apparent that the drop in calculated affinity with CMDBoltzmann for
W7dW is within the range of the majority of other changes that led to relatively small experimental
affinity changes. On the other hand, the changes F3dF, F3dA, W7A and Cba10A all showed large drops
in calculated and experimental affinity. Finally, CMDboltzmann showed a modest drop in calculated
affinity for the Cba10dCba change whereas the experimental drop in affinity was comparable to that
of the F3dF, F3dA, W7A, and Cba10A changes. While the change in CMDescore and CMDyscore,
Figure 8A,B respectively, is indeed small for W7dW, these scoring functions also do not change with
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the F3dF and Cba10dCba changes. This highlights the value of including the computationally more
demanding sampling when making more complex changes. Indeed, the poorer agreement with the
d-Amino Acid scan when compared to the Ala-scan may in part be to a larger difference in the solution
behavior when the amino acids are change to their D counterpart.
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Comparison of Single Point Results with CMDBoltzmann Results. In general, calculation of
relative binding affinities using either a single point low-energy conformation or an ensemble of
low-energy conformations and an appropriate scoring function has proven fairly effective for the
MDM2/MDMX target. The single point calculations have the advantage of being fast, allowing
screening of large numbers of peptides. The ensemble-based approach has the advantage of more fully
defining the conformational space of the peptides and appears more robust. The single point method,
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if not given an appropriate starting conformation, can fail completely. No one conformation is likely to
dominate in the Boltzmann ensemble.

Importance of solvation model to adequately complement electrostatics. A good solvation model
should account for two situations which are not adequately represented using a simple ‘gas-phase’
implementation of a force field. The first is the affinity gain from associating hydrophobic surfaces in
the complex and the affinity loss from desolvating polar groups involved in binding. The second is
a better treatment of attenuation of charge–charge interactions in a polar medium. When molecular
dynamics is used to calculate an ensemble of low-energy conformations, the overall charge of the system
can be neutralized by the addition of counter ions and explicit solvent can be used to attenuate the
Coulombic interactions. One challenge of accurately scoring protein–peptide interactions is that it is not
feasible to include counter ions or explicit solvent when comparing the energy of two protein–peptide
complexes. One thus needs to handle the problems of charge neutralization and attenuation using
more ad hoc methods.

In this study, several techniques were used. Neutralizing the charged groups was tried as a
method of both obtaining charge balance and attenuating Coulombic interactions. The problem with
this approach is that ionic interactions become hydrogen bond interactions. An alternate approach was
used in CMDyscore. In that case, charges were adjusted so as to provide an overall neutral complex
and the PBSA method was used to account for polar and nonpolar solvation terms.

To handle attenuation of the Coulombic interactions several methods were used: scaling the
charges, using a distant-dependent dielectric constant and using a PBSA implicit solvent model.
Comparing CMDyscore variations, the simplest approach (scaled charges) shows poorer correlation
with experiment than either using neutral groups or the PBSA solvation model. The best average
correlation on the linear helical data was achieved when using the PBSA implicit solvent model.
The reason may be the more accurate treatment of the hydrophobic effect. The MDM2/MDMX system
is perhaps not the best test for methods for implicitly handling charges. The binding is entirely due to
hydrophobic interactions with the charged residues largely being solvent exposed. We have found
that in general that implicit solvation models have problems when there are multiple charged groups
not involved in binding. These charged groups should be balanced by a nearby counter ion, but in
an implicit model, they are not. The summation of these unbalanced long-range interactions can
significantly affect the calculated energy, distorting the results. Thus, correlation of binding affinity
with calculated binding energy in our experience is much better with peptides that primarily consist of
polar and nonpolar amino acids, as is the case with MDM2/MDMX.

dTrp7 results. The comparison of the predictions for dPhe3 and dTrp7 are particularly interesting.
At first glance, the D and L conformations are quite similar. In both cases, the aromatic rings overlap
almost completely. In essence, the β-carbon is either above or below the plane of the backbone, with
the aromatic rings angled into the same region of space.

In the case of Trp7, there are two features which distinguish it from Phe3: the tryptophan makes a
hydrogen bond to Met50 in the protein (the Trp N are almost exactly superimposed) and the pocket
containing the Trp7 is not quite as tight as for Phe-3. In the single point (minimized) mutations the
larger dTrp has six contacts closer than 3 angstroms, the closest being 2.1 angstroms, while dPhe
has seven contacts, the closest being 1.6 angstroms. In addition, when the complexes are aligned
on the protein, the C alpha carbons in Trp7 and dTrp7 are 0.57 angstroms apart, whereas the Cα

carbons in Phe3 and 0.94 angstroms apart. These are subtle differences and it is remarkable and highly
encouraging that CMDBoltzmann was able to detect the difference and correctly predict that only Trp7
mutating to dTrp would not show a significant loss in affinity.

Implications for CMDInventus work-flow approach to peptide modeling and design. Our approach
to computational peptide drug design employs multiple methods in a hierarchical and integrated
fashion. In a typical work-flow, CMDpeptide can be used to model the solution and binding
conformations of a peptide scaffold which can then be systematically mutated and evaluated
for its binding affinity to a protein target using methods that range from computationally fast
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and un-rigorous (CMDescore) to slower and more rigorous (CMDyscore) to very slow and highly
rigorous (CMDboltzmann). Hence, all three binding affinity prediction methods (and by implication
CMDpeptide, as it is used in CMDboltzmann calculations) were tested retrospectively (using previously
published data) and prospectively (using novel data collected after computational predictions had
been made).

The results presented here validate the use of CMDpeptide to model biologically relevant
conformations for diverse MDM2/MDMX peptides, as it yielded X-ray like conformations for all cases
tested. Future work will focus on developing an improved scoring strategy for identifying relevant
conformations from calculated conformational ensembles. Also, while CMDpeptide was indirectly
tested in the prospective CMDboltzmann study, a direct test of CMDpeptide in a prospective study
would also be desirable.

Our results also validate the integrated use of CMDescore and CMDboltzmann without the
need for re-calibration, as both produced consistently encouraging results across multiple data sets
in both the retrospective and prospective studies and with CMDboltzmann producing overall better
results than CMDescore. Having said that, additional research is needed to parameterize and test
CMDescore on the 2axi cyclized multiple mutation data asset and for use with non-standard amino
acids more generally. Similarly, more research is needed to develop an optimized force field and
solvation model for use with constrained CMDboltzmann (and CMDpeptide) dihedral space Monte
Carlo and minimization calculations. CMDyscore with solvation produced the best overall results
in the retrospective analysis of the linear peptide/helical datasets. To obtain good results on the
multi-mutation cyclized 2axi data, however, required the use of a more extensive minimization protocol
or the substitution of the default CMDyscore for CMDyscore with solvation. Similarly, CMDyscore
with solvation produced nice results in the alanine scanning prospective study but poor results in the
prospective D-scanning study that were improved ad hoc by eliminating any minimization prior to
scoring. This suggests that the best CMDyscore flavor and minimization procedure should, whenever
possible, be calibrated, selected and applied on a case-by-case basis. In the absence of training data,
it seems the best choice would be CMDyscore with solvation using the standard minimization protocol.
Future work will focus on developing a more generally useful flavor of CMDyscore or on developing a
general and systematic procedure for selecting the best flavor of CMDyscore to apply to a particular
protein–peptide system.

The results presented here suggest a robust role for CMDinventus in a structure-based drug design
project. Given the vast sequence space accessible around a binding mode for even a modestly sized
peptide, fast simple scoring functions such as CMDescore and CMDyscore are necessary. Particularly, by
considering side-chain changes one at a time, these scoring functions can be used to rapidly search 1000s
of possible side chains per position ultimately narrowing the list to a handful that are the most promising.
Depending on computing resources, CMDboltzmann can be used to further and more accurately
prioritize 100s to 1000s of the sequences of greatest interest. Indeed, the results of these calculations
could be used to prioritize further synthesis or could be used for more computationally expensive
methods such as molecular dynamics [21,22], free energy perturbation [23,24] or thermodynamic
integration [25,26].

3. Materials and Methods

CMDInventus is a proprietary platform for computer-aided peptide drug design. CMDInventus
consists of self-contained computational tools or modules for solving specific biophysical problems.
The various modules can be strung together and integrated to form project-specific peptide drug
design work-flows. The present study focused on the use of several CMDInventus modules to run
retrospective and prospective calculations for various MDM2/MDMX datasets.

All retrospective and prospective calculations either involved explicit sampling of peptide
conformational space and/or configurational (conformational + translational + rotational) space or
were derived from single crystal structures. In the present study, we employed two modules that use
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the same code base for peptide conformational and configurational sampling. The first application,
called CMDpeptide, is for physics-based peptide conformational sampling from sequence information
alone. Here the goal is to start with a peptide sequence, and where applicable inter-residue bonding
information, and generate an ensemble of three-dimensional peptide structures that contains all
biologically relevant conformations. The ensemble of conformations should include those relevant
for binding target proteins, those that are cleaved by proteases, those that traverse cell membranes,
etc. For most peptides of interest (5–20 amino acids), the ensembles contain thousands of low-energy
conformations that can be further reduced through RMSD-based clustering. The second application,
which we refer to as CMDboltzmann, is for estimating the binding affinity of a peptide sequence around
a given backbone binding mode. It involves local peptide configurational sampling, subject to user
provided constraints, to optimize a peptide binding mode with its protein target and the calculation of
a predicted binding affinity from the resulting configurational ensemble. The chief difference between
CMDpeptide and CMDboltzmann is that the latter involves placement of a peptide in a binding
site, which requires inclusion of protein–peptide energetic interactions in any scoring function and
explicit sampling of conformational and rigid-body coordinates. Additionally, while CMDpeptide
assumes nothing about the structure of the peptide, CMDboltzmann uses different constraints to direct
the peptide into the protein binding site. Fundamentally, both algorithms can be broken down into
two loosely independent parts: sampling and scoring. Each of these is briefly described below, with
particular emphasis on the differences between them.

In addition to the sampling-based methods, we describe several empirical and force field-based
scoring functions for estimating protein–peptide binding affinities from single protein–peptide poses.
These include our in-house empirical scoring function (CMDescore) and force field-based scoring
function (CMDyscore). For comparative purposes, we also provide results obtained using the widely
employed Xscore and Vina scoring functions along with protein–peptide surface area (SA) burial and
interface packing (IP) calculations. The chief difference between these approaches and CMDboltzmann
is that they are used to estimate the binding affinity from a single protein–peptide pose, whereas binding
affinity estimates obtained using CMDboltzmann involve sampling thousands of softly constrained
peptide backbone structures in the protein binding site. Because they only require a single pose the
scoring functions are computationally much more efficient, making it possible to rapidly estimate
binding affinities for thousands or even millions of peptide ligand sequences or binding poses in
relatively short order.

The main goal of a typical peptide drug design project is to narrow the vast theoretical peptide
sequence space down to a manageable number of viable candidate sequences that are predicted to
bind a protein target of interest. A standard CMDInventus work-flow for accomplishing this would
begin with combinatorial sequence scanning with a fixed peptide backbone, and rapid free energy
scoring and ranking with CMDescore. Promising sequences would then be scored and prioritized
using CMDyscore. The most promising peptide ligand sequences would then be scored for their
protein binding affinities using the computationally expensive CMDboltzmann module. In addition,
CMDboltzmann is useful for examining larger discrete changes to a peptide structure when the
assumption of a fixed binding mode for the peptide ligand may no longer be valid and is somewhat
relaxed (cyclization, large changes in side chains, changes in stereochemistry, etc.).

Full peptide conformational sampling with CMDpeptide. The purpose of CMDpeptide is the
calculation of biologically relevant peptide conformational ensembles. All CMDpeptide conformational
sampling is done in dihedral space, with fixed bond lengths and angles, using a multiple copy simulated
annealing with minimization (MCSAM) algorithm [27–29]. Each run begins by initializing a stack
of conformations by generating 100 conformations at random followed by energy minimization.
During the run, the stack is allowed to grow to 200 conformations according to previously describe
rules for maintaining the conformational stack [27]. For conformational sampling with CMDpeptide,
only topological information, that is sequence information and any inter-residue bonds such as
disulfide bonds, is used. Each run consists of 10,000 Monte Carlo w/Minimization (MCM) steps
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performed as described previously [27]. To ensure complete coverage, 500 independent runs are
typically performed per peptide. In addition, Phi/Psi biasing is performed using pre-calculated
Ramachandran plots. The plot for residue n within a given sequence (A1-A2- . . . -An- . . . -AN-1-AN) is
calculated by thoroughly sampling the tri-peptide Ac-An−1-An-An+1-NH2. The reason for creating the
plots in this fashion, rather than using plots derived from PDB structures, is the need for chemical and
conformational generality. In particular, relying solely on PDB derived Ramachandran plots would
effectively limit one to using the standard 20 amino acids. This would seriously limit the development
and use of CMDInventus as a general computational framework for enabling peptide-based drug
design using such things as non-natural side chains, D-amino acids, β-amino acids, α-di-substituted
amino acids, and so forth.

Estimating binding affinities from conformational ensembles with CMDboltzmann. The primary
goal of a CMDboltzmann calculation is to estimate the binding affinity of a protein–peptide binding
mode where the peptide ligand is treated as semi-flexible. The binding mode for the peptide backbone
would ideally derive from a co-crystal structure but can be derived from a docked or theoretically
calculated binding mode. Importantly, CMDboltzmann can be used to calculate binding affinities as
peptide sequences are mutated around a given binding mode. Thus, for CMDboltzmann calculations
the simulation begins with a peptide backbone positioned in a binding site. While it is desirable for the
peptide backbone to qualitatively maintain its binding configuration, significant changes in a side chain
might require some movement of the peptide backbone. Hence, the backbone is permitted a limited
range of softly constrained motions. To accomplish this, the same MCSAM algorithm described above
is used with the following differences. The first and largest difference is the presence of the protein
which greatly affects the scoring and subsequent ranking of each peptide configuration; the scoring of
the protein–peptide interactions is described below in the sampling energy function section. For the
calculations described here, the protein is held rigid, though in many cases we allow side-chain
flexibility for residues of the protein in the binding site. The second difference is the presence of a
constraint, described below in the sampling energy function section, that is applied to prevent the
peptide backbone from deviating too greatly from its starting position. Typically, the backbone is
constrained so that its atoms can move 1.0 Å without penalty. If a backbone atom moves more than
1.0 Å a harmonic penalty is applied. The third and final differences are details in the runs, including the
number of steps per run (2000) and the total number of runs (100). Fewer steps and runs are needed
because the conformational space being searched is far smaller due to the backbone constraints and
the presence of the protein.

Force field used in calculations involving sampling. The Amber99sb force field provides all
bonded interactions; because the sampling is done in dihedral space, this entails the use of only the
Amber99sb dihedral energy terms. All nonbonded interactions within a peptide and between a protein
and peptide are calculated as the sum of the Van der Waals interactions, the electrostatic interactions,
and an empirical solvation term. The Van der Waals parameters are taken from Amber99sb [30].
For solvation, the EEF1 continuum model [31] is used, as it provides a reasonable balance between
accuracy and speed. The electrostatic contribution to the system energy is calculated using a distance
dependent dielectric function consistent with the recommendations of the EEF1 solvation model, i.e.,
the effective dielectric constant between two atoms is 4d where d is the distance between the two atoms.
The atomic charges used for the electrostatic calculation are generated for each amino acid via the
RESP [32,33] procedure applied to individual amidated and acylated amino acid building blocks using
the quantum chemistry package GAMESS [34,35] at the B3LYP/6-31 G** level of theory. The final score
calculated for a configuration of the peptide is simply the sum of these terms without any reweighting.

For the CMDboltzmann calculations, a constraint is applied to each heavy atom of the peptide
ligand backbone (excluding the 2 terminal residues). The constraint is implemented as a harmonic
well with a distance tolerance of 1.0 Å inside of which no penalty is applied. This allows the backbone
to sample locally around the starting binding mode without deviating too much from the desired
binding mode. Thus, for a CMDboltzmann calculation the MCSAM algorithm works to optimize the
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combination of backbone constraints + peptide internal energy + protein–peptide interaction energy.
The final score for a given peptide sequence is the Boltzmann weighted, using the total energy, average
of the protein–peptide interaction energy over the minimum energy pose from each of the 100 runs. In
the present study, no attempt was made to estimate relative strain energies for different sequences, the
assumption being that this is a minor contributor. In some cases, particularly with the linear α-helices,
this may be poor assumption. In fact, recent work suggests that optimizing a sequence to stabilize a
conformation is a viable option to improving potency [36–43].

Estimating binding affinities with CMDescore and CMDyscore from single pose structures.
CMDescore [44–47] is a simple empirical scoring function for predicting binding affinities. It comes in
a variety of flavors depending on the number of terms in the function. All flavors are premised on
rigid-body binding and are parameterized for use on protein–protein and protein–peptide complexes
composed of standard amino acids. For the present study, the flavor used has been described previously
and is a linear combination of four regression weighted terms that quantify hydrophobic and charged
group burial at a given protein–ligand interface and hydrogen bonding and salt bridge interactions
across a given interface and is given by the following equation for binding affinity (BA) [47].

BA = −1.94 + 0.16·∆XH − 0.68·∆XC − 0.52·XHB − 0.41·∆XSB (1)

The first term, XH, refers to the free energy change associated with hydrophobic group burial
(carbon and sulfur atoms). The second term, XC, refers to the free energy change associated with
charge group burial (nitrogen and oxygen atoms of charged D, E, K and R side chains). The third, XHB,
and fourth terms, XSB, refer to the total number of conventional hydrogen bonds and net number of
salt bridges calculated across a given protein–peptide interface.

CMDyscore [6,48,49] is a force-field-based scoring function based on the YASARA modeling and
simulation package. As part of the scoring process, the mutated complexes were subjected to two
rounds of minimization. During the first round all backbone atoms in the protein and peptide were
fixed, and side chains in the protein that were less than four angstroms from the peptide and all side
chains in the peptide were permitted to move. During the second round the entire protein is fixed and
the entire peptide to allowed to move.

Four flavors of CMDyscore were used to calculate binding affinities: (1) simple, (2) unbound
ligand minimized to apply a pseudo ‘strain’ penalty, (3) charged residues neutralized, and (4) implicit
solvation model. The CMDyscore methods are implemented using YASARA [50]. Before calculating
the scores, the complex was minimized using the NOVA force field [51]. The first method calculates
the binding energy according to the formula:

Energy(complex) − Energy(protein) − Energy(peptide) (2)

The NOVA force field was used for the calculation of the energies of the individual protein,
peptide and the protein–peptide complex. The complex was first minimized using the NOVA force
field [51]. The NOVA force field was chosen because it is optimized for in vacuo minimizations,
as necessitated for a fast scoring function. The energies for protein and peptide were calculated
according to the rigid-body binding assumption, i.e., by extracting each in turn from the complex in
the exact conformation that they assume in the complex.

The pseudo ‘strain’ penalty was originally implemented to handle the scoring of docking poses.
One concern with docking is that in an attempt to maximize the docking protein interaction energy
terms, the peptide ligand will be placed in an unrealistically high energy or strained conformation.
This method introduces moderate peptide ligand flexibility into the binding energy calculation by
minimizing the peptide after it is extracted from the complex:

Energy(complex) − Energy(protein) − Energy(peptide, minimized) (3)
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If the binding conformation is not a low-energy conformation, the binding energy will be reduced,
possibly significantly. This approach has been used in small molecule docking studies; Greenidge and
coworkers, for example, included a similar term in when docking the PDBbind data set [52]. They did
MM/GBSA calculations and found the best correlation (R2 = 0.63) with the strain energy term included
and explicit waters excluded.

The latter two flavors represent alternate methods of damping the charge effects in the absence
of explicit solvent. We have observed that peptides with charged residues are particularly hard to
score. Even with the NOVA force field, peptides with charged side chains can appear as outliers.
One way this problem was addressed was by neutralizing all the charged groups in the protein and
peptide. The other way that this problem was addressed was to use a PBSA implicit solvent model.
The PBSA model adds two terms to the energy: the polar and non-polar contributions to the solvation
free energies. The former is determined by solving the Poisson-Boltzmann equation [53]. The latter
is estimated from the solvent accessible surface area (SASA). A scaling factor of 0.65 was used for
converting the surface area to free energy. The scaling factor comes from the YASARA manual. It was
decided not to optimize the parameter based on the current data set, as it was felt that the initial results
were reasonable and optimizing the value with a small data set would introduce undue bias.

In addition to CMDescore and CMDyscore, the docking score used by VINA [54], the Xscore [55]
scoring function, and very simple scoring functions based solely on packing interface (PI) potential
and buried surface area (SA) were also used. All were used according to their default settings
and parameters.

Structure preparation for CMDescore and CMDyscore: In general, MDM2 and MDMX X-ray
structures bound to reference peptides were prepared for subsequent calculations using standard
cleaning and optimization procedures. This was followed by mutation or mutation and minimization
of a reference peptide according to the relevant SAR data set. This, in turn, was followed by free energy
scoring of all reference and mutated MDM2/MDMX targeting peptides.

Both the Li-p53 and Li-PMI datasets are alanine scanning datasets. Crystal structures for the
Li-PMI data set are available for MDM2 and MDMX (3eqs and 3eqy). There are also crystal structures
for the Li-p53 data set (4hfz and 1ycr for MDM2 and 3dab for MDMX). These crystal structures were
used after applying a standard clean up routine (remove waters and counter ions, remove all but one
of each chain, and add hydrogens).

For the Liu D-α-helical PMI-α alanine scanning peptide data set there are two relevant MDM2
crystal structures (3iwy and 3lnj). 3lnj was selected as the starting point. Because Asn2 has a seriously
distorted geometry, it was removed and rebuilt. Because it was absent from the structure, Thr1 was
built with standard α-helical Phi/Psi angles and an optimized side chain. There is no MDMX structural
data for the Liu D-α-helical peptides.

There are crystal structures of stapled peptides bound to MDM2 and MDMX (3v3b and 4n5t).
These were used as the starting points for mutation of the bound reference peptides to the sequence
used in the Guerlavais ATSP-3900 stapled L-α-helix data set.

The cyclic peptides were all built from a single reference structure (2axi). A similar procedure to
that used for the single residue mutations for the preceding data sets was used with the modification
that mutations were done sequentially, the result of the previous single residue mutation serving as the
input for the next mutation. The process was continued until the desired sequence was produced. As a
result, the binding site was more fully minimized for the cyclic peptides than for the other data sets.

Several scoring functions were used to calculate binding affinities from the X-ray poses produced
using the above-described procedures. In particular, two in house scoring functions were used:

To apply these scoring functions to the various MDM2 and MDMX data sets, co-crystal structures of
reference peptides bound to MDM2 or MDMX binding sites were used as starting points. Peptide ligand
residues were then either (1) mutated or (2) mutated and refined through a constrained minimization
procedure according to the above-described data sets. Finally, all mutated structures were scored using
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all available single-point affinity estimation methods. More theoretical and computational details are
provided below in the Results and discussion section.

Mdm2 Competitive Fluorescence Anisotropy Assay and Kd Determination Purified MDM2
(1-125) protein was titrated against 50 nM carboxyfluorescein (FAM)-labeled 12/1 peptide [56]
(FAM-RFMDYWEGL-NH2). Dissociation constants for titration of MDM2 against FAM-labeled
12/1 peptide were determined by fitting the experimental data to a 1:1 binding model equation shown
below: [57,58].

r = r0 + (rb − r0)


(Kd + [L]t + [P]t) −

√
(Kd + [L]t + [P]t)

2
− 4[L]t[P]t

2[L]t

 (4)

[P] is the protein concentration (MDM2), [L] is the labeled peptide concentration, r is the anisotropy
measured, ro is the anisotropy of the free peptide, rb is the anisotropy of the MDM2–FAM-labeled
peptide complex, Kd is the dissociation constant, [L]t is the total FAM-labeled peptide concentration,
and [P]t is the total MDM2 concentration. The determined apparent Kd value of FAM-labeled 12/1
peptide (13.0 nM) was used to determine the apparent Kd values of the respective competing ligands in
subsequent competition assays.

Apparent Kd values were determined for a variety of molecules via competitive fluorescence
anisotropy experiments. Titrations were carried out with the concentration of MDM2 held constant at
250 nM and the labeled peptide at 50 nM. The competing molecules were then titrated against the
complex of the FAM-labeled peptide and protein. Apparent Kd values were determined by fitting the
experimental data to the equations shown below: [58,59].
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[L]st and [L]t denote labeled ligand and total unlabeled ligand input concentrations, respectively.
Kd2 is the dissociation constant of the interaction between the unlabeled ligand and the protein. In all
competitive types of experiments, it is assumed that [P]t > [L]st, otherwise considerable amounts of free
labeled ligand would always be present and would interfere with measurements. Kd1 is the apparent Kd
for the labeled peptide used in the respective experiment, which has been experimentally determined
as described in the previous paragraph. The FAM-labeled peptide was dissolved in dimethyl sulfoxide
(DMSO) at 1 mM and diluted into experimental buffer. Readings were carried out with an Envision
Multilabel Reader (PerkinElmer). Experiments were carried out in PBS (2.7 mM KCl, 137 mM NaCl, 10
mM Na2HPO4 and 2 mM KH2PO4 (pH 7.4)) and 0.1% Tween 20 buffer. All titrations were carried out
in triplicate. Curve-fitting was carried out using Prism 4.0 (GraphPad, San Diego, CA, USA).

To validate the fitting of a 1:1 binding model we carefully determined that the anisotropy value
at the beginning of the direct titrations between MDM2 and the FAM-labeled peptide did not differ
significantly from the anisotropy value observed for the free fluorescently labeled peptide. Negative
control titrations of the ligands under investigation were also carried out with the fluorescently labeled
peptide (in the absence of MDM2) to ensure no interactions were occurring between the ligands and
FAM-labeled peptide. In addition, we ensured that the final baseline in the competitive titrations did
not fall below the anisotropy value for the free FAM-labeled peptide, which would otherwise indicate
an unintended interaction between the ligand and the FAM-labeled peptide to be displaced from the
MDM2 binding site.
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4. Conclusions

CMDInventus is a modular computational package for performing peptide drug modeling
calculations. The modules CMDpeptide and CMDboltzmann involve the explicit sampling of
peptide conformational or configurational space and can be used to model and predict peptide
conformations and protein–peptide binding affinities, respectively. CMDescore and CMDyscore are
empirical and force field-based scoring functions, respectively, that can be used to rapidly predict
protein–peptide binding affinities from single complex structures. All six methods were used to
retrospectively reproduce diverse MDM2/MDMX-peptide data sets with an encouraging degree of
success. CMDescore, CMDyscore and CMDboltzmann were used to prospectively and accurately
predict the experimentally measured binding affinity results for an Ala-scan of the pharmaceutically
relevant stapled peptide ATSP-7041. Remarkably, CMDboltzmann was used to successfully and
accurately predict the results of a novel D-scan of ATSP-7041. All results were obtained without any
re-fitting or re-parameterization. Collectively, our results suggest that CMDInventus is useful for
retrospectively modeling and prospectively predicting the conformational and binding behavior for
diverse and pharmaceutically relevant linear and macrocyclic α-helical peptides and that CMDInventus
can serve as computational platform for enabling novel peptide drug design and discovery.

Author Contributions: J.A., J.S., D.J.D. and T.K.S. conceived and designed the study. Under J.A.’s guidance,
D.J.D., A.S.B. and J.S. performed all computational calculations; all four authors participated in data analysis and
interpretation. T.K.S., A.W.P., D.P.L., C.J.B. and D.T. coordinated and performed experimental work (i.e., chemistry,
biology and data analysis) of the stapled peptides shown in Table 4. J.A., D.J.D. and J.S. took the lead on writing
the manuscript; T.K.S. provided invaluable feedback and helped to edit the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: At the time of the study and some of the writing, Joseph Audie and David Diller were
employed by CMDBioscience and Jon Swanson worked as a consultant for CMDBioscience. CMDBioscience has
since gone out of business, but at the time hoped to get a peptide drug design deal with Merck.

References

1. Wade, M.; Li, Y.C.; Wahl, G.M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer
2013, 13, 83–96. [CrossRef]

2. Zhang, Q.; Zeng, S.X.; Lu, H. Targeting p53-MDM2-MDMX loop for cancer therapy. Sub-Cell. Biochem. 2014,
85, 281–319. [CrossRef]

3. Carvajal, L.A.; Neriah, D.B.; Senecal, A.; Benard, L.; Thiruthuvanathan, V.; Yatsenko, T.; Narayanagari, S.R.;
Wheat, J.C.; Todorova, T.I.; Mitchell, K.; et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy
in leukemia. Sci. Transl. Med. 2018, 10, eaao3003. [CrossRef]

4. Li, C.; Pazgier, M.; Yuan, W.; Liu, M.; Wei, G.; Lu, W.Y.; Lu, W. Systematic mutational analysis of peptide
inhibition of the p53-MDM2/MDMX interactions. J. Mol. Biol. 2010, 398, 200–213. [CrossRef]

5. Kussie, P.H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.; Levine, A.J.; Pavletich, N.P. Structure of the
MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996, 274, 948–953.
[CrossRef]

6. Anil, B.; Riedinger, C.; Endicott, J.A.; Noble, M.E. The structure of an MDM2-Nutlin-3a complex solved by
the use of a validated MDM2 surface-entropy reduction mutant. Acta Crystallogr. Sect. DBiol. Crystallogr.
2013, 69, 1358–1366. [CrossRef]

7. Pazgier, M.; Liu, M.; Zou, G.; Yuan, W.; Li, C.; Li, J.; Monbo, J.; Zella, D.; Tarasov, S.G.; Lu, W. Structural basis
for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl. Acad. Sci. USA
2009, 106, 4665–4670. [CrossRef]

8. Liu, M.; Pazgier, M.; Li, C.; Yuan, W.; Lu, W. A left-handed solution to peptide inhibition of the p53-MDM2
interaction. Angew. Chem. Int. Ed. Engl. 2010, 49, 3649–3652. [CrossRef]

9. Zhan, C.; Zhao, L.; Wei, X.; Wu, X.; Chen, X.; Yuan, W.; Lu, W.Y.; Pazgier, M.; Lu, W. An ultrahigh affinity
d-peptide antagonist Of MDM2. J. Med. Chem. 2012, 55, 6237–6241. [CrossRef]

10. Baek, S.; Kutchukian, P.S.; Verdine, G.L.; Huber, R.; Holak, T.A.; Lee, K.W.; Popowicz, G.M. Structure of the
stapled p53 peptide bound to Mdm2. J. Am. Chem. Soc. 2012, 134, 103–106. [CrossRef]

http://dx.doi.org/10.1038/nrc3430
http://dx.doi.org/10.1007/978-94-017-9211-0_16
http://dx.doi.org/10.1126/scitranslmed.aao3003
http://dx.doi.org/10.1016/j.jmb.2010.03.005
http://dx.doi.org/10.1126/science.274.5289.948
http://dx.doi.org/10.1107/S0907444913004459
http://dx.doi.org/10.1073/pnas.0900947106
http://dx.doi.org/10.1002/anie.201000329
http://dx.doi.org/10.1021/jm3005465
http://dx.doi.org/10.1021/ja2090367


Molecules 2019, 24, 4586 26 of 28

11. Tan, Y.S.; Reeks, J.; Brown, C.J.; Thean, D.; Ferrer Gago, F.J.; Yuen, T.Y.; Goh, E.T.; Lee, X.E.; Jennings, C.E.;
Joseph, T.L.; et al. Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand
Design. J. Phys. Chem. Lett. 2016, 7, 3452–3457. [CrossRef]

12. Chee, S.M.; Wongsantichon, J.; Soo Tng, Q.; Robinson, R.; Joseph, T.L.; Verma, C.; Lane, D.P.; Brown, C.J.;
Ghadessy, F.J. Structure of a stapled peptide antagonist bound to nutlin-resistant Mdm2. PLoS ONE 2014,
9, e104914. [CrossRef]

13. Chang, Y.S.; Graves, B.; Guerlavais, V.; Tovar, C.; Packman, K.; To, K.H.; Olson, K.A.; Kesavan, K.; Gangurde, P.;
Mukherjee, A.; et al. Stapled alpha-helical peptide drug development: A potent dual inhibitor of MDM2 and
MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. USA 2013, 110, E3445–E3454. [CrossRef]

14. Lau, Y.H.; Wu, Y.; Rossmann, M.; Tan, B.X.; de Andrade, P.; Tan, Y.S.; Verma, C.; McKenzie, G.J.;
Venkitaraman, A.R.; Hyvonen, M.; et al. Double Strain-Promoted Macrocyclization for the Rapid Selection of
Cell-Active Stapled Peptides. Angew. Chem. Int. Ed. Engl. 2015, 54, 15410–15413. [CrossRef]

15. Bernal, F.; Tyler, A.F.; Korsmeyer, S.J.; Walensky, L.D.; Verdine, G.L. Reactivation of the p53 tumor suppressor
pathway by a stapled p53 peptide. J. Am. Chem. Soc. 2007, 129, 2456–2457. [CrossRef]

16. Guerlavais, V.; Darlak, K.; Graves, B.; Tovar, C.; Packman, K.; Olson, K.; Kesavan, K.; Gangurde, P.; Horstick, J.;
Mukherjee, A.; et al. (Eds.) Design, Synthesis, Biophysical and Structure-Activity Properties of a Novel Dual
MDM2 and MDMX Targeting Stapled α-Helical Peptide, ATSP-7041 that Exhibits Potent In Vitro and In Vivo
Efficacy in Xenograft Models of Human Cancer; American Peptide Society: San Diego, CA, USA, 2013.

17. Li, C.; Pazgier, M.; Liu, M.; Lu, W.Y.; Lu, W. Apamin as a template for structure-based rational design of
potent peptide activators of p53. Angew. Chem. Int. Ed. Engl. 2009, 48, 8712–8715. [CrossRef]

18. Fasan, R.; Dias, R.L.; Moehle, K.; Zerbe, O.; Obrecht, D.; Mittl, P.R.; Grutter, M.G.; Robinson, J.A.
Structure-activity studies in a family of beta-hairpin protein epitope mimetic inhibitors of the p53-HDM2
protein-protein interaction. ChemBioChem 2006, 7, 515–526. [CrossRef]

19. Phan, J.; Li, Z.; Kasprzak, A.; Li, B.; Sebti, S.; Guida, W.; Schonbrunn, E.; Chen, J. Structure-based design
of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. J. Biol. Chem. 2010,
285, 2174–2183. [CrossRef]

20. Partridge, A.W.; Kaan, H.Y.K.; Juang, Y.C.; Sadruddin, A.; Lim, S.; Brown, C.J.; Ng, S.; Thean, D.; Ferrer, F.;
Johannes, C.; et al. Incorporation of Putative Helix-Breaking Amino Acids in the Design of Novel Stapled
Peptides: Exploring Biophysical and Cellular Permeability Properties. Molecules 2019, 24, 2292. [CrossRef]

21. Colizzi, F.; Perozzo, R.; Scapozza, L.; Recanatini, M.; Cavalli, A. Single-molecule pulling simulations can
discern active from inactive enzyme inhibitors. J. Am. Chem. Soc. 2010, 132, 7361–7371. [CrossRef]

22. De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in
Drug Discovery. J. Med. Chem. 2016, 59, 4035–4061. [CrossRef]

23. Jiang, W.; Chipot, C.; Roux, B. Computing Relative Binding Affinity of Ligands to Receptor: An Effective
Hybrid Single-Dual-Topology Free-Energy Perturbation Approach in NAMD. J. Chem. Inf. Model. 2019,
59, 3794–3802. [CrossRef]

24. Steinbrecher, T.B.; Dahlgren, M.; Cappel, D.; Lin, T.; Wang, L.; Krilov, G.; Abel, R.; Friesner, R.; Sherman, W.
Accurate Binding Free Energy Predictions in Fragment Optimization. J. Chem. Inf. Model. 2015, 55, 2411–2420.
[CrossRef]

25. Zou, J.; Tian, C.; Simmerling, C. Blinded prediction of protein-ligand binding affinity using Amber
thermodynamic integration for the 2018 D3R grand challenge 4. J. Comput. Aided Mol. Des. 2019, 33,
1021–1029. [CrossRef]

26. Garton, M.; Corbi-Verge, C.; Hu, Y.; Nim, S.; Tarasova, N.; Sherborne, B.; Kim, P.M. Rapid and accurate
structure-based therapeutic peptide design using GPU accelerated thermodynamic integration. Proteins
2019, 87, 236–244. [CrossRef]

27. Abagyan, R.; Totrov, M. Biased probability Monte Carlo conformational searches and electrostatic calculations
for peptides and proteins. J. Mol. Biol. 1994, 235, 983–1002. [CrossRef]

28. Liu, Y.; Beveridge, D.L. Exploratory studies of ab initio protein structure prediction: Multiple copy simulated
annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model. Proteins
2002, 46, 128–146. [CrossRef]

29. Abagyan, R.A.; Totrov, M. Ab InitioFolding of Peptides by the Optimal-Bias Monte Carlo Minimization
Procedure. J. Comput. Phys. 1999, 151, 402–421. [CrossRef]

http://dx.doi.org/10.1021/acs.jpclett.6b01525
http://dx.doi.org/10.1371/journal.pone.0104914
http://dx.doi.org/10.1073/pnas.1303002110
http://dx.doi.org/10.1002/anie.201508416
http://dx.doi.org/10.1021/ja0693587
http://dx.doi.org/10.1002/anie.200904550
http://dx.doi.org/10.1002/cbic.200500452
http://dx.doi.org/10.1074/jbc.M109.073056
http://dx.doi.org/10.3390/molecules24122292
http://dx.doi.org/10.1021/ja100259r
http://dx.doi.org/10.1021/acs.jmedchem.5b01684
http://dx.doi.org/10.1021/acs.jcim.9b00362
http://dx.doi.org/10.1021/acs.jcim.5b00538
http://dx.doi.org/10.1007/s10822-019-00223-x
http://dx.doi.org/10.1002/prot.25644
http://dx.doi.org/10.1006/jmbi.1994.1052
http://dx.doi.org/10.1002/prot.10020
http://dx.doi.org/10.1006/jcph.1999.6233


Molecules 2019, 24, 4586 27 of 28

30. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber
force fields and development of improved protein backbone parameters. Proteins 2006, 65, 712–725. [CrossRef]

31. Lazaridis, T.; Karplus, M. Effective energy function for proteins in solution. Proteins 1999, 35, 133–152.
[CrossRef]

32. Singh, U.C.; Kollman, P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem.
1984, 5, 129–145. [CrossRef]

33. Besler, B.H.; Merz, K.M.; Kollman, P.A. Atomic charges derived from semiempirical methods. J. Comput.
Chem. 1990, 11, 431–439. [CrossRef]

34. Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.;
Nguyen, K.A.; Su, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993,
14, 1347–1363. [CrossRef]

35. Gordon, M.S.; Schmidt, M.W. Advances in electronic structure theory: GAMESS a decade later A2—Dykstra,
Clifford E. In Theory and Applications of Computational Chemistry; Frenking, G., Kim, K.S., Scuseria, G.E., Eds.;
Elsevier: Amsterdam, The Netherlands, 2005; pp. 1167–1189. [CrossRef]

36. Bellows, M.L.; Floudas, C.A. Computational methods for de novo protein design and its applications to
the human immunodeficiency virus 1, purine nucleoside phosphorylase, ubiquitin specific protease 7,
and histone demethylases. Curr. Drug Targets 2010, 11, 264–278. [CrossRef]

37. Bellows, M.L.; Fung, H.K.; Taylor, M.S.; Floudas, C.A.; Lopez de Victoria, A.; Morikis, D. New compstatin
variants through two de novo protein design frameworks. Biophys. J. 2010, 98, 2337–2346. [CrossRef]

38. Bellows, M.L.; Taylor, M.S.; Cole, P.A.; Shen, L.; Siliciano, R.F.; Fung, H.K.; Floudas, C.A. Discovery of entry
inhibitors for HIV-1 via a new de novo protein design framework. Biophys. J. 2010, 99, 3445–3453. [CrossRef]

39. Bellows-Peterson, M.L.; Fung, H.K.; Floudas, C.A.; Kieslich, C.A.; Zhang, L.; Morikis, D.; Wareham, K.J.;
Monk, P.N.; Hawksworth, O.A.; Woodruff, T.M. De novo peptide design with C3a receptor agonist and
antagonist activities: Theoretical predictions and experimental validation. J. Med. Chem. 2012, 55, 4159–4168.
[CrossRef]

40. Fung, H.K.; Floudas, C.A.; Taylor, M.S.; Zhang, L.; Morikis, D. Toward full-sequence de novo protein design
with flexible templates for human beta-defensin-2. Biophys. J. 2008, 94, 584–599. [CrossRef]

41. Gorham, R.D., Jr.; Forest, D.L.; Khoury, G.A.; Smadbeck, J.; Beecher, C.N.; Healy, E.D.; Tamamis, P.;
Archontis, G.; Larive, C.K.; Floudas, C.A.; et al. New compstatin peptides containing N-terminal extensions
and non-natural amino acids exhibit potent complement inhibition and improved solubility characteristics.
J. Med. Chem. 2015, 58, 814–826. [CrossRef]

42. Halai, R.; Bellows-Peterson, M.L.; Branchett, W.; Smadbeck, J.; Kieslich, C.A.; Croker, D.E.; Cooper, M.A.;
Morikis, D.; Woodruff, T.M.; Floudas, C.A.; et al. Derivation of ligands for the complement C3a receptor
from the C-terminus of C5a. Eur. J. Pharmacol. 2014, 745, 176–181. [CrossRef]

43. Smadbeck, J.; Peterson, M.B.; Zee, B.M.; Garapaty, S.; Mago, A.; Lee, C.; Giannis, A.; Trojer, P.; Garcia, B.A.;
Floudas, C.A. De novo peptide design and experimental validation of histone methyltransferase inhibitors.
PLoS ONE 2014, 9, e95535. [CrossRef] [PubMed]

44. Audie, J. Development and validation of an empirical free energy function for calculating protein-protein
binding free energy surfaces. Biophys. Chem. 2009, 139, 84–91. [CrossRef] [PubMed]

45. Audie, J. Continued development of an empirical function for predicting and rationalizing protein-protein
binding affinities. Biophys. Chem. 2009, 143, 139–144. [CrossRef] [PubMed]

46. Audie, J.; Scarlata, S. A novel empirical free energy function that explains and predicts protein-protein
binding affinities. Biophys. Chem. 2007, 129, 198–211. [CrossRef] [PubMed]

47. Swanson, J.; Audie, J. An unexpected way forward: Towards a more accurate and rigorous protein-protein
binding affinity scoring function by eliminating terms from an already simple scoring function. J. Biomol.
Struct. Dyn. 2018, 36, 83–97. [CrossRef] [PubMed]

48. Krieger, E.; Darden, T.; Nabuurs, S.B.; Finkelstein, A.; Vriend, G. Making optimal use of empirical energy
functions: Force-field parameterization in crystal space. Proteins 2004, 57, 678–683. [CrossRef] [PubMed]

49. Krieger, E.; Joo, K.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical
realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed
well in CASP8. Proteins 2009, 77 (Suppl. 9), 114–122. [CrossRef]

50. Krieger, E.; Vriend, G. YASARA View—molecular graphics for all devices—from smartphones to workstations.
Bioinformatics 2014, 30, 2981–2982. [CrossRef]

http://dx.doi.org/10.1002/prot.21123
http://dx.doi.org/10.1002/(SICI)1097-0134(19990501)35:2&lt;133::AID-PROT1&gt;3.0.CO;2-N
http://dx.doi.org/10.1002/jcc.540050204
http://dx.doi.org/10.1002/jcc.540110404
http://dx.doi.org/10.1002/jcc.540141112
http://dx.doi.org/10.1016/B978-044451719-7/50084-6
http://dx.doi.org/10.2174/138945010790711914
http://dx.doi.org/10.1016/j.bpj.2010.01.057
http://dx.doi.org/10.1016/j.bpj.2010.09.050
http://dx.doi.org/10.1021/jm201609k
http://dx.doi.org/10.1529/biophysj.107.110627
http://dx.doi.org/10.1021/jm501345y
http://dx.doi.org/10.1016/j.ejphar.2014.10.041
http://dx.doi.org/10.1371/journal.pone.0090095
http://www.ncbi.nlm.nih.gov/pubmed/24587223
http://dx.doi.org/10.1016/j.bpc.2008.10.007
http://www.ncbi.nlm.nih.gov/pubmed/19041170
http://dx.doi.org/10.1016/j.bpc.2009.05.003
http://www.ncbi.nlm.nih.gov/pubmed/19487068
http://dx.doi.org/10.1016/j.bpc.2007.05.021
http://www.ncbi.nlm.nih.gov/pubmed/17600612
http://dx.doi.org/10.1080/07391102.2016.1268974
http://www.ncbi.nlm.nih.gov/pubmed/27989231
http://dx.doi.org/10.1002/prot.20251
http://www.ncbi.nlm.nih.gov/pubmed/15390263
http://dx.doi.org/10.1002/prot.22570
http://dx.doi.org/10.1093/bioinformatics/btu426


Molecules 2019, 24, 4586 28 of 28

51. Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA–a
self-parameterizing force field. Proteins 2002, 47, 393–402. [CrossRef]

52. Greenidge, P.A.; Kramer, C.; Mozziconacci, J.C.; Wolf, R.M. MM/GBSA binding energy prediction on the
PDBbind data set: Successes, failures, and directions for further improvement. J. Chem. Inf. Model. 2013,
53, 201–209. [CrossRef]

53. Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of nanosystems: Application to
microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 2001, 98, 10037–10041. [CrossRef] [PubMed]

54. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring
function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [CrossRef]
[PubMed]

55. Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions for
structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 2002, 16, 11–26. [CrossRef]
[PubMed]

56. Bottger, V.; Bottger, A.; Howard, S.F.; Picksley, S.M.; Chene, P.; GarciaEcheverria, C.; Hochkeppel, H.K.;
Lane, D.P. Identification of novel mdm2 binding peptides by phage display. Oncogene 1996, 13, 2141–2147.

57. Lai, Z.; Auger, K.R.; Manubay, C.M.; Copeland, R.A. Thermodynamics of p53 Binding to hdm2(1–126):
Effects of Phosphorylation and p53 Peptide Length. Arch. Biochem. Biophys. 2000, 381, 278–284. [CrossRef]
[PubMed]

58. Roehrl, M.H.A.; Wang, J.Y.; Wagner, G. A general framework for development and data analysis of
competitive high-throughput screens for small-molecule inhibitors of protein-protein interactions by
fluorescence polarization. Biochemistry 2004, 43, 16056–16066. [CrossRef] [PubMed]

59. Wang, Z.-X. An exact mathematical expression for describing competitive binding of two different ligands to
a protein molecule. FEBS Lett. 1995, 360, 111–114. [CrossRef]

Sample Availability: All data used in the preparation of this manuscript will be made available upon request.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/prot.10104
http://dx.doi.org/10.1021/ci300425v
http://dx.doi.org/10.1073/pnas.181342398
http://www.ncbi.nlm.nih.gov/pubmed/11517324
http://dx.doi.org/10.1002/jcc.21334
http://www.ncbi.nlm.nih.gov/pubmed/19499576
http://dx.doi.org/10.1023/A:1016357811882
http://www.ncbi.nlm.nih.gov/pubmed/12197663
http://dx.doi.org/10.1006/abbi.2000.1998
http://www.ncbi.nlm.nih.gov/pubmed/11032416
http://dx.doi.org/10.1021/bi048233g
http://www.ncbi.nlm.nih.gov/pubmed/15610000
http://dx.doi.org/10.1016/0014-5793(95)00062-E
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Rigorous Computational and Experimental Investigations on MDM2/MDMX-Targeted Linear and Macrocyclic Peptides
	Recommended Citation
	Authors

	Introduction 
	Results and Discussion 
	Retrospective Study 
	Prospective Study 

	Materials and Methods 
	Conclusions 
	References

