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Abstract 

The partial safety factor method is the main safety concept applied across structural design 

standards. This method is also presented in EN-1990 as the basis of structural design in 

Europe. In the review of this code for the new generation of Eurocodes, analysis of the partial 

safety factor method seems necessary. 

The origin of the partial safety factor method is related to probabilistic methods and reliability 

analysis. Therefore, the latter is selected as tools for the evaluation of the partial safety factor 

method in the EN-1990 framework. Consequently this research begins with an explanation of 

the background of partial safety factor methods and reliability analysis. 

Different aspects of this safety concept are investigated through this study. The analysis 

strategy is based on the study of partial safety factor method according to the different part of 

EN-1990. The research is divided into two main parts, according to the basic components of 

limit state functions: load and resistance.  

Aspects related to loading are investigated first. The available load combinations and the 

recommended partial factors are investigated based on their reliability levels. The load 

combinations are compared with each other according to the sustainability of their design. An 

increased factor for the application of snow load is proposed to overcome safety problems 

related to snow load on structures. Consequently, a proposal for simplifying these load 

combinations is offered and verified according to reliability analysis. In the final step, regarding 

the load’s partial factors, a method of calibration is proposed, based on Monte Carlo reliability 

analysis.  

Afterwards, the aspects related to the resistance are analyzed. Resistances depend mostly on 

experimental data. Therefore, the relationship between the partial safety factor of resistance and 

test numbers is investigated. A probabilistic analysis based on Annex D of EN-1990 is then 

applied to calculate the model uncertainty partial factor and the resistance partial factor for a 

database from masonry shear walls. A comparison is made to show the influence of different 

way of partial safety factor utilization in a limit state function. 

 



Table of Contents 

 

III 

Table of Contents 

 

Acknowledgment ............................................................................................................................ I 

Abstract ......................................................................................................................................... II 

Table of Contents ......................................................................................................................... III 

1 Introduction ............................................................................................................................... 1 

1.1 Motivations and goals ........................................................................................................ 1 

1.2 Strategy of the work ........................................................................................................... 2 

2 Partial safety factor method and EN-1990 ............................................................................... 4 

2.1 Introduction ........................................................................................................................ 4 

2.2 EN-1990 basics of design .................................................................................................. 4 

2.3 Limit states ........................................................................................................................ 5 

2.3.1 Ultimate limit state .................................................................................................... 6 

2.3.2 Serviceability limit states ........................................................................................... 7 

2.4 Design procedure .............................................................................................................. 8 

2.5 Target reliabilities and consequence classes ................................................................... 10 

3 Reliability analysis .................................................................................................................. 18 

3.1 Introduction ...................................................................................................................... 18 

3.2 Random variable ............................................................................................................. 18 

3.3 Failure probability and reliability ....................................................................................... 18 

3.4 Linear First Order Second Moment method (FOSM) ........................................................ 21 

3.5 First-Order Reliability Method (FORM) ............................................................................. 23 

3.5.1 Considering normal distribution .............................................................................. 23 

3.5.2 Considering various distribution types .................................................................... 25 

3.6 Monte Carlo method ........................................................................................................ 27 

3.6.1 General................................................................................................................... 27 

3.6.2 Random numbers generation ................................................................................. 28 

3.6.3 Random variable generation ................................................................................... 28 

3.6.4 Crude Monte Carlo ................................................................................................. 29 

3.7 Importance sampling method ........................................................................................... 31 

3.8 Comparing reliability methods .......................................................................................... 34 



Table of Contents  

 

IV 

3.8.1 Definition of load ratio 𝜒 for reliability analysis ........................................................ 35 

3.8.2 Comparison result .................................................................................................. 41 

3.9 Stochastic parameters for calibration and code analysis with probabilistic methods ........ 42 

4 Load combinations and partial safety factors ...................................................................... 44 

4.1 EN-1990 load combination ............................................................................................... 44 

4.2 Reliability analysis of EN-1990 load combinations ........................................................... 45 

4.3 Comparison of combination 6.10 and 6.10a&b in design ................................................. 56 

4.3.1 Conclusion .............................................................................................................. 60 

4.4 Reduction of permanent load partial safety factor ............................................................ 60 

4.4.1 Reliability analysis of reduced permanent partial factor .......................................... 61 

4.5 Application of increase factor for snow load ..................................................................... 63 

4.5.1 Describing the increase factor ................................................................................ 63 

4.5.2 Reliability analysis of combination with increase factor ........................................... 66 

4.5.3 Improvement of linear method ................................................................................ 68 

4.5.4 Conclusion .............................................................................................................. 70 

4.6 Time-dependent actions and partial safety factor method ................................................ 71 

4.6.1 Combination of variable loads ................................................................................. 75 

4.6.2 Analysis of stochastic parameter for maximum variable load in a reference period . 79 

4.6.3 Probabilistic calibration of combination factor with design method .......................... 81 

4.6.4 Conclusion .............................................................................................................. 84 

4.7 Simplified load combination ............................................................................................. 84 

4.7.1 A proposal for simplified load combination .............................................................. 84 

4.7.2 Recommendation of simplified combination in last draft of EN-1990 ....................... 88 

4.7.3 Comments on simplified load combination method ................................................. 89 

4.7.4 Conclusion .............................................................................................................. 92 

4.8 A new method for partial factor calibration based on Monte Carlo method ....................... 92 

4.8.1 Interest band method .............................................................................................. 92 

4.8.2 Conclusion .............................................................................................................. 98 

5 Resistance partial safety factor ........................................................................................... 100 

5.1 Introduction .................................................................................................................... 100 

5.2 Test number influence on partial factor .......................................................................... 100 

5.2.1 General................................................................................................................. 100 

5.2.2 Basic statistical analysis of test number ................................................................ 101 



Table of Contents 

 

V 

5.2.3 Coverage method for fractile estimation................................................................ 102 

5.2.4 Analysis of concrete compression tests series ...................................................... 106 

5.2.5 Design of concrete beams and columns ............................................................... 109 

5.2.6 Conclusion ............................................................................................................ 110 

5.3 Determination of model and resistance partial factor with Annex D of EN-1990 ............. 111 

5.3.1 General................................................................................................................. 111 

5.3.2 Recommendation in Annex D of EN-1990 ............................................................ 111 

5.3.3 Unreinforced shear wall database ......................................................................... 115 

5.3.4 Model partial factor 𝛾𝑅𝑑 ........................................................................................ 119 

5.3.5 Resistance partial factor 𝛾𝑀 ................................................................................. 124 

5.3.6 Conclusion ............................................................................................................ 127 

5.4 Application of partial safety factor for resistance (cases study flexural failure of masonry 

shear wall) ..................................................................................................................... 128 

5.4.1 Design value of resistance .................................................................................... 128 

5.4.2 Utilization of partial safety factor of material .......................................................... 130 

5.4.3 Comparing the methods ....................................................................................... 134 

5.4.4 Reliability analysis ................................................................................................ 135 

5.4.5 Conclusion ............................................................................................................ 138 

6 Summary and outlook .......................................................................................................... 140 

References ................................................................................................................................. 143 

Appendix A: List of figures ....................................................................................................... 148 

Appendix B: List of tables ........................................................................................................ 152 

Appendix C: Additional diagrams for load combinations of EN-1990 reliabilities ................ 153 

 





Introduction 

 

1 

1 Introduction 

1.1 Motivations and goals 

As a matter of engineering, design is crucial. Structural engineering centers on structural design. 

Since humans construct structures, they try to create safety margin to avoid hazards and major 

damage to those structures. In ancient civilizations, experience and intuition were the most 

important considerations in the safety of structures [1],[2]. Today, safety factors are assessed 

with material strength and stress analysis. This shift from intuition and experience to safety 

factors and design marks early attempts to formalize structural safety [1],[2].  

Structural standards and codes are foundational to acceptable engineering practices and 

guidelines for the assessment of safety and serviceability issues in structural engineering. The 

definitions of various components of structural design—such as natural and human-made 

forces, the magnitudes of these forces for design, and the recommended methods to measure 

and mitigate these forces—are provided in standards. The goal of safety guidelines is to ensure 

acceptable levels of safety to prevent structural failure and further consequences. These 

guidelines attempt to answer a straightforward question: “How safe is safe enough?” [3]. 

Structural safety originates with the uncertain nature of human products and the randomness of 

loads and material properties. Moreover, inconsistent structural models are a source of 

uncertainty in this field: Model predictions of a structure’s behavior do not always accurately 

predict that behavior in practice. Structural codes are responsible for covering most sources of 

uncertainty, on the one hand, and providing safe design, on the other hand.  

Various design methods have been presented over the last century. In [4], the design methods 

in modern engineering are categorized as follows: permissible stress, the load factor method 

and limit state design. Another classification of design methods is offered by [5]: permissible 

stress, developed permissible stress and limit state design.  

In 1960s, engineers began to recognize the weaknesses of previous design strategies, such as 

allowable stress methods. Given this recognition, the engineers authoring structural codes 

expressed their intent to implement new approaches in the context of structural design. In the 

meantime, reliability analysis and probabilistic methods were developed. The probabilistic 

approaches for structural verification are notable tools due to the statistical nature of the data 

concerning the strength of a material or the loads to be anticipated.  

Freudenthal [6] has reported the early efforts made to define safety factors in structural 

verification based on probability of failure and on reliability. With these methods, uncertainties in 

a structural analysis might be modeled based on probabilistic distributions. Representation of 

loads and resistances by stochastic information provided the ability to assess the risk and safety 
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of design structures. With this ability, codes for probabilistic models were published and applied 

in restricted fields, such as for steel and concrete structures [7],[8].  

In Europe, the first probabilistic based design code was published in 1964 for concrete 

structures [9], based on the probabilistic method. This design code defined individual safety 

factors, called “partial safety factors,” for all parameters in the structural design. Thus, this 

concept was named after these factors, as the partial safety factor method. Other names have 

also been used for this method, such as load and resistance factor design (LRFD). 

The partial factor method is the leading safety concept applied to determine required structural 

reliability. Most national design standards have implemented the method, which has a 

reasonable process and is convenient for most engineering applications. The method has been 

improved and formulated through the last 50 years, in particular by committees in the 

International Organization for Standardization (ISO),  European committee for concrete (Comité 

Européen du Béton- CEB), and European Convention for Constructional Steelwork (ECCS). The 

partial factor method is also prescribed in the European standards for structural design of the 

Eurocodes [10]. 

The optimizations and improvements of structural design standards are the essential 

requirements for an excellent practical standard. As the basis of other Eurocodes, EN-1990 is 

under evaluation as part of its update to a new version. Since its core is the partial safety factor 

method, it is necessary to investigate the applications of partial safety factor method in various 

parts of EN-1990. This work aims primarily to evaluate parts of EN-1990 according to the 

implemented strategy of this research.  

The level of safety provided by EN-1990 through its recommendation of partial safety factors 

has to be assed. Moreover, sustainability is today an essential parameter to consider in 

constructing structures. Therefore, the economic criteria in the design process must also be 

considered in creating a sustainable design. Because of the complicated new situation 

confronting societies due to climate change and lack of resources, developers of safety codes 

should find the optimum methods to introduce safety measures in structures. 

1.2 Strategy of the work 

The analysis of the partial safety factor method is the main objective of this study. After its brief 

introduction to the concept, Chapter 2 describes background information concerning the partial 

safety factor method and its applications in the framework of EN-1990. 

Due to the fact that the partial safety factor method is principally the outcome of probabilistic 

methods, probabilistic methods and reliability analysis are applied in assessing various aspects 

of partial safety factor methods. Probabilistic methods for reliability analysis are presented and 

compared with each other in Chapter 3. 

https://www.steelconstruct.com/
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The main strategy for the analysis stems from the partial safety factor method in the EN-1990. 

The analysis compares the reliability levels of the methods applied. The description of limit state 

functions is based primarily on the definition of resistance and loading in the structure. Thus, the 

investigation is divided into two main parts: loading, actions and their partial safety factors; and 

the partial factor resistance and its application. 

Different types of loading and different values for relevant partial safety factors appear in the 

recommendations of EN-1990. In Chapter 4, load parts of the limit state function are 

investigated. The available load combinations and the recommended partial factors are 

investigated based on the reliability levels provided by them. The reliability analyses are made 

for different sets of variable loads and various types of materials.  

Load combinations are compared with each other according to the sustainability of their 

resultant design. An increased factor for the application of snow load is proposed to overcome 

the associated heightened risks. A proposal to simplify these load combinations is then offered 

and assessed according to the reliability analysis. In the final step regarding the partial safety 

factors for load, a calibration method is proposed, based on the Monte Carlo reliability analysis.  

The resistances of limit state functions in safety codes are analyzed in Chapter 5. Partial safety 

factor values for different types of materials are proposed in the relevant Eurocodes rather than 

in EN-1990. The basics for the application of partial safety factors and the probabilistic 

determination of these values are presented in EN-1990.  

Experimental analyses are conducted primarily to evaluate material properties or resistance 

model assessments. Resistances are mostly dependent on the experimental data. Therefore, 

the relationship between the partial safety factor of resistance and test numbers is investigated. 

A probabilistic analysis based on the Annex D of EN-1990 is then applied to calculate the model 

uncertainty and the partial safety factor of resistance for database from masonry shear walls. A 

comparison is made to expose the influence of different ways of partial safety factor utilization in 

a limit state function. 
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2 Partial safety factor method and EN-1990 

2.1 Introduction 

The structural design process has to provide a safe and cost-effective structure. In order to 

achieve this goal, different standards have been developed. Safety levels can be covered up by 

increasing expected load while decreasing nominal resistance. Moreover, sustainability must 

also be considered in the design process. 

Through the development of more accurate tools, calculations, and analyses for engineers, 

various methods of design have been developed over the past century. The safety concept 

applied in structural design codes were based on allowable stress principles until the 1960s. 

Structures were designed according to models, and the design process was assessed by 

considering the elastic behavior. In order to anticipate and mitigate uncertainty, the determined 

stresses were required not to exceed the values of critical stress divided by a factor of safety. 

The limit stresses corresponded mostly to yielding, rupture, or instability. These safety factors 

were chosen individually; one might determine the actions subjected to a structure and assess 

the structure such that the elastic stresses resulting from the loads stay below 60% of the stress 

at a critical point or limiting value. Indeed, no overview was offered concerning the amount of 

risk or safety provided for the designed structure according to this method [3]. Safety factors 

were mainly determined by an engineer’s personal assessment or the practical experience of 

code writers. As computational methods and facilities improved in the 20th century, the 

prevalence of the allowable stress method was reduced [11].  

To resolve these deficiencies (see [4] and [12]), a new formulation for the safety requirements in 

the design process was established. This formulation is believed to have first appeared in 

Russia in the 1930s. Nevertheless, it was developed into its present form at the 

recommendation of the CEB [9]. This method was the partial safety factor format.  

In the current structural standards, a structure’s safety is verified according to linear analysis of 

the structure and the fulfillment of ultimate and serviceability limit states. The verification is done 

with a semi-probabilistic security format by implementing partial safety factors, as applied for the 

action values and the characteristic values of the material properties [13]. 

 

2.2 EN-1990 basics of design 

In 1975 the Commission of the European Communities (CEC) started to develop a new system 

for construction and structural design for the European structural codes, the so-called 

Eurocodes. The primary goal of the project was to remove technical problems by unifying 
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technical requirements. Based on this project, the European Commission decided to create a 

group of unified engineering regulations for structural design and construction projects [14].  

  

Figure 2.1: Links between the Eurocodes [14] 

Since 1989, the European Committee for Standardization (Comité Européen de Normalisation 

[CEN]) has been in charge of the preparation and publication of the European standards for 

structural design (Eurocodes-EN) [14]. The full set of CEN Structural Eurocodes, previously 

known as ENV form, was converted to full EN (Normative) by 2004/5. There are ten Eurocodes, 

each related to a specific subject in structural engineering [15],[14]. 

EN-1990 [16] is the fundamental document in the Eurocode standards system, and it provides 

the requirements and criteria of reliability and safety for all the Structural Eurocodes. Moreover, 

it gives a general framework for structural design in buildings and constructions. Parameters 

related to reliability, durability and quality controls are also presented in EN-1990. This 

information gives engineers an overview of the procedure of the design, construction, and 

supervision during the construction [17]. 

2.3 Limit states 

The design procedure in EN-1990 is based on the limit state concept, with the partial safety 

factor method. Based on limit states, the structures may be categorized in two types according 

to their behavior: acceptable (safe and serviceable) or unacceptable (failed and unserviceable). 

The criteria that define a condition as acceptable or unacceptable are called limit sates. In other 

words, limit states represent the unacceptable cases for structure. Generally, the limit states are 
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EN 1992 EN 1993 EN 1994

EN 1995 EN 1996 EN 1999

Structural safety, 
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durability

Actions on
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Design and
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the boundaries beyond which the structure cannot fulfill the requirements of safety in the code’s 

recommendations. Each performance or characterization of a structure can be represented by 

one limit state in order to be applied in design procedure [14]. EN-1990 classifies limit states into 

two types: ultimate limit states and serviceability limit states.  

 

Figure 2.2: Schematic representation of the partial safety factor method 

Figure 2.2 offers a basic representation of the partial safety factor method. The parameters of 

load and resistance are first defined according to their stochastic properties. Then, according to 

the type of resistance and load, the corresponding characteristic values are determined. 

Eventually, the design values of each basic variable may be calculated by applying the relevant 

partial factors. 

2.3.1 Ultimate limit state 

The ultimate limit state represents a situation in which structural failure occurs in the form of 

collapse and destruction. It is usually described by the maximum bearing capacity of a structure 

or structural components. Design that considers the ultimate limit state provides safety for 

people and structures. In certain cases (e.g., a nuclear power plant, a chemical reservoir, or a 

museum), however, the limit state concerns the safety of the structural material [14]. EN-1990 

defines different categories of ultimate limit states based on failure type:  

 

a) EQU: loss of static equilibrium of the structure or any part of it considered as a rigid 

body, where 

- minor variations in the value or the spatial distribution of actions from a single source 

are significant, and 

- the strengths of construction materials or ground are generally not governing; 
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b) STR: internal failure or excessive deformation of the structure or structural members, 

including footings, piles, basement walls, etc., where the strength of construction 

materials of the structure governs; 

 

c) GEO: failure or excessive deformation of the ground where the strength of soil or rock 

provide significant resistance; and 

 

d) FAT: fatigue failure of the structure or structural members [16]. 

 

Design strategy may vary in EN-1990 based on each type of ultimate limit state. 

2.3.2 Serviceability limit states  

The serviceability limit states are associated expected use of a structure. Fulfillment of these 

conditions covers the requirements needed for particular services in the structure itself or its 

member. This type of limit state covers a structure’s functionality with respect to the demands of 

the people who use it. According to the time and conditions of the structure’s use, serviceability 

limit states can be divided into two types, as shown in Figure 2.3 [14]: 

(1) Irreversible serviceability limit states are those limit states that remain permanently exceeded 

even when the actions that caused the failure are removed (e.g., permanent local damage or 

permanent unacceptable deformations) [14]. 

(2) Reversible serviceability limit states are those limit states that are not exceeded when the 

actions that caused the failure are removed (e.g., cracks in pre-stressed components, temporary 

deflections, or excessive vibration) [14]. 
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Figure 2.3: (a) Irreversible and (b) reversible limit states [14] 

2.4 Design procedure 

The design procedure in EN-1990 is done based on a comparison of design values for 

resistance and action effects. Resistance parameters and actions are defined based on the 

required limit state. For example, in the case of equilibrium, the stabilizing action or the 

resistance parameters stabilizing the structure have to be compared with the destabilizer 

parameter in structure. The verification process in EN-1990 ensures that the relevant limit sate 

is not exceeded by considering the applicable design values for actions, material properties, and 

geometrical parameters [14]. The general concept for comparing the design value for action and 

resistance is presented as (2.1) in EN-1990: 

𝐸𝑑 ≤ 𝑅𝑑 (2.1) 

where 

𝐸𝑑   is the design value of the effect of actions such as internal force, moment or a 

vector representing several internal forces or moments;  
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𝑅𝑑  is the design value of the corresponding resistance. 

Design values for resistance and action effects are determined with partial safety factors and 

corresponding characteristic values. Characteristic values represent the probabilistic basis of the 

basic variables. Characteristic values are fractile values of the distribution for each basic 

variable. In resistance, in most cases, the characteristic value is the lower fractile of distribution. 

By contrast, in actions, upper fractiles usually represent the characteristic values of actions.  

 

Figure 2.4: Upper and lower fractile in the probability density function (PDF) 

In order to determine the critical case, the design values of the effects of actions (𝐸𝑑 ) are 

calculated by considering all existing actions at the same time on structures. Various types of 

actions may be considered in construction, such as the weight of the structure, live load from 

vehicles or facilities, wind, snow, temperature, and seismic loading. The combination of all these 

load types is introduced in EN-1990 for different kinds of limit states and situations. For a given 

construction, several actions, considered as natural or human-made phenomena, apply 

permanently. For design, the most critical case through all possible combinations must be 

considered [16] [14]. 

The combinations in EN-1990 are recommended for accidental actions, seismic loading, 

geotechnical cases and transient or persistent situations. The fundamental combination in EN-

1990, known as “6.10” in the code text, is the most common combination for design. This 

combination is shown in (2.2). 

∑ 𝛾
𝐺,𝑗

𝐺
𝑘,𝑗

" + " 𝛾
𝑝

𝑃 " + " 𝛾
𝑄,1

𝑄𝑘,1" + " ∑ 𝛾
𝑄,𝑖

𝜓
0,𝑖

𝑄𝑘,𝑖

𝑖>1𝑗≥1

 
(2.2) 

Here, G represents the permanent actions, Q variable actions, P prestress.  
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Two other combinations in EN-1990, known as equations “6.10a” and “6.10b” in code text, have 

been proposed for limit states in STR and GEO situations. The less favorable of these two 

combinations will be used for finding action effects. However, in the German national annex of 

EN-1990, use of these two combinations [see (2.3) and (2.4)] is not permitted.  

 

∑ 𝛾
𝐺,𝑗

𝐺
𝑘,𝑗

" + " 𝛾
𝑝

𝑃 " + " 𝛾
𝑄,1

𝜓
0,𝑖

 𝑄𝑘,1" + " ∑ 𝛾
𝑄,𝑖

𝜓
0,𝑖

𝑄𝑘,𝑖

𝑖>1𝑗≥1

 
(2.3) 

∑ 𝜉
𝑗
 𝛾

𝐺,𝑗
𝐺

𝑘,𝑗
" + " 𝛾

𝑝
𝑃 " + " 𝛾

𝑄,1
 𝑄𝑘,1" + " ∑ 𝛾

𝑄,𝑖
𝜓

0,𝑖
𝑄𝑘,𝑖

𝑖>1𝑗≥1

 
(2.4) 

Partial safety factors and combination factors are recommended in Annex A of EN-1990 for 

different limit state situations. With the application of these values as safety factors in the design 

process, the required safety level based on EN-1990 recommendations is satisfied. Safety level 

in EN-1990 is defined according to the reliability index and probability of failure. 

2.5 Target reliabilities and consequence classes 

In the context of EN-1990, the criteria for safety requirements are provided based on the target 

values for reliability or failure probability. The recommendation is classified based on the 

correspondent consequence classes and specific reference periods. In the current version, 

these values are presented in the context of Annex B along with consequence classes and 

quality controls (Table 2.1). For each consequence class, a reliability class (RC) is allocated in 

EN-1990. 

Table 2.1: Reliability classes in the current version of EN-1990 [16] 

Reliability classes 

Minimum value of 𝜷 

1 year reference period 50 years reference period 

RC3 5.2 4.3 

RC2 4.7 3.8 

RC1 4.2 3.3 

 

In the new draft of EN-1990, the target reliabilities are presented only in its Annex C in order to 

avoid misunderstanding of engineers during the EN-1990 application. Target reliabilities are 

needed for code calibration and probabilistic design. These are additional approaches for 

structural design. Subsequently, the reliabilities are mentioned only along with probabilistic 

methods in the code regarding the concept of ease of use. 
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Moreover, the reliabilities presented in the new draft represent only a one-year reference period. 

However, in the current version both one-year and 50-year reference periods are indicated in 

target reliabilities. The table of target reliabilities in a new draft of EN-1990 is shown in Table 

2.2.  

Table 2.2: Reliability classes in a new draft of EN-1990 [18] 

Consequences of failure 

Consequence class 

CC1 CC2 CC3 

pf,a
tgt 

10
−5 

10
−6

 10
−7

 

βa
tgt

 4.26 4.75 5.20 

In ISO-1394 [19] and the Joint Committee on Structural Safety (JCSS) probabilistic model code 

[20], the target reliabilities are presented in different forms. In addition to the consequence 

classes, the cost of safety is also considered for the categorization of target reliabilities in these 

two documents (Table 2.3). This recommendation is based on the optimization performed in 

[21]. The cost of reducing risk and increasing structural safety is combined with the 

consequences of failure to evaluate the optimum economic values for target reliabilities. 

Structural design is a process of decision making, meaning that various parameters are involved 

in the final determination. The optimum situation to cover all societal requirements must 

eventually be selected.  

Table 2.3: Reliability classes in ISO-2394 [19] and JCSS [20] 

Relative cost of 

safety measures 

Consequences of failure from Table 2.6 

Class 2 Class 3 Class 4 

Large 𝛽 = 3.1(𝑝𝑓 ≈ 10−3) 𝛽 = 3.3(𝑝𝑓 ≈ 5 × 10−4) 𝛽 = 3.7(𝑝𝑓 ≈ 10−4) 

Medium 𝛽 = 3.7(𝑝𝑓 ≈ 10−4) 𝛽 = 4.2(𝑝𝑓 ≈ 10−5) 𝛽 = 4.4(𝑝𝑓 ≈ 5 × 10−6) 

Small 𝛽 = 4.2(𝑝𝑓 ≈ 10−5) 𝛽 = 4.4(𝑝𝑓 ≈ 5 × 10−6) 𝛽 = 4.7(𝑝𝑓 ≈ 10−6) 

 

In the case of structural design, it is possible to robustly consider safety in the design and 

consume a considerable amount of building material in the construction, yet have an 

unsustainable structure in the end. This approach will lead to a waste of energy and resources. 

Contrarily, a design may be economical, but still produce an unsafe structure. Therefore, a 

balance between these two has been considered in the optimization of target reliability in [21]; 
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this balance is depicted in the Table 2.3. Figure 2.5 presents the relation of costs and risk in the 

decision-making process. Safety factors can be the decision parameters in the structural design. 

If the required target reliabilities in the code correspond to the optimum point, the partial factors 

of this point will provide an optimal design that is sustainable and economical at the same time. 

 

Figure 2.5: Optimization of risk and costs [22] 

As mentioned before, each reliability requirement as target reliability is connected with a 

consequence class. Engineers should decide the consequences of failure and find the 

correspondent category for a structure to apply the desired level of safety according to the code. 

The consequences are the parameters for risk evaluation in risk analysis and comprise possible 

results of an event. In structural engineering, the consequences are defined as outcomes of a 

structure failure. These consequences have three primary sources: loss of lives, the 

environmental failure effect and economic damage [23]. However, they are not simple 

phenomena for evaluation. Quantification of consequences requires multidisciplinary analysis. 

This kind of analysis requires different experts from various fields to determine the relation 

between the event and its surroundings [24]. Estimation of consequences is connected with the 

incident of a hazard, mostly a complicated process that depends on the judgment of experts. 

These experts must have comprehensive knowledge gained through experiences from similar 

phenomena. Nevertheless, the determined consequences in this process would include a 

considerable amount of uncertainty [25]. 

The current version of EN-1990 [16] categorizes the consequences in three different classes. 

The representations of the number of consequences are mentioned together in each class. The 

table in Annex B of EN-1990 is shown in Table 2.4. 

Table 2.4: Consequence classes in EN-1990 [16] 
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Consequence classes Description 
Examples of buildings and civil 

engineering works 

CC3 

High consequence for loss of 
human life, or economic, social or 
environmental consequences very 
great 

Grandstands  public buildings 
where consequences of failure are 
high (e.g. a concert hall) 

CC2 

Medium consequence for loss of 
human life, economic, social or 
environmental consequences 
considerable 

Residential and office buildings, 
public buildings where 
consequences of failure are 
medium (e.g. an office building) 

CC1 

Low consequence for loss of 
human life,and economjc, social or 
environmental  consequences 
small or negligible 

Agricultural buildings where people 
do 
not normally enter (e.g. storage 
buildings), greenhouses 
 

 

In the final draft of a new version of EN-1990, consequence classes are described more clearly. 

The different classes regard loss of human life, along with economic, social and environmental 

consequences. For loss of human life, there are three levels: high, medium and low. For 

economic, social and environmental consequences as well, there are three levels: very great, 

considerable and small or negligible. These two levels are presented in the form of a sentence 

in the current version, but in the new draft they are separated in two different columns, and the 

more severe of these two columns has to be considered in selecting consequence classes for 

the relevant structure or structural component.  

Table 2.5: Consequence classes in the final draft of new version EN-1990 [18] 

Consequence classes Description Loss of human life 

Economical social or 

environmental 

consequences 

CC4 Highest Extreme Huge 

CC3 Higher High Very great 

CC2 Normal Medium Considerable 

CC1 Lower Low Small 

CC0 Lowest Very low Insignificant 

 

This classification aligns with the concept of ease of use for the code. Table 2.5 presents the 

classification of consequences in the new draft. There are also two extra classes in the new 

draft, namely the highest and lowest consequence classes. These are related to exceptional 

constructions and based on the description of EN-1990, and they are not covered through the 

Eurocode system. These kinds of structures need individual structural design and analysis with 

particular considerations. 
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The classification of consequences in ISO-2394 [19] has five different categories. In this 

document, the explanation of each category is more comprehensive, complete with the details of 

each failure consequence. This clarification helps engineers to choose the corresponding 

consequence class conveniently, according to the structure’s characteristics. The consequences 

in ISO-2394 are presented in Table 2.6.  

Table 2.6: Consequence classes in ISO-2394 [19] 

Consequences 

class 
Description of expected consequences Examples of structures 

Class 1 Predominantly insignificant material damages 

Low-rise buildings where 

only a few people are 

present, minor wind 

turbines, stables, etc. 

Class 2 

Material damages and functionality losses of 

significance for owners and operators but with little 

or no societal impact  

Damages to the qualities of the environment of an 

order which can be restored completely in a matter 

of weeks  

Expected number of fatalities fewer than 5 

Smaller buildings and 

industrial facilities, minor 

bridges, major wind 

turbines, smaller or 

unmanned offshore 

facilities, etc. 

Class 3 

Material losses and functionality losses of societal 

significance, causing regional disruptions and 

delays in important societal services over several 

weeks.  

Damages to the qualities of the environment limited 

to the surroundings of the failure event and which 

can be restored in a matter of weeks.  

Expected number of fatalities fewer than 50. 

Most residential 

buildings, typical bridges 

and tunnels, typical 

offshore facilities, larger 

and or hazardous 

industrial facilities 

Class 4 

Disastrous events causing severe losses of 

societal services and disruptions and delays at 

national scale over periods in the order of months.  

Significant damages to the qualities of the 

environment contained at national scale but 

spreading significantly beyond the surroundings of 

the failure event and which can only be partially 

restored in a matter of months.  

Expected number of fatalities fewer than 500. 

High-rise buildings, 

grandstands, major 

bridges and tunnels, 

dikes, dams, smaller 

offshore facilities, 

pipelines, refineries, 

chemical plants, etc. 

Class 5 Catastrophic events causing losses of societal 

services and disruptions and delays beyond 

Buildings of national 

significance, major 
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national scale over periods in the order of years. 

Significant damages to the qualities of the 

environment spreading significantly beyond 

national scale and which can only be partially 

restored in a matter of years to decades. Expected 

number of fatalities larger than 500. 

containments and 

storages of toxic 

materials, major offshore 

facilities, major dams, 

and dikes, etc. 

 

In JCSS probabilistic model code, a quantity is defined for classification of failure consequences 

[20], and ρ is the ratio between total costs (i.e., construction costs Ck plus direct failure costs H) 

and construction costs [20]. Parameter ρ is determined based on (2.5) [26]. 

𝜌 =
𝐻 + 𝐶𝑘

𝐶𝑘
 (2.5) 

The cost of failure 𝐻 is calculated based on the cost of fatalities, and it is represented as (2.6): 

𝐻 = 𝑛 ∙ 𝑘 ∙ 𝑆𝐿𝑆𝐶 (2.6) 

where n is the number of people in the building at the time of failure and where k is the 

parameter related to the proportion of fatalities-per-person based on Table 2.7. Social life-saving 

cost “SLSC” is a social indicator representing the implied cost of averting fatalities, and it 

depends on gross domestic product per capita (g), life expectancy (e) and the ratio of life to earn 

a living (w) [27]. Some selected values of SLSC, g, and e are presented in Table 2.8. 

Table 2.7: Parameter k for determining failure cost [28] 

Types and cause of failure k 

Earthquake 0.01–1.0 

Avalanches, rock fall, explosions, impact etc. 0.01–1.0 

Floods and storms 0.0001–0.01 

Sudden structural failure in places of public entertainment 0.1–0.5 

Fire in buildings 0.0005–0.002 

Fire in road tunnels 0.01–1.0 

 

 

 

 



2 Partial safety factor method and EN-1990   

 

16 

Table 2.8: Some SLSC and social indicators g and e [26, 28]  

Country g [US$] e [year] w SLSC 

Canada 27330.16 78.84 0.13 1.3∙10
6
 

USA 34260.22 77.86 0.15 1.6∙10
6
 

Germany 25010.15 78.87 0.12 1.1∙10
6
 

Czech Rep. 12900.67 73.77 0.17 4.6∙10
5
 

 

Quantification of consequences with (2.5) and (2.6) helps engineers contextualize failures. The 

number of people and fatalities plays an important role in this formula, allowing the opportunity 

to distinguish between the loss of one human life or more. According to the parameter ρ and 

(2.5), the classification of consequences in JCSS is presented as in Table 2.9. 

Table 2.9: Consequence classes JCSS [20] 

Consequences 

class 
ρ Description 

Class 1 Minor 

Consequences 
ρ is less than approximately 2 

The risk to life, given a failure, is small to 

negligible and economic consequences are 

small or negligible (e.g., agricultural 

structures, silos, masts) 

Class 2 Moderate 

Consequences 
ρ is between 2 and 5. 

Risk to life, given a failure, is medium or 

economic consequences are considerable 

(e.g., office buildings, industrial buildings, 

apartment buildings) 

Class 3 Large 

Consequences 
ρ is between 5 and 10 

Risk to life, given a failure, is high, or 

economic consequences are significant 

(e.g. main bridges, theaters, hospitals, high 

rise buildings) 

 

JCSS also introduces the classification of consequences, which depends on failure type. In this 

classification, ductility is the criteria for different categories, and three different classes are 

defined [20]: 

 

a) ductile failure with reserve strength capacity resulting from strain hardening, 
b) ductile failure with no reserve capacity, and 
c) brittle failure. 

 
In other words, a structure whose collapse occurs with some warning ensures certain 

precautions can be taken to avoid severe consequences, so it may be designed a lower level of 
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reliability. On the other hand, a structure whose collapse would be sudden must be designed 

with greater reliability [20].  

In the safety concept of limit state design, the criteria of safety are defined for each structure 

based on the consequence classes and their correspondent target reliability. In next chapters, 

the safety requirements of EN-1990 are implemented as target reliabilities.
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3 Reliability analysis 

3.1 Introduction 

This chapter presents an overview of the reliability analysis and probabilistic methods. Reliability 

analysis is the main tool in this research work for evaluation of the analysis. The results are 

interpreted based on reliability analysis. Therefore, different components involved in reliability 

analysis must be described, along with various methods for further applications.  

3.2 Random variable 

As defined by [29], a random variable is a means for representation of an incident in analytical 

format. Random variable definition is based on mathematics. In contrast to a deterministic 

variable that can be considered as a certain value, the value of a random variable may be 

defined within a range of possible values. The event A may be mapped through the random 

variable 𝑋, and thus can be identified as indicated in (3.1) [30]: 

𝐴 = 𝑎 < 𝑋 ≤ 𝑏 (3.1) 

If 𝑋 is a random variable, its probability distribution can always be described by its cumulative 

distribution function (CDF), as in (3.2): 

𝐹𝑋 ≡ 𝑃(𝑋 ≤ 𝑥)       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 (3.2) 

For a continuous random variable, the probability law is described in terms of the probability 

density function (PDF) denoted as 𝑓𝑥(𝑥) such that the probability of 𝑋 in the interval (𝑎, 𝑏] is 

 

𝑃(𝑎 < 𝑋 ≤ 𝑏) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ 𝑓𝑋(𝑥)𝑑𝑥 −  ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑎

−∞

𝑏

−∞

 (3.3) 

3.3 Failure probability and reliability 

A limit state is a mathematical of a structure. Beyond the limit state, the model no longer fulfills 

the relevant design criteria (ultimate or serviceability) and as a result, failure occurs (virtually). A 

failure event can be defined with a so-called limit state function, as  
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𝑔(𝑥) ≤ 0 (3.4) 

where the vector 𝑥 includes the realization of basic random variable 𝑋.  

Based on (3.4), the failure of the limit state is defined as the set of realizations for function 𝑔(𝒙) 

with zero and negative values [31].  

 

Figure 3.1: Schematic representation of failure with probability density function (PDF) of load 

and resistance 

A general mathematical relation similar to (3.5) could be assumed for the structural model, 

which consists of two independent linear random variables: resistance and load variables. In 

[29], this model is called the idealized case and is defined by 

𝑅 − 𝐸 > 0 (3.5) 

In this case, the failure event is 𝑅 −  𝐸 ≤  0, and the function 𝑔 =  𝑅 –  𝐸 =  0 is known as the 

limit state function. In general by neglecting time effects, any failure criterion of a particular 

design situation containing finite variables can be written in multi-dimensional limit state form: 

𝑔(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛) = 𝑅(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑚) − 𝐸(𝑥𝑚+1, 𝑥𝑚+2, … 𝑥𝑛) (3.6) 

Huntington [32] has established a theorem conveniently used to represent the probability of 

failure regarding distribution functions of resistance and action. For the limit state considered to 

contain only two independent variables (R, S), the probability of failure is computed as follows: 

Load (E)

Resistance (R)

Failure area
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𝑃𝑓 = 𝑃(𝑅 − 𝐸 ≤ 0) = ∫ 𝐹𝑅(𝑥) ∙ 𝑓𝐸(𝑥)𝑑𝑥 

∞

0

 (3.7) 

in which  

𝐹𝑅 is the cumulative probability distribution function (CDF) in R, and 

𝑓𝐸 is the probability density function (PDF) for E. 

In the structural calculation, the probability of failure is very low (in the range of 10−4 to 10−7). 

For the sake of convenience, the probability of failure is transferred to another mathematical 

parameter, called the “reliability index,” as defined in (3.8). 

𝛽 = −𝛷−1(𝑃𝑓) (3.8) 

Here, 𝛷−1 represents the inverse cumulative of standard normal distribution. The values of 

different reliability indexes relative to various probabilities of failure are shown in Figure 3.2. 

 

Figure 3.2: Logarithmic plot of failure probability and reliability index 

A useful comparative measure of reliability is 𝛽, which can be used to evaluate the relative 

safety of various design alternatives. However, an assessment of reliability may be provided by 

solving (3.7). An explicit analytical solution exists for very simple models where resistance and 

load are independent (both having Gaussian distribution functions). 

𝛽 =
(µ𝑅 − µ𝐸)

√𝜎𝑅
2 + 𝜎𝐸

2
 (3.9) 
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Figure 3.3: Illustration of a reliability index [11] 

However, most practical engineering problems are very complicated, and non-normal 

distributions are involved. Hence other numerical methods need to be examined to solve (3.7). 

Some of the reliability methods for solving the integral of (3.7) are classified in Table 3.1.  

Table 3.1: Overview of some reliability methods [33] 

Category Method or technique 

Level III 

Analytical or numerical integration  

Monte Carlo 

Importance sampling  

Level II 

First Order Second Moment Method (FOSM) 

First Order Reliability Method (FORM) 

Second Order Reliability Method (SORM) 

3.4 Linear First Order Second Moment method (FOSM) 

Certain methods are generally referred to as “first-order” methods because they require a first-

order (linear) approximation of the failure criteria (limit state) in terms of the design variables 

[30]. The linearization is done by the first two terms of Taylor expansion at the design point used 

for first and second moments of the random variables. Therefore, the term “second-moment” is 

included. This method is also referred to as the “mean value FOSM” (MNFOSM) [34]. 

Equation (3.10) describes a linearization of the limit state, which apparently is the approximation 

by the first two terms of Taylor expansion at the design point 𝑃∗ = (𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗). 

 

 

Z =g(xi) = 0 

µ Z 0 

β·σZ 

Safe side Failure 
side 

Probability 
of failure 

Pf 
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𝑧 = 𝑔(𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗) + ∑

𝜕𝑔

𝜕𝑥𝑖
∙ (𝑥𝑖 − 𝑥𝑖

∗) = 0

𝑛

𝑖=1

 (3.10) 

The point 𝑃∗ is called a checking point. Multi-failure criteria and time variation for random 

variables are neglected as well. Most of the early approaches selected 𝑃∗ to equal the mean of 

basic variables. The distribution of 𝑍 has a mean value of 

µ𝑧 ≅ 𝑔(µ𝑥1
, µ𝑥2

, … , µ𝑥𝑛
) (3.11) 

Assuming the random variables to be statistically uncorrelated, the standard deviation in Z can 

be approximated by 

𝜎𝑧 ≅ [∑ (
𝜕𝑔

𝜕𝑥𝑖
∙ 𝜎(𝑥𝑖))

2𝑛

𝑖=1

]

1
2

  (3.12) 

By using these equations, the reliability index 𝛽 is defined by (3.13), which is a geometric 

measure. It gives the distance from the mean of limit state to the origin. This method is also 

known as the “mean-value method.” 

β =  
µz

σz
  (3.13) 

Based on Ravindra’s linearization [35], it is convenient to express σZ as a linear combination of 

σi. A useful and symmetrical expression of this value is 

𝜎𝑧 =  ∑ 𝛼𝑖 ∙
𝜕𝑔

𝜕𝑥𝑖

𝑛

𝑖=1

∙ 𝜎𝑖 (3.14) 

with, 

𝛼𝑖 =  

𝜕𝑔
𝜕𝑥𝑖

 ∙ 𝜎𝑖

√∑ (
𝜕𝑔
𝜕𝑥𝑗

𝜎𝑗)
2

𝑛
𝑗=1    

    
(3.15) 

Equation (3.15) allows the separation of the contribution of variables and enables the 

development of simple partial safety factor code formats. Note that the statistical distributions of 

random variables are not regarded in these methods. Although the theory does not give a 

complete description of uncertainty for any particular variable, the extension of this idea has 

encouraged many researchers to develop probability-based structural codes [30]. 
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3.5 First-Order Reliability Method (FORM) 

3.5.1 Considering normal distribution 

Mean value methods have two fundamental shortcomings. First, the limit state function is 

linearized at the mean values of the random variables. Using only two terms form the Taylor 

series may cause significant errors for some nonlinear limit states. Secondly, the mean value 

methods fail to be invariant to different mechanically equivalent formulations of the same 

problem. This problem arises not only for nonlinear forms of limit states but also even in certain 

linear forms: for example, when the loads (or load effects) counteract one another [36]. 

Ellingwood recognized that the linear expansion of limit state should take place not about the 

means but as a point on the failure surface 𝑔(𝑥)  = 0—that is, in the upper tail of load parameter 

distributions and in the lower tail of resistance parameter distributions [11]. Therefore, the main 

result of the recent efforts is that safety checking can be considered to measure the (random) 

distance from the mean to any point in the sample space of the structural variables on the 

surface, representing the failure criterion. If the distance is measured towards the failure side, a 

positive distance implies a safe outcome [37].  

This improvement was made also by [38], in a way which the expansion point is changed from 

the mean value to most-probably point (MPP). It also represents the minimum distance between 

origin point and the MPP.  

The procedure of calculation can be started by a transformation of a random variable to the 

standard normal space [34]. 

𝑢𝑖 =
𝑥𝑖 − µ𝑥𝑖

𝜎𝑥𝑖

   ,    𝑥𝑖 = 𝑢𝑖 𝜎𝑥𝑖
+   µ𝑥𝑖

    (3.16) 

The procedure is illustrated in Figure 3.4; in this normalized space, the new variables have unit 

standard deviation and zero mean, and therefore this space is occasionally called the reduced 

space.  
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Figure 3.4: Mapping to the standard space (U) [34] 

In the reduced coordinate space, the new limit state is 

𝑔1(𝑢1, 𝑢2, 𝑢3, … 𝑢𝑛) = 0  (3.17) 

Failure occurs when 𝑔1  <  0, and reliability is defined as the shortest distance between the 

surface 𝑔1(𝑥) =  0 and the origin.  

 

β =  
𝑔(𝑋) − ∑

𝜕𝑔(𝑋)
𝜕𝑥𝑖

∙ 𝜎𝑥𝑖
∙  𝑢𝑖

∗𝑛
𝑖=1  

√∑ (
𝜕𝑔(𝑋)

𝜕𝑥𝑖
∙ 𝜎𝑥𝑖

)
2

𝑛
𝑖=1    

  
(3.18) 

The design point or MPP, 𝑃∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ ) on 𝑔1(𝑥)  =  0, must be determined through finding 

the corresponding coordinate of MPP by means of sensitivity factors.  

 

𝛼𝑖 = − 

𝜕𝑔(𝑋)
𝜕𝑥𝑖

 ∙ 𝜎𝑥𝑖

√∑ (
𝜕𝑔(𝑋)

𝜕𝑥𝑖
∙ 𝜎𝑥𝑖

)
2

𝑛
𝑖=1       

  
(3.19) 

Parameter 𝛼𝑖 illustrates the relative effects of each individual random variable on the total 

variation and reliability index. Based on these parameter, the coordinate of MPP can be 

calculated as follows: 
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𝑢𝑖
∗ =

𝑥𝑖
∗ − 𝜇𝑥𝑖

𝜎𝑥𝑖

=  𝛽 ∙ 𝛼𝑖   (3.20) 

𝑥𝑖
∗ =  𝛽 ∙ 𝛼𝑖 ∙ 𝜎𝑥𝑖

+ 𝜇𝑥𝑖
 (3.21) 

3.5.2 Considering various distribution types 

The mentioned methods are set to determine the reliability of random variables with a Gaussian 

distribution. It is recognized in [39] that the approximation caused by non-normal distribution in 

the algorithm may become more and more inaccurate if the original distribution becomes 

increasingly skewed. In contrast, many structural problems involve random variables that are 

non-normal. 

The solution is to transform the non-normal variables into equivalent normal variables prior to 

the calculation. This transformation should be applied such that both distributions match as 

closely as possible in the range of the design point. Therefore, this method is also referred to as 

“normal-tail approximation.” This transformation may be accomplished by approximating the 

exact distribution of random variable 𝑋 by a normal distribution at the value 𝑋∗ corresponding to 

a point on the failure surface. In order to determine the mean and standard deviation of the 

equivalent normal variable, the following equations for approximating normal distribution are 

suggested in [39]: 

𝜎´ =
𝜑{𝛷−1[𝐹(𝑥∗)]}

𝑓(𝑥∗)
    (3.22) 

µ´ = 𝑥∗ − 𝜎´ ∙ 𝛷−1[𝐹(𝑥∗)] (3.23) 

where 

𝑥∗  is the approximation point, 

𝐹(𝑥∗)  is non-normal cumulative probability distribution function (CDF) in 𝑥∗, 

𝑓(𝑥∗)  is non-normal density function (PDF) in 𝑥∗, 

Φ−1  is inverse cumulative for standard normal distribution (CDF), 

𝜑  is probability density function (PDF) for the standard normal distribution. 

For the sake of completeness, a summary of Rackwitz and Fiessler’s algorithm, according to 

[11] and [34], is given in Figure 3.5. 
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Figure 3.5: Rackwitz Fiessler algorithm [34] 
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3.6 Monte Carlo method 

3.6.1 General  

The current version of the Monte Carlo method was established in the 1940s. However, some 

restricted activities are similar to the Monte Carlo simulation in earlier studies [40]. It is also 

mentioned by [41] that the accepted origin of the Monte Carlo method was in 1949 when 

Metropolis and Ulam published their work on the Monte Carlo method [42, 43]. 

The approaches described in previous sections are all approximation methods. The linearization 

of limit state function is applied in these methods by implementing the first order or second order 

of the Taylor series. Therefore, in complex limit state functions, such as a highly nonlinear failure 

function, multiple failure points or a combination of failure functions (serial and parallel systems), 

this simplification by the Taylor series will conduct an error calculation to determine failure 

probability [44]. In such complex cases, it is very difficult to determine whether the result is 

conservative or the failure probability is underestimated. Hence, neither FORM nor SORM can 

offer accurate results [45]. These methods were proposed in the 1960s and 1970s because their 

application for the different limit states was a simple way to calculate failure probability. These 

methods give an overall view on the probability failure problem. By simulation methods or the 

Monte Carlo method, the result of the failure probability calculation is the exact solution, but in 

the 1970s there were no powerful computational instruments to produce large samples for a 

component of limit states or random variables. At the same time, it was not normal practice to 

use simulation methods to evaluate failure probability. Therefore, the application of the Monte 

Carlo method has recently gained popularity due to developments in computing abilities and 

skills [34]. Calculation now takes much less time, using new random generating algorithms. 

Hence, implementing simulations or the Monte Carlo method with accurate results could be the 

best option for reliability analysis.  

The Monte Carlo is a technique that takes a finite random sample of the basic variables with 

their statistical properties and calculates the related limit state. The ratio of the number of 

simulations that exceed the limit state to the total number of trails is taken as the probability of 

failure. 

Therefore, the computation approach in the Monte Carlo method can be represented in three 

steps: 

1. choosing an individual distribution for each random variable, 

2. creating a sampling for each distribution based on random numbers, and 

3. applying the simulation and finding the probability of failure [34]. 
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As a consequence of implementing high-performance computers, physical model simulations 

have become routine, and the Monte Carlo method seems to be a powerful tool in dealing with 

complicated statistical processes that could not otherwise be handled [34]. 

The implementation of the Monte Carlo method is examined in [46] for the evaluation of 

distribution functions for load and resistance. These functions are the results of complicated 

functions from various random variables in practice. This technique is also recommended in [6]. 

For the first step of calculation in selecting a suitable distribution, various methods are proposed 

in literature. In principle, two methods are available to estimate the distribution for a database, 

namely the method of point estimates and the method of interval estimates ([31]). Maximum 

likelihood and method of moments as point estimates methods are widely used in recent 

probabilistic analyses. These are explained in detail in [47], [48] and [49]. 

3.6.2 Random numbers generation 

In order to implement the selected distribution of random variables in a Monte Carlo simulation, 

input data should be generated as random numbers. The core of any Monte Carlo method is a 

random number generator [50]. This procedure generates independent random values that 

follow the same distribution. When the corresponding distribution of random numbers is a 

uniform distribution on the interval (0,1) then this process will be called “Uniform random number 

generator” ([50], [51]). 

Based on the handbook for the Monte Carlo method [50], two algorithms have the most effective 

performance in generating random numbers: 

1. “Combined multiple recursive generators: some of which have excellent statistical 

properties, are simple, have a large period, and are relatively fast” [50]. 

2. “Twisted general feedback shift register generators: some of which have very good 

equidistributional properties, are among the fastest generators available (due to their 

essentially binary implementation), and can have extremely long periods which is 

currently the default generator in MATLAB” [50]. 

3.6.3 Random variable generation 

Using the generated random numbers in the interval of (0 1), the random variable can be 

generated based on the corresponding distribution of basic variables. Each random value 

represents the probability of one random variable realization. Eventually, by means of the CDF 

of basic variables, the corresponding value for the realization can be calculated. The main 

concept of generating random variable is represented in Figure 3.6. 
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Figure 3.6: Generating a random variable 

3.6.4 Crude Monte Carlo 

The principles of the crude version of these kinds of simulation techniques will also be applied in 

this study. However, there are different ways to improve the efficiency of the Monte Carlo 

method, such as important sampling or variance reduction (see [52]). The crude Monte Carlo 

method is so far the most uncomplicated method for simulation of structural reliability [31].  

The simulation method can be proposed by reformatting the probability integral in the form of 

(3.24), using an indicator function 𝐼[ ]. 

P𝑓 =  ∫ 𝑓𝑥(𝑥)

𝑔(𝑥)≤0

𝑑𝑥 = ∫ 𝐼[𝑔(𝑥) ≤ 0] 𝑓(𝑥)𝑑𝑥 
(3.24) 

In this integral, the integration domain is changed from a part of 𝑋 (𝑥1, 𝑥2 … 𝑥𝑛) where 𝑔(𝑥) ≤ 0 

for the whole domain of 𝑋. In this domain, the indicator function 𝐼[𝑔(𝑥) ≤ 0] is equal to 1, where 

𝑔(𝑥) ≤ 0 is otherwise equal to zero [31]. In Figure 3.7 a schematic illustration of a crude Monte 

Carlo sample domain is represented. 
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Cumulative distribution function 
of random variable
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Figure 3.7: Schematic representation of crude Monte Carlo simulation 

Considering the first moment that represents the expected value of a random variable and 

comparing it with (3.24), the failure probability can be represented as a mean value of indicator 

function 𝐼[𝑔(𝑥) ≤ 0]. If N realizations of the vector 𝑿 are sampled, the failure probability can be 

calculated as follows: 

𝑃𝑓 = 𝐸[𝐼(𝑋)] =
1

𝑁
∑ 𝐼[𝑥𝑗]

𝑁

𝑗=1

 (3.25) 

Or based on the number of failure points in simulation, the probability of failure can be 

formulated as in (3.26). 

𝑃𝑓 =
𝑛, 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛

𝑁, 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 
 (3.26) 

The statistical error corresponding to the estimation of failure probability by the Monte Carlo 

method is proportional to 
1

√𝑁
. The probability of failure has been calculated based on the mean 

value of the indicator function. The variance of the indicator function can also be described 

based on the failure probability, following the procedure of [51].  

 

𝑉𝑎𝑟[𝐼(𝑋)] = 𝐸[𝐼(𝑋)2] − 𝐸[𝐼(𝑋)]2 =  𝐸[𝐼(𝑋)] − {𝐸[𝐼(𝑋)]}2 = 𝐸[𝐼(𝑋)] − {1 − 𝐸[𝐼(𝑋)]} 

 

𝑉𝑎𝑟[𝐼(𝑋)] =  𝜎𝐼
2 = 𝑃𝑓(1 − 𝑃𝑓) 

(3.27) 

n failures 

observed
Failure 

side

Limit state line: R=E
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Eventually, based on the indicator function variance and the number of trials in the Monte Carlo 

method, the standard deviation or variance of the final result of Monte Carlo estimation can be 

represented, as in (3.28). 

𝑆𝐼
2 =

1

𝑁 − 1
{∑ 𝐼[𝑋]2

𝑁

𝑗=1

− 𝑁 (
1

𝑁
∑ 𝐼[𝑋]

𝑁

𝑗=1

)

2

} (3.28) 

The term 𝑁 − 1 can be changed to N in case of a large N. The (3.28) will be reformed in this 

case and can be represented by the failure probability. 

𝑆𝐼
2 =

𝑃𝑓(1 − 𝑃𝑓)

𝑁
 (3.29) 

This value represents the estimation error for failure probability based on the trial numbers and 

estimated failure probability. Clearly, the required number of total trials is related to the desired 

accuracy for failure probability. In [33], it is reported that some attempts have been made to 

evaluate the minimum required number, such as (3.30).  

𝑁 ≥  
1

[𝑉𝑎𝑟(𝑃𝑓)]2   
 |1 −

1

𝑃𝑓
|  (3.30) 

3.7 Importance sampling method 

Efficiency and accuracy generally contrast one another. More efficiency leads to less accuracy 

and vice versa. The variance of an estimated probability in the Monte Carlo method represents 

the accuracy of the result. To produce better or more accurate results, the variance should be 

decreased by increasing the number of sample points [53]. 

Otherwise, if the efficiency of Monte Carlo is considered, fewer random points should be 

obtained for decreasing the calculation time to reach the same level of variance. These two 

scenarios are so-called variance-reduction techniques. In these techniques, the variance is 

decreased with the same number of random points, or the variance level remains constant but 

with fewer random realizations [54].  

As mentioned, the problem in applying the crude Monte Carlo is that the joint density function of 

basic variable is located in an area far from the limit state failure side. For example, to reach a 

reliability level of 3.8 with 1 million sample points, 7 points should be located in the failure side. 

Therefore, a method has been proposed to increase the efficiency of the sampling method.  

An importance sampling method was first introduced by Harbitz [55]. Importance sampling is the 

most effective reduction technique [56]. The most important characteristic of this method is the 
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process of producing samples. The sample points are mostly distributed in the failure domain, 

which helps speed convergence on the final probability value [45]. 

In order to apply the importance sampling method, the integral in (3.24) can be rewritten as 

follows: 

P𝑓
∗ = ∫ 𝐼[𝑔(𝑥) ≤ 0] 𝑓(𝑥)𝑑𝑥 = ∫

𝐼[𝑔(𝑥) ≤ 0]

ℎ𝑣(𝑥)
 𝑓(𝑥) ℎ𝑣(𝑥) 𝑑𝑥 (3.31) 

where ℎ𝑣 is the importance sampling density function.  

Again here by comparing the integral in (3.31) and the first-moment function, it can be 

concluded that P𝑓 is the expected value of 
𝐼[𝑔(𝑥)≤0] 𝑓(𝑥)

ℎ𝑣(𝑥)
,  and component 𝑥 is distributed based on 

importance sampling distribution function ℎ𝑣(𝑥) ([31]). Comparing (3.31) to the (3.26) shows that 

𝐼[ ]
𝑓

ℎ
 is applied instead of 𝐼[ ]. Therefore, the unbiased estimation of failure probability can be 

represented as (3.32). 

P𝑓
∗ = 𝐸[𝐼(𝑋)] =

1

𝑁
∑

𝐼[𝑔(𝑥𝑗) ≤ 0]

ℎ𝑣(𝑥𝑗)
 𝑓(𝑥𝑗)

𝑁

𝑗=1

 (3.32) 

The variance of estimated probability with importance sampling is formulated in (3.33) [52]. 

𝑉𝑎𝑟[P𝑓
∗] =

𝑉𝑎𝑟 (
𝐼𝑓
ℎ

)

𝑁
 (3.33) 

𝑉𝑎𝑟 (
𝐼𝑓

ℎ
) = ∫ … ∫ {𝐼[ ]

𝑓(𝑥)

ℎ𝑣(𝑥)
}

2

ℎ𝑣(𝑥)𝑑𝑥 − 𝜇𝑝𝑓
2  (3.34) 

Based on these equations, the optimum choice of ℎ𝑣 can be easily found and represented, as in 

(3.35) [34].  

ℎ𝑣 =
|𝐼[ ] 𝑓(𝑥)|

∫ … ∫  |𝐼[ ] 𝑓(𝑥)| 𝑑𝑥
 (3.35) 

Then by substituting in (3.34), 

𝑉𝑎𝑟 (
𝐼𝑓

ℎ
) = {∫ … ∫  |𝐼[ ] 𝑓(𝑥)| 𝑑𝑥}

2

− 𝜇𝑝𝑓
2  (3.36) 

If |I[ ] f(x)| remains positive everywhere, the integral will be identical with μpf
, and subsequently 

Var[Pf
∗] will be zero. So the optimal choice of ℎ𝑣 is equal to (3.37). 
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ℎ𝑣 =
𝐼[𝑔(𝑥) ≤ 0] 𝑓(𝑥)

 𝜇𝑝𝑓

 (3.37) 

At first, it seems that this equation is not advantageous, because for evaluating ℎ𝑣, 𝜇𝑝𝑓
, 

probability of failure is needed, which is impossible to find. However, progress can be made by 

an initial estimation of failure probability 𝜇𝑝𝑓
, which is close to the final value. It should be taken 

into account that a poor choice of importance sampling function will lead to increase of failure 

probability variance. Therefore, importance sampling should be used with caution ([52], [34]). 

The critical point for the importance sampling technique is to produce a positive sampling 

located near the most probable failure point (maximum likelihood or design point) ([45], [57]). 

Generally, finding the optimal ℎ𝑣 is a difficult task, typically requiring appropriate prior 

information such as design point [52]. Usually, this point is unknown, though, and must be 

evaluated based on other approaches, such as FORM or FOSM initially; the importance 

sampling function is then applied on this point.  

In order to skip this prior analysis alternative approach, the so-called adaptive method can be 

applied. By means of this method and its algorithm, the sample domain will be guided in the 

direction of the design point. Thus, it is not necessary to find the design point before applying 

the method and nor to apply importance sampling afterwards. Another advantage is that the 

importance sampling function can be modified through each iteration of the adaptive importance 

sampling algorithm.   

In the application of the adaptive importance sampling method, an arbitrary point in the failure 

side of the limit state would be the initial sampling point (𝑥∗) for the algorithm. By processing the 

algorithm of the adaptive method, 𝑥∗ will be the design point in the final iteration. The importance 

sampling function ℎ𝑣 for a problem with n basic variables, could be an n-dimensional normal 

joint density function with mean values based on the initial selected point on the failure side of 

the first iteration and with a standard deviation for each random variable ([31], [52]).  

In each iteration, the sample domain is reproduced based on the ℎ𝑣, which is modified according 

to the sample domain in the final iteration. The standard deviation for the function ℎ𝑣 can be 

considered constant in all iterations, but the mean value is changed in order to guide the 

sampling domain toward the design point [58]. 

The next point among sample points can be selected based on the likelihood of sample 

realization. The point with the maximum likelihood (𝑓(𝑥)) is the point needed for the next step of 

the calculation. This selected point will be considered the mean value of the ℎ𝑣  function in next 

iteration. This loop will be continued until the convergence error is reached. Considering the first 

iteration, the estimated probability of failure can be calculated in the first iteration from (3.38). 
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P𝑓
[1] =

1

𝑁[1]
∑

𝐼[𝑔(𝑥𝑗
[1]) ≤ 0]

ℎ𝑣
[1](𝑥𝑗

[1])
 𝑓(𝑥𝑗

[1])

𝑁

𝑗=1

 (3.38) 

And after s-th iteration, the probability will be estimated by (3.39) [52].  

P𝑓
[𝑠] =

1

𝑁𝑎𝑙𝑙
∑ ∑

𝐼[𝑔(𝑥𝑗
[𝑢]) ≤ 0]

ℎ𝑣
[𝑢](𝑥𝑗

[𝑢])
 𝑓(𝑥𝑗

[𝑢])

𝑁[𝑢]

𝑗=1

𝑠

𝑢=1

 (3.39) 

Then the termination condition can be defined with a convergence error value 𝜀. 

𝜀 < |
P𝑓

[𝑠] − P𝑓
[𝑠−1]

P𝑓
[𝑠−1]

| (3.40) 

3.8 Comparing reliability methods 

In the first step, a generic model for the structure resistance is used to apply the methods 

introduced in previous sections. A conventional model, so-called generic, is considered in this 

part for the resistance probabilistic model. The loading includes two mutually independent 

actions: a permanent load G and leading imposed load Q. Resistance of generic member (which 

covers all types uncertainty related to material and resistance modeling) is defined by a 

lognormal distribution with a coefficient of variation COV = 0.15 and the mean R as follows [15]: 


𝑅

= 𝑅𝑘  e1.65 𝑐𝑜𝑣 (3.41) 

In the case of a generic structural member, it is assumed that the characteristic value 𝑅𝑘 of the 

resistance 𝑅 may be calculated as the 5% fractile of R and the design value 𝑅𝑑 as follows:  

𝑅𝑑 = 𝑅𝑘/𝛾𝑅 (3.42) 

where γR is a resistance partial factor considered for generic members to be γR = 1.1. 
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Figure 3.8: Random variable 𝑅, the characteristic value 𝑅𝑘 and design value 𝑅𝑑 [15] 

The analysis of generic resistance assumes the linear behavior of structural members: namely 

actions and their characteristic values. The action part includes permanent actions 𝐺 and 

variable actions 𝑄. Variable actions may comprise two actions at the same time in the limit state, 

leading variable 𝑄1 and accompanying variable action 𝑄2. Additionally, by considering the 

uncertainty in a loads model with 𝜃, the limit state can be defined by (3.43) as a limit state for a 

generic resistance model. 

𝑔 = 𝑅 − 𝜃(𝐺 + 𝑄) (3.43) 

3.8.1 Definition of load ratio 𝜒 for reliability analysis 

The ratios of different actions’ characteristic values are defined as a parameter for interpretation 

of the reliability results. The influence of this parameter on the reliability level and load 

combination are investigated in the upcoming chapters. Permanent or dead load 𝐺, leading 

variable 𝑄1 and accompanying variable load 𝑄2 may be considered as three types of loadings 

for the reliability analysis. The ratios of these loads are defined in (3.44) and (3.45). The results 

are represented based on these defined ratios.  

𝜒 =
𝑄𝑘

𝑄𝑘 + 𝐺𝑘
=

𝑄1 𝑘 + 𝑄2 𝑘

𝑄1 𝑘 + 𝑄2 𝑘 + 𝐺𝑘
 (3.44) 

𝑘 =
𝑄2 𝑘

𝑄1 𝑘
 (3.45) 

 

 p 

R R 

R Rd 

R(R) 

R Rk 
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These values are to be applied in reliability analysis to distribute the total assumed loading in a 

different loading type and to observe their influence on the final reliability index result. The 𝜒 

value represents the structural normalized weight, and 𝐺 is the self-weight of structure; as such, 

the high values of 𝜒 correspond to the light-weight structures where variable loads are dominant 

in the structure loading. On the other hand, small values of 𝜒 represent the heavy-weight 

structures, where self-weight or permanent actions are the most subjected actions. Figure 3.9 

shows the changing behavior schematic in loads by 𝜒. Variable 𝑘 is also the ratio between two 

variable loads and when its minimum equals 0, which means that there is only one variable load 

in the limit state. When It reaches its maximum of 1, two variable loads have the same 

characteristic value. In between the maximum and minimum 𝑘, 0.25, 0.5 or 0.75 values are 

considered. 

 

Figure 3.9: Loading diagram according to the   

By increasing the parameter , the distributions of loads also vary. This variety is investigated in 

an arbitrary case with an assumed total load of 1, with one permanent and one imposed load. 

The distribution behavior for these two loads by increasing  is presented in Figure 3.10 and 

Figure 3.11, respectively. 
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Figure 3.10: Permanent load G distribution with increasing of  

 

Figure 3.11: Variable load Q distribution with increasing of  

The representation of 𝜒 factor for structural weight may also be classified based on its values. In 

order to categorize structures based on influence of 𝜒, the distributions in Figure 3.10 and 

Figure 3.11 for each ratio are compared individually.  
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Figure 3.12: Classification of structural weight based on 𝜒 

Based on this comparison the categorization of structural weight according to 𝜒 is presented in 

Figure 3.12. The first part 𝜒: (0 − 0.3), as it seems in Figure 3.13, is the interval which 

represents permanent actions as decisive one. The distributions of permanent actions are also 

in this interval laying in higher value with higher deviation. The values of permanent loads are 

lying in higher ranges in this interval therefore; it means that the structure in this interval 

represents the heavy-weight ones. Here structures with materials like concrete and masonry 

may be represented as hevy-weight structures. 

On the other hand at the end of the interval for 𝜒: (0.6 − 1), variable actions are higher than 

permanent loads. Therefore, the amounts of self-weight or permanent load are not decisive and 

this interval represents the light-weight structures. Based on the Figure 3.15 it can be also 

observed that here the distribution of variable load are decisive. Steel structures and timber 

structures may be represented by this category as light-weight structures. 

The middle interval is representing the medium weight structures. As it seems in Figure 3.14 the 

distributions are close to each other. Either of permanent or variable loads may be the decisive 

actions in this category. Composite structures could be classified as a medium weight 

structures. 
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Figure 3.13: Heavy-weight distributions 
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Figure 3.14: Medium-weight distributions 
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Figure 3.15: Light-weight distributions 

 

3.8.2 Comparison result 

In this part, the limit state includes only one leading variable action. The stochastic parameters 
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Figure 3.16: Reliability of generic model with crude Monte Carlo and importance sampling 

The same behavior and result are observed with both crude Monte Carlo and importance 
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Table 3.2: Stochastic parameters for reliability analysis [15], [59] 

No. 
Category of 

variables 
Name of basic variables 

Symb. 

X 
Dist. Mean Cov. x 

1 Actions Dead load G Normal Gk 0.05–0.10 

2  Snow (50 years) S Gumbel 1.1Sk 0.30 

3  Snow (1 years) S Gumbel 0.35Sk 0.7 

4  Wind (50 year) W Gumbel 0.6Wk 0.35 

5  Wind (1 year) W Gumbel 0.3Wk 0.5 

6  Imposed (50 years) Q Gumbel 0.6qk 0.35 

7  Imposed (5 years) Q Gumbel 0.2qk 1.1 

8 Resistance Structural steel fy Lognormal fyk+2σ 0.08 

9  Concrete fc Lognormal fck+2σ 0.17 

10  Reinforcing steel fy Lognormal fyk+2σ 0.05 

11  Timber ft Lognormal ftk+2σ 0.15 

12  Masonry  fk Lognormal 1.32 fk 0.16 

13 Uncertainty Steel bending  R Lognormal 1,10 0.07 

14  Concrete R Lognormal 1.00 0.10 

15  Timber R Lognormal 1.00 0.10 

16  Masonry  R Lognormal 1.00 0.18 

17  Actions E Lognormal 1.00 0.05 

In the context of this study, reliability analysis is the tool for evaluation and assessment of the 

investigations. A conventional representation of stochastic parameters for different basic 

variables is represented in Table 3.2.  

These parameters are represented based on the mean value standard deviation and the type of 

distribution functions. For reliability analysis with more than one variable load, Turkstra’s rule is 

applied for considering the combination of two time-dependent variable loads in this review [60]. 

In upcoming sections, reliability analysis will be conducted based on the methods and 

parameters explained in this chapter.  
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4 Load combinations and partial safety factors 

4.1 EN-1990 load combination 

The design process in EN-1990 is conducted based on the limit state design concept. This 

concept requires the modeling of loads and structural components in various design cases. The 

limit state is divided into two categories: ultimate limit state and serviceability limit state. Limit 

states are the criteria defined based on the loads and structural parameters to verify the design. 

The verification has to be done by checking the exceedance of the limit state. All relevant load 

cases and structural parameters have to be considered with their design values in the procedure 

of verification [14].  

The design value of action effects (𝐸𝑑) should be determined according to the different 

combinations of relevant load cases. The design value of action effects is calculated by 

implementing the partials safety factors and the correspondent characteristic value of each 

individual action effect. Partial safety factors are categorized according to the source of actions, 

such as permanent actions, self-weight, variable actions, environmental actions, seismic loads, 

geotechnical loads and accidental loads.  

For each critical load case, the design values of the action effects (𝐸𝑑) are calculated through a 

combination of the action values that occur simultaneously. In structural design, several types of 

loads are considered, which can be defined as natural or human-made phenomena. A structure 

may be subjected to actions due to self-weight, loads on floors, wind, snow, thermal actions, and 

so on. However, only critical load cases have to be considered for the verifications. These 

critical load cases are compatible with the design values determined from characteristic values 

[14],[16].  

In the case of ultimate limit states, the different forms of limit states have been defined in section 

6 of EN-1990. For persistent and transit design situations, the fundamental load combination is 

defined by equation 6.10 in EN-1990 and (4.1): 

∑ 𝛾𝐺,𝑗𝐺𝑘,𝑗" + " 𝛾𝑝𝑃 " + " 𝛾𝑄,1𝑄𝑘,1" + " ∑ 𝛾𝑄,𝑖𝜓0,𝑖𝑄𝑘,𝑖

𝑖>1𝑗≥1

 
(4.1) 

where " + " denotes “to be combined with,” 𝛴 denotes “the combined effect of” and P represents 

action due to pre-stressing. Equation (4.1) can also be represented according to favorable (inf) 

and unfavorable (sup), as in (4.2).  

∑ 𝛾𝐺,𝑗,𝑠𝑢𝑝𝐺𝑘,𝑗,𝑠𝑢𝑝  " + " ∑ 𝛾𝐺,𝑗,𝑖𝑛𝑓𝐺𝑘,𝑗,𝑖𝑛𝑓 " + "𝛾𝑄,1𝑄𝑘,1" + " ∑ 𝛾𝑄,𝑖𝜓0,𝑖𝑄𝑘,𝑖

𝑖>1

 
(4.2) 
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In EN-1990, two other combinations (6.10a and 6.10b) were proposed for limit states in STR 

and GEO situations. The less favorable of these two combinations will be applied as a design 

value for the action effects. However, in the German national Annex of EN-1990, use of these 

two combinations is not permitted (Section 4.3 details the advantage of these combinations). 

∑ 𝛾𝐺,𝑗𝐺𝑘,𝑗" + " 𝛾𝑝𝑃 " + " 𝛾𝑄,1𝜓0,𝑖 𝑄𝑘,1" + " ∑ 𝛾𝑄,𝑖𝜓0,𝑖𝑄𝑘,𝑖

𝑖>1𝑗≥1

 
(6.10𝑎) (4.3) 

∑ 𝜉𝑗 𝛾𝐺,𝑗𝐺𝑘,𝑗" + " 𝛾𝑝𝑃 " + " 𝛾𝑄,1 𝑄𝑘,1" + " ∑ 𝛾𝑄,𝑖𝜓0,𝑖𝑄𝑘,𝑖

𝑖>1𝑗≥1

 (6.10𝑏) (4.4) 

 𝐺𝑘,𝑗 is permanent action, 𝑄𝑘,1 is leading variable action and 𝑄𝑘,𝑖 is accompanying variable load, 

while 𝛾𝐺,𝑗 is permanent load partial factor, 𝛾𝑄,1 is partial factor for leading variable load, 𝜉 is 

reduction factor for permanent load and 𝜓0,𝑖 is the combination factor for variable loads. The 

corresponding values for these factors are shown in EN-1990 in A1.1., Table A1.2(A), A1.2(B) 

and A1.2(C).  

4.2 Reliability analysis of EN-1990 load combinations 

According to EN-1990, various kinds of combinations and factors can be used to introduce a 

load combination for a structure. Different values for multiple types of partial factors and 

combination factors based on limit state type, load properties and structural type are proposed in 

EN-1990. Different selections from these factors lead to different results for structural design. In 

order to show the varying outcomes of each combination, reliability analysis is conducted for all 

possible load combinations. The algorithm of partial factors application for reliability analysis is 

based on the design (4.5). 

𝐸𝑑 = 𝑅𝑑 (4.5) 

Consequently, for each load combination in EN-1990 with two variable loads and one dead load, 

(4.5) may be reformulated for 6.10, 6.10a and 6.10b as (4.6), (4.7) and (4.8), respectively. 

𝛾𝐺𝐺𝑘 + 𝛾𝑄1 𝑄𝑘1 + 𝛾𝑄2𝜓0𝑄𝑘2 =
𝑅𝑘

𝛾𝑀
 (4.6) 

𝛾𝐺𝐺𝑘 +  𝛾𝑄1𝜓0 𝑄𝑘1 + 𝛾𝑄2𝜓0𝑄𝑘2 =
𝑅𝑘

𝛾𝑀
 

(4.7) 
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𝜉𝛾𝐺𝐺𝑘 + 𝛾𝑄1 𝑄𝑘1 + 𝛾𝑄2𝜓0𝑄𝑘2 =
𝑅𝑘

𝛾𝑀
 

(4.8) 

The characteristic values of all basic variables with different load ratios 𝜒, 𝑘 [eq.(3.44) and 

eq.(3.45)] are calculated according to (4.5). Afterwards, mean values for distribution functions 

are determined based on the assumption of stochastic parameters and fractile values in Table 

3.2. The dead load is considered the permanent action with the highest coefficient for dead load 

in Table 3.2. These calculations must be made for all load combinations and partial factor sets. 

The overall rationale for this algorithm is presented in Figure 4.1. Material partial factors, 𝛾𝑀, are 

selected according to the recommendation of their correspondent Eurocode as presented in 

Table 4.1. 

Table 4.1: Material partial factor 𝛾𝑀 based on recommendation in Eurocodes 

Concrete Steel Steel Rebar Timber Masonry 

1.5 1.0 1.1 1.3 1.5 

 

Figure 4.1: Reliability analysis of load combinations algorithm 
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𝑔 = 𝜃𝑅𝑅 − 𝜃𝐸(𝐺 + 𝑄1 + 𝑄2) (4.9) 

where 

𝑔 is limit state function, 

𝜃𝑅 is resistance uncertainty, 

𝑅 is resistance, 

𝜃𝐸 is actions uncertainty, 

𝐺 is permanent action, 

𝑄1 is limit leading variable action, and 

𝑄2 is limit accompanying variable action. 

The limit state in (4.9) may be a representative of different types of structural materials and 

failure modes. All structural failure modes in which the action effects and actions have a linear 

relation, such as a beam in bending, can be modeled by the same limit state as in (4.9). In the 

current study, concrete (EN-1992-1-1[61]), steel (EN-1993-1-1[62]), steel rebar (EN-1992-1-

1[61]), timber (EN-1995-1-1[63]) and masonry (EN-1996-1-1[64]) are considered for 

investigation. For each type of material, 𝑅 is represented by the correspondent stochastic 

parameter for the material in Table 3.2. Moreover, three types of variable actions (wind, snow 

and imposed load) are considered for the investigation of different load combinations. The basic 

variables, the load ratios 𝜒 and 𝑘 as explained in (3.44) and (3.45), are also considered. In total, 

4,455 reliability analyses are completed for all types of materials, loads and their combinations. 

The average reliabilities for all these cases for three fundamental combinations in EN-1990 are 

presented in Figure 4.2. 
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Figure 4.2: Average reliability for all cases and EN-1990 combinations 

Figure 4.2 shows three different combinations, although in practice for the design process, only 

two combinations can be used. According to EN-1990, the less favorable combination between 

6.10a and 6.10b has to be selected for the design process. Therefore, the combination with 

greater reliability is decisive. Consequently, the correspondent combination has to be selected 

between 6.10a and 6.10b. The reliability behavior depicted in Figure 4.4 can be reformatted as 

that depicted in Figure 4.3 with the less favorable combination from 6.10a and 6.10b. 

 

Figure 4.3: Average reliability for all cases and EN-1990 combinations 

These 4,455 values can also be treated as random variables. This database of reliabilities 

representes a mean and coefficient of variation. The histogram for reliability indexes according 

to all possible combinations and basic variables is shown in Figure 4.4.  
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Figure 4.4: Histogram of all reliability indexes for EN-1990 combinations 

The whole database may be subdivided into two possible fundamental combinations in EN-

1990, 6.10 and 6.10a&b. The histogram for 6.10 and 6.10a&b are presented in Figure 4.5 and 

Figure 4.6, respectively. 
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Figure 4.6: Histogram of all reliability indexes for EN-1990 combinations 6.10a&b 
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reliability greater than that of reinforcement steel, although the material partial factor for 

reinforcement steel is greater than that of steel.  

 

Figure 4.7: Histogram of different resistance types based on EN-1990 combination 6.10 

 

Figure 4.8: Average reliability for each resistance of EN-1990 combination 6.10 for all load 

cases and load ratios 
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Figure 4.9: Reliability for imposed load with k = 0, 6.10 with line, 6.10a&b with dash 

 

Figure 4.10: Reliability for wind load with k = 0, 6.10 with line, 6.10a&b with dash 
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Figure 4.11: Reliability for snow load with k = 0, 6.10 with line, 6.10a&b with dash 
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materials and their combination may be found in Appendix C: Additional diagrams for load 

combinations of EN-1990. 

 

Figure 4.12: Steel reliability for wind as leading action and imposed accompanying, combination 6.10 

 

Figure 4.13: Steel reliability for wind as leading action and snow accompanying, combination 6.10 
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Figure 4.14: Steel reliability for imposed load as leading action and wind accompanying, combination 

6.10 

 

Figure 4.15: Steel reliability for imposed load as leading action and snow accompanying, combination 

6.10 

Parameter 𝑘 affects reliability by increasing the reliability index. In Figure 4.12 through Figure 

4.17, it can be seen that by increasing 𝑘, the reliability of a steel structure is also increased. By 

applying an extra variable load in the limit state, more safety measures are also be introduced in 

the calculation. Therefore, the higher values of 𝑘 lead to greater reliability. The diagrams for 

other cases with different materials can be found in Annex A. 



4 Load combinations and partial safety factors   

 

56 

 

Figure 4.16: Steel reliability for snow as leading action and imposed accompanying, combination 6.10 

 

Figure 4.17: Steel reliability for snow as leading action and wind accompanying, combination 6.10 

As can be observed for the case of snow load from Figure 4.16 and Figure 4.17, the reliability 

level is very low for the high value of 𝜒. Therefore, it seems that an increase is needed in safety 

measures regarding snow loads (see Section 4.5 for a comprehensive discussion of and 

proposal for snow load partial factors). 

4.3 Comparison of combination 6.10 and 6.10a&b in design 

The previous section shows that by comparing different reliability analysis approaches, the load 

combination 6.10a&b gives more consistent results concerning target reliabilities. It can be 
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concluded that this load combination leads to more economical design than the load 

combination 6.10. In order to compare these two combinations regarding the design, a concrete 

beam is considered as a case study. Concrete beams are used worldwide. Consequently, this 

case study aids in the goal of comparison in this study.  

The geometrical properties of a concrete beam are illustrated in Figure 4.18. A concrete beam is 

considered to be subject to permanent, imposed and leading variable loads, and wind as 

accompanying variable load. 

 

Figure 4.18: Geometrical properties of a reinforced concrete beam 

Based on EN-1990 and EN-1992 [61], the design resistance of a concrete beam is calculated 

according to (4.10): 

𝑅𝑑 = 𝐴𝑠 (𝑓𝑦𝑘/𝛾𝑠) (ℎ –  𝑎 –  0,5 𝐴𝑠 𝑓𝑦𝑘  𝛾𝑐  /(𝑏𝛼𝑐𝑐𝑓𝑐𝑘 𝛾𝑠)), 
(4.10) 

 

where, 𝐴𝑠 is the area of the steel reinforcement, 𝑓𝑦𝑘 is the characteristic value of the 

reinforcement strength, ℎ is the height of the cross-section, 𝑎 is the distance of reinforcing bars 

from the bottom side, 𝑓𝑐𝑘 is the characteristic value of concrete strength, and 𝛼𝑐𝑐 is the reduction 

factor of the concrete strength with 𝛼𝑐𝑐 = 0.85 as a recommended value. Partial factor s is the 

partial factor for reinforcing steel, which is s = 1.15, and c is the partial factor for concrete 
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strength, which is equal to c = 1.5. Hence, the limit sate function for a reliability analysis of the 

concrete beam is defined by (4.11) by considering uncertainty, resistance and action effects:  

𝑔(𝑥) = 𝑅(𝑥) − 𝐸(𝑥) = 𝜃𝑅(𝐴𝑠 𝑓𝑦  (ℎ –  𝑎 –
 0,5 𝐴𝑠 𝑓𝑦

(𝑏𝛼𝑐𝑐𝑓𝑐)
)) − 𝜃𝐸(𝐺 + 𝑄1 + 𝑄2) (4.11) 

where, 𝜃 is uncertainty of resistance (𝑅) or actions (𝐸). Variables 𝐺, 𝑄1 and 𝑄2 represent the 

actions’ effects as the moment in the middle of the beam. For reliability analysis, a concrete 

beam with a compressive strength of 𝑓𝑐 = 20 [MN/m2] and yielding strength of steel 𝑓𝑦𝑘 = 500 

[MN/m2] is considered. The beam is assumed to be subject to a total load of 30 [kN.m], which is 

going to be dedicated to each type of load according to the load ratio of χ and k from (3.44) and 

(3.45). Figure 4.19 shows the reliability analysis for the case with imposed load as leading and 

wind as accompanying action. 

 

Figure 4.19: Reliability of concrete beam with imposed load and wind load with k = 0.25 

Figure 4.19 shows that the highest result is achieved with the combination 6.10, but this amount 

of safety does not mean that this is an optimal choice for a load combination. According to the 

target reliability recommended in this code, using this load combination will provide safety 

greater than is required in the most ranges of load ratios. Therefore, overestimation occurs as a 

result of the design of the structure. If the procedure of design for these two combinations is 

considered correctly, the required amounts of steel cross-section are illustrated in Figure 4.20. 
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Figure 4.20: Required steel for a concrete beam design with imposed  load and wind load with 

k = 0.25 

 

Figure 4.21: Design deviation for 6.10 and 6.10a&b for concrete beam with imposed load and wind 

load with k = 0.25 

In Figure 4.21, the deviations for both combinations in the design are shown. The maximum 

point of deviation is approximately 9%. This level of deviation means that when the design 

procedure is applied based on a 6.10 combination, the final structure has consumed 9% more 

material. In other words, the final result of the design process would generate 9% waste of the 

material used in the construction.  
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The maximum deviation occurs also in the range of load ratios for structures subjected to mostly 

permanent actions. As such, for heavy-weight structures such as concrete structures, this 

deviation will significantly influence the final design and make it rather conservative. With regard 

to material consumption, application of 6.10 will generate 9% wasted material in the construction 

procedure. 

4.3.1 Conclusion 

Based on the criteria of reliability, and as has been shown for a concrete beam, the behavior of 

6.10a&b is the most compatible with the target reliability recommended by EN-1990. 

Applications of these two combinations, 6.10a and 6.10b, must be considered simultaneously. 

Hence, the less favorable of these two will be selected for the design process. Overall, the 

reliability of these two demonstrates constant behavior in the ranges of load ratios. 

The other application of these two combinations appears in material consumption and structural 

costs. As has been shown for the design of a concrete beam using the load combination 

6.10a&b, the final material consumption is at maximum approximately 10% lower than would be 

the case with combination 6.10. The result for 6.10a&b is more sustainable than that of 6.10. 

Despite the advantages, these combinations are ignored in the national annex of EN-1990 in 

Germany. Based on this investigation, it will be recommended that in the new version of the 

national annex of EN-1990 these two combinations are also considered as applicable 

combinations in the code. With a simple calculation, it can be concluded that much consumption 

of unnecessary material occurs in the German construction industry; such wastage can be 

diminished if these two combinations are applied in the design procedure. 

4.4 Reduction of permanent load partial safety factor 

Permanent actions are highly under discussion during the ongoing reviewing process of next 

generation of Eurocodes. As one of the most important goals for next version of EN-1990, it is 

decided to produce a guideline of structural design which can give an economical design. 

Sustainability of structural design has to be considered in the introduction of safety measures.  

Subsequently researchers are ought to investigate the conservative consideration of Eurocodes. 

A related aspect is safety factors for permanent actions. The calibration results in this 

investigation and other references show that the current value of 1.35 is higher than required 

partial safety factor for self-weight or permanent actions. Therefore a reduction is this factor has 

to be investigated.   
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4.4.1 Reliability analysis of reduced permanent partial factor  

Partial safety factor of permanent actions is going to be considered as 1.25 instead of 1.35. This 

new value will replace as partial safety factor of permanent actions in load combinations of EN-

1990. The comparison of fundamental combinations for both cases is done according to the 

reliability analysis. The reliability calculation is conducted the same as in section 4.2. The overall 

average of all reliability analysis with 𝛾𝐺 = 1.25  is represented in Figure 4.22. 

 

 

Figure 4.22: Average reliability for all cases and EN-1990 combination with 𝛾𝐺 = 1.25  

As it seems in Figure 4.22, the results of fundamental load combinations in EN-1990 by 

considering 𝛾𝐺 = 1.25 are producing more consistent result regarding target reliability. Both 

combinations 6.10 and 6.10a&b are giving lower results than the case with 1.35 as partial factor 

in previous sections.  
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Figure 4.23: Histogram of all reliabilities for combination 6.10 with 𝛾𝐺 = 1.25 

 

Figure 4.24: Histogram of all reliabilities for combination 6.10a&b with 𝛾𝐺 = 1.25 

 Eventually the reliability average values for both cases are compared for combinations 6.10 and 

6.10a&b in Figure 4.23 and Figure 4.24 respectively. The values of cases with 𝛾𝐺 = 1.25 are 

higher than target reliability but closer to the target in comparison with 𝛾𝐺 = 1.35. Therefore it 

can be concluded that by application of 1.25 instead of 1.35, will produce economical design 

along with safe design. This will lead to more sustainable design for structural design.  
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Figure 4.25: Comparison of average reliability for combination 610. with 𝛾𝐺 = 1.25 and 𝛾𝐺 = 1.35 

 

Figure 4.26: Comparison of average reliability for combination 610a&b with 𝛾𝐺 = 1.25 and 𝛾𝐺 = 1.35 
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different investigations have shown inconsistent levels of safety between the designed 

structures and the recommended safety levels in the codes [67]. One reason for this violation of 

safety requirements may be the insufficient application of safety requirements in structural 

design codes. Therefore, more safety measures must be introduced to fulfil the minimum safety 

requirements. 

An increase factor is proposed in this investigation to sustain the required safety measures in 

cases of structural design with snow load. Reliability analysis based on the combinations and 

partial factors of EN-1990-1-1 show that the partial factor of snow load is not enough to reach 

the target reliability [16] (see e.g., Figure 4.17). This study proposes and investigates a new 

method for calculation of structures subjected to snow load. This method will be applied and 

improved to get consistent results with the target reliabilities of the Eurocode. The characteristic 

value of snow load for a structural component is determined based on (4.12): 

 

𝑆𝑘 = 𝑠0 ∙ 𝑐𝑖    (4.12) 

where 

𝑠0 is the ground value of snow load based on the location and elevation of the structure, or 

it represents the characteristic value for the ground value of snow, and 

𝑐𝑖  is a shape factor based on the form of the structure.  

 

According to the recommended value of the characteristic value of snow load for specific 

location and structural type, the design value is determined by applying partial the safety factor 

of snow. 

 

𝑆𝑑 = 𝑆𝑘 ∙ 𝛾𝑄      𝑤𝑖𝑡ℎ    𝛾𝑄 = 1.5 (4.13) 

 

An additional safety factor has to be applied in the case of snow loads. An increase factor is 

implemented to account for the cases with low amount of safety. This increase factor will be 

applied to the partial factor of snow and increases the design safety amount. This increase 

factor 𝑘𝑠 is defined based on the ratio of snow load to the weight of the structural components 

themselves. According to Table 4.2, a minimum value of 1 and a maximum of 1.5 are 

considered for the increase factor, and a linear interpolation has to be done to determine 𝑘𝑠 in 

the middle interval. The design value of snow load is determined by considering increase factor 

in (4.14). 

𝑆𝑑 = 𝑆𝑘 ∙ 𝛾𝑄 ∙ 𝑘𝑠      (4.14) 
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Table 4.2: Increase factor 𝑘𝑠 for snow load  

Ratio of snow over self-weight Increase factor 𝑘𝑠  

𝑠0

𝐺
≤ 0.5 1 

0.5 ≤
𝑠0

𝐺
≤ 3.0 0.9 + 0.2

𝑠0

𝐺
 

𝑠0

𝐺
≥ 3.0 1.5 

 

In order to define the ratio in a normalized format, the ratio of snow load can be represented 

based on the total amount of load. Instead of an open interval to infinity, the values can be 

assigned to the interval of ratio, the so-called 𝑆, which is between 0 and 1, as mentioned in 

(4.15) and Table 4.3.  

 

𝑆 =
𝑠0

𝐺 + 𝑠0
                𝑎𝑛𝑑       

𝑠0

𝐺
=

𝑆

1 − 𝑆
 (4.15) 

Table 4.3: Increase factor 𝑘𝑠 for snow load  

Ratio of snow over total load Increase factor 𝑘𝑠  

𝑆 ≤ 0.333 1 

0.333 ≤ 𝑆 ≤ 0.75 0.9 + 0.2 ∙
𝑆

1 − 𝑆
 

𝑆 ≥ 0.75 1.5 

 

Based on Table 4.2 and Table 4.3, the increase factor 𝑘𝑠 corresponding to snow load can be 

represented for both formats of ratios in Figure 4.27. 
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Figure 4.27: Increase factor 𝑘𝑠 of snow load  

These three intervals are separated based on the load's ratios. These ratios can be considered 

to represent the structural weight of the applied snow load. Small ranges of this ratio mean that 

the structure is heavy. For heavy structures, the amount of snow load in comparison with the 

dead load of the structure is small. Therefore, the increase factor is considered to be 1. In other 

words, there is no increase in the amount of snow load because it is not a decisive factor in the 

design process.  

In the case of the middle interval, a linear interpolation is implemented. The factor increases with 

the ratio. The lighter the structure is, the higher the snow load effect will be. The last interval 

represents light-weight structures. In this case, the maximum value of the increase factor has 

been considered because the snow load has a more critical role in the design. 

4.5.2 Reliability analysis of combination with increase factor 

In order to compare the results of this method and to evaluate the differences from the EN-1990 

combinations, reliability analysis with FORM (see Section 3.5) has also been conducted. Load 

combinations for structural design in EN-1990 are implemented with corresponding values for 

partial factors and combination factors. The dead load in this part is self-weight only, and no 

permanent load is involved in reliability. Therefore, the coefficient of variation for the self-weight 

of a steel structure as 0.05 from Table 3.2 is considered. The stochastic parameters for material 

and variable load are also applied according to Table 3.2.  

The application of the increase factor according to Table 4.2 or Table 4.3 is done with all load 

combinations of EN-1990. The result of the reliability index for the case with only one variable 

load as snow, is represented in Figure 4.28, and Figure 4.29 represents the other cases, with 

snow as the leading variable and imposed load as accompanying action, with ratio 𝑘 =  0.5. 
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Figure 4.28: Reliability index for one-variable load, snow load 

 

Figure 4.29: Reliability index for two variable loads, snow load leading and imposed 

accompanying 

As observed, the application of the increase factor, based on the linear equation in Table 4.2 or 

Table 4.3 for variable loads, produces more consistent results than does the EN-1990 approach. 

The difference between the maximum and minimum values of the reliability index with an 

increase factor is lower than the difference of max. and min. in a fundamental combination of 

EN-1990. Hence, the final results demonstrate improved safety through an increased factor 

application method for variable load with a single combination. The reliabilities with higher ratios 

of 𝜒 reach values close to the target reliability. 
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4.5.3 Improvement of linear method  

An improvement in the linear method should offer better results in the middle range ratio of  (for 

example in Figure 4.28, the range between 0.3 and 0.8). In this range, the reliability index of the 

linear method is reduced, and it is below the target reliability level. This creates a concave 

shape in the reliability diagram.  

In order to overcome this problem, an improvement for the calculation of increase factor in this 

middle range should be applied. Based on the linear recommendation in the middle range, the 

increase factor has to be calculated based on a linear interpolation between 1 and 1.5. To 

reduce the effect of this concave area and produce a result more compatible with the target 

reliability, the increase factor of snow has to be raised more at the beginning of the middle 

interval. It means that the inclination of the increase factor in the smaller values of the middle 

range has to be higher than at the end of the middle range. Therefore, instead of a linear 

function for a rising increase factor in the middle range interval, parabola functions can be 

applied (Figure 4.30).  

  𝑘𝑠 = −0.08 ∙ ( 
𝑠0

𝐺
)

2

+ 0.48 ∙  
𝑠0

𝐺
+ 0.78 (4.16) 

 

 

Figure 4.30: Linear and parabola models for calculation of 𝑘𝑠 in middle range 

The reliability analysis for comparison of the parabola method is shown in Figure 4.28 and 

Figure 4.29. The resulting reliability indexes are compared with those of 6.10, 6.10a and 6.10b 

of EN-1990. With higher values of reliability, the influence of a parabola application can be 

observed in the middle range . 
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Figure 4.31: Reliability for linear and parabola methods with EN-1990 combinations for k = 0 

 

Figure 4.32: Reliability for linear and parabola methods with EN-1990 combinations for k = 0.5 

In order to compare these methods with EC-1990 combinations, the deviations of the results are 

presented for both diagrams. The deviations are exposed in Figure 4.33 and Figure 4.34. The 

deviation is calculated from the combination 6.10, because in all cases this combination gives 

the maximum value of reliability. As seen, the deviation is considerable in cases with higher 

ratios of variable loads. In the case of light-weight structures, the method of an increase factor 

gives higher safety levels. The comparisons between the corresponding values of the parabola 

and the linear method show that the parabola will increase the reliability to its maximum amount 

of approximately 10%. 
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Figure 4.33: Deviation of reliability for k = 0 

 

Figure 4.34: Deviation of reliability for k = 0.5 

4.5.4 Conclusion 

The goal of calibration analysis is to achieve constant reliability with respect to the target 

reliability value and to provide the optimum required safety in the design process. Through 

reliability analysis for combination in the EN-1990 for the snow load, it has been observed that 

the resulting values of reliability are not consistent with regard to the target reliability in the 

whole interval of load ratios. Moreover, the results show that the safety level provided by EN-

1990 combinations is lower than the level required in the code.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Load ratio  = (Q
1
 +Q

2
)/(G+Q

1
+Q

2
)

D
e

v
ia

ti
o

n
 %

Deviation of GDR and 6.10a&b for, k=0

 

 

Linear

Parabola

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Load ratio  = (Q
1
 +Q

2
)/(G+Q

1
+Q

2
)

D
e

v
ia

ti
o

n
 %

Deviation of GDR and 6.10a&b for, k=0.5

 

 

Linear

Parabola



4 Load combinations and partial safety factors   

 

71 

Application of the recommended method as an increase factor for snow load produces 

considerably greater safety. The reliability levels of EC-1990 combinations show unacceptable 

results in case of high variable load. In these cases, the maximum deviation of increase factor 

method with the combination 6.10 is nearly 80%. According to this amount of deviation, the 

method of the increase factor seems to be needed for combinations with snow loads. The 

reliability behavior in the case of snow loads leads to the conclusion that the structures with low 

permanent actions or self-weight are more sensitive to the lack of safety. Therefore, the 

maximum value of the increase factor belongs to this interval of load ratio. The improvement of 

linear interpolation with a parabola function increases reliability. With the application of a 

parabola, the concave shape of the diagram for the middle range load ratio is reduced. 

Consequently, reliability levels are smoother and will make the design in all range of load ratios 

more economical.  

Eventually, it can be concluded that application of this method for all kinds of variable loads will 

help to create more economical and safe results simultaneously. In the case of heavy-weight 

structures, it will prevent the design process to produce conservative results because of the high 

value of partial factor for variable loads. Contrarily, light-weight structures do not allow the 

calculation to create an unsafe result by applying higher values of partial factor for variable 

loads.  

4.6 Time-dependent actions and partial safety factor method 

Variable actions are the time-dependent parameters in the code. The classification of target 

reliability is also done based on different reference periods to consider the existence of different 

time-dependent loads simultaneously. For each critical case of loading, the design values of 

action effects (Ed) should be calculated based on the combination of the action values that 

apply concurrently. The classification of actions in Eurocode has been done based on the 

following characterization of actions: 

 variation in time, 

 origin (direct or indirect), 

 variation in space (fixed or free), and 

 nature or structural response (static and dynamic), or both [14]. 
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Figure 4.35 Time variation of different loads [31] 

The most influential parameter for the classification of action is an action’s properties during the 

time. The Eurocode considers the actions based on their time variability in three categories: 

permanent, variable and accidental actions.  

Permanent actions are those whose variation during the structure’s lifetime may be neglected. 

The self-weight of the structure or the weight of some equipment can be considered self-weight. 

Variable actions change significantly during their reference period and the structure’s lifetime, so 

their time-varying properties have to be considered in the load combinations. The combination 

factors are defined in order to consider the time variability characteristic of these actions. 

Environmental actions such as snow and wind loads are considered variable. Moreover, live 

load or imposed loads on structures are also one of the important variable actions in structural 

design.  

The accidental action happens in a very short time in a structure’s lifetime, with a significant 

magnitude. Earthquake actions are classified in this category of actions [31]. A schematic 
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representation of different loads based on the time-varying properties is illustrated in Figure 

4.35. 

In EN-1990, the time variability of load combinations is considered by applying combination 

factors 𝜓 and defining the reference period for characteristic values of variable actions. These 

factors are dependent on the stochastic characteristics of variable actions. For describing the 

probabilistic representation of variable loads, two different distributions are involved: the point in 

time or instantaneous and the maximum value in the certain period of time [68]. In order to 

determine the characteristic value of variable actions, a certain reference period must be 

defined. Reference period is a time interval in which the extreme value of variable action is 

observed. The characteristic value is defined based on the desire probability of exceedance and 

distribution of maximum values in this specific time interval. 

 

Figure 4.36: Variable action at a point in time and maximum probability density function (PDF) in 

reference period τ [69] 

One must consider that the reference period is not necessarily equal to the design working life of 

the structure. In [70] the design working life of structures is categorized into four groups:  

 temporary: 1–5 years, 

 short life: for 25 years, 

 ordinary: for 50 years, and 

 long life: for 100 years. 

 

The recommendation of EN-1990 for the reference period is the annual maximum of variable 

loads, and the corresponding probability of exceedance for characteristic value is 0.02 for the 

annual maximum. If the characteristic value is exceeded in each of the reference periods with its 

probability 𝑝, then after some repetitions for the reference period, the probability of exceedance 
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for the characteristic value will be equal to 1, and this time period will be called the “return 

period” [23]. The relation between the reference period and probability can be expressed based 

on (4.17) [14]. 

𝑇𝑟𝑒𝑡. =
𝜏

𝑝
 (4.17) 

Here, 𝑇𝑟𝑒𝑡. represents the return period, and 𝜏 is the reference period. By considering the 

recommended probability of 0.02 and reference period of 1 year, the return period will be 

determined as 1/0.02 = 50 years. Thus, the characteristic value of variable action based on this 

probability and reference period belongs to the mean return period of 50 years [14]. According to 

EN-1990, selecting a reference period depends on the characteristics of each load, but 

generally its recommendation is 1 year. However, [70] recommends using the 50-year maximum 

as reference period, because it is equal to the design lifetime of ordinary constructions, and the 

asymptotic distribution function of extreme value for 50 or more years has greater accuracy.  

The target reliability for different reference periods is defined on the one-year target value. This 

calculation is made possible by assuming the independent maximum for variable action. The 

value of target reliability for n-year reference period is calculated based on (4.18). 

𝛷(𝛽𝑛) = [𝛷(𝛽1)]𝑛 (4.18) 

For a 1-year reference period, different target reliabilities may be calculated for different 

reference periods. Figure 4.37 shows the relation of 1-year target reliability to different reference 

periods. In the code, based on different RCs and consequence classes, various target 

reliabilities are recommended for 1 year. Figure 3 shows the behavior of target reliability after 

transformation from the 1-year reference period to n-year reference period for different classes. 
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Figure 4.37: Target reliabilities and reference period 

4.6.1 Combination of variable loads 

The load combination process is required to be considered in order to determine the equivalent 

loading system in cases with two or more variable loads [52]. This issue must be considered in 

all reliability and risk analysis. Through the analysis, the extreme of all applied loads has to be 

determined in the selected reference period. The maximum load subjected to the structure 

during the specific reference period 𝑇 can be determined according to the maximum of the sum 

for all individual variable actions as in (4.19) [31].  

𝑋𝑚𝑎𝑥(𝑇) = 𝑚𝑎𝑥𝑇{𝑋1(𝑡) + 𝑋2(𝑡) + ⋯ + 𝑋𝑛(𝑡)} (4.19) 

Generally, solving (4.19) requires complex calculations because it is the combination of various 

random processes with different properties. In a special case of variable loads being 

represented as a stationary stochastic process and mutually independent, the linear sum of 

variables can be represented by outcrossing rate based on Rice’s formula. A detailed 

explanation can be found in [24] and [52]. In safety standards, such a complex calculation for 

finding combination values of actions is impossible. Therefore, the solution was simplified for the 

combination of variable actions.  

4.6.1.1  Ferry Borges-Castanheta (FBC) method 

An approximation of the combination problem and time-dependent variable action was 

recommended based on the rectangular wave renewal process in [71]. This simplified 
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representation of random processes will be applied to solve the (4.19). The modeling of 

rectangular wave process in the FBC model is illustrated in Figure 4.38. 

 

Figure 4.38: Ferry Borges-Castanheta (FBC) load process [31] 

In order to implement the FBC model, some assumptions have to be made:  

 {𝑋𝑛(𝑡)} is stationary, ergodic stochastic processes; 

 all intervals 𝜏𝑛 with constant load for load process {𝑋𝑛(𝑡)} are equal, and 𝜏𝑛 here is 

duration of each pulse for load 𝑋𝑛; 

 𝜏1 ≥ 𝜏2 … ≥ 𝜏𝑛; 

 𝑇 represents the reference period; 

 𝑟𝑛 = 𝑇/𝜏𝑛 are integers; 

 𝑟𝑛/𝑟𝑛−1 is an integer; 

 𝑋𝑛 are constant during each interval 𝜏𝑛;  

 the values of 𝑋𝑛 for different intervals are mutually independent [24]; and 

 𝑋1,𝑋2...𝑋𝑛 are independent.  

 

Each load process may be represented by three distributions: point in time or instantaneous 

𝐹𝑋(𝑥), the combination distribution 𝐹𝑋𝑐
(𝑥), and the maximum distribution in reference period 𝑇 

𝐹𝑋𝑚𝑎𝑥,𝑇
(𝑥). Figure 4.39 represents these three distribution functions for one variable action.  
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Figure 4.39: Distribution function for combination of action [24] 

The maximum distribution for the reference period 𝑇 is determined based on the arbitrary point 

in time distribution according to (4.20). 

𝐹𝑋𝑚𝑎𝑥,𝑇
(𝑥) = [𝐹𝑋(𝑥)]𝑟 (4.20) 

In the case of the combination of two variable loads 𝑋1 and 𝑋2, and with consideration of the 

assumption of the FBC model, the combination distributions will be calculated in two cases of 

combination as (4.21) and (4.22). 

 𝑋2 is combination load, 𝑋2𝑐
is the maximum of 𝑋2 during an interval of 𝜏1 as one pulse of 

𝑋1. 

𝐹𝑋2𝑐
(𝑥2) = [𝐹𝑋2

(𝑥2)]
𝑟2/𝑟1

 (4.21) 

 𝑋1 is combination load, 𝑋1𝑐
 is equal to the arbitrary point in time distribution of 𝑋1. 

𝐹𝑋1𝑐
(𝑥1) = 𝐹𝑋1

(𝑥1) (4.22) 

The combination distributions may also be represented based on the maximum distribution [72]. 

For the same case with two variable loads, the representation of loads 1 and 2 are respectively 

calculated with (4.23) and (4.24).  

{
𝐹𝑋1,𝑚𝑎𝑥,𝑇

(𝑥1) = [𝐹𝑋1
(𝑥1)]

𝑟1

𝐹𝑋1𝑐
(𝑥1) = 𝐹𝑋1

(𝑥1)
→     𝐹𝑋1𝑐

(𝑥1) = [𝐹𝑋1,𝑚𝑎𝑥,𝑇
(𝑥1)]

1
𝑟1 (4.23) 
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{
𝐹𝑋2,𝑚𝑎𝑥,𝑇

(𝑥2) = [𝐹𝑋2
(𝑥2)]

𝑟2

𝐹𝑋2𝑐
(𝑥2) = [𝐹𝑋2

(𝑥2)]
𝑟2
𝑟1

→     𝐹𝑋2,𝑚𝑎𝑥,𝑇
(𝑥2) = [(𝐹𝑋2𝑐

(𝑥2))

𝑟1
𝑟2]

𝑟2

 

                                            →  𝐹𝑋2𝑐
(𝑥2) =  [𝐹𝑋2,𝑚𝑎𝑥,𝑇

(𝑥2)]
1
𝑟1 

(4.24) 

 

The relation of combination distribution and the maximum distribution in certain reference 

periods in (4.23) and (4.24) show an important characteristic of the FBC method. It seems that 

the combination distribution of 𝑋2 depends only on the repetition rate of 𝑋1; and 𝑟2 has no 

influence on the combination distribution in consideration of the maximum of reference period.  

This method can be applied for any number of loads and combination formats, considering all 

mentioned assumptions. Table 4.4 shows the different cases for the application of the FBC 

model with three variable loads. 

Table 4.4: Ferry Borges-Castanheta (FBC) load combination for three variable loads [72]  

Load combination Load 1 Load 2 Load 3  

1 𝑟1 𝑟2/𝑟1 𝑟3/𝑟2 Load 1 dominating next load 2 

2 1 𝑟2 𝑟3/𝑟2 Load 2 dominating 

3 1 1 𝑟3 Load 3 dominating 

4 𝑟1 1 𝑟3/𝑟1 Load 1 dominating next load 3 

 

4.6.1.2 The Turkestra’s load combination rule 

As can be seen in Figure 4.35, only rarely do the maxima of all variable loads occur 

simultaneously. Therefore, it is rather conservative to determine the maximum of the loads 

during the reference period with (4.25).  

𝑋𝑚𝑎𝑥(𝑇) = 𝑚𝑎𝑥𝑇{𝑋1(𝑡)} + 𝑚𝑎𝑥𝑇{𝑋2(𝑡)} + ⋯ + 𝑚𝑎𝑥𝑇{𝑋𝑛(𝑡)} (4.25) 

If the probability of the simultaneous occurrence of two loads is negligible, then the combination 

problem can be solved based on the recommendation of Turkestra [60] by determining the 

maximum of each individual load in the reference period [31]. 

𝑍1 = 𝑚𝑎𝑥𝑇{𝑋1(𝑡)} + 𝑋2(𝑡∗) + ⋯ + 𝑋𝑛(𝑡∗) 

𝑍2 = 𝑋1(𝑡∗) + 𝑚𝑎𝑥𝑇{𝑋2(𝑡)} + ⋯ + 𝑋𝑛(𝑡∗) 

… 

𝑍𝑛 = 𝑋1(𝑡∗) + 𝑋2(𝑡∗) + ⋯ + 𝑚𝑎𝑥𝑇{𝑋𝑛(𝑡)} 

 

 

The maximum value of the load combination will then eventually be determined by (4.26). 
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𝑋𝑚𝑎𝑥(𝑇) ≈ 𝑚𝑎𝑥{𝑍𝑖} (4.26) 

Turkestra’s model is applied in most of the codified load combinations in structural standards. 

4.6.2 Analysis of stochastic parameter for maximum variable load in a reference period 

The transformation of distribution from the arbitrary point in time to the maxima in the reference 

period is a complicated procedure that depends on the correlation properties of variable load in 

the time interval. In the case of a stationary Gaussian process with individual mean and 

standard deviation, the maxima will follow the Rayleigh distribution. In reality, it is not common to 

have the Gaussian and stationary process as a representation of a random process. Therefore 

in these cases, the maximum distribution of variable actions will be described well based on the 

Gumbel distribution of extreme value distribution type one, as in (4.27) [68].  

𝐹𝑄,𝑚𝑎𝑥 = 𝑒𝑥𝑝 [−𝑒𝑥𝑝 − (((
𝜋

√6
) ∙

(𝑥 − 𝜇𝑄)

𝜎𝑄
) + 0.577)] (4.27) 

 

Here 𝜇𝑄 and 𝜎𝑄 correspond to the mean and standard deviation of variable load in the certain 

reference period. 

According to the characteristic of variable loads, it is not possible to have an accurate database 

by observation of the maximum variable loads value during reference period of 50 years. 

Commonly, the database for maximum in reference periods such as 1 year is available. 

Consequently, the maxima distribution in the short reference period may be considered to 

determine the statistical properties of the load in a longer reference period of 50 years. In the 

case of the Gumbel distribution, by assuming the independency of maximum values in years, 

the transformation from t1 to t2 will be done based on the (4.28) and (4.29). Evidently, the 

standard deviation will remain the same, and the mean value will shift according to the ratio of 

two reference periods. Despite the constant standard deviation, the coefficient of variation will 

change because of differing mean values. 

𝜇2 = 𝜇1 + (
√6

𝜋
) ∙ 𝜎1 ∙ 𝑙𝑛(𝑁) = 𝜇1 + (

√6

𝜋
) ∙ (𝜇1 ∙ 𝐶𝑂𝑉1) ∙ 𝑙𝑛(𝑁)

= 𝜇1 [1 + (
√6

𝜋
) ∙ (𝐶𝑂𝑉1) ∙ 𝑙𝑛(𝑁)]       𝑤𝑖𝑡ℎ 𝑁 =

𝑡2

𝑡1
 

(4.28) 

𝜎2 = 𝜎1 (4.29) 

Using (4.28) and (4.29), the coefficient of variation for the reference period of t2 can be 

represented in (4.30) based on the values correspond to 𝑡1. The influences of transformation on 
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the coefficient of variation and mean values are exposed, respectively, in Figure 4.40 and Figure 

4.41. This  diffrentiontion is the effect of the transformation between different reference periods. 

𝐶𝑂𝑉𝑡2 =
𝐶𝑂𝑉𝑡1

1 + (
√6
𝜋 ) ∙ (𝐶𝑂𝑉𝑡1) ∙ 𝑙𝑛(𝑁)

 
(4.30) 

 

 

Figure 4.40: COVt1 versus COVt2 
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Figure 4.41: Ratio of mean values for t1 and t2 

The reduction of COVt2 in comparison with COVt1 is significantly large in higher values of COVt1. 

As a typical case, the transformation from data for the 1-year maxima to the 50-year maxima will 

reduce the COV by approximately 70%. On the other hand, in the case of mean values, greater 

increases in mean value will occur for the cases with higher value of COVt1.  

4.6.3 Probabilistic calibration of combination factor with design method 

The partial factors and combination factors are the essential components of the design process 

based on EN-1990. There are two general methods for determination of safety factors: 

calculation based on the reliability analysis and the method based on the design value format 

[24]. Design value format is an approach recommended in [16] and [19]. Based on the design 

method, the exceedance probability of design load in the reference period 𝑡 for target reliability 𝛽 

can be represented by (4.31),  

𝑃{𝑄 > 𝑄𝑑} = Φ(𝛼𝐸 ∙ 𝛽), (4.31) 

with 𝛼𝐸 = −0.7 is the sensitivity factor for actions and 𝛽 target value of reliability. 

 

In the case of the combination of two actions based on the FBC model, the probability of 

exceedance for the interval of 𝜏1, as the pulse with the longest duration, with a repetition rate of 

𝑟1, has to be considered. The probability in the case of combination can be found in (4.32) [16]. 
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𝑃{𝑄𝑐 > 𝑄𝑐,𝑑} = Φ(𝛼𝐸 ∙ 𝛽)/𝑟1 (4.32) 

Subsequently, the corresponding target reliability in the case of combination will be (4.33). 

𝛽𝑐 = −Φ−1{Φ(𝛼𝐸 ∙ 𝛽)/𝑟1} (4.33) 

Afterwards, the design ratio value determined by the combination value of action will give a 

combination factor value as in (4.34), which is based on the corresponding combination 

distribution and probability of exceedance. In order to present a combination factor according to 

the maxima distribution in the reference period, (4.34) is replaced by (4.35). 

𝜓0 =
𝐹𝑄,𝑐

−1{Φ(0.4 ∙ 𝛽𝑐)}

𝐹𝑄,𝑐
−1{Φ(𝛽𝑐)}

 (4.34) 

𝜓0 =
𝐹𝑄,𝑚𝑎𝑥

−1 {Φ(0.4 ∙ 𝛽𝑐)𝑟1}

𝐹𝑄,𝑚𝑎𝑥
−1 {Φ(𝛽𝑐)𝑟1}

=
𝐹𝑄,𝑚𝑎𝑥

−1 {Φ(0.4 ∙ 𝛽𝑐)𝑟1}

𝐹𝑄,𝑚𝑎𝑥
−1 {Φ(0.7 ∙ 𝛽)}

 (4.35) 

The approximation of (4.35) for the case of normal distribution and Gumbel distribution are 

expressed in (4.36) and (4.37), respectively. The COV represents the coefficient of variation in 

the reference period.  

𝜓0 =
1 + (0.28 ∙ 𝛽 − 0.7 ∙ ln(𝑟1)) ∙ 𝐶𝑂𝑉 

1 + 0.7 ∙ 𝛽 ∙ 𝐶𝑂𝑉
 (4.36) 

𝜓0 =
1 − 0.78 ∙ 𝐶𝑂𝑉 ∙ [0.58 + ln(− ln Φ(0.28 × 𝛽)) + ln((𝑟1)]

1 − 0.78 ∙ 𝐶𝑂𝑉 ∙ [0.58 + ln(− ln Φ(0.7 × 𝛽))]
 (4.37) 

Figure 4.42 presents the approximation diagrams. The difference between the exact and 

approximated method is negligible. By increasing the value of COV for the reference period, the 

deviation between the approximation and the exact method is increased.  

The calibration method based on design value that is explained in this section is the method 

recommended in the EN-1990. Figure 4.43 depicts the calibration result for the combination 

factor with the design method. The combination factor for high repetition rate and big COV will 

be zero. For higher repetition rates, the combination factor will become smaller. This is the same 

in the case of COV. Greater variance in the variable load will prevent the possibility of the 

maximum value accompanying load at the same time as the leading action. Therefore, the 

combination factor will be small.  
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Figure 4.42: Comparison of different distribution for 𝑟1 = 5   

 

 

Figure 4.43: Combination factor for different COV and 𝑟1 for Gumbel and 50-year reference 
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Figure 4.44: Combination factor for different COV and 𝑟1 for Gumbel and 1-year reference 

4.6.4 Conclusion 

According to Figure 4.43 and Figure 4.44 and the comparison of these results with the 

recommended values in EN-1990, it may be concluded that the combination factors in the EN-

1990 are conservative. It is also mentioned in [73] and [74] that the values in EN-1990 are in 

general conservative. This is because of a rough calibration according to previous design 

methods, such as allowable stress [75].  

In the safety concept recommendations of Germany in 1980s, the same method was applied to 

calibrate the partial factor for German code [76]. A detailed explanation is provided for the 

background information in [75] and [77].  

4.7 Simplified load combination 

4.7.1 A proposal for simplified load combination 

Through the new review of the Eurocodes, a concept that must be considered by the 

committees is ease of use. The new generations of Eurocodes must be more convenient for 

engineers to be applied in practice. The confusing parts in the current versions have to be 

omitted. In order to satisfy this aim, a simplified load combination format for the fundamental 

combinations of EN-1990 is proposed. This recommendation solves the complexity of choosing 

different selections of combination factors for variable loads.  
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The combination factors are defined in the EN-1990 to include the occurrence of maximum 

variable load at the same time. Based on different categories of variable loads, different values 

of combination factors must be selected based on Table 4.4. 

 

Table 4.5: 𝜓 factors recommended in Annex A of EN-1990-1-1 

Action 𝜓0 𝜓1 𝜓2 

Imposed loads in buildings, category (see EN 1991-1-1)    

Category A: domestic, residential areas 0,7 0.5 0.3 

Category B: office areas 0.7 0.5 0.3 

Category C: congregation areas 0.7 0.7 0.6 

Category D: shopping areas 0.7 0.7 0.6 

Category E: storage areas 1.0 0.9 0.8 

Category F: traffic area, 

                    vehicle weight ≤ 30𝑘𝑁 

0.7 0.7 0.6 

Category G: traffic area, 

                    30𝑘𝑁 < vehicle weight ≤  160𝑘𝑁 

0.7 0.5 0.3 

Category H: roofs 0 0 0 

Snow loads on buildings (see EN 1991-1-3)    

Finland, Iceland, Norway, Sweden 0.7 0.7 0.2 

Remainder of CEN Member States, for sites located at 

altitude 𝐻 >  1000 𝑚 𝑎. 𝑠. 𝑙. 

0.7 0.7 0.2 

Remainder of CEN Member States, for sites located at 

altitude 𝐻 ≤ 1000 𝑚 𝑎. 𝑠. 𝑙 

0.5 0.2 0 

Wind loads on buildings (see EN 1991-1-4) 0.6 0.2 0 

Temperature (non-fire) in buildings (see EN 1991-1-5) 0.6 0.5 0 

 

The main concept for conducting simplification in load combinations is applied to the 

accompanying variable actions. Based on the current version of EN-1990, the multiplication of 

partial factors for variable actions 𝛾𝑄 = 1.5 to the combination factors 𝜓0 in almost all cases will 

be a value approximately equal to 1. Therefore, in fundamental combinations of EN-1990, 

𝛾𝑄 ∙ 𝜓0 will be replaced by a factor of 1. It follows that the fundamental combinations in EN-1990 

(6.10, 6.10a and 6.10b) in the case of simplified combinations will be replaced by the following 

combinations:  
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6.10 𝐸𝑑 = ∑ 𝛾𝐺,𝑗𝐺𝑘,𝑗" + " 𝛾𝑝𝑃 " + " 𝛾𝑄,1𝑄𝑘,1" + " ∑ 𝟏 𝑄𝑘,𝑖𝑖>1𝑗≥1 , (4.38) 

6.10a 𝐸𝑑 = ∑ 𝛾𝐺,𝑗𝐺𝑘,𝑗" + " 𝛾𝑝𝑃 " + " 𝟏 𝑄𝑘,1" + " ∑ 𝟏 𝑄𝑘,𝑖

𝑖>1𝑗≥1

 
(4.39) 

6.10b 𝐸𝑑 = ∑ 𝜉𝑗 𝛾𝐺,𝑗𝐺𝑘,𝑗" + " 𝛾𝑝𝑃 " + " 𝛾𝑄,1 𝑄𝑘,1" + " ∑ 𝟏 𝑄𝑘,𝑖𝑖>1𝑗≥1 . 
(4.40) 

In simplified cases, the characteristic value of the accompanying action will be considered as its 

design value. This simplification can be applied for all fundamental combinations in persistent 

and transient design cases in EN-1990. 

In order to investigate the application of simplified load combination, the same analyses as in 

Section 4.2 are done for all fundamental combinations of EN-1990 and their simplified formats. 

The average value of calculated reliability for simplified load combination 6.10 and 6.10a&b are 

the same as those for EN-1990 in Figure 4.5 and Figure 4.6. The application of this 

simplification is thus  totally compatible with the results obtained from EN-1990 fundamental 

combinations. For representing the results, the combination of wind and imposed load are 

selected exemplified. The comparison of simplified load combination and the combination of EN-

1990 are shown in Figure 4.45 and in Figure 4.46 for leading wind load and accompanying 

imposed load. Figure 4.47 and Figure 4.48 also representing the case of snow as leading 

variable load and wind as accompanying. 

 

 

Figure 4.45: EN-1990 combination in line and simplified in dash for k = 0.5 and combination 6.10 
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Figure 4.46: EN-1990 combination in line and simplified in dash for k = 0.5 and combination 

6.10a&b 

 

 

Figure 4.47: EN-1990 combination in line and simplified in dash for k = 0.5 and combination 6.10 
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Figure 4.48: EN-1990 combination in line and simplified in dash for k = 0.5 and combination 

6.10a&b 

As is observable, the differences between the simplified and original combinations are not 

considerable. It can be concluded that this simplification proposes an acceptable method for 

ease of use because it prevents the complication of selecting different combination factors in 

calculations. More detailed results may be found in [78]. 

4.7.2 Recommendation of simplified combination in last draft of EN-1990  

After serious discussions of the application of simplified load combination, it has been decided to 

recommend this method as a note in the table of load combination in the code. In last draft of 

the new generation of EN-1990 [18], the simplified load combination is recommended in Note 4 

for Table A1.3 as follows [18]: 

 “For persistent and transient design situations, when γQ ∙ ψ0 ≈ 1 the design value of the 

accompanying variable action can be approximated by its characteristic value.” 

Table A1.3 presents load combinations for the ultimate limit state in the new draft of EN-1990. 

Table 4.6 presents exactly as in the draft of EN-1990 [18].  

This method has been criticized by people from countries like Denmark, which use a smaller 

value for the combination factor in the case of wind and snow. For example, in the national 

annex of Denmark for EN-1990 [79], the combination factor for snow and wind load is 𝜓0 = 0.3. 

Then the resultant value of 𝛾𝑄 ∙ 𝜓0 = 0.45 will not approach 1. In this case, if they want to apply 

the simplified method in their design, this method will lead to an economically unattractive result. 

The conservative results by application of simplified load combinations are the main concern of 

such countries. 

Table 4.6: Table A1.3, load combinations for ultimate limit states [18]  
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Design situation Persistent and transient Accidental Seismic Fatigue 

Clause 6.3.7.2 6.3.7.3 6.3.7.4 6.3.7.5 

Equation 6.29 6.31 6.32 6.33 

Permanent (Gd,j) 𝛾𝐺,𝑗𝐺𝑘,𝑗 𝐺𝑘,𝑗 𝐺𝑘,𝑗 𝐺𝑘,𝑗 

Leading variable (Qd,1)
1
 𝛾𝑄,1𝑄𝑘,1 

𝜓1,1𝑄𝑘,1 or 

𝜓2,1𝑄𝑘,1 𝜓2,𝑖𝑄𝑘,𝑖 

𝜓1,1𝑄𝑘,1 

Accompanying variable 

(Qd,i) 
𝛾𝑄,𝑖𝜓0,𝑖𝑄𝑘,𝑖 𝜓2,𝑖𝑄𝑘,𝑖 

𝜓2,𝑖𝑄𝑘,𝑖 

Prestress (Pd)
2
 𝛾𝑃𝑃𝑘 𝑃𝑘 𝑃𝑘 𝑃𝑘 

Accidental (Ad) - 𝐴𝑑 - - 

Seismic (AEd)
3
 - - 𝐴𝐸𝑑 

- 

Fatigue (Qfat) - - - 𝑄𝑓𝑎𝑡 

…. 

NOTE 4: For persistent and transient design situations, when Q,i 0,i≈1 the design value of the accompanying variable action can be 

approximated by its characteristic value. 

 

4.7.3 Comments on simplified load combination method 

Considering the note for recommendation of simplified load combination, the comment from 

Denmark will be rejected because the comment is not valid for this simplified rule. The code 

writers recommend this method when the condition 𝛾𝑄 ∙ 𝜓0 ≈ 1 is not satisfied. Therefore, it 

cannot allowed to be applied for certain countries. Consequently, there will be no conflict with 

their design.  

Application of simplified combinations is an optional method in the code. In other words, if the 

engineers want to skip the complexity of choosing the combination factor based on the different 

variable loads, this simplification can be applied. Therefore, there is no need for this optional 

clause to apply in all cases. Engineers must decide based on the condition of the simplified load 

combination. 

Nevertheless, another alternative may be proposed to allow the application of simplified load 

combinations for Denmark as well. However, it is described that the current version for 

implementation of simplified load combination has no conflict with the national annexes. 

According to the values of the combination factor, the note in the context of the code may be 

modified to the following:  

For persistent and transient design situations, when γQ ∙ ψ0 ≈ 1 and γQ ∙ ψ0 ≈ 0.5 the 

design value of the accompanying variable action can be approximated respectively by 

its characteristic value and 50% of characteristic value. 
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This alternative proposal will solve the comment from Denmark. They can apply the simplified 

load combination in the case of snow and wind based on the mentioned recommendations. The 

result will be an acceptable approximation of the exact combination in their national annexes. 

The reliability analysis is conducted for the case of combination for different variable loads. The 

most critical case, which is 𝜓0 = 0.3 for snow and wind, will be considered to verify the 

recommended simplified method. Combinations 6.10 and 6.10a&b according to the EN-1990 

and Denmark national annex will be compared with the fundamental combinations. The results 

of the comparison for this alternative and combination in EN-1990 are presented in Figure 4.49–

Figure 4.52. The results are shown for both 6.10 and 6.10a&b for two cases. The first case 

represents the one with imposed load leading and wind load accompanying. The second is with 

wind load leading and snow load accompanying.  

 

 

Figure 4.49: Load combination 6.10 for imposed load with wind and k = 0.5 
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Figure 4.50: Load combination 6.10a&b for imposed load with wind and k = 0.5 

 

 

 

 

Figure 4.51: Load combination 6.10 for wind with snow and k = 0.5 
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Figure 4.52: Load combination 6.10a&b for wind with snow and k = 0.5 

4.7.4 Conclusion 

The simplified load combination allows engineers to deal with the design problem in a more 

convenient way. The selection of different combination factors for different cases of variable load 

will be skipped. This method completely satisfies the ease of use concept in the new generation 

of the Eurocodes. This is an approximation of fundamental load combinations in the code, but it 

will be an optional note in the code. Therefore, engineers have both options to conduct their 

design, in a simplified way and the complete combinations approach.  

It has been shown that the application of simplified load combination will lead to a result that is 

compatible with the load combinations in the code. The difference in reliability values can be 

neglected, and this method is an acceptable approximation for fundamental combinations. 

The recommendation is also compared with other national annexes, such as that of Denmark. 

The simplified load combination with the current format is not valid in this country, but with an 

alternative proposal, it may be applicable based on the country’s national annex. The reliability 

analyses show the compatibility of alternative solutions with the original combination in the 

national annex for Denmark. 

4.8 A new method for partial factor calibration based on Monte Carlo method 

4.8.1 Interest band method 

A new concept for the calibration of partial factors is defined within this research. Since the 

dawn of the partial safety factor method’s implementation, an engineers’ knowledge of 
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background uncertainties has been improved to a great extent. Year by year, more data have 

been collected in databases, and they represent more realistic behavior with respect to actions 

and resistance parameters. Subsequently, the statistical quantification of different sources of 

uncertainty seems to be necessary. Calibration of partial factors will upgrade structural codes 

based on the modern requirements of the community, such as sustainability and economical 

design [80]. The precise calibration results will on the one hand prevent the waste of material 

and on the other provide sufficient safety.  

The primary methods for the calibration of partial factors are conducted based on the FORM in 

initial calibrations [81]. In this study, a new concept is introduced based on the crude Monte 

Carlo method; this new method consists of three main parts: 

1. reliability analysis and finding the resistance distribution for each set of load 

characteristic values which gives a reliability index equal to target reliability,  

2. determining the interest band and corresponding interest points, and 

3. calculating partial factors. 

In the first step, reliability analysis has to be performed for calibration. The Monte Carlo reliability 

analysis for calibration should provide the required amount of safety. By adjusting this 

requirement, the calibration results can be made compatible with the safety requirements. The 

safety criteria are defined based on the target reliability values in EN-1990 [16].  

For the reliability analysis in this section, two types of load—permanent (G) and variable (Q)—

are considered with a resistance parameter for different types of material. Stochastic parameters 

of basic variables for reliability analysis are applied according to Table 3.2. In reliability analysis, 

there is no accompanying variable action. Therefore, all variable loads are considered with their 

50 years reference period distribution (Table 3.2).  

The algorithm of reliability analysis is conducted with a limit state function in (4.9). For each 

value of 𝜒 factor, a resistance has to be determined in which the reliability index has to be the 

same as target value of reliability (βt = 3.8).  

Afterwards, the calibration can be performed for random realizations of last-reliability analyses 

with the target value. In the Monte Carlo method, the random points represent possible 

realizations of basic variables in reality, which means that each of the random points produced 

can be the material or load in the structure. Conversely, in the process of design based on 

concept of a partial safety factor, the limit state is the criteria where the engineers look after for 

failure. Limit state represents those realizations of load and resistance where these two values 

are equal. Subsequently, the points located in the area where loads are lower than the 

resistance are considered safe cases. Otherwise, they are considered failure cases. In a design 

with the partial safety factor method, the design values actions or action effects have to be equal 

to or smaller than the design value of resistance.  

The calibration process must satisfy not only the safety of the design, but also the economical 

design. If only safety is considered as the decisive parameter in the calibration process, the 
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partial safety factor may provide a conservative result. In order to overcome this problem, the 

optimum number of design values must to be selected for calibration. The ideal place for a 

design point or a realization of basic variables in a design situation is near the limit state.  

In the calibration process, interest band is formed according to the average distance of the 

failure points from the limit state (i.e., parameter “a”). The limit state will extend from both sides 

to a “band” with a width of 2a (Figure 4.53). This band is the place where the interest points for 

calibrations are located. All the points in this interest band are considered for the calibration of 

the partial safety factor. Each point represents a realization of design value for its corresponding 

basic variable. In other words, the limit state is extended only with parameter “a,” which forms a 

band and covers an area called “the interest band.” The boundary between failure and safety is 

defined by an area instead of a line. 

Each point in the interest band is determined by the random realization of all basic variables 

involved in the limit state equation. The correspondent realizations of these basic variables are 

treated as design values.  

 

Figure 4.53: Interest band method for calibration of partial factors 

Eventually, the ratio of design value over the characteristic value leads to the partial safety 

factor for basic variables. For resistance, the ratio of characteristic value over design value can 

be considered a partial factor. Moreover, the realization of model uncertainty has to be 

considered in the calculation of partial factors as the contribution of model uncertainty. The 

averages of determined partial factors from all interest points represents the calibrated partial 

factor. The parameters related to the action part are considered only for calibration. Equation 

(4.41) shows the calculation formula for a partial factor of actions. 
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𝛾𝐸 = 𝜃𝐸

𝐸𝑑

𝐸𝑘
 (4.41) 

The interest band method is applied for five types of material and three types of variable loads. 

The resistance parameters are concrete (EN-1992-1-1[61]), steel (EN-1993-1-1 [62]), steel rebar 

(EN-1992-1-1 [61]), timber (EN-1995-1-1 [63]) and masonry (EN-1996-1-1 [64]). Wind, imposed 

and snow loads are three variable loads in the investigation. The calibration process is 

implemented only for the load part. Therefore, the reliability indexes are determined based on 

the calibrated values of load partial factors and the recommended partial safety factor of 

resistance in Eurocode system. The corresponding values to the material partial factors based 

on the Eurocodes are listed in Table 4.1. 

The overall results of the calibration for all resistance types and load categories are presented in 

Table 4.4. The average reliability level for a range of load ratios 𝜒 is also illustrated in Figure 

4.54. It can be observed that the deviation of reliability from the target value is not significant. 

 

Figure 4.54: Average reliability with calibrated partial factor 
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The highest value of the partial factor is related to the partial factor of snow loads. By comparing 

the results with the recommended value of 𝛾𝑄 = 1.5 in the EN-1990, the calibrated partial factor 

of wind is nearly the same as the code value. For imposed load, it can be considered a 

conservative application of partial factor in comparison with the value of EN-1990. In the case of 

permanent action, the calibrated values show the lower amount in comparison with 𝛾𝐺 = 1.35 in 

EN-1990.  

The calibrated partial factors of actions may also be represented based on different types of 

materials. The results in Table 4.4 represent the average for the whole database. The 

categorized results of action partial factors are shown in Figure 4.55. 

 

Figure 4.55: Calibrated partial factor for different resistance types 

Concrete Steel-Reinf. Steel Timber Masonry
0

0.5

1

1.5

2

2.5

3



Calibrated  values

 

 


G


wind


imposed


snow



4 Load combinations and partial safety factors   

 

97 

 

Figure 4.56: Histogram and normal fitted distribution of reliability 

The reliability representing the average of the whole database for all cases of resistance and 

loading is compatible with the target reliability of the calibration process. The reliability values 

may be illustrated as a distribution (Figure 4.56).  

These values are distributed based on the parameters involved in the calculations. The 

database of reliability indexes for calibrated partial factor has a mean value of 3.74 and standard 

deviation of 0.55. It leads to a coefficient of variation that equals 15%. 

The reliability level of calibrated partial factors may also be represented separately for each type 

of material for the load cases. The classified reliability indexes based on the resistance type and 

variable actions are presented in Figure 4.57. 

The reliability behavior shows that the greatest safety with calibrated values is given by concrete 

materials. The lowest values correspond to steel structures. This behavior may be explained by 

the partial factors of material in Table 4.1. Concrete has the maximum partial factors, and steel 
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Figure 4.57: Reliability of different resistance types with calibrated partial factor 

4.8.2 Conclusion 

Calibration is the requirement of all available codes of structural engineering in practice. The 

recommended values of partial factors have to be calibrated in a periodical review of design 

codes. In this study, a new method for calibration of partial factors has been introduced. The so-

called interest band method is based on the Monte Carlo method.  

The calibration results for different types of resistance models and loads show that this method 

presents an acceptable approach for the calibration of partial factors. Consideration of random 

realization in the interest band as a design value of basic variables is reasonable. The algorithm 

of calibration shows compatible behavior regarding the target reliability index. The calibration 

process is applied for actions involved in the limit state function with different resistance models.  

The calibration approach has been applied with the assumption of EN-1990 safety 

requirements. The calibrated partial factor for permanent actions is smaller than the value 

specified in EN-1990. The results of the calibration show that in case of snow load, the 

recommended partial factor of EN-1990 does not cover the uncertainty of snow loads. A higher 

value of partial factor has to be applied for snow loads to reach the target reliability. In the case 

of wind loads, the partial factor of EN-1990 is nearly the same as the calibrated value. For 

imposed loads and permanent actions, the recommendation of EN-1990 seems to be a 
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These values are the representations of the overall averages for all cases. Calibrated partial 

factors and resultant reliability indexes vary for different types of resistance and actions. 

Concrete Steel-Reinf. Steel Timber Masonry
2

2.5

3

3.5

4

4.5

5


Calibrated  values

 

 

Wind

Imposed

Snow

=3.8



4 Load combinations and partial safety factors   

 

99 

Moreover, for different values of load ratios, the result may change. The ratio of permanent load 

and variable load play an essential role in the calibration process. In cases of high proportion of 

permanent loads, the partial factor of permanent action is the decisive parameter, because the 

variable loads do not have considerable influence on reliability. Contrarily in the case of a high 

ratio variable load due to the fact that the permanent loads do not affect reliability in these cases 

variable loads are decisive parameters. 

The interest band approach has the advantage of full probabilistic methods. The random 

realization represents the more realistic behavior of basic variables in the Monte Carlo method. 

The interest band method has the same disadvantage as the Monte Carlo method. The 

calculation costs are higher with this method in comparison with a calibration process based on 

FORM, and this method also takes more time.  

The calibrated values are highly dependent on the assumption of stochastic parameters and 

probabilistic models of loads. The parameters here are the ones proposed for code calibration. 

The calibrated values may vary with the choice of other stochastic parameters and probabilistic 

models for actions. Further sensitivity analysis based on the assumption of stochastic 

parameters can offer perspective on their effect on final calibration results.  

Overall, compensation between permanent actions and variable loads has to be implemented to 

obtain the consistency of results with target reliabilities. The result of the calibration shows that 

for light-weight structures and heavy-weight structures (maximum and minimum range of load 

ratio 𝜒), the reliabilities do not reach the target value ranges.  
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5 Resistance partial safety factor 

5.1 Introduction 

Loads, materials, dimensions and models are the most important parameters in structural 

analysis. Chapter 4 has discussed the components of limit states related to loads and actions. In 

this chapter, resistance and its partial factor as the second term in limit state functions is 

investigated. 

In most cases, the verification or evaluation of each material property in structures is conducted 

according to experiments. Therefore, every calculation, including test results, has an uncertainty 

coming from experiments. The uncertainty is taken into account by introducing stochastic 

properties to the test results. Eventually, the parameter will no longer be a deterministic or single 

value, but it will be defined within a range based on the PDF and its parameters, such as mean 

value and standard deviation. The most important parameter in structural engineering evaluated 

by experiments is material properties.  

Test results directly influence the current design’s methodology in Eurocodes, including partial 

factor methods or limit state design. All recommended values for proposed partial factors are 

based on the probabilistic analysis and tests. Different methods based on probabilistic analysis 

and stochastics are introduced in EN-1990 to determine of partial factors based on the 

stochastic parameters of material and test results (see Annex C and D in [16]). 

5.2 Test number influence on partial factor  

5.2.1 General  

In the testing procedure, one of the most effective approaches to obtain more accurate results is 

to increase the number of test attempts, making the probabilistic model an accurate 

representation of material properties. Thus, the influence of test number should be considered in 

the probabilistic analysis of partial factors, which are the outcomes of probabilistic methods. The 

values of partial factors depend on the coefficient of variation for the material parameters, and 

the coefficient of variation for parameters resulting from numerous tests. For cases in which the 

design is performed based on experiments, the influence of test numbers on the partial factors 

should also be considered. In the first step, it seems that the partial factor can be reduced based 

on the test number. More tests lead to the smaller partial factor, supposedly. The influence of 

the test number on the partial factor is investigated throughout this section. 

In EN-1990 [16] Section 5.2, a brief explanation is offered about the design assistance by 

testing, and Annex D of EN-1990 can be consulted for further detail. This topic is described in its 

context in ISO 2394 [19]. These two explanations differ only with respect to how they deal with 
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the topic’s details. In ISO 2394, one finds more detailed information. The basic statistical 

analysis and background of these formulations are mentioned in the international standard ISO 

12491 [82], [83].  

5.2.2 Basic statistical analysis of test number 

The mean value of a set of tests can be represented as a random variable 𝑀. If the true mean 

value and the true standard deviation of population for random variables 𝑋 are 𝜇 and 𝜎, 

respectively, then using expectation (𝐸) and variance operator (𝐷), the mean of mean values 

and standard deviation of mean value predicted by a set of tests will be formulated as follows:  

𝑚 = 𝐸(𝑀) = 𝐸 (
∑(𝑋𝑖)

𝑛
) =

(∑ 𝐸(𝑋𝑖))

𝑛
=

𝑛𝜇

𝑛
= 𝜇 (5.1) 

𝑠2 = 𝐷(𝑀) = 𝐷 (
∑(𝑋𝑖)

𝑛
) =

(∑ 𝐷(𝑋𝑖))

𝑛2
=

𝑛𝜎2

𝑛2
=

𝜎2

𝑛
, (5.2) 

 

where 𝑚 and 𝑠 are mean and standard deviation for the sample average [83].  

The coefficient of variation for random variable 𝑀 (sample average) will be represented with the 

coefficient of variation for random variable 𝑋 with (5.3).  

𝑉𝑀 =
𝑠

𝑚
=

𝜎

𝜇√𝑛
=

𝑉𝑋

√𝑛
 (5.3) 
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Figure 5.1: COV proportion of sample average and true mean value of random variable 𝑋 

As indicated in (5.3), by increasing the test numbers to infinity, the coefficient of variation for 

mean value of sample average inclines to zero. Contrarily, the mean value of the sample 

average will be the true mean value of random variable X, and it will be a deterministic value 

because of zero standard deviation. It is a reasonable phenomenon; more test numbers lead to 

more accurate results.  

5.2.3 Coverage method for fractile estimation 

In order to determine the partial factors of material properties, both the characteristic value and 

the design value of corresponding random variables should be calculated. The partial factor is 

then calculated based on (5.4).  

𝛾𝑅 =
𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒

𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑙𝑢𝑒
 (5.4) 

Characteristic value and design value represent a specific fractile value of the random variable 

based on its statistical properties. Therefore, the coverage method is used in order to consider 

the influence of test numbers on the partial factor.  

Estimations are made based on this method for a population with a limited number of samples 

(n). The aim is to find probability fractile 𝑝 for 𝑛 samples with confidence level 𝛾, which 

represents the probability that this estimation covers the fractile [83]. For lower fractiles such as 

resistance parameters, all predicted values 𝑥𝑝,𝑐𝑜𝑣𝑒𝑟 are ensured to be smaller than the fractile 

value 𝑥𝑝 with confidence level 𝛾.This expression is represented as (5.5) [83]. 
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𝑃(𝑥𝑝,𝑐𝑜𝑣𝑒𝑟 < 𝑥𝑝) = 𝛾 (5.5) 

Without information on the coefficients of variation of random variables, the predicted fractile will 

be represented based on the sample mean, standard deviation and a fractile factor. 

𝑥𝑝,𝑐𝑜𝑣𝑒𝑟 = 𝑚 − 𝑘𝑝𝑠 (5.6) 

In (5.6), 𝑚 and 𝑠 are respectively mean and standard sample deviations , and 𝑘𝑝 is the fractile 

coefficient for probability 𝑝. Coefficient 𝑘𝑝 will be determined based on non-central 𝑡 distribution 

with degrees of freedom equal to n−1 and non-centrality parameter √𝑛 ∙ 𝑢𝑝; and 𝑢𝑝 is the 𝑝 

fractile of standard normal distribution [84]. 

𝑘𝑝 =
1

√𝑛
𝑡𝛾(√𝑛 ∙ 𝑢𝑝, 𝑛 − 1) (5.7) 

The factor 𝑘𝑝 will be determined by considering three parameters: confidence level 𝛾, fractile 

probability, and sample numbers. 

Equation (5.6) is valid for those random variables with normal distribution. Equation (5.6) 

represents the left-hand fractile. According to the symmetry properties of normal distribution, the 

right-hand fractile with a probability of 1 − 𝑃 will be determined by adding 𝑘𝑝𝑠 to the mean value 

instead of subtracting.  

If the random variable is log-normally distributed, then the equation should be reformulated 

using a transformation between normal and lognormal variable. If the random variable 𝑋 is 

lognormally distributed, then the logarithm for this random variable 𝑌 is normally distributed. 

𝑌 = ln (𝑋) (5.8) 

Equation (5.6) is valid for the random variable Y with normal distribution. The estimated fractile 

of random variable Y will be transformed to the lognormal fractile of random variable X with 

lognormal distribution by transformation, as below: 

𝑥𝑝 = 𝑒𝑚𝑌−𝑘𝑝∙𝑠𝑌 , (5.9) 

where 𝑚𝑌 and 𝑠𝑌 are mean and standard sample deviations, respectively, for random variable 𝑌 

and where 𝑥𝑝 is the fractile corresponding to the probability of 𝑝.  
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5.2.3.1 EN-1990 and coverage method 

In EN-1990, the recommended confidence level is 75% for fractile estimation. In order to find the 

characteristic and design value, probabilities corresponding to these values are recommended 

in EN-1990. For characteristic value, 5% (or 95%) is recommended as a fractile value. In the 

case of design value, the fractile value of about 0.1% (or 99.9%) will be considered as the 

design value. Figure 5.2 shows different values of 𝑘𝑝 based on various probabilities and test 

numbers. This parameter is applied in later sections for the evaluation of test data. 

 

 

Figure 5.2: Coefficient 𝑘𝑝 for different probabilities and test numbers with confidence level 75% 

5.2.3.2 Partial factor of material 

For the log-normally distributed random variable, the partial factor will be calculated based on 

(5.4), and characteristic and design values correspond to (5.9). By considering different 

coefficients of variation for test samples, the theoretical partial factor is determined as in Figure 

5.3. 
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Figure 5.3: Partial factor for lognormal distributed random variable with confidence level 75% 

As depicted in Figure 5.3, after test number 10, all curves show relatively constant behavior, 

meaning that the result of 10 tests is an acceptable representation of the material partial factor. 

The partial factor deviations from the correspondent value for 10 samples will show the amount 

of difference in various test numbers. If the determined value of a partial factor in Figure 5.3 is 

considered as the selected value, its comparison with other values for different test numbers is 

shown in Figure 5.4.  

 

Figure 5.4: Partial factor deviation for the value corresponding to n = 10 test numbers 

The maximum deviation value after test number 10 (as observed in Figure 5.4) is around 6%, 

which corresponds to the maximum coefficient of variation 30%. On the other hand for the other 

coefficients of variation, the deviations between 10 and 100 numbers of tests are approximately 

lower than 5%. Therefore, after 10 test numbers, the calculated partial factor will not change 

significantly. This amount of deviation can be also ignored and considered a constant value after 
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10 tests. As such, 10 is the optimum number of tests to give nearly perfect perspective to 

material uncertainty. In other words, exceeding 10 test attempts wastes material and costs. 

5.2.4 Analysis of concrete compression tests series  

A series of compression tests were completed in different governmental constructions projects 

in Hong-Kong [85]. Tests are done for different grades of concrete. The results of the cube 

compression concrete test are implemented to investigate the influence of test numbers during 

construction work on the design results. 

These tests were done during the construction of each project stage. In each test, two 

specimens were considered from each batch of concrete. Three sets of tests for concrete with 

grade 20, 30, and 40 MPa are considered here. The histogram and fitted log-normal distribution 

for all classes are illustrated in Figure 5.5–Figure 5.7. 

 

Figure 5.5: Fitted lognormal distribution with parameters 𝜎 = 0.1626 and 𝜇 = 3.4896 
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Figure 5.6: Fitted lognormal distribution with parameters 𝜎 = 0.1209 and 𝜇 = 3.8165 

 

 

Figure 5.7: Fitted lognormal distribution with parameters 𝜎 = 0.1078 and 𝜇 = 3.9909 
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In Figure 5.8 and Figure 5.9, the coefficient of variation and partial factors for each test step and 

for each concrete grade are illustrated. Based on the random behavior, the concrete grade 20 

has the greatest coefficient of variation. It has also the highest deviation in the range of tests 

numbering lower than 10. It seems that the grade 20, which has the most significant coefficient 

of variation also has also the greatest deviation in the first set of tests. Consequently, the partial 

factor value for this type is the highest. As in the previous section, the curves show the same 

behavior after step 10 tests here as well. They reach approximately a constant value, which is 

the adequate representation of material properties.  

 

Figure 5.8: Coefficient of variation for different concrete grades   

 

 

Figure 5.9: Partial factor corresponds to each step for different concrete grades 
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5.2.5 Design of concrete beams and columns 

The design of concrete components will be done based on the partial factors, determined based 

on the methods explained in the previous section and the characteristic value of the concrete 

grade. The geometry and loading are considered as expressed in Table 5.1. The partial 

reinforcement factor is considered based on EN-1992 as 𝛾𝑠 = 1.15 ([61], [86]).  

Table 5.1: Beam design 

Parameter Unit Value 

Design bending moment kN.m 170 

Width mm 450 

Effective depth of the tension reinforcement mm 500 

fyk MPa 500 

 

The design of the required reinforcement area for the concrete beam is done in each step based 

on the partial factors for each test number in Figure 5.9. The same comparison as in Figure 5.4 

has been made for the required steel area with the design according to 10 test numbers, as a 

benchmark for comparison. The deviations of all results from step 10 are shown in Figure 5.10. 

 

Figure 5.10: Deviation of designed 𝐴𝑠 form the value of step n = 10 

As observed after approximately 10 tests, the deviation is approximately zero, but in ranges 

lower than that, high deviations are observed. The differences in these curves are the 

consequence of random behavior. Testing is a random phenomenon, so it is reasonable that the 

behaviors of three different sets of tests also vary. The constant behavior of these curves after 

10 test numbers supports the assumption that 10 is the optimum number of tests for finding the 

corresponding material partial factor. 
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The other structural component is a concrete column. In the determination of the concrete area 

in the column, the concrete partial factor has significant influence. It is assumed that the 

proportion of reinforcement area to the concrete area is 2%. The behaviors of curves in Figure 

5.11 are the same as in Figure 5.10 (because both of them come from same test results), and 

consequently they have the same partial factor. In the case of a concrete column, as expected, 

the effect of the concrete strength partial factor is greater than that of beam design. The 

deviation in the highest value is nearly three times bigger than in beam design. The behavior 

here is also similar after 10 tests. They follow a rather constant form after 10.  

 

Figure 5.11: Deviation of designed 𝐴𝑐 form the value of n = 10 step with 75% confidence level  

5.2.6 Conclusion 

In the case of a partial factor, as has been shown from a certain number of tests, increasing test 

numbers will not affect the value of the partial factor much. Ten has been determined to be the 

optimal number of attempts for tests. After 10, increasing the number of tests numbers no longer 

affects the coefficient of variation, partial factor and the design significantly. It can be concluded 

that running more than 10 test samples is not effective, and it would result in wasting time and 

resources.  

The other source of uncertainty that must be considered is model uncertainty. The next section 

discusses the evaluation of model uncertainty and its partial factor based on the test. 
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5.3 Determination of model and resistance partial factor with Annex D of EN-

1990 

5.3.1 General 

Experimental studies and test evaluations are fundamental in structural analysis and structural 

component designs. Precise interpretation of a test result will lead to an acceptable level of 

prediction of structural behavior. Currently, most design codes such as the Eurocodes are based 

on probabilistic methods and reliability analysis. An experimental database is one of the 

essential components of probabilistic methods. With probabilistic methods, engineers deal with 

a set of representative values instead of a single value for each property of a structural 

component. These sets of values come from the probability distribution functions for each basic 

variable, predicted by evaluating the test data. In addition to material parameters and geometry, 

the modeling of structural behavior significantly influences design safety. A recommended 

method for evaluating the test results with regard to the structural behavior model is provided in 

Annex D of EN-1990. This method is used to determine the partial factor for model uncertainty 

(𝛾𝑅𝑑) and the partial resistance factor (𝛾𝑀).  

5.3.2 Recommendation in Annex D of EN-1990 

The statistical method is recommended in Annex D of EN-1990 for determination of the 

resistance model based on the test results. The main idea of this method is based on 

comparison of the experimental data with the prediction of the resistance model. The calculation 

is undertaken in several steps. The first step is to consider a theoretical model for the structure 

represented by basic variables (𝑋). 

𝑟𝑡 = 𝑔𝑟𝑡(𝑋) (5.10) 

The prediction of the resistance model is then determined based on the selected theoretical 

model. The comparison of the theoretical values and experimental values is shown in Figure 

5.12. 
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Figure 5.12: Experimental (𝑟𝑒) and theoretical (𝑟𝑡) diagram [16] 

The ideal model will predict the resistance of the structure so that all the points lie on a line with 

θ = 45°. The scatter of the points from this line shows the error or deviation from the theoretical 

value.  

For a statistical determination, a probabilistic model has to be defined according to the 

resistance model. The probabilistic model to be applied to the test data according to EN-1990 is 

given in (5.11): 

𝑟 = 𝑏𝑟𝑡𝛿, (5.11) 

where 𝑏 is the “least square” and best-fit to the slope. It represents the model bias 

corresponding to the parameter 𝜃, and is calculated with (5.12). 

𝑏 =
∑ 𝑟𝑒𝑟𝑡

∑ 𝑟𝑡
2

 (5.12) 

The error term 𝛿 is defined for each experimental observation, and its ratio to the theoretical 

prediction is given by (5.13). 

𝛿 =
𝑟𝑒𝑖

𝑏𝑟𝑡𝑖
 (5.13) 

Based on the recommendations in Annex D of EN-1990, it is obvious that the code considers a 

lognormal distribution for the error term 𝛿. The following parameter is defined by the logarithm of 

𝛿 values. The coefficient of variation corresponding to the error parameter is calculated in 

accordance with this transformation, which is undertaken with (5.14). 
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∆𝑖= ln(𝛿𝑖) (5.14) 

Consequently the mean and standard deviation for parameter ∆ are obtained from (5.15) and 

(5.16). 

∆=
1

𝑛
∑ ∆𝑖

𝑛

𝑖=1

 (5.15) 

𝑠∆
2 =

1

𝑛 − 1
∑(∆𝑖 − ∆)

2
𝑛

𝑖=1

 (5.16) 

The coefficient of variation for error in the model is then obtained from (5.17). 

𝑉𝛿 = √𝑒𝑥𝑝(𝑠∆
2) − 1 (5.17) 

The final aim of Annex D to EN-1990 is to determine the characteristic value or the design value 

of the resistance parameter. By taking advantage of calculated design and characteristic values, 

the partial factors can be determined. This is the main concept for this study, based primarily on 

the recommendations of Annex D to EN-1990. The process for calculating the characteristic 

value or design value in this annex is performed by considering uncertainty contributions both 

from the basic variables and from model uncertainty [87]. The contributions of these 

uncertainties are implemented in the calculation process by means of the coefficient of variation 

for the basic variables 𝑉𝑋𝑖 
 and the coefficient of variation for model error 𝑉𝛿.  

The calculation of the coefficient of variation for the resistance model 𝑉𝑟, which is shown in the 

product function form (5.18), will be obtained from (5.19). 

𝑟 = 𝑏𝑟𝑡𝛿 = 𝑏{𝑋1 × 𝑋2 … 𝑋𝑗}𝛿 (5.18) 

𝑉𝑟 = (𝑉𝛿
2 + 1) [∏(𝑉𝑋𝑖

2 + 1)

𝑗

𝑖=1

] − 1 (5.19) 

There is an alternative expression [eq. (5.20)] in Annex D of EN-1990 for calculation of (Vr) in 

case of small values for Vδ
2 and VXi

2.  

𝑉𝑟
2 = 𝑉𝛿

2 + 𝑉𝑟𝑡
2 (5.20) 
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The parameter Vrt
2 is calculated with (5.21) with simple production form for the resistance 

models, and the in case of more complex models, (5.22) is used.  

𝑉𝑟𝑡
2 = ∑ 𝑉𝑋𝑖

2

𝑗

𝑖=1

 (5.21) 

𝑉𝑟𝑡
2 =

𝑉𝐴𝑅[𝑔𝑟𝑡(𝑋)]

𝑔𝑟𝑡
2(𝑋𝑚)

≅
1

𝑔𝑟𝑡
2(𝑋𝑚)

× ∑ (
𝜕𝑔𝑟𝑡

𝜕𝑋𝑖
𝜎𝑖)

2
𝑗

𝑖=1

 (5.22) 

The characteristic value or design value has to be determined in accordance with the 

determined coefficient of variation. The calculation differentiates two cases, the former with 

limited numbers of tests (n < 100) and the latter with large numbers of tests (n ≥ 100).  

In the former case, the statistical uncertainty in parameter ∆ is considered by assuming the t-

distribution for this parameter with 𝑛 as the number of tests. In the latter case, the characteristic 

value is obtained with (5.23): 

𝑟𝑘 = 𝑏𝑔𝑟𝑡(𝑋𝑚)𝑒𝑥𝑝(−𝑘∞𝛼𝑟𝑡𝑄𝑟𝑡 − 𝑘𝑛𝛼𝛿𝑄𝛿 − 0.5 𝑄2), (5.23) 

with 

𝑄𝑟𝑡 = 𝜎𝑙𝑛 (𝑟𝑡) = √𝑙𝑛(𝑉𝑟𝑡
2 + 1), (5.24) 

𝑄𝛿 = 𝜎𝑙𝑛 (𝛿) = √𝑙𝑛(𝑉𝛿
2 + 1), (5.25) 

𝑄 = 𝜎𝑙𝑛 (𝑟) = √𝑙𝑛(𝑉𝑟
2 + 1), (5.26) 

𝛼𝑟𝑡 =
𝑄𝑟𝑡

𝑄
, and (5.27) 

𝛼𝛿 =
𝑄𝛿

𝑄
, (5.28) 

where 

kn  is the characteristic fractile from Table 5.2, 



5 Resistance partial safety factor   

 

115 

k∞  is the value for kn when 𝑛 → ∞ [k∞ = 1.64], and 

αδ, αrt  are weighting factors for Qδ and Qrt respectively. 

In the case of large numbers of tests, the calculation is performed with (5.29). 

𝑟𝑘 = 𝑏𝑔𝑟𝑡(𝑋𝑚)𝑒𝑥𝑝(−𝑘∞𝑄 − 0.5 𝑄2) (5.29) 

Table 5.2: 𝑘𝑛 for 5% fractile value 

n 1 2 3 4 5 6 8 10 20 30 ∞ 

VX Known 2.31 2.01 1.89 1.83 1.80 1.77 1.74 1.72 1.68 1.67 1.64 

VX Unknown - - 3.37 2.63 2.33 2.18 2.00 1.76 1.76 1.73 1.64 

 

The determination of design values is similar to that for characteristic values, but the values of 

𝑘𝑛 and 𝑘∞ in (5.28) and (5.29) are replaced by 𝑘𝑑,𝑛, and 𝑘𝑑,∞. These values are shown in Table 

5.3. 

 

Table 5.3: 𝑘𝑑,𝑛 for ultimate limit state design value 

n 1 2 3 4 5 6 8 10 20 30 ∞ 

VX Known 4.36 3.77 3.56 3.44 3.37 3.33 3.27 3.23 3.16 3.13 3.04 

VX 

Unknown 
- - - 11.4 7.85 6.36 5.07 4.51 3.64 3.44 3.04 

5.3.3 Unreinforced shear wall database 

5.3.3.1 Test database  

The main structural elements in masonry construction are walls. Currently, unreinforced walls 

are more commonly used than are reinforced walls. The main requirement for this type of 

structure is to resist normal forces, but there are also some cases in which the verification of the 

wall under lateral loading is necessary. There are different references to the analysis of shear 

wall behavior based on probabilistic approaches (see [26], [88], [33], [89]), but the evaluation of 

test data based on the recommendations of Annex D for EN-1990 has not yet been considered. 

An adequate assessment has been carried out in [90] for the determination of the probability 

distribution function of uncertainty in masonry shear wall models. The determination of a 

compatible model for wall behavior requires experimental data. The databases can be calibrated 
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by comparing the model prediction with the test result. The test data is then used in order to 

determine the partial factor for the model or the uncertainty from the calculation with the model. 

In order to determine the model factor, experimental data from the European research program 

Enhanced Safety and Efficient Construction of Masonry Structures in Europe (ESECMaSE) [91] 

for masonry structures is used. The ESECMaSE was a vast experimental and fundamental 

program carried out in 2004 – 2008, as a collaboration of various European partners. The 

project was mainly concerned with the shear resistance and deformation of masonry walls built 

of different types of units and mortar [89]. The collected database is well presented in detail in 

[92] and [89]. The database consists of 129 tests including three different masonry units, 44 

tests on clay brick (CB), 51 tests on autoclaved aerated concrete (AAC), and 34 tests on 

calcium silicate (CS). The test results are evaluated based on a comparison with values 

predicted by the German National Annex DIN EN 1996-1-1/NA [93].  

5.3.3.2 Shear load capacity of URM wall based on DIN EN-1996-1-1/ NA 

The theoretical model used in this study for comparison with the test data is the recommended 

method in DIN EN 1996-1-1/NA. As mentioned in [89] and [94], there are various types of failure 

modes for masonry shear walls:  

 friction failure of the bed joint, 

 tensile failure (cracking) of the units, 

 overturning of single unit, 

 flexural (bending) failure of masonry, 

 shear compression failure of masonry, and 

 compression failure of masonry (crashing).  

 

The national recommendations in Germany for the verification of masonry walls are given in 

DIN EN 1996-1-1/NA. Aside from the method in the main context of DIN EN 1996-1-1/NA, a 

specific method is also proposed in DIN EN 1996-1-1/NA Annex K for the evaluation of wall 

slenderness. The shear resistance for each test sample in the database is determined based on 

the various failure modes according to DIN EN 1996-1-1/NA and its Annex K. The comparison 

between theoretical values predicted by the code and observed values from real test data leads 

to the evaluation of uncertainty from the model in the design process.  

 

5.3.3.2.1 Shear wall verification in DIN EN 1996-1-1/NA 

The DIN EN-1996-1-1/ NA recommendation for shear resistance determination in the case of 

friction and tensile failure of the units can be seen in (5.30): 
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𝑉𝑅𝑑𝑙𝑡 = 𝑙𝑐𝑎𝑙 ∙ 𝑓𝑣𝑑 ∙
𝑡

𝑐
, (5.30) 

where 

𝑡 is the thickness of the wall; 

𝑐 is the shear stress distribution factor and determined as 

 1.0                   𝑓𝑜𝑟    
ℎ

𝑙
≤ 1, 

 0.5(1 +  
ℎ

𝑙
)    𝑓𝑜𝑟    1 <

ℎ

𝑙
< 2,  

 1.5                  𝑓𝑜𝑟    
ℎ

𝑙
≥ 2; 

𝑙𝑐𝑎𝑙 is the calculated length of the wall, as follows: 

𝑙𝑐𝑎𝑙 = 𝑚𝑖𝑛(1.125 ∙ 𝑙 , 1.333 ∙  𝑙𝑐,𝑙𝑖𝑛) (5.31) 

𝑙𝑐,𝑙𝑖𝑛 =
3

2
(1 − 2 ∙

𝑀𝐸𝑑

𝑁𝐸𝑑∙𝑙
) ∙ 𝑙 ≤ 𝑙; (5.32) 

 

𝑀𝐸𝑑 is the design moment; 

𝑁𝐸𝑑 is the design normal force; 

𝑙 is the wall length; 

𝑓𝑣𝑑 is the design value of shear strength with 𝑓𝑣𝑑 =
𝑓𝑣𝑘

𝛾𝑀
;  

𝛾𝑀  is the partial factor of masonry. 

The characteristic values of shear strength 𝑓𝑣𝑘 shall be determined for friction and tensile failure 

in order to be applied in (5.30). The friction characteristic strength for in-plane shear resistance, 

in case head joints are filled with mortar, may be considered as expressed in (5.33), and for 

tensile failure, (5.34) will be implemented:  

𝑓𝑣𝑘1 = 𝑓𝑣𝑘1 + 0.4 ∙ 𝜎𝐷𝑑 (5.33) 

𝑓𝑣𝑘2 = 0.4 ∙ 𝑓𝑏𝑡,𝑐𝑎𝑙 ∙ √1 +
𝜎𝐷𝑑

𝑓𝑏𝑡,𝑐𝑎𝑙
, (5.34) 

where 

𝑓𝑣𝑘0  is the characteristic initial shear strength of masonry,  

𝜎𝐷𝑑  is normal stress, and 
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𝑓𝑏𝑡,𝑐𝑎𝑙  is the computational tensile strength of unit. It may be assumed as a ratio of unit 

compressive strength. 

The other failure mode is shear compression failure, which occurs when the compressive 

strength in the diagonal strut is exceeded [89]. In the case of element masonry with thin-layer 

mortar for bed joints and a ratio of overlapping length over unit height of less than 0.4 (
𝑙𝑜𝑙

ℎ𝑢
⁄ ≤

0.4), equation (5.35) has to be considered in checking shear compression failure:  

𝑉𝑅𝑑𝑙𝑡 =
1

𝛾𝑀 ∙ 𝑐
∙ (𝑓𝑣𝑑 ∙ 𝑙𝑐 ∙ 𝑡 − 𝛾𝑀 ∙ 𝑁𝐸𝑑) ∙

𝑙𝑜𝑙

ℎ𝑢
 (5.35) 

where 

𝑙𝑐 𝑙𝑐 = (1 − 2 ∙
𝑀𝐸𝑑

𝑁𝐸𝑑∙𝑙
) ∙ 𝑙, 

𝑙𝑜𝑙 is overlapping length, 

ℎ𝑢 is the unit height, and 

𝑓𝑘 is the characteristic value of masonry compressive strength.  

 

In masonry structures with element masonry, non-grouted head joints and a ratio of ℎ𝑢 > 𝑙𝑢, 

failure on single unit due to the opening of the bed joint constitutes another possible failure 

scenario. The calculation of shear resistance for the overturning of single units will be done 

according to (5.36) [89]. 

𝑉𝑅𝑑𝑙𝑡 =
2

3
∙

1

𝛾𝑀
∙ (

𝑙𝑢

ℎ𝑢
−

𝑙𝑢

ℎ𝑢
) ∙

𝑙𝑜𝑙

ℎ𝑢
 (5.36) 

 

The criteria of the flexural failure of the walls subjected to the vertical and horizontal loads may 

be determined simultaneously based on the ultimate limit state of the wall in axial forces (5.37).  

𝑁𝐸𝑑 ≤ 𝑁𝑅𝑑 = 𝜑 ∙
𝑓𝑘

𝛾𝑀
∙ 𝑙𝑤 ∙ 𝑡 (5.37) 

𝜑 = 1 − 2 ∙
𝑀𝐸𝑑

𝑁𝐸𝑑 ∙ 𝑙
 (5.38) 

Here, the 𝛷 is the reduction factor for considering the slenderness and eccentricity of loadings 

on the wall, and it will be determined based on the assumption of rectangular stress blocks with 

(5.38). According to both (5.37) and (5.38), the shear resistance based on flexural failure mode 

may be calculated with (5.39). 
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𝑉𝐹𝐿𝑑 =
𝑙 ∙ 𝑁𝐸𝑑

2 ∙ ℎ
−

𝛾𝑀 ∙ 𝑁𝐸𝑑
2

2 ∙ ℎ ∙ 𝑓𝑘 ∙ 𝑡
 (5.39) 

5.3.3.2.2 Annex K- DIN EN-1996-1-1/NA 

The effective height of the wall is calculated based on a factor 𝜓, which is introduced for 

different types of boundary conditions. The background to this factor may be found in [95]. The 

factor considers, particularly, the restraint ratios at the top and bottom of the wall. 

The parameter 𝜓 is applied to the height of the wall in the process of slenderness calculation, as 

shown in (5.3). A general classification of the 𝜓 factor may be done according to the restraint 

condition of the wall, the case with the fully restrained boundary condition at top and bottom of 

the wall with ψ = 0.5, and the case of a cantilever wall or no restraint at top with ψ = 1. A 

representation of the eccentricity and the wall is illustrated in Figure 5.13.  

𝜆𝑣 =
𝜓 ∙ ℎ𝑤

𝑙𝑤
 (5.40) 

 

Figure 5.13: Wall eccentricity at top and bottom and 𝜓 factor [95], [93] 

In verification with Annex K instead of 
𝑀𝐸𝑑

𝑁𝐸𝑑∙𝑙
 in all formulas, 

𝑉𝐸𝑑

𝑁𝐸𝑑
∙ 𝜆𝑣 will be replaced. The other 

difference lies in the calculation of friction and diagonal tension. For this verification, based on 

(5.30), the compressive length of the wall will be calculated according to (5.32). 

5.3.4 Model partial factor 𝛾𝑅𝑑 

5.3.4.1 The whole population of database 

In the first step of the test evaluation, the entire database is considered a general representation 

of masonry shear wall behavior under horizontal and vertical loading. The diagram in Figure 

5.14 compares predicted values and experimental values for all test data.  
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Figure 5.14: Experimental and theoretical values for masonry wall 

It seems in Figure 5.14 that the lines fitted to the database express the overall comparison 

between experiment and theory. The factors 1.1361 and 1.2283 were calculated using (5.12) 

and represent the inclination of the line. These values indicate a conservative prediction strategy 

in the model for the calculation of shear wall resistance. This is also a bias in the model; in other 

words, most of the experimental data have more capacity than that predicted by the theoretical 

model. This feature may be interpreted as our model underestimating the resistance of the wall 

and the real resistance of the wall being always more than the expected value. The other 

parameter that must be considered as contributing to model uncertainty is the spread of the 

predictions from the fitted line. The representative value for this parameter is the coefficient of 

variation of model error 𝑉𝛿, obtained from (5.13)–(5.17). The determined results for model error 

statistical parameters for the database are presented in Table 5.4.  

 

Table 5.4: Statistical parameter of model error for database 

 ∆ 𝑠∆
2 𝑉𝛿 𝑏 

EC6-NA Annex K −0.0162 0.2257 0.2286 1.1361 

EC6-NA 0.0932 0.2664 0.2712 1.2283 

 

As explained in previous sections, the aim of first step is to determine the partial factor 

corresponding to the model error. Therefore, in accounting for uncertainties, only the 

contribution of the model error is considered. Consequently the term 𝑉𝑟𝑡 in (5.20) is ignored 
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because it relates to the material and other basic variables’ uncertainty, and the term 𝑉𝛿, 

coefficient of variation for model error, is the only parameter in the calculation. 

Finally, considering the calculated statistical parameters in Table 5.4 and (5.29), the design 

value and characteristic value of resistance are determined. The population of experiments in 

the database are more than 100, and this can be considered as a large amount of test data, so 

(5.29) is used for calculation. Then, by considering the bias of the model in the calculation 

process, the partial factor for the resistance model is obtained from (5.41).  

𝛾𝑅𝑑 =
𝑅𝑘

𝑅𝑑
∙

1

𝑏
 (5.41) 

In the first case, for the whole population of the experimental database, the partial factors of 

model will be as in Table 5.5.  

Table 5.5: Model partial factor for data base 

 𝛾𝑅𝑑 

EC6-NA Annex K 1.207 

EC6-NA 1.182 

5.3.4.2 Individual masonry unit type 

In order to determine more compatible values of partial factors based on the masonry unit types, 

the database is classified into subsets based on the type of units. As mentioned, tests were 

conducted on three types of units: CB, CS and AAC. The same procedure of statistical 

evaluation is implemented for each subset of masonry unit.  

Dividing the original database into several subsets will reduce the amount of data or the 

population in the statistical evaluation. A recommendation appears in Annex D in EN-1990 

regarding this problem. It is suggesting that for the determination of factor 𝑘_𝑛 from Table 5.2 or 

Table 5.3, the number of tests has to be considered the original database. Therefore, the same 

value of k (maximum) is taken for each subset of masonry unit, because the original test 

database comprises a large number of test datasets. 
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a) Clay brick (CB) 

 

b) Calcium silicate (CS) 
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c) Autoclaved aerated concrete (AAC) 

Figure 5.15: Experimental and theoretical values for each unit type 

The analysis of each unit type in the database is shown in Figure 5.15. The analysis produced 

the parameters for the calculation of the model’s partial factor in Table 5.6 and Table 5.7. The 

final values of the partial factors for each of these unit types differ. A difference also appears 

between the partial factor for the whole database and the partial factor for each unit type. The 

difference is explained by the various coefficients of variation for model error and model bias. 

Table 5.6: Statistical parameters and model partial factor for each unit type in EC-NA Annex K 

Unit type ∆ 𝑠∆
2 𝑉𝛿 𝑏 𝛾𝑅𝑑 

CB −0.016431 0.1844 0.186 1.3098 0.99 

CS 0.004090 0.1468 0.1476 1.0175 1.21 

AAC −0.04769 0.2444 0.2481 1.1009 1.28 

Table 5.7: Statistical parameters and model partial factor for each unit type in EC-NA 

Unit type ∆ 𝑠∆
2 𝑉𝛿 𝑏 𝛾𝑅𝑑 

CB 0.0955 0.2375 0.2409 1.2311 1.1327 

CS 0.1110 0.2685 0.2734 1.2695 1.1471 

AAC 0.0735 0.2870 0.2930 1.2062 1.2391 

 

Figure 3.7 shows the calculated values for coefficient of variation for model error and model 

bias. Both of these values for AAC are near to those for the whole database. The maximum 

values for COV are for AAC. 

The bias model for CS in EC6-NA Annex K is nearly 1, which means that on average, the 

resistance model of the shear wall is neither overestimated nor underestimated for CS units. For 

the other unit types and also for the whole database, the bias is higher and greater than 1, which 

means that the model underestimates the material. The scatter of the data for EC6-NA is in all 

cases wider than that of EC6-NA Annex K. 
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Figure 5.16: Coefficient of variation for model error and model bias for units and database 

By using the calculated stochastic parameters with (5.41), the model’s partial factors are 

calculated for all types of units and for the whole database. The results are shown in Figure 5.16 

for all unit types for both cases of EC6-NA and EC6-NA Annex K.  

 

Figure 5.17: Model partial factor 

5.3.5 Resistance partial factor 𝛾𝑀 

To determine the partial resistance factor, other basic variables must be considered for the 

calculation of the coefficient of variation for resistance in (5.20) and (5.21). The other coefficient 

of variations for basic variables for the masonry shear wall, aside from model uncertainty, can 

be described as follows: 

 geometry, 

 material properties, and 

 loads. 
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Each of these variables has a spread, and therefore they contribute in the final COV of 

resistance based on (5.20) and (5.21). 

Geometrical data are commonly categorized as basic variables with low variability. According to 

the recommendations of the JCSS probabilistic model code [20], the COV of geometrical 

variables is suggested to be equal to 4%.  

Normal actions are involved in the recommendations for shear wall calculations in DIN EN-1996-

1-1/NA. Thus, the parameter variations should contribute to the resistance COV. The sources of 

normal actions are considered self-weight and variable actions. For self-weight and variable 

actions, 5% and 20% COV are applied respectively.  

Material properties play an essential role in the whole process of design. According to the test 

database, different types of failure modes are observed during the experiments.  

Table 5.8: Observed failure modes in experiments 

Failure mode Number, 𝑁𝑓,𝑖 

Friction failure 3 

Tensile failure 96 

Tensile and friction 11 

Flexural (bending) failure 3 

Shear compression failure 3 

Overturning of single unit 2 

Unknown 11 

 

In order to consider the contribution of the material’s strength in the resistance COV, a weighting 

average of COV for all material strength based on different failure modes is applied. Using this 

kind of average, the influence of different types of failure is considered for the determination of 

partial factors. In calculating the average, unknown failures are not considered. The overturning 

of single units is not also considered in the average, because only geometrical parameters are 

involved in its limit state. The weighting factors include the number of failures, as shown in Table 

5.8. The weighting average of material COV is calculated with (5.42).  

𝐶𝑂𝑉𝑚.𝑎𝑣𝑔 =
∑ 𝑁𝑓,𝑖 ∙ 𝐶𝑂𝑉𝑚,𝑖

∑ 𝑁𝑓,𝑖
 (5.42) 

Different material properties have to be considered for different failure modes. The 

correspondent COV values for each parameter are implemented in (5.42) for calculation of 

weighting average. The parameters and COV values are shown in Table 5.9. 
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Table 5.9: COV values of material parameters [90], [26]  

Failure mode 
Material 

parameter 
COVi 

Friction failure fv0 0.35 

Tensile failure fbt 0.2 

Flexural (bending) failure fk 0.1 

Shear compression failure fk 0.1 

 

With the application of the COV values for material properties, the weighting average is 

determined to be 19.8%. This value with other basic variables—geometrical parameters and 

normal action—are applied in (5.20) and (5.21). Finally, the calculated resistance COV is 

approximately 28.9%. The same procedure as a modeled partial factor is performed to 

determine the resistance partial factor 𝛾𝑀. The results of the model’s partial factor and 

resistance partial factor for EC6-NA and EC6-NA Annex K are shown in Figure 5.18 and Table 

5.10. 

Table 5.10: Resistance partial factor for data base 

 𝛾𝑀 

EC6-NA Annex K 1.45 

EC6-NA 1.39 
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Figure 5.18: Model partial factor and resistance partial factor   

5.3.6 Conclusion 

For the definition of partial factors for the resistance side in structural design, the code divides 

the source of uncertainty into two categories: the uncertainty from material properties and 

uncertainty from structural behavior modeling. The determination of material uncertainty can 

also be undertaken by testing every single material. The recommendation in Annex D of EN-

1990 has been applied in this section as a practical process for the determination of model 

uncertainty. These values have been determined according to the experimental database for the 

masonry shear wall and based on failure modes in German national Annex DIN EN-1996-1-1/ 

NA. Moreover, the resistance partial factor is also calculated by considering other basic 

variables such as material, geometry and action variations. 

The results indicate that this method in Annex D of EN-1990 is a reliable one for the calculation 

of model partial factor and resistance partial factors. The advantage of this method is separate 

determination of model partial factor and resistance partial factors. The recommended value of 

the partial factor for the model may be applied in the shear wall calculation based on the 

material properties tests. 

Eventually, based on the parameters involved in the calculation process, it can be concluded 

that two parameters influence the partial factors of the model, the scatter of the model error and 

the bias of the model. In the case of the last of these, the coefficient of variation is the effective 

parameter in the calculation of partial factors. The higher values of COV will lead to higher 

values for partial factors. For the bias model, values of more than 1 will be considered models 

that underestimate the resistance and decrease the value of a partial factor. A bias factor of less 
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than 1 means that the model needs more safety, so the partial factor will be increased by 

considering the bias. 

5.4 Application of partial safety factor for resistance (cases study flexural failure 

of masonry shear wall) 

5.4.1 Design value of resistance 

Limit state design consists of the determination of actions design values (𝐸𝑑) and resistance 

(𝑅𝑑) based on the load combinations and limit state functions (eq. (2.1)]). Detailed analyses 

appear in Chapter 4 regarding the design value of actions. In Chapter 5, however, the 

application of partial safety factor for material is investigated. The recommendations for 

implementation of partial safety factors for material and resistance are described in Section 6 of 

EN-1990. Equation (5.43) shows the application of the material partial safety factor based on 

recommendations in EN-1990:   

𝑅𝑑 = 𝑅 {𝜂𝑖 
𝑋𝑘,𝑖

𝛾𝑀,𝑖
 ; 𝑎𝑑}  𝑖 ≥ 1, 

(5.43)  

where  

 𝑋𝑘,𝑖 is the characteristic value of the material or product property; 

 𝜂𝑖 is the mean value of the conversion factor, taking into account 

- volume and scale effects,  

- effects of moisture and temperature, and  

- any other relevant parameters; 

𝛾𝑀,𝑖 is partial factor considering the uncertainty of the model (𝛾𝑅𝑑) and the partial 

factor of material properties(𝛾𝑚)—𝛾𝑀,𝑖 = 𝛾𝑅𝑑 ∙ 𝛾𝑚 

 𝑎𝑑 design values of geometrical data. 

 

Application of the resistance partial factor in limit state functions is an important aspect of 

recommendations in the EN-1990. Investigation of this application is going to be done according 

to a case study in this section. In this part, a flexural failure of masonry shear wall is considered 

as a case study to investigate the application of the partial resistance safety factor. The flexural 

failure limit state for this kind of wall is not directly mentioned in the context of EN-1996-1-1, and 

it has to be determined based on the limit state function for normal forces. Therefore, this will 

make the application of partial safety factors a critical case for this limit state. Moreover, this limit 

state is a nonlinear limit state function regarding the normal forces, and it brings extra 
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complexity in its application. A short explanation was given in (5.37), but here the formula will be 

represented based on a normalized value of normal forces [96].  

A masonry wall is selected for defining a nonlinear limit state. The flexural resistance of this 

masonry wall (Figure 5.19), subject to vertical and horizontal loading, will be calculated based 

on geometrical parameters and the eccentricity of loading. 

 

Figure 5.19: Geometry of the wall 

According to the EN-1996-1-1 [64] in the ultimate limit state, the limit state function can be 

represented as (5.44). This equation describes the model for the wall behavior without 

considering the design situation.   

𝑁 = 𝜑 ∙ 𝑓 ∙ 𝑙𝑤 ∙ 𝑡 (5.44)   

Here, 𝜑 is determined based on the formula (5.38), which may be reformulated based on the 

eccentricity as (5.45). 

𝜑 = 1 − 2
𝑒

𝑙𝑤
       𝑤𝑖𝑡ℎ   𝑒 =

𝑉 ∙ ℎ

𝑁
 

(5.45)   

The normal forces are represented with a normalized value according to (5.46) 

𝑛 =
𝑁

𝑡 ∙ 𝑙𝑤 ∙ 𝑓
 

(5.46)   

Substituting (5.45) in (5.44) and using the normalized value of normal forces, the limit state 

function of flexural failure of unreinforced masonry against horizontal loading is illustrated as in 

(5.47). 

lw

V

N
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𝑉 =
𝑡 ∙ 𝑙𝑤

2 ∙ 𝑓

2 ∙ ℎ
∙ (𝑛 − 𝑛2) 

(5.47)   

The input data for an exemplary masonry wall is selected as mentioned in Table 5.11. These 

values are related to a wall with CS bricks. The model uncertainty for this kind of material is 

represented in [89] in a lognormal distribution with COV = 0.33 and mean = 1.171. 

Table 5.11: Properties and parameter of the wall 

Parameter Unit Value 

wall length, lw mm 1250 

wall height, hw  mm 2500 

strength, fk kN/mm2 0.015 

thickness, t mm 175 

The wall is subjected to normal force, which consists only of permanent actions. The lateral 

loading is considered as wind load. The stochastic parameters for conducting reliabilities are 

selected from Table 3.2. 

5.4.2 Utilization of partial safety factor of material 

Three different methods of partial factor utilization are defined in this section: 

 nonlinear, 

 linear-nonlinear, and 

 linear.  

These terms do not represent the nonlinearity in the limit state function or the material or other 

structural nonlinearities; rather, the terms are based on the influence of partial factors on design 

results.  

5.4.2.1 Nonlinear 

The term “nonlinear,” in the case of partial factor utilization, means that the influence of the 

partial factor does not change all values of resistance by an individual factor. In other words, it 

does not map all values by a simple factor. In this case, (5.44) in the design situation, which is 

the current format for calculation based on EN-1996, can be represented as follows: 

𝑁𝑑 = 𝜑 ∙
𝑓𝑘

𝛾𝑀
∙ 𝑙𝑤 ∙ 𝑡. (5.48)    

Therefore, by using (5.44), the design value of shear resistance in flexural failure criteria is  
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𝑉𝐹𝐿𝑑 =
𝑡∙𝑙𝑤

2∙𝑓𝑘

2∙ℎ
∙ (𝑛 − 𝛾𝑀 ∙ 𝑛2). (5.49)   

 

Thus the deterministic function of flexural failure in order to implement the probabilistic analysis 

is represented in (5.50), which is equal to (5.47).  

 

𝑉 =
𝑡 ∙ 𝑙𝑤

2 ∙ 𝑓

2 ∙ ℎ
∙ (𝑛 − 𝑛2) 

 (5.50)   

According to the above equations, the random points and design values of actions and 

resistance can be represented as in Figure 5.20, which illustrates that the real behavior of the 

wall, presented by green points, is entirely different from the design behavior. It seems that the 

diagram in case of design resistance shifts in both directions by application of partial factors. 

This behavior creates a substantial gap between the real behavior of the wall and the estimated 

behavior according to the design conditions. 

 

 

Figure 5.20: Representation of design value and the random points of action and resistance for 
nonlinear method 

The transition of design value into resistance and action with probabilistic form for flexural failure 

in the so-called nonlinear method is shown in Figure 5.20. As illustrated, the two areas between 

design value, resistance and actions are not proportional to each other. In the next two methods 

for utilization of partial factors, this problem will be solved to get proportional behavior between 

design value, action and resistance. A part of the real resistance of the wall according to the 

Difference between resistance 
and design valueDifference between actions 

and design value

Real resistance 
which is not 

consider in design 
situation
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probabilistic model of flexural behavior is also not considered in the design model, and it 

corresponds to the values of n greater than n = 0.666. The calculation and analysis are 

therefore done for only part of the whole interval, since in values of n greater than 0.666, the 

shear resistance in the case of flexural failure is negative, which is unacceptable. 

5.4.2.2 Linear-nonlinear 

In this case, the partial factor implementation in design situation is similar to the nonlinear 

method based on the current version of EN-1996. Thus, the design value of shear resistance in 

the case of flexural failure for this case would be the same as (5.49). The difference will arise in 

the deterministic function of resistance in the probabilistic form. To ensure the same behavior 

between resistance and design value in this method, the design value relation will be used for 

the deterministic solution, and it will be mapped by a factor equal to the material partial factor to 

get the final value for the probabilistic model of resistance, (5.51).  

𝑉 = 𝛾𝑀 ∙ [
𝑡 ∙ 𝑙𝑤

2 ∙ 𝑓

2 ∙ ℎ
∙ (𝑛 − 𝛾𝑀 ∙ 𝑛2)] 

(5.51)   

 

According to Figure 5.21, the design value behavior in this case is similar to the behavior of 

action and resistance. It seems that the transition of design value to the probabilistic form is 

done by mapping the design value with a factor. The difference between the real behavior 

(probabilistic model) of resistance and the design model that has been observed in the nonlinear 

case is avoided in the linear-nonlinear method by considering a linearization assumption, as 

explained in (5.51). Therefore, it can be mentioned that in the first step, a partial factor will 

create a nonlinear effect for the design value, but in the second part of the probabilistic model, 

given a linearization assumption [eq. (5.51)], the resistance behavior, action and design model 

will be compatible.  
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Figure 5.21: Representation of design value and the random points of action and resistance for 

linear-nonlinear method 

5.4.2.3 Linear 

In this case, the design value will be calculated by a linear mapping of the characteristic 

resistance by the partial factor of material [see (5.52)]. Therefore, using a partial factor of 

material does not affect the value of normal force in the design situation. As such, the model of 

resistance for flexural failure has been evaluated based on (5.52). After finding the resistance 

model, the safety parameters will be implemented by applying the partial factor for the 

resistance part. In other words, the transition from (5.44) to (5.47) has been done without 

considering safety parameters. The safety parameters are applied to the characteristic value of 

the resistance model.  

𝑅𝑑 =
𝑅𝑘

𝛾𝑀
               𝑅𝑘 =

𝑡 ∙ 𝑙𝑤
2 ∙ 𝑓𝑘

2 ∙ ℎ
∙ (𝑛 − 𝑛2)                           

(5.52)    

Therefore, the design value of the shear resistance in the case of flexural failure with a linear 

effect of partial factor utilization would be as shown in (5.53).  

𝑉𝐹𝐿𝑑 =
𝑡 ∙ 𝑙𝑤

2 ∙ 𝑓𝑘

𝛾𝑀 ∙ 2 ∙ ℎ
∙ (𝑛 − 𝑛2) 

(5.53)    

For a probabilistic model, the resistance will be modeled like the nonlinear method, based on 

(5.50). 

Difference between resistance
and design value

Difference between actions 
and design value
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Figure 5.22: Representation of design value and the random points of action and resistance for 
linear method 

In linear method, as it seems in Figure 5.22, the behavior of action, resistance, and design value 

of shear resistance in the flexural case are the same. In this case, all ranges of values for n will 

be covered.  

5.4.3 Comparing the methods 

According to the explanation of each method in previous sections, each of them has the 

individual function of limit state design and a deterministic function for creating a probabilistic 

model of material resistance. The action probabilistic model is also created for reliability analysis 

with a basic assumption of economic design (𝑉𝐹𝐿𝑑 = 𝑉𝐸𝑑). Therefore, the model behavior of 

wind action or horizontal action will be similar to the design value in each method. Table 5.12 

summarizes for each method the corresponding deterministic function for the probabilistic model 

of resistance and the limit state design function. In this table, the utilization of a partial factor for 

each of these functions is illustrated. 

 

 

 

 

Difference between resistance
and design value

Difference between actions 
and design value
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Table 5.12: Design resistance and deterministic function for probabilistic resistance model in 
different methods of partial factor utilization 

Method of partial factor 

utilization 

Design value of shear resistance 

for flexural failure 

Deterministic function for creating 

probabilistic resistance model in 

flexural failure 

Nonlinear 𝑉𝐹𝐿𝑑 =
𝑡 ∙ 𝑙𝑤

2 ∙ 𝑓𝑘

2 ∙ ℎ
∙ (𝑛 − 𝜸𝑴 ∙ 𝑛2) 𝑉 =

𝑡 ∙ 𝑙𝑤
2 ∙ 𝑓

2 ∙ ℎ
∙ (𝑛 − 𝑛2) 

Linear-nonlinear 𝑉𝐹𝐿𝑑 =
𝑡 ∙ 𝑙𝑤

2 ∙ 𝑓𝑘

2 ∙ ℎ
∙ (𝑛 − 𝜸𝑴 ∙ 𝑛2) 𝑉 = 𝜸𝑴 ∙ [

𝑡 ∙ 𝑙𝑤
2 ∙ 𝑓

2 ∙ ℎ
∙ (𝑛 − 𝜸𝑴 ∙ 𝑛2)] 

Linear 𝑉𝐹𝐿𝑑 =
𝑡 ∙ 𝑙𝑤

2 ∙ 𝑓𝑘

𝜸𝑴 ∙ 2 ∙ ℎ
∙ (𝑛 − 𝑛2) 𝑉 =

𝑡 ∙ 𝑙𝑤
2 ∙ 𝑓

2 ∙ ℎ
∙ (𝑛 − 𝑛2) 

5.4.4 Reliability analysis 

The next step is the comparison of different methods regarding their reliability indexes. For each 

method, reliability analyses are completed to observe the influence of partial factor utilization in 

the limit state of shear resistance for flexural failure.  
 

Figure 5.23: Reliability of different method 

The reliability result is given in Figure 5.23. The reliability analysis is done for each method in 

the range of n for which the result is acceptable. Thus, in the nonlinear method and the linear-

nonlinear method, reliability analysis is done for a range of between 0 and 0.666, and for the 

linear method, reliability is available for n between 0 and 1. 
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In the first step of comparison, the nonlinear method and linear-nonlinear method are 

considered. In both methods, the design value of resistance is equal. Therefore, according to 

the economic design situation (𝑉𝐹𝐿𝑑 = 𝑉𝐸𝑑), the behaviors of the wind load or action part of the 

limit state are the same. On the other hand, the deterministic function in the nonlinear [eq. 

(5.50)] and linear-nonlinear [eq. (5.51)] methods that create the probabilistic model of material 

are different. Therefore, Figure 5.24 shows that the probabilistic model of resistance for these 

two methods differ.  

 

 

Figure 5.24: Comparison of linear-nonlinear and nonlinear method 

The design value for both nonlinear and linear-nonlinear methods cover the range of 0 and 

0.666 for n. Therefore, in reliability analysis, only this interval has been calculated for these two 

methods. In values of n lower than 0.4, the resistance model in the nonlinear model lies on 

values lower than the linear-nonlinear method. Thus, with the same loading model for these two 

methods for these values of n, the reliability index of the nonlinear method will be smaller than 

for the linear-nonlinear method (see Figure 5.23). 

According to Figure 5.24, it can be observed that in values bigger than 0.4 for n, the probabilistic 

resistance model in the nonlinear method differs significantly in comparison with the action 

model. This difference causes ta considerable increase in the reliability index for the nonlinear 

method. In the linear-nonlinear method, a small difference between probabilistic model of 

resistance and actions leads to a significant decrease in the reliability index of the shear wall in 

the flexural failure mode (see Figure 5.23).  

Figure 5.25 shows the behavior of actions and resistance in linear and linear-nonlinear methods. 

It can be observed that the diagrams of the linear-nonlinear method, in this case, are stretched 
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to the maximum value, from n = 0.666 to n = 1. For this reason, the reliability indexes for these 

two methods are similar, but the value for the reliability index varies for these two cases.  

In the case of the linear and nonlinear method in Figure 5.26, a similar model for probabilistic 

resistance is observed, but the design values of resistance in flexural failure differ. 

Consequently, the action probabilistic models for these two methods will have different behavior.  

 

 

Figure 5.25: Comparison of linear-nonlinear and linear method 
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Figure 5.26: Comparison of linear and nonlinear method 

 

5.4.5 Conclusion 

The most reasonable method should be selected based on the different cases of comparison for 

resistance model, action model, reliability index and design situation. In this case, the nonlinear 

method could not be a reasonable method because it does not consider a part of wall 

resistance. The transition of the design model to the probabilistic model of resistance and action 

is not happening properly, and the resistance and actions model are not compatible with each 

other.  

The linear-nonlinear method provides compatible behavior in the resistance model and action 

model, but in this case, the transition from design situation to probabilistic model is forced to be 

linear to secure compatible results for both probabilistic models, for action and resistance. Thus, 

resistance as it acts in reality is only partially represented by this form of transition.  

By comparing all of the results and behaviors in different methods, one can conclude that the 

most reasonable method, in this case, is the linear method. Because in this case the transition 

of the design value to the probabilistic model for action and resistance has been done linearly, 

the action model, resistance model, and design value that result from this transition are 

completely compatible with each other. 
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Different behaviors and different results ensue because of different methods of material partial 

factor utilization. By comparing the most reasonable method (i.e., linear) with the other methods, 

it can be seen that this method performs similarly to the global resistance factor method.  

In nonlinear limit states, as here for the flexural failure of the wall, utilization of a partial factor will 

lead to some critical points. An explicit explanation of this problem must be given to determine 

where and when the partial factors should be used to avoid these problems. In this case, 

Section 6.3.5(3) from EN-1990 [16] can be used to circumvent these problems: “the design 

resistance may be obtained directly from the characteristic value of a material or product 

resistance, without explicit determination of design values for individual basic variables”, using 

(5.52). The method would then be the same as the linear method used in this study. 
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6 Summary and outlook 

Various sources of uncertainty arise in structural design, and among them the partial safety 

factor method is a reasonable measure to evaluate the safety of a construction. Partial factors 

cover individual uncertainties from corresponding basic variables in the limit state of structures. 

The background of the partial safety factor approach comprises the prerequisite discussion for 

this study.  

In Chapter 2, the partial safety factor method and its aspects in connection with the Eurocode 

system are explained. EN-1990 is the basis code for other relevant Eurocodes and the 

recommended safety concept in this code is partial safety factors. Thus, this study’s 

investigations have been done following the EN-1990 framework. The objective for the 

application of recommended partial factors in standards is to reach the target reliabilities 

proposed in each code. Therefore, reliability analyses are made to investigate the different 

approaches of the partial safety factor method.  

The applied methods in this study are presented briefly in Chapter 3: Monte Carlo method, 

FORM and importance sampling. Different applications of these methods are also compared 

according to the provided reliability level and the calculation process. Furthermore, stochastic 

parameters are presented as the main input data for reliability analysis and for the application of 

reliability analysis. Two parameters for load ratios are also defined in this chapter for the 

reliability analysis. Load ratio χ is the first, defining the proportion of variable load to the total 

load, including self-weight or permanent load. Higher values of this parameter represent the 

light-weight structures, and lower values are for heavy-weight structures. This definition helps in 

further analysis to interpret the results based on the weight of structure. Variable k is another 

parameter related to load ratio, and it represents the ratio of leading and accompanying variable 

loads. 

Limit states are the main components that define the failure of a structure or its member. In a 

general format, limit states mainly consist of two basic components: load and resistance. 

Therefore, the investigations of different aspects of the partial safety factor method according to 

the reliability analysis are also subdivided into two main chapters corresponding to loading and 

resistance.  

In Chapter 4, the aspects of partial the safety factor method related to the loading and their 

partial factors are reviewed. The application of different load combinations and recommended 

partial factors according to EN-1990 is briefly investigated. Analyses are made of five different 

types of material parameters: concrete, steel, reinforcement steel, masonry and timber. In 

addition, three types of variable actions are also considered in the analysis of load 

combinations. Load combination 6.10 and 6.10a&b, based on EN-1990, are compared 

according to the provided reliability indexes. The results considering the average point of view 

expose values slightly higher than the target reliability value. Combination 6.10a&b shows more 
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consistent results regarding target reliability. The economic effects of the implementation of 

6.10a&b rather than 6.10 are verified through a case study of the design of a concrete beam. 

The results prove that the application of 6.10a&b produces more economical results. In other 

words, designing with 6.10a&b is more sustainable than with 6.10.  

Although the combined average of reliabilities for EN-1990 produces a result compatible with the 

target value, certain cases yield low reliability. In case of snow load, the recommended partial 

factors of EN-1990 are not enough to reach the required safety level. As a result, a so-called 

increase factor method is proposed to apply higher safety measures in cases of snow load. The 

reliability analysis based on this method proves that its application increases the reliability level 

to close to the target values.  

Different types of variable loads are involved in the structural designs. The combination of these 

time-depended loads has to be considered in the calculations. The combination factors in EN-

1990 are proposed to cover the possibility of the simultaneous occurrence of two time variable 

actions. The representation of these loads has to be based on maxima for the chosen reference 

period. The transformation of stochastic parameters for a different reference period is 

investigated in Chapter 4 as well. A deterministic formula is likewise derived for the calculation 

of COV values for various reference periods.  

Furthermore, the calibration results based on the design value method prove that the 

recommended values of combination factors in the code are conservative. Selecting the 

combination factors for different types of variable loads for different load combinations is one of 

the aspects in the current version of EN-1990 that is in contrast with the concept of ease of use. 

Therefore, a simplified load combination by means of choosing the appropriate combination 

factors is proposed within this study. This simplified load combination is compared with original 

combinations in EN-1990 through numerous reliability analyses. The results prove that the 

application of a simplified method is completely compatible with the original combinations in the 

code. According to this analysis, this method is mentioned in the most recent draft of the update 

to EN-1990 as a note in the table of load combinations. 

In the final section of Chapter 4, a new method for the calibration of partial safety factors is 

proposed. This new method, which is called “interest band,” is based on the full probabilistic 

methods and Monte Carlo reliability analysis. The random realizations near the limit state 

function are considered design values for basic variables. The partial factors are calibrated 

based on the target reliability. The calibrated values show the compatible reliability level in 

comparison with the selected target reliabilities and reduce the variation of reliability indexes at 

the same time. 

In Chapter 5, the resistance partial factor is the objective of the investigation. Due to the fact that 

resistance parameters and models are highly dependent on experiments, a stochastic analysis 

is first done for the relation of test numbers and the partial resistance factor. According to the 

probabilistic background of test numbers, 10 is recommended as the optimum number for 
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material tests. It is observed that beyond 10 tests, the variations in the resultant partial safety 

factor of material or its coefficient of variation are approximately constant.  

The partial safety factor of resistance has two main contributions form material uncertainty and 

model uncertainty. The evaluation of material uncertainty may be done according to different 

types of tests for various material properties. Contrarily, the assessment of partial factor for 

model uncertainty was always a challenging point in probabilistic modeling of resistance. In this 

study, the probabilistic evaluation of test results is implemented according to Annex D in EN-

1990 for calculation of both partial factors for model uncertainty and for resistance as a whole. 

The method is applied on an experimental databased for unreinforced masonry shear walls. The 

theoretical model for the resistance of a masonry shear wall from DIN EN1996-1-1/NA and its 

Annex K is considered. The most important advantage of the probabilistic evaluation in Annex D 

of EN-1990 is found to be the separation of model bias and of model error. In this research, the 

bias model is considered in the process of partial factor calculation in addition to the coefficient 

of variation. The results of the analysis for the masonry wall model in DIN EN1996-1-1/NA 

shows the design with 1.5 as partial factor is relatively safe and slightly conservative. 

In the last part of section 5, the utilization of partial safety factors is investigated in a case study 

of a masonry shear wall in a flexural failure. This limit state has to be derived indirectly from the 

recommended limit state function in EN1996-1-1. The partial factor utilization has considerable 

influence on the reliability level of this limit state. Three different methods for utilization of partial 

factor are considered. It is concluded that the application of the resistance factor method is the 

best approach to neglect the improper influence of partial factor utilization. 

Generally, it can be concluded that partial factor method covers different types of uncertainty in 

the design. This methodology deals with sources of individual uncertainty by indicating relevant 

partial safety factors for each type of uncertainty. Although the implementation of this safety 

method leads to economical design, there remain some aspects that can be improved to reach 

more sustainable results. The probabilistic analysis is based on the stochastic parameters 

selected from various references. According to new phenomenon worldwide, such as climate 

change and new technologies, a detailed analysis based on new databases for environmental 

load probabilistic models seems essential in this matter. Moreover, a detailed reliability analysis 

can be performed according to the latest probabilistic modeling of basic variables. The reliability 

analysis has to be conducted for a structural system or a structural component without an 

explicit limit state function. In other words, a reliability analysis for the practical projects of 

structural design according to the Eurocodes recommendations requires further comprehensive 

investigation. According to the ongoing improvements in computational technologies, the 

application of full probabilistic design methods will be convenient to perform. Therefore, a 

comprehensive study of the fundamental approaches for this kind of calculation is necessary for 

the future of structural design. 



References   

 

143 

References 

 

[1]. Randall Jr, F.A.: Historical Notes on Structural Safety*. in ACI Journal Proceedings. 
1973. ACI. 

[2]. Randall, F.A.: The safety factor of structures in history. Professional Safety,  (1976), pp. 
12-28. 

[3]. Ellingwood, B.: Probability-Based Load Criteria for Structural Design, Vol. Chapter., CRC 
Press. 2018, pp. 283-288. 

[4]. Blockley, D.I.: The nature of structural design and safety.  1980. 
[5]. Beeby, A.W.;Narayanan, R.S.: Introduction to Design for Civil Engineers. CRC Press. 

London, 2000. 
[6]. Freudenthal, A.M.; Garrelts, J.M.;Shinozuka, M.: The analysis of structural safety, DTIC 

Document1964. 
[7]. Cornell, C.A.: A Probability-Based Structural Code*. Journal Proceedings, 66 (1969) 12, 

pp. 974-985. 
[8]. Ravindra, M.K.;Galambos, T.V.: Load and resistance factor design for steel. Journal of 

the Structural Division, 104 (1978) 9, pp. 1337-1353. 
[9]. C.E.B: Recommendations for an international code of practice for reinforced concrete. 

English edition: American Concrete Institute and Cement an Concrete Association ed. 
Comité Européen du Béton (CEB) Paris, 1964. 

[10]. Basis of design of structures, proposals for modification of partial safety factors in 
eurocodes, N.C.a.W. Reports, SAKO Joint Committee of NKB and INSTA-B: Oslo,1999. 

[11]. Ellingwood, B.: Development of a probability based load criterion for American National 
Standard A58: Building code requirements for minimum design loads in buildings and 
other structures. Vol. 577. US Department of Commerce, National Bureau of Standards 
1980. 

[12]. Narayanan, R.;Beeby, A.: Designers' Guide to EN 1992-1-1 and EN 1992-1-2. Eurocode 
2: Design of Concrete Structures: General Rules and Rules for Buildings and Structural 
Fire Design. Thomas Telford 2005. 

[13]. Castro, P.M.; Delgado, R.M.;de Sá, J.M.C.: A partial factor methodology for structural 
safety assessment in non linear analysis. COMPUTERS AND CONCRETE, 2 (2005) 1, 
pp. 31-53. 

[14]. Gulvanessian, H.; Calgaro, J.A.;Holický, M.: Designer's Guide to EN 1990: Eurocode: 
Basis of Structural Design. Thomas Telford 2002. 

[15]. Gulvanessian, H.: An Independent Technical Expert Review of the SAKO Report – 
FINAL CEMBUREAU,BIBM,ERMCO2003. 

[16]. EN 1990: Eurocode: Basis of structural design (EN 1990:2002 + A1:2005 + 
A1:2005/AC:2010). European Committee for Standardisation (CEN),Brussels, 2002/2010 

[17]. Gulvanessian, H.;Holicky, M.: Eurocodes: using reliability analysis to combine action 
effects. Structures & Buildings, 158 (2005 ) SB4, pp. 243–252. 

[18]. prEN 1990: Eurocode basis of structural and geotechnical design-Working document. 
European Committee for Standardisation (CEN),Final draft, 2017 

[19]. ISO 2394 General principles on reliability for structures. International Organization of 
Standardization Switzerland, 2014 

[20]. JCSS Probabilistic model code, Joint Committee on Structural Safety: 
www.jcss.ethz.ch,2001. 

http://www.jcss.ethz.ch,2001/


References   

 

144 

[21]. Rackwitz, R.: Optimization — the basis of code-making and reliability verification. 
Structural Safety, 22 (2000) 1, pp. 27-60. 

[22]. Klüppelberg, C.; Straub, D.;Welpe, I.M.: Risk-A Multidisciplinary Introduction. Springer 
2014. 

[23]. Holický, M.: Reliability analysis for structural design. AFRICAN SUN MeDIA 2009. 
[24]. Sørensen, J.D.: Notes in Structural Reliability Theory And Risk Analysis Aalborg, 2004  
[25]. Ang, A.: Practical assessments of risk and its uncertainty. Reliability and Optimization of 

Structural Systems: Assessment, Design, and Life-Cycle Performance,  (2007), pp. 45. 
[26]. Brehm, E.: Reliability of Unreinforced Masonry Bracing Walls-Probabilistic Approach and 

Optimized Target Values. TU Darmstadt 2011. 
[27]. Skjong, R.;Ronold, K.: Societal indicators and risk acceptance In: Proceedings of 17th 

International Conference on Offshore Mechanics and Arctic Engineering OMAE, 1998. 
[28]. Rackwitz, R.: Zuverlässigkeit und Lasten im konstruktiven Ingenieurbau. Lecture notes,  

(2004), pp. 
[29]. Ang, A.H.-S.;Cornell, C.A.: Reliability bases of structural safety and design. Journal of 

the Structural Division, 100 (1974) Proc. Paper 10777, pp. 
[30]. Salehi, H.; Jäger, W.;Montazerolghaem, M.: Die Anwendung der Monte-Carlo-Methode 

zur Bestimmung der Zuverlässigkeit von Mauerwerksbauteilen. Mauerwerk Kalender,  
(2016), pp. 317-331. 

[31]. Faber, M.H.: Risk and safety in civil engineering. Swiss federal institute of technology. 
Zurich, 2007. 

[32]. Huntington, E.: Frequency distribution of product and quotient. The Annals of 
Mathematical Statistics, 10 (1939) 2, pp. 195-198. 

[33]. Schueremans, L.: Probabilistic evaluation of structural unreinforced masonry,PhD-
Thesis, Katholieke Universiteit Leuven. 2001 

[34]. Choi, S.K.; Grandhi, R.V.;Canfield, R.A.: Reliability-based Structural Design. Springer. 
London, 2010. 

[35]. Ravindra, M.K.; Heaney, A.C.;Lind, N.C.: Probabilistic evaluation of safety factors. 
IABSE reports of the working commissions, 4 (1969), pp. 35-46. 

[36]. Thoft-Christensen, P.;Baker, M.J.: Structural reliability theory and its applications.  
(1982), pp. 

[37]. Ditlevsen, O.;Madsen, H.O.: Structural reliability methods. Vol. 178. Wiley New York 
1996. 

[38]. Hasofer, A.M.;Lind, N.C.: Exact and invariant second-moment code format. Journal of 
the Engineering Mechanics division, 100 (1974) 1, pp. 111-121. 

[39]. Rackwitz, R.;Fiessler, B.: Structural reliability under combined random load sequences. 
Computers & Structures, 9 (1978) 5, pp. 489-494. 

[40]. Hammersley, J.: Monte carlo methods. Fletcher & Son Ltd. England, 1964. 
[41]. Sobol, I.M.: A primer for the Monte Carlo method. CRC press 1994. 
[42]. Metropolis, N.;Ulam, S.: The monte carlo method. Journal of the American statistical 

association, 44 (1949) 247, pp. 335-341. 
[43]. Sobolʹ, I.i.a.M.: The Monte Carlo Method. The University of Chicago 1974. 72. 
[44]. Dhillon, B.S.: Bibliography of literature on safety factors. Microelectronics Reliability, 29 

(1989) 2, pp. 267-280. 
[45]. Jahani, E.; Shayanfar, M.A.;Barkhordari, M.A.: A new adaptive importance sampling 

Monte Carlo method for structural reliability. KSCE Journal of Civil Engineering, 17 
(2013) 1, pp. 210-215. 

[46]. Kececioglu, D.;Cormier, D.: Designing a specified reliability directly into a component, 
SAE Technical Paper1964. 

[47]. Cohen, A.C.;Whitten, B.J.: Parameter estimation in reliability and life span models. M. 
Dekker 1988. 

[48]. Kelton, W.D.;Law, A.M.: Simulation modeling and analysis. McGraw Hill Boston 2000. 



References   

 

145 

[49]. Raychaudhuri, S.: Introduction to monte carlo simulation. in Simulation Conference, 
2008. WSC 2008. Winter. 2008. IEEE. 

[50]. Kroese, D.P.; Taimre, T.;Botev, Z.I.: Handbook of Monte Carlo Methods. Vol. 706. John 
Wiley & Sons 2013. 

[51]. Zio, E.: The Monte Carlo simulation method for system reliability and risk analysis. 
Springer 2013. 

[52]. Melchers, R.E.: Structural reliability analysis and prediction 2ed. Wiley. London, 1999. 
[53]. Engelund, S.;Rackwitz, R.: A benchmark study on importance sampling techniques in 

structural reliability. Structural Safety, 12 (1993) 4, pp. 255-276. 
[54]. Melchers, R.E.: Importance sampling in structural systems. Structural Safety, 6 (1989) 1, 

pp. 3-10. 
[55]. Harbitz, A.: An efficient sampling method for probability of failure calculation. Structural 

Safety, 3 (1986) 2, pp. 109-115. 
[56]. Bucher, C.G.: Adaptive sampling — an iterative fast Monte Carlo procedure. Structural 

Safety, 5 (1988) 2, pp. 119-126. 
[57]. Papadrakakis, M.;Lagaros, N.D.: Reliability-based structural optimization using neural 

networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and 
Engineering, 191 (2002) 32, pp. 3491-3507. 

[58]. Salehi, H.; Montazerolghaem, M.;Jäger, W.: Application of crude Monte Carlo and 
Adaptive importance sampling in reliability assessment of URM shear walls. In: 
Proceedings of 16th International Brick And Block Masonry Conference (IBMAC), 
Padova,Italy, 2016. 

[59]. Holicky, M.;Sykora, M.: Conventional probabilistic models for calibration of codes. in MH 
Faber, J. Köhler & K. Nishijima (eds.), Proceedings of 11th International Conference on 
Applications of Statistics and Probability in Civil Engineering ICASP11. 2011. 

[60]. Turkstra, C.J.;Madsen, H.: Load combinations in codified structural design. The 
structural division,  (1980), pp. 2527-2543. 

[61]. EN 1992-1-1, Design of concrete structures European commitiee for standardization 
Brussels, 2004 

[62]. EN 1993-1-1 Design of steel structures European committee for standardization-
CEN,2005 

[63]. EN 1995-1-1 Design of timber structures. European committee for standardization-
CEN,2004 

[64]. Eurocode 6 - Design of masonry structures - Part 1-1: General rules for reinforced and 
unreinforced masonry structures. European committee for standardization-
CEN,Brussels, 2005 

[65]. Severyn, V.; Pashchenko, A.;Mytrofanov, P.: Probabilistic Analysis of Structures Under 
Snow Load. International Journal of Engineering &amp; Technology; Vol 7, No 3.2 
(2018): Special Issue 2DO - 10.14419/ijet.v7i3.2.14431,  (2018), pp. 

[66]. Holicky, M.;Sykora, M.: Failures of roofs under snow load: Causes and reliability 
analysis, Vol. Chapter. 2010, pp. 444-453. 

[67]. Kozak, D.L.;Liel, A.B.: Reliability of steel roof structures under snow loads. Structural 
Safety, 54 (2015), pp. 46-56. 

[68]. Background documentation, Eurocode 1 (ENV 1991), Part 1: Basis of design, JCSS, 
1996. 

[69]. Sedlacek, G.; Cajot, L.; Haller, M., et al.: Probabilistic quantification of safety of a steel 
structure highlighting the potential of steel versus other materials, EUR 21695, European 
commission: Luxembourg,2005. 

[70]. Murzewski, J.: Upper bound for combination of action effects. IABSE report, 74 (1996), 
pp. 279-290. 

[71]. Ferry-Borges, J.;Castanheta, M.: Structural safety. 2nd ed. Lisbon, 1971. 
[72]. Sørensen, J.D.: Load combination factor, JCSS probabilistic workshop: Ghent,2015. 



References   

 

146 

[73]. Vrouwenvelder, T.: Reliability based code calibration the use of the jcss probabilistic 
model code. In: Proceedings of JCSS  Workshop on Code Calibration, Zurich, 2002. 

[74]. Vrouwenvelder, T.;Gulvanessian, H.: Basis of Design and Actions on Structures: 
Background and Application of Eurocode 1, IABSE: Delft 1996. 

[75]. Borges, J.F.; Thielen, G.; Rackwitz, R., et al.: Conceptional Preparation of Future Codes 
- Progress Report, CEB Bulletins 174, CEB: Paris,1982. 

[76]. Grundlagen zur Festlegung von Sicherheitsanforderungen für bauliche An-lagen. 
Deutsches lnstitut für Normung,DIN-Beuth Verlag, Berlin—Köln, 1981 

[77]. Schobbe, W.: Konzept zur Definition und Kombination von Lasten im Rahmen der 
deutschen Sicherheitsrichtlinie. Wilhelm Ernst & Sohn 1982. 

[78]. Breinlinger, F.;Jäger, W.: Verbesserung der Praxistauglichkeit der Baunormen durch 
pränormative Arbeit - Teilantrag 1: Sicherheitskonzept und Einwirkungen, F 2957, 
Frauenhofer IRB Verlag, Bundesinstitut für Bau-, Stadt- und Raumforschung: Stuttgart 
2015. 

[79]. DS/EN 1990 DK NA: National Annex to Eurocode: Basis of structural design. Danish 
Standards Foundation,2013 

[80]. A P Mann, L.J.M.: Rationalisation of safety and serviceability factors in structural codes, 
CIRIA1977. 

[81]. Fischer, L.: Das neue Sicherheitkonzept im Bauwesen. Ernst & Sohn. Berlin, 2001. 186. 
[82]. ISO 12491 - Statistical methods for quality control of building materials and components, 

Beuth1997. 
[83]. Holichky, M.; Materna, A.; Sedlacek, G., et al.: Implementation of the Eurocodes: 

Handbook 2 - Reliability backgrounds, European Commission: Prague,2005. 
[84]. ISO 16269-6: 2014 Statistical Interpretation of Data, Part 6-Determination of Statistical 

Tolerance Intervals. International Organization of Standardization,2014 
[85]. Leung, W.C.;Ho, K.S.: Report on strength comparison of 100 mm and 150 mm cubes 

Hong-Kong,1996. 
[86]. Arya, C.: Design of structural elements: Concrete, steelwork, masonry and timber 

designs to British standards and Eurocodes. CRC Press 2009. 
[87]. Salehi, H.: Determination of partial factor for model uncertainty for unreinforced masonry 

shear walls. Mauerwerk, 22 (2018) 2, pp. 103-112. 
[88]. Glowienka, S.: Zuverlässigkeit von Mauerwerkswänden aus großformatigen Steinen. 

Probabilistische Analyse von großformatigem Mauerwerk aus Kalksandstein und 
Porenbeton mit Dünnbettvermörtelung. TU Darmstadt, 2007. 

[89]. Montazerolghaem, M.: Analysis of Unreinforced Masonry Structures with Uncertain 
Data,PhD-Thesis,  TU Dresden Faculty of Architecture: Chair of Structural Design, 
Dresden. 2015 

[90]. Montazerolghaem, M.;Jäger, W.: Characterization of uncertainty (probabilistic models) in 
verification of unreinforced masonry shear wall / Charakterisierung der Unschärfe 
(probabilistische Modelle) beim Nachweis von Wandscheiben aus unbewehrtem 
Mauerwerk. Mauerwerk, 19 (2015) 4, pp. 287-297. 

[91]. ESECMaSE: Enhanced Safety and Efficient Constructionof Masonry Structures in 
Europe: http://www.esecmase.org 2006. 

[92]. Jäger, W.; Ortlepp, S.; Schöps, P., et al.: Vergleich der normativen Ansätze zum 
Nachweis von Aussteifungsscheiben im Gebäude nach DIN 1053-1/-100, E-DIN 1053-
13, EN 1996-1-1/NA und dem Forschungsvorhaben ESECMaSE hinsichtlich des 
Sicherheitsniveaus: TU Dresden,Unpublised  

[93]. DIN EN 1996-1-1/NA-Nationaler Anhang-Eurocode 6: Bemessung und Konstruktion von 
Mauerwerksbauten – Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes 
Mauerwerk. DIN Deutsches Institut für Normung,Berlin, 2012 

[94]. Mann, W.;Muller, H.: Failure of Shear-Stressed Masonry. An Enlarged Theory, Tests and 
Application to Shear Walls. in Proc. Br. Ceram. Soc. 1982. 

http://www.esecmase.org/


   

 

147 

[95]. Kranzler, T.: Tragfähigkeit überwiegend horizontal beanspruchter Aussteifungsscheiben 
aus unbewehrtem Mauerwerk,PhD-Thesis, Inst. für Massivbau TU Darmstadt. 2008 

[96]. Salehi, H.; Montazerolghaem, M.;Jäger, W.: Reliability analysis of methods for utilization 
of partial factors in flexural failure mode of masonry shear walls. In: Proceedings of 16th 
International Brick And Block Masonry Conference (IBMAC), Padova,Italy, 2016. 

 



Appendix A: List of figures   

 

148 

Appendix A: List of figures 

Figure  2.1: Links between the Eurocodes [14] ............................................................................ 5 

Figure  2.2: Schematic representation of the partial safety factor method .................................... 6 

Figure  2.3: (a) Irreversible and (b) reversible limit states [14] ..................................................... 8 

Figure  2.4: Upper and lower fractile in the probability density function (PDF) ............................. 9 

Figure  2.5: Optimization of risk and costs [22] ...........................................................................12 

Figure  3.1: Schematic representation of failure with probability density function (PDF) of load 

and resistance ...........................................................................................................................19 

Figure  3.2: Logarithmic plot of failure probability and reliability index.........................................20 

Figure  3.3: Illustration of a reliability index [11] ..........................................................................21 

Figure  3.4: Mapping to the standard space (U) [34] ...................................................................24 

Figure  3.5: Rackwitz Fiessler algorithm [34] ..............................................................................26 

Figure  3.6: Generating a random variable .................................................................................29 

Figure  3.7: Schematic representation of crude Monte Carlo simulation .....................................30 

Figure  3.8: Random variable 𝑅, the characteristic value 𝑅𝑘 and design value 𝑅𝑑 [15] ...............35 

Figure  3.9: Loading diagram according to the  .........................................................................36 

Figure  3.10: Permanent load G distribution with increasing of  ................................................37 

Figure  3.11: Variable load Q distribution with increasing of .....................................................37 

Figure  3.12: Classification of structural weight based on 𝜒 ........................................................38 

Figure  3.13: Heavy-weight distributions .....................................................................................39 

Figure  3.14: Medium-weight distributions ..................................................................................40 

Figure  3.15: Light-weight distributions .......................................................................................41 

Figure  3.16: Reliability of generic model with crude Monte Carlo and importance sampling ......42 

Figure  4.1: Reliability analysis of load combinations algorithm ..................................................46 

Figure  4.2: Average reliability for all cases and EN-1990 combinations .....................................48 

Figure  4.3: Average reliability for all cases and EN-1990 combinations .....................................48 

Figure  4.4: Histogram of all reliability indexes for EN-1990 combinations ..................................49 

Figure  4.5: Histogram of all reliability indexes for EN-1990 combination 6.10 ............................49 

Figure  4.6: Histogram of all reliability indexes for EN-1990 combinations 6.10a&b ....................50 

Figure  4.7: Histogram of different resistance types based on EN-1990 combination 6.10 ..........51 

Figure  4.8: Average reliability for each resistance of EN-1990 combination 6.10 for all load 

cases and load ratios ................................................................................................................51 

Figure  4.9: Reliability for imposed load with k = 0, 6.10 with line, 6.10a&b with dash ................52 

Figure  4.10: Reliability for wind load with k = 0, 6.10 with line, 6.10a&b with dash ....................52 

Figure  4.11: Reliability for snow load with k = 0, 6.10 with line, 6.10a&b with dash ...................53 

Figure  4.12: Steel reliability for wind as leading action and imposed accompanying, combination 

6.10 ...........................................................................................................................................54 



Appendix A: List of figures   

 

149 

Figure  4.13: Steel reliability for wind as leading action and snow accompanying, combination 

6.10 ...........................................................................................................................................54 

Figure  4.14: Steel reliability for imposed load as leading action and wind accompanying, 

combination 6.10 .......................................................................................................................55 

Figure  4.15: Steel reliability for imposed load as leading action and snow accompanying, 

combination 6.10 .......................................................................................................................55 

Figure  4.16: Steel reliability for snow as leading action and imposed accompanying, combination 

6.10 ...........................................................................................................................................56 

Figure  4.17: Steel reliability for snow as leading action and wind accompanying, combination 

6.10 ...........................................................................................................................................56 

Figure  4.18: Geometrical properties of a reinforced concrete beam ..........................................57 

Figure  4.19: Reliability of concrete beam with imposed load and wind load with k = 0.25 ..........58 

Figure  4.20: Required steel for a concrete beam design with imposed  load and wind load with 

k = 0.25 .....................................................................................................................................59 

Figure  4.21: Design deviation for 6.10 and 6.10a&b for concrete beam with imposed load and 

wind load with k = 0.25 ..............................................................................................................59 

Figure  4.22: Average reliability for all cases and EN-1990 combination with 𝛾𝐺 = 1.25 .............61 

Figure  4.23: Histogram of all reliabilities for combination 6.10 with 𝛾𝐺 = 1.25 ...........................62 

Figure  4.24: Histogram of all reliabilities for combination 6.10a&b with 𝛾𝐺 = 1.25 .....................62 

Figure  4.25: Comparison of average reliability for combination 610. with 𝛾𝐺 = 1.25 and 𝛾𝐺 =

1.35 ...........................................................................................................................................63 

Figure  4.26: Comparison of average reliability for combination 610a&b with 𝛾𝐺 = 1.25 and 

𝛾𝐺 = 1.35 ..................................................................................................................................63 

Figure  4.27: Increase factor 𝑘𝑠 of snow load .............................................................................66 

Figure  4.28: Reliability index for one-variable load, snow load...................................................67 

Figure  4.29: Reliability index for two variable loads, snow load leading and imposed 

accompanying ...........................................................................................................................67 

Figure  4.30: Linear and parabola models for calculation of 𝑘𝑠 in middle range ..........................68 

Figure  4.31: Reliability for linear and parabola methods with EN-1990 combinations for k = 0 ..69 

Figure  4.32: Reliability for linear and parabola methods with EN-1990 combinations for k = 0.569 

Figure  4.33: Deviation of reliability for k = 0 ...............................................................................70 

Figure  4.34: Deviation of reliability for k = 0.5 ............................................................................70 

Figure  4.35 Time variation of different loads [31] .......................................................................72 

Figure  4.36: Variable action at a point in time and maximum probability density function (PDF) in 

reference period τ [69] ...............................................................................................................73 

Figure  4.37: Target reliabilities and reference period .................................................................75 

Figure  4.38: Ferry Borges-Castanheta (FBC) load process [31] ................................................76 

Figure  4.39: Distribution function for combination of action [24] .................................................77 

Figure  4.40: COVt1 versus COVt2 ...............................................................................................80 

Figure  4.41: Ratio of mean values for t1 and t2 ...........................................................................81 



Appendix A: List of figures   

 

150 

Figure  4.42: Comparison of different distribution for 𝑟1 = 5 ........................................................83 

Figure  4.43: Combination factor for different COV and 𝑟1 for Gumbel and 50-year reference ...83 

Figure  4.44: Combination factor for different COV and 𝑟1 for Gumbel and 1-year reference .....84 

Figure  4.45: EN-1990 combination in line and simplified in dash for k = 0.5 and combination 6.10

 ..................................................................................................................................................86 

Figure  4.46: EN-1990 combination in line and simplified in dash for k = 0 and combination 

6.10a&b .....................................................................................................................................87 

Figure  4.47: EN-1990 combination in line and simplified in dash for k = 0.5 and combination 6.10

 ..................................................................................................................................................87 

Figure  4.48: EN-1990 combination in line and simplified in dash for k = 0 and combination 

6.10a&b .....................................................................................................................................88 

Figure  4.49: Load combination 6.10 for imposed load with wind and k = 0.5 .............................90 

Figure  4.50: Load combination 6.10a&b for imposed load with wind and k = 0.5 .......................91 

Figure  4.51: Load combination 6.10 for wind with snow and k = 0.5 ..........................................91 

Figure  4.52: Load combination 6.10a&b for wind with snow and k = 0.5 ....................................92 

Figure  4.53: Interest band method for calibration of partial factors ............................................94 

Figure  4.54: Average reliability with calibrated partial factor ......................................................95 

Figure  4.55: Calibrated partial factor for different resistance types ............................................96 

Figure  4.56: Histogram and normal fitted distribution of reliability ..............................................97 

Figure  4.57: Reliability of different resistance types with calibrated partial factor .......................98 

Figure  5.1: COV proportion of sample average and true mean value of random variable 𝑋 ..... 102 

Figure  5.2: Coefficient 𝑘𝑝 for different probabilities and test numbers with confidence level 75%

 ................................................................................................................................................ 104 

Figure  5.3: Partial factor for lognormal distributed random variable with confidence level 75% 105 

Figure  5.4: Partial factor deviation for the value corresponding to n = 10 test numbers ........... 105 

Figure  5.5: Fitted lognormal distribution with parameters 𝜎 = 0.1626 and 𝜇 = 3.4896 .............. 106 

Figure  5.6: Fitted lognormal distribution with parameters 𝜎 = 0.1209 and 𝜇 = 3.8165 .............. 107 

Figure  5.7: Fitted lognormal distribution with parameters 𝜎 = 0.1078 and 𝜇 = 3.9909 .............. 107 

Figure  5.8: Coefficient of variation for different concrete grades .............................................. 108 

Figure  5.9: Partial factor corresponds to each step for different concrete grades..................... 108 

Figure  5.10: Deviation of designed 𝐴𝑠 form the value of step n = 10 ....................................... 109 

Figure  5.11: Deviation of designed 𝐴𝑐 form the value of n = 10 step with 75% confidence level

 ................................................................................................................................................ 110 

Figure  5.12: Experimental (𝑟𝑒) and theoretical (𝑟𝑡) diagram [16] ............................................. 112 

Figure  5.13: Wall eccentricity at top and bottom and 𝜓 factor [95], [93] ................................... 119 

Figure  5.14: Experimental and theoretical values for masonry wall.......................................... 120 

Figure  5.15: Experimental and theoretical values for each unit type ........................................ 123 

Figure  5.16: Coefficient of variation for model error and model bias for units and database .... 124 

Figure  5.17: Model partial factor .............................................................................................. 124 

Figure  5.18: Model partial factor and resistance partial factor .................................................. 127 



Appendix A: List of figures   

 

151 

Figure  5.19: Geometry of the wall ............................................................................................ 129 

Figure  5.20: Representation of design value and the random points of action and resistance for 

nonlinear method ..................................................................................................................... 131 

Figure  5.21: Representation of design value and the random points of action and resistance for 

linear-nonlinear method ........................................................................................................... 133 

Figure  5.22: Representation of design value and the random points of action and resistance for 

linear method .......................................................................................................................... 134 

Figure  5.23: Reliability of different method............................................................................... 135 

Figure  5.24: Comparison of linear-nonlinear and nonlinear method ......................................... 136 

Figure  5.25: Comparison of linear-nonlinear and linear method ............................................... 137 

Figure  5.26: Comparison of linear and nonlinear method ........................................................ 138 



Appendix B: List of tables   

 

152 

Appendix B: List of tables 

Table  2.1: Reliability classes in the current version of EN-1990 [16] ..........................................10 

Table  2.2: Reliability classes in a new draft of EN-1990 [18] .....................................................11 

Table  2.3: Reliability classes in ISO-2394 [19] and JCSS [20] ...................................................11 

Table  2.4: Consequence classes in EN-1990 [16] .....................................................................12 

Table  2.5: Consequence classes in the final draft of new version EN-1990 [18] ........................13 

Table  2.6: Consequence classes in ISO-2394 [19] ....................................................................14 

Table  2.7: Parameter k for determining failure cost [28] .............................................................15 

Table  2.8: Some SLSC and social indicators g and e [26, 28] ...................................................16 

Table  2.9: Consequence classes JCSS [20] ..............................................................................16 

Table  3.1: Overview of some reliability methods [33] .................................................................21 

Table  3.2: Stochastic parameters for reliability analysis [15], [59] ..............................................43 

Table  4.1: Material partial factor 𝛾𝑀 based on recommendation in Eurocodes ..........................46 

Table  4.2: Increase factor 𝑘𝑠 for snow load ...............................................................................65 

Table  4.3: Increase factor 𝑘𝑠 for snow load ...............................................................................65 

Table  4.4: Ferry Borges-Castanheta (FBC) load combination for three variable loads [72] ........78 

Table  4.5: 𝜓 factors recommended in Annex A of EN-1990-1-1 ................................................85 

Table  4.6: Table A1.3, load combinations for ultimate limit states [18] .......................................88 

Table  4.7: Overall calibration results ..........................................................................................95 

Table  5.1: Beam design ........................................................................................................... 109 

Table  5.2: 𝑘𝑛 for 5% fractile value ........................................................................................... 115 

Table  5.3: 𝑘𝑑, 𝑛 for ultimate limit state design value ................................................................. 115 

Table  5.4: Statistical parameter of model error for database ................................................... 120 

Table  5.5: Model partial factor for data base ............................................................................ 121 

Table  5.6: Statistical parameters and model partial factor for each unit type in EC-NA Annex K

 ................................................................................................................................................ 123 

Table  5.7: Statistical parameters and model partial factor for each unit type in EC-NA ............ 123 

Table  5.8: Observed failure modes in experiments .................................................................. 125 

Table  5.9: COV values of material parameters [90], [26] ......................................................... 126 

Table  5.10: Resistance partial factor for data base .................................................................. 126 

Table  5.11: Properties and parameter of the wall .................................................................... 130 

Table  5.12: Design resistance and deterministic function for probabilistic resistance model in 

different methods of partial factor utilization ............................................................................. 135 



Appendix C: Additional diagrams for load combinations of EN-1990 reliabilities   

 

153 

Appendix C: Additional diagrams for load combinations of EN-1990 

reliabilities 

 

Histogram of different resistance types based on EN-1990 combination 6.10a&b for all load cases and 

load ratios 

 

Average reliability for each resistance of  EN-1990 combination 6. 10a&b for all load cases and load 

ratios 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.5

3

3.5

4

4.5

5

5.5

6

Load ratio  = (Q
1
 +Q

2
)/(G+Q

1
+Q

2
)

R
e

lia
b
ili

ty
 

 

 

Concrete Steel-Reinf. Steel Timber Masonry



Appendix C: Additional diagrams for load combinations of EN-1990 reliabilities   

 

154 

 

 

 

Concrete reliability for wind leading and imposed accompanying, combination 6.10 

 

Concrete reliability for wind leading and snow accompanying, combination 6.10 
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Concrete reliability for imposed leading and wind accompanying, combination 6.10 

 

Concrete reliability for imposed leading and snow accompanying, combination 6.10 
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Concrete reliability for snow leading and imposed accompanying, combination 6.10 

 

Concrete reliability for snow leading and wind accompanying, combination 6.10 
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