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Abstract 

Quantitative structure-activity relationship study was performed to understand the activity 

of a set of 136 ligands of Translocator protein (TSPO) compounds. QSAR models were 

developed using multiple linear regression (MLR) as linear method. While principal 

component - artificial neural networks (PC-ANN) modeling method was used as nonlinear 

method. The results obtained offer good regression models having good prediction ability.  

The MLR resulted with models (12-24) which have coefficient of determination (R
2
)
 
>0.6, 

the best model (number 24) resulted with correlation coefficient (R) = 0.909, coefficient of 

determination (R
2
) = 0.826, and adjusted coefficient of determination (R

2
adj) = 0.788.  

Cross Validation leave one out (LOO) and leave many out (LMO) were performed on the 

resulted MLR models, models 19-24 showed a good predictive power. After that principle 

component analysis (PCA) performed to divide the data into three data sets, then the ANN 

performed on the chosen models (19-24) from leave one out (LOO) and leave many out 

(LMO) validation.  

ANN resulted models were validated through randomization test, then the conditions 

proposed by Golbraikh and Tropsha were applied to conclude that the QSAR models has 

acceptable prediction power or not. However the best ANN model with a good predictive 

power was model #24, with R test values 0.832. 
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1. Introduction: 

 

1.1 Overview of Computational Chemistry 

 

Recently, there have been ways to approach chemistry problems: non-computational 

quantum chemistry and computational quantum chemistry. 

Non-computational quantum chemistry deals with the formulation of analytical 

expressions for the properties of molecules and their reactions while computational 

quantum chemistry is primarily concerned with the numerical computation of molecular 

electronic structures. Thus In this research the Computational chemistry is used to solve 

the research problem [1]. 

Computational chemistry, alternatively sometimes called theoretical chemistry or 

molecular modeling. It is a field that can be said to be both old and young. It is old in the 

sense that its foundation was laid with the development of quantum mechanics in the early 

part of the twentieth century. However It is young, because computer technology has 

developed in the last 35 years or so [2]. 

The term computational chemistry is usually used when a mathematical method is 

sufficiently well developed that it can be automated for implementation on a computer. 

Thus, computational chemistry is the application of chemical, mathematical and computing 

skills by using computers in order to generate information such as properties of molecules 

or simulated experimental results to find the solution of interesting chemical problems [3]. 

Computational chemistry has become a useful way to investigate materials that are too 

difficult to find or too expensive to purchase. It also helps chemists make predictions 

before running the actual experiments so that they can be better prepared for making 

observations. 
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This branch of chemistry which generates data to complement experimental data on the 

structures, properties and reactions of substances [3]. Its calculations are based primarily 

on Schrödinger's equation (Equation 1-1) [4] and include: 

1. Calculation of electron and charge distributions 

2. Molecular geometry in ground and excited states 

3. Potential energy surfaces 

4. Rate constants for elementary reactions 

5. Details of the dynamics of molecular collisions 

HΨ = EΨ ……… (1-1) 

Where, H: Hamiltonian operator 

            Ψ: psi, the wave function 

            E: total energy of the system 

 

Therefore the helpful applications of computational chemistry have been widely utilized in 

the medicinal chemistry field. For example, it has allowed researchers to highlight the 

molecular basis of ligand-receptor interactions; define the pharmacophoric portion of 

known active ligands and the hindering regions of the inactive ones; build the three-

dimensional structure of the unresolved proteins using homology against a known 

template; design new ligands and predict their binding mode and affinities; and evaluate 

the crucial properties of compounds for their absorption, distribution, metabolism, and 

excretion. Indeed, all the steps of a medicinal chemistry workflow could be potentially 

realized in a virtual mode in silico, and if they are performed with competence and 

profitable criticism, they rationally guide the experimental phases of research and decrease 

productive costs. 
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The computational studies can give better results when many experimental data are 

available, providing a strong background for the calculations. Usually, the methodology 

has to be chosen on the basis of the amount and type of existing trial results in a certain 

topic: it could be ligand-based if only the information about known ligands and their 

activities on the target are used in the calculations as in this study or receptor-based if the 

three dimensional structure of the target is utilized to analyze the interaction with different 

ligands. If both kinds of experimental data are available, a robust computational procedure 

can be performed combining the ligand-based methods (like quantitative structure activity 

relationship (QSAR), 3DQSAR, and pharmacophoric studies) with receptor-based 

methods (like docking and its applications).  

1.2 Quantitative structure activity relationships (QSAR) 

 

  QSAR major goal is to formulate mathematical relationship between physico-chemical 

properties of compounds and their biological response in the system of interest, or with any 

other endpoint than the biological response such as chemical, physical and pharmaceutical 

properties. Hansch pioneered this field by demonstrating that the biological activities of 

drug molecules can be correlated to a few variables (Properties) using simple regression 

equation (Equation 1-2) [5], and after determination of this correlation there will be two 

expected outputs of the QSAR modeling; Firstly, enhance understanding of the specifics of 

drug action. Secondly, provide a theoretical foundation for future leading optimization. 

 

Log (1/C) = a (lipophilic descriptor) + b (Electronic descriptor) + c (Steric descriptor) + d 

(other descriptors) + etc.    …….. (1-2) 

 

Where,  

1/C = Measure of biological activity 

a, b, c, etc. = Regression coefficients 
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1.2.1 QSAR History 

 

More than a century ago, Crum-Brown and Fraser expressed the idea that the physiological 

action of a substance was a function of its chemical composition and constitution [6]. A 

few decades later, in 1893, Richet showed that the cytotoxicities of a diverse set of simple 

organic molecules were inversely related to their corresponding water solubility [7]. At the 

turn of the 20th century, Meyer and Overton independently suggested that the narcotic 

(depressant) action of a group of organic compounds paralleled their olive oil/water 

partition coefficients [8, 9]. In 1939 Ferguson introduced a thermodynamic generalization 

to the correlation of depressant action with the relative saturation of volatile compounds in 

the vehicle in which they were administered [10]. The extensive work of Albert, and Bell 

and Roblin established the acids in bacteriostatic activity [11, 12]. Meanwhile on the 

physical organic front, great strides were being made in the delineation of substituent 

effects on organic reactions, led by the seminal work of Hammett, which gave rise to 

―sigma-rho‖ [13]. Taft devised a way for separating polar, steric, and resonance effects and 

introducing the first steric parameter, ES. The contributions of Hammett and Taft together 

laid the mechanistic basis for the development of the QSAR paradigm by Hansch and 

Fujita. In 1962 Hansch and Muir published their brilliant study on the structure-activity 

relationships of plant growth regulators and their dependency on Hammett constants and 

hydrophobicity [14]. 

An early example of QSAR in drug design involves a series of 1-(X-phenyl)-3, 3-dialkyl 

triazenes. These compounds were of interest for their anti-tumor activity, but they also 

were mutagenic. QSAR was applied to understand how the structure might be modified to 

reduce the mutagenicity without significantly decreasing the anti-tumor activity. Based on 

equations it was observed that mutagenicity is more sensitive than anti-tumor activity to 

the electronic effects of the substituents. Thus, electron-withdrawing substituents were 



 

6 
 

examined by substituting a sulfonamide group at the para position, the anti-tumor activity 

was reduced 1.2-fold, whereas the mutagenicity was reduced by about 400-fold [15].  

    In the last ten years in Al-Quds computational chemistry laboratory, several QSAR 

studies have been applied to predict compounds properties, including biological activity, 

physical property, etc. [16-18]. 

1.2.2 QSAR advantages and disadvantages 

 

QSAR is important in drug development process. It provides quantitative relationship 

between structure and activity, in which help understanding the effect of structure on 

activity. It can also be used to help understand the interactions between functional groups 

in the molecules of greatest activity with those of their target. Bedsides, it helps in making 

predictions leading to the synthesis of novel analogous. Thus using QSAR in new drug 

development process decreases the cost of new drug development. 

On the other hand there is chance of false correlation between structure and activity; which 

may arise firstly because of biological data that came from a considerable experimental 

error. Secondly because of the dataset size; if it is not large enough, the data collected may 

not reflect the complete property space.  

Consequently, many QSAR results cannot be used to confidently predict the most likely 

compounds of best activity. However there are many successful applications but do not 

expect QSAR works all time [19, 20]. 
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1.3 QSAR model development steps 

 
QSAR model development process is typically performed in successive steps divided into 

three steps; Data preparation, data analysis, and model validation [21]:  

 

 

1.3.1 Data preparation 

 

Data preparation starts by selection of the data set to be used; which composed of 

compounds and their certain activity or any other endpoint, and this may simply be 

extracted from a database or may need additional experimental studies. And after that do a 

geometry optimization of the data set compounds; which is finding the coordinates that 

represents the minimum potential energy for the molecular structure in its 3D form, this 

can be done using software such as HyperChem which will be used in our study. 

Computational optimization encompasses a variety of mathematical methods which fall 

into two broad categories: 

• Molecular mechanics—applies the laws of classical physics to molecular nuclei without 

explicit consideration of electrons. 

• Quantum mechanics—relies on the Schrödinger equation to describe a molecule with 

explicit treatment of electronic structure. It is divided into two methods of calculations: 

  

1. Ab initio, the term is Latin for "from scratch". And it was first used by Robert Parr and 

coworkers.  Ab initio is a group of methods in which molecular structures can be 

calculated using nothing but the Schrödinger equation, the values of the fundamental 

constants and the atomic numbers of the atoms present. 

2. Semi-empirical techniques use approximations from empirical (experimental) data to   

provide the input into the mathematical models. And this method is preferred because 

it is faster than the ab initio method [22]. 
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After geometry optimization using semi-empirical method in our study, the descriptors 

(properties) should be calculated using HyperChem and Dragon software. 

1.3.2 Data analysis 

 
The models building step in which a correlation between the endpoint and certain 

descriptors is determined. If the correlation models to be built are linear then the multi 

linear regression (MLR) is used, however if it is nonlinear then the artificial neural 

network (ANN) is performed after the MLR. 

Among the widely utilized algorithms applied for model construction in QSAR, in our 

study we will use multiple linear regression (MLR), and Principle Component artificial 

neural networks (PC-ANN).  

 

1.3.2.1 Linear Models 

 

 Multiple linear regression (MLR) 

 

MLR simultaneously considers the relationship between some independent variables and a 

dependent variable by fitting a linear equation to observed data. Generally, the multiple 

linear regression model represented in (Equation 1-3)  [23]: 

 

Yi = α + β1Xi,1 + · · · + βnXi,n + Ɛi  ……… (1-3) 

 

Where: 

α: is the intercept  

β1- βn: are slopes or coefficients of independent variables. 

Xi,1 – Xi,n : are independent variables. 

Ɛi: is the error term.  
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The MLR is the first statistical step that done because of the assumption that there is a 

linear correlation between the independent variables (descriptors) and the response variable 

(Y, Activity in our study). 

 

1.3.2.2 Nonlinear Models 

 

 Principal component analysis (PCA) 

 
Principal components analysis (PCA) also known as Eigenanalysis, is a statistical 

technique for analyzing data. Essentially, a set of correlated variables is transformed into a 

set of uncorrelated variables, which are ordered by reducing variability. The uncorrelated 

variables are linear combinations of the original variables, and the last of these variables 

can be removed with minimum loss of real data [24]. 

 

-       Artificial Neural Networks (ANN) 

 

Artificial neural network (ANN) analysis is a new method of data analysis, which inspired 

from the nervous system’s way of working in processing information [25]. The nervous 

system as brain has approximately 100 billion neurons, which communicate through 

electro-chemical signals. The neurons are connected through junctions called synapses. 

Each neuron receives thousands of connections with other neurons, constantly receiving 

incoming signals to reach the cell body. If the resulting sum of the signals surpasses a 

certain threshold, a response is sent through the axon [26]. The ANN attempts to recreate 

the computational mirror of the biological neural network, although it is not comparable 

since the number and complexity of neurons which used in a biological neural network is 

many times more than those in an artificial neutral network. 
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ANN is composed of a large number of highly interconnected processing elements called 

artificial neurons (also known as "nodes"), classified into three layers of neurons, input 

nodes, hidden nodes, and output nodes as seen in (Fiqure1-1). The neurons work in unison 

to solve  complicated non-linear problems of multivariate systems [27]. Where the input 

nodes take in information, in the form which can be numerically expressed. 

 The information is presented as activation values, where each node is given a number, the 

higher the number, the greater the activation. This information is then passed throughout 

the network. Based on the connection strengths (weights), inhibition or excitation, and 

transfer functions, the activation value is passed from node to node. Each of the nodes 

sums the activation values it receives; it then modifies the value based on its transfer 

function. The activation flows through the network, through hidden layers, until it reaches 

the output nodes. The output nodes then reflect the input in a meaningful way to the 

outside world [28]. 

 As a result of its component the ANN has a remarkable ability to derive meaning from 

complicated or imprecise data, and can be used to extract patterns and detect trends that are 

too complex to be noticed by either humans or other computer techniques. 
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Figure (1-1): The Artificial Neural Network 

Neural network simulations appear to be a recent development. However, this field was 

established before the advent of computers, where the first neuron was produced in 1943 

by the neurophysiologist Warren McCulloch and the logician Walter Pits. Accordingly a 

wide variety of ANNs are developed and used to model real neural networks, and study 

behavior and control in animals and machines, but also there are ANNs which are used for 

engineering purposes, such as pattern recognition, forecasting, and data compression. 

Neural networks take a different approach to problem solving than that of conventional 

computers. Conventional computers use an algorithmic approach i.e. the computer follows 

a set of instructions in order to solve a problem. Unless the specific steps that the computer 

needs to follow are known the computer cannot solve the problem. That restricts the 

problem solving capability of conventional computers to problems that we already 
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understand and know how to solve. But computers would be so much more useful if they 

could do things that we don't exactly know how to do. However ANN offer a number of 

advantages, including requiring less formal statistical training, ability to implicitly detect 

complex nonlinear relationships between dependent and independent variables, ability to 

detect all possible interactions between predictor variables, and the availability of multiple 

training algorithms. Plus all these advantages the ANN is easy to use and understand 

compared to statistical methods. It is non-parametric model while most of statistical 

methods are parametric model that need higher background of statistic [29]. 

In the other hand, because the ANN finds out how to solve the problem by itself, its 

operation can be unpredictable. 

 

1.3.3 Model validation 

 

Quantitative Structure Activity Relationship (QSAR) is based on the hypothesis that 

changes in molecular structure reflect changes in the observed response or biological 

activity. The success of any quantitative structure–activity relationship model depends on 

the accuracy of the input data, selection of appropriate descriptors, statistical tools and the 

validation of the developed model. Validation is a crucial aspect of QSAR modeling. 

Validation is the process by which the reliability and significance of a procedure are 

established for a specific purpose [30]. 

 

QSAR model validation performed either by using the data that created the model (an 

internal validation) or by using a separate data set (an external validation). The internal 

validation are: least squares fit (R2), cross-validation (Q2) [31, 32], adjusted R2 (R2 adj), 

chi-squared test (2), root mean-squared error (RMSE), bootstrapping and scrambling (Y-

Randomization) [33, 34]. 
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The external method is performed by comparing the predicted and observed activities of an 

(sufficiently large) external test set of compounds that were not used in the model 

development. 

In current research, two internal validation methods have been used; cross-validation and 

scrambling (Y-Randomization). 

 

Cross-validation 

 

Cross-validation (CV, Q
2
, q

2
, or jack-knifing) is a common method for internal validation 

of a QSAR model. CV process repeats the regression many times on subsets of data. 

Usually each molecule is left out once (leave one out, LOO), in turn. Sometimes more than 

one molecule (leave many out, LMO) is left out at a time.  

 

Most of validation processes implement the leave one out (LOO) and leave many out 

(LMO) cross-validation procedures. The most common outcome parameters resulted from 

cross-validation procedures are cross-validated determination coefficient q
2
 (R

2
cv) and 

root mean squares error (RMSE), Figure 1-2. High R
2
cv and low RMSE values is a result 

of good and more predictive model and that lead to better description of the observed data. 

As well as the difference between coefficient of determination (R2) and Q2 value should 

not exceed 0.3 for good predictability. 

n

XX
RMSE

n

i
idelmoiobs 


 1

2
,, )(

 

Figure 1-2: Root Mean Squares Error (RMSE) equation. Where, Xobs is the observed values, 

Xmodel is the mean of the experimental bioactivities, and n is the number of 

molecules in the set of data being examined. 
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The cross-validation outcome R
2
 (Q

2
) equation as seen in (Figure 1-3), which is frequently 

used as a criterion of both robustness and predictive ability of the model. Many authors 

consider high Q
2
 (for instance, Q

2
 > 0.5) as an indicator or even as the ultimate proof of the 

high predictive power of the QSAR model. Therefore if the model have high predictive 

ability, then there is no need to test the models for their ability to predict the activity of 

compounds of an external test set [30]. 

 
 

 
 

 

      Figure 1-3: Cross-validation equation. Where PRESS is the predictive residual sum of 

the squares, yi is the experimental bioactivity for an individual compound 

in the training set, and ym is the mean of the experimental bioactivities 

 

Randomization test (Scrambling model)  

Randomization test (Scrambling model) is the second internal validation test performed in 

this research, which helps to ensure that the model is not due to a chance.  

The test performed by randomization of the dependent variables, in which the set of 

activity values is reassigned randomly to different molecules, and repeating the entire 

modeling procedure. This process is repeated many times. If the random models activity 

prediction is comparable to the original equation, then the predictive power of the model is 

poor and the observations are not sufficient to support the model [30]. 
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1.4 Software used in QSAR process 

 

There are many software available for QSAR development. These include specialized 

software for drawing chemical structures, interconverting chemical file formats, generating 

3D structures, calculating chemical descriptors, developing QSAR models, and general-

purpose software that have all the necessary components for QSAR development [35]. 

 

In the current research four softwares used; HyperChem (version 8.3 HyperChem, Inc.), 

Dragon software (version 2.1, Todeschini, R., Milano Chemometrics and QSAR Group. 

Different statistical packages such as: SPSS software (version 20, SPSS Inc.), MATLAB 

(version 6.50, Mathworks Inc.). 

 

 

1.4.1 HyperChem 

 

HyperChem is a sophisticated molecular modeling environment that is flexible, ease of use 

with high quality (Figure 1-4). As it combines 3D visualization and animation with 

quantum chemical calculations, molecular mechanics, and dynamics, HyperChem used to 

draw simple and complex molecular structures, structure optimization, calculate some 

QSAR properties, and use its output file as input file to another program called "Dragon" 

to calculate more structure related descriptors. In this research we drew the compounds 

structures and optimize each one then calculate certain properties. 
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Figure 1-4: HyperChem display screen 

1.4.2 Dragon 

 

DRAGON was developed in 1994 by Milano Chemometrics and QSAR Research 

Group with the name "WHIM/3D QSAR", being specific for the calculation of the WHIM 

descriptors [36]. Successively, a lot of other descriptors have been implemented leading to 

a new software, which in 1997 provided about 600 descriptors and was released with the 

name DRAGON [37]. 

DRAGON is user-friendly and easy to use software, and able to provide thousands of 

molecular descriptors that are divided into 18 logical blocks (Table 1-1). 
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                      Table 1-1: DRAGON descriptors blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

     

1.4.3 SPSS 

SPSS, standing for Statistical Package for the Social Sciences, it is a powerful, user-

friendly. SPSS is a software package for the manipulation and statistical analysis of data, 

(Figure 1-5). It was developed in 1968 by three young men from disparate professional 

backgrounds Norman H. Nie, C. Hadlai (Tex) Hull and Dale H. Bent [38]. The idea was 

based on using statistics to turn raw data into information essential to decision-making 

SPSS for Windows offers a spreadsheet facility for entering and browsing the working data 

file — the Data Editor. Output from statistical procedures is displayed in a separate 

window — the Output Viewer. It takes the form of tables and graphics that can be 

manipulated interactively and can be copied directly into other applications [39]. 

ID Block description 

1 Constitutional descriptors 

         2 Topological descriptors 

3 Molecular walk counts 

4 BCUT descriptors 

5 Galvez topological charge indices 

6 2D autocorrelations 

7 Charge descriptors 

8 Aromaticity indices 

9 Randic molecular profiles 

10 Geometrical descriptors 

11 RDF descriptors 

12 3D-MoRSE descriptors 

13 WHIM descriptors 

14 GETAWAY descriptors 

15 Functional group counts 

16 Atom-centred fragments 

17 Empirical descriptors 

18 Properties 
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SPSS is very common and widely used by social science researchers. Also it is used by 

market researchers, health researchers, survey companies, government, education 

researchers, and others. In this research the SPSS will be used to perform MLR analysis. 

 

 

 

 

 

 

 

Figure 1-5: SPSS display screen 

 

1.4.4 MATLAB 

 

MATLAB stands for MATrix LABoratory and the software is built up around vectors and 

matrices. This makes the software particularly useful for linear algebra but MATLAB is 

also a great tool for solving algebraic and differential equations and for numerical 

integration. MATLAB has powerful graphic tools and can produce nice pictures in both 2D 

and 3D. It is also a programming language, and is one of the easiest programming 

languages for writing mathematical programs [40].  

The MATLAB mainly used in the current study to perform the cross validation, PCA and 

ANN. 
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1.5 Translocator protein (TSPO) preview:  

 

Translocator protein (TSPO), was known as the peripheral benzodiazepine receptor (PBR). 

First identified in 1977 based on its distinct pharmacology with high affinity binding to 

benzodiazepines in peripheral tissues [41-44]. The term ―peripheral‖ was used to 

distinguish it from the plasma membrane ―central‖ benzodiazepine receptor, a complex 

together with the γ-aminobutyric acid type A receptor that is important for inhibitory 

neurotransmission in the central nervous system [45, 46]. However it became clear that its 

density in the brain regions can equal or exceed the density of central benzodiazepine 

receptor (CBR) in the corresponding regions [47].  

 

TSPO is a protein of 18 kDa consisting of 169 amino acids [48], a five a -helices 

composed of 21 hydrophobic residues. The N-terminus of the sequence is located in the 

mitochondrial domain, while the C-terminus is exposed to the cytoplasm. The 

transmembrane regions are connected by loops rich in hydrophilic residues [49]. TSPO is 

strictly associated in a trimeric complex with the 32 kDa voltage dependent anion channel 

(VDAC), and 30 kDa adenine nucleotide translocase (ANT), thus forming the 

mitochondrial permeability transition pore (MPTP). 

TSPO amino acid sequence shows conservation throughout evolution. TSPO in the 

photosynthetic bacteria Rhodobacter sphaeroides shows a 33.5% identity to human TSPO. 

Both human and mouse TSPO genes translate to a 169-amino acid protein with 81% 

sequence homology [50, 51]. Relatively the protein sequence of TSPO is conserved from 

bacteria to humans.  

Expression of TSPO has been reported in different tissues including heart, brain, lung, 

spleen, testis, ovary, adrenal, kidney, bone marrow, salivary gland, adipose tissue, skin, 
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and liver [52-54]; and within these tissues, TSPO expression is regional and/or cell type 

specific. Also TSPO is expressed at low levels in other subcellular compartments such as 

plasma membranes and the nuclear fraction of cells [55].  

TSPO binding sites 

 Although research suggests that there exist multiple TSPO binding sites, the nature of 

these sites and their functional significance is poorly understood. Two ligands have been 

essential for characterizing the TSPO: the benzodiazepine Ro 5-4864 and the isoquinoline 

carboxamide PK11195, both of which are selective for the TSPO and display nanomolar 

binding affinity. Although these ligands exhibit saturable binding and reciprocal 

competition in radio ligand binding assays [56]. Furthermore, site-directed mutagenesis 

studies suggest certain residues in the first putative loop of TSPO are important for the 

binding of Ro 5-4864 but not PK11195. Thus, it is thought that PK11195 and Ro 5- 4864 

bind to heterogeneous sites at TSPO, either overlapping or allosterically coupled. Studies 

also describe PK11195 binding to multiple sites, which contradicts the initial finding that it 

bound to a single population of saturable sites. Scatchard analysis of 3HPK11195 binding 

to Ehrlich tumor cells revealed 2 independent binding sites [57]. 

TSPO Pharmacology 

Benzodiazepine Ro5-4864 [4′-chlorodiazepam; 7-Chloro-5-(4-chlorophenyl)-1,3-dihydro-

1-methyl-2H-1,4-benzodiazepin-2-one] and a nonbenzodiazepine PK11195 [an 

isoquinoline carboxamide derivative, 1-(2-Chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-

isoquinolinecarboxamide] were initially established as prototypical TSPO-binding 

chemicals, because they bind to TSPO but not to γ-aminobutyric acid type A receptor [58, 

59]. Based on thermodynamic studies [60], and their opposing effects on neuronal seizures 

[61], PK11195 was classified as an antagonist and Ro5-4864 as an agonist. This 

pharmacology has been extensively used in attempts to elucidate the physiological 
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relevance of TSPO [62]. Although these studies did not readily reveal TSPO function, the 

ability of these chemicals in detecting TSPO with reasonable accuracy, and the 

pathological TSPO up-regulation seen at sites of inflammation led to the development of 

TSPO as a diagnostic target [63]. Radiolabeled forms of these chemicals that bind TSPO 

could be used to detect inflammatory lesions in vivo in a variety of human diseases using 

positron emission tomography [64, 65]. Clinical trials for different TSPO-binding agents 

focused on the diagnosis of various pathologies including traumatic brain injury, 

Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, encephalopathy, autism, 

neuroinflammation, neurodegeneration, dementia, and neurocysticercosis. 

 Human clinical trials to detect cardiac sarcoidosis (NCT02017522), carotid atherosclerosis 

(NCT00547976), and squamous and basal cell carcinomas (NCT01265472). Thus, remain 

an area of active research.  

TSPO is said to be involved in a variety of biological processes including cholesterol 

transport, steroidogenesis, calcium homeostasis, lipid metabolism, mitochondrial 

oxidation, cell growth and differentiation, apoptosis induction, and regulation of immune 

functions [55].  

 

 

TSPO in Brain and neurodegenerative diseases  

Brain expression of TSPO in physiological conditions is low. In the CNS, TSPO is mainly 

found in glia and at very low levels in neurons [63, 66, 67]. However TSPO ligands are 

used for brain imaging of neuroinflammation, since TSPO is upregulated at sites of injury 

and inflammation, as well as in several neuropathological conditions including stroke and 

neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease, 

Huntington’s disease, Multiple sclerosis and Amyotrophic lateral sclerosis [68-71]. Under 
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these conditions, the expression of TSPO is highly enhanced in reactive microglia and 

astrocytes [72-75]. 

TSPO is also upregulated in microglia and astrocytes in response to lesions, and its level of 

upregulation is directly related to the degree of damage. Therefore several studies suggest 

that TSPO ligands could be used as markers for the state and progression of Traumatic 

brain injury (TBI). In addition, some studies have addressed the neuroprotective effects of 

TSPO ligands in experimental models of brain injury [63, 76]. 

Other several studies have associated psychiatric disorders with a down regulation of 

TSPO expression in peripheral cells. Decreased TSPO expression has been found in the 

platelets and lymphocytes of patients with anxiety disorders [77-79], in the platelets of 

patients suffering from schizophrenia [80] and post-traumatic stress disorder [81] and in a 

suicidal adolescent population [82]. However, increased TSPO density, measured by 

distribution volume by positron emission tomography, has been detected in the prefrontal 

cortex, the anterior cingulate cortex and insula of patients with a major depressive episode 

[83]. In these patients, greater TSPO density in the anterior cingulate cortex correlated with 

greater depression severity [83]. 

 

Thus TSPO can be exploited as a diagnostic marker to follow disease Progression and 

therapy efficacy by means of the biomedical imaging technique PET (positron emission 

tomography) but also as a therapeutic target [84]. Although imaging complications have 

been encountered as a result of in vivo metabolism of these TSPO-binding PET tracers and 

aberrant signals contributing to nonspecific noise in some cases, new synthetic TSPO-

binding chemicals are being developed to tackle these drawbacks [75]. Therefore, 

diagnostic imaging is probably the primary clinical value that TSPO research has to offer 

at the present time [85]. 
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1.6 Research objective 

 

The main objective of this study is to develop QSAR models for the activity of 136 

chemical compounds of Translocator protein (TSPO) by applying different statistical 

qualities; MLR and PC-ANN. The resulted models will be used for designing and 

prediction of the activity of new ligands.   
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2. QSAR process method: 

 

Quantitative structure-activity relationship (QSAR), is an analytical application that is used 

to interpret the quantitative relationship between the biological activities and particular 

molecules structures. And to do that the molecular structure and their activity against 

certain target should be known and experimentally estimated. 

As previously mentioned in Chapter 1; QSAR model development process is typically 

performed in successive steps divided into three steps; Data preparation, data analysis, and 

model validation. 

2.1 Data preparation 

2.1.1    Dataset 

 

136 compounds and their related observed activity (pIC50) against Translocator protein 

(TSPO) are carefully taken from references [49, 86-89], which shared the same method of 

determination of ligands-Receptor activities using rat cortex membrane. The 136 

compounds are divided into 18 chemical structure cores as shown in table 2-1. 

                    Table 2-1: Dataset, Compounds have activity against TSPO 
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*: Reference [86] 

 

  

 

 

 

Compounds 
Number 

Index 

* 
X Y R1 R2 R3 pIC50 

001 3a H CH CH2C6H5 H H 5.569 

002 3b H CH CH2C6H5 CH3 H 7.194 

003 3c H N CH2C6H5 H H 7.194 

004 3d H N CH2C6H5 CH3 H 7.420 

005 3e H CH CH2C6H5 H CH3 5.180 

006 3f H CH CH2C6H5 CH3 CH3 8.009 

007 3g H N CH2C6H5 H CH3 4.988 

008 3h H N CH2C6H5 CH3 CH3 8.337 

009 3i F N CH2C6H5 H CH3 5.827 

010 3j F N CH2C6H5 CH3 CH3 8.658 

011 3k H N CH2C6H5 CH2C6H5 CH3 7.959 

012 3l H N CH2C6H5 CH3 CH2OH 8.060 

013 3m H N CH2C6H5 CH3 CH2CL 9.347 

014 3n H N CH2C6H5 CH3 CH2N(C2H5)
2 

7.921 

015 3o H N CH2C6H5 CH3 CH2N(C2H5)

CH2C6H5 
7.886 

016 3p H N CH2CCH CH3 CH3 7.495 
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Compounds 
Number 

Index * X Y Z R1 R2 R3 pIC50 

017 1 H H Cl n-C4H9 n-C4H9 H 8.230 

018 2 H Cl Cl n-C4H9 n-C4H9 H 8.104 

019 3 Cl Cl Cl n-C4H9 n-C4H9 H 8.284 

020 4 Cl Cl Cl n-C6H13 n-C6H13 H 6.424 

021 5 Cl H Cl n-C4H9 n-C4H9 H 8.485 

022 6 Cl H Cl n-C6H13 n-C6H13 H 8.292 

023 7 Cl H H n-C4H9 C6H5 H 7.939 

024 8 Cl CL Cl n-C4H9 C6H5 H 7.876 

025 9 Cl H Cl n-C4H9 C6H5 H 8.824 

026 10 Cl CL H n-C4H9 CH2C6H6 H 7.616 

027 11 Cl CL Cl tert-C4H9 CH2C6H6 H 5.464 

028 12 Cl CL Cl n-C3H7 4-NO2-CH2C6H5 H 7.566 

029 13 Cl CL Cl C6H5 H H 7.701 

030 14 Cl CL Cl CH2CHCH2 CH2CHCH2 H 8.092 

031 15 Cl CL Cl -(CH2)4- H 6.668 

032 16 Cl CL H -(CH2)4- H 5.907 

033 17 Cl Cl H -(CH2)5- H 6.804 

034 18 Cl Cl Cl -(CH2)5- H 8.301 

035 19 Cl H Cl -CH2CH(COOC2H5)(CH2)3- H 7.454 

036 20 Cl Cl Cl -CH2CH(COOC2H5)(CH2)3- H 6.845 

037 21 Cl Cl Cl -(CH2)2N(CH2C6H5)(CH2)2- H 4.682 

038 22 Cl Cl H - - - 7.412 

039 23 Cl Cl Cl - - - 8.313 

040 24 Cl CL H 2-
pyridylethyl 

CH3 H 5.663 

  041 25 Cl Cl Cl 2-
pyridylethyl 

CH3 H 6.046 

042 26 Cl CL H 2-pyridyl H H 5.677 

043 27 Cl CL CL n-C4H9 H H 6.409 

044 28 Cl Cl Cl C6H11 H H 6.640 

045 29 Cl Cl H C6H11 H H 5.878 

046 30 Cl Cl Cl CH2C6H5 H H 6.772 

047 31 Cl Cl Cl n-C3H7 n-C3H7 CH3 5.920 

048 32 Cl Cl Cl C6H11 CH3 CH3 5.288 

049 33 Cl Cl Cl CH2C6H5 CH3 CH3 5.005 

050 34 Cl Cl Cl n-C4H9 CH3 H 9.347 

051 35 Cl Cl H n-C4H9 CH3 H 8.456 

052 36 Cl Cl Cl C6H5 CH3 H 9.481 

053 37 Cl Cl Cl CH2C6H5 CH3 H 8.623 

                   *: Reference [87]. 
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Compounds 
Number 

Index * R1 R2 X pIC50 

054 10a CH3 (CH2)3CH3 H 7.187 

055 10b C2H5 C2H5 H 6.745 

056 10c CH(CH3)2 CH(CH3)2 H 5.856 

057 10d (CH2)2CH3 (CH2)2CH3 H 7.046 

058 10e (CH2)3CH3 (CH2)3CH3 H 6.818 

059 10f CH3 C6H5 H 6.932 

060 10g CH3 p-Cl-C6H4 H 8.745 

061 10h CH3 p-CH3OC6H4 H 7.769 

062 10i CH3 CH2C6H5 H 6.055 

063 10j CH2C6H5 C2H5 H 6.658 

064 10k CH2C6H5 CH(CH3)2 H 6.517 

065 10l CH2C6H5 (CH2)3CH3 H 6.157 

066 10m CH2C6H5 CH2C6H5 H 5.460 

067 10n CH3 (CH2)3CH3 F 6.959 

068 10o C2H5 C2H5 F 5.644 

069 10p (CH2)2CH3 (CH2)2CH3 F 7.060 

070 10q CH3 p-Cl-C6H4 F 8.167 

071 10r CH3 (CH2)3CH3 Cl 6.842 

072 10s (CH2)2CH3 (CH2)2CH3 Cl 7.046 

073 10t CH3 p-Cl-C6H4 Cl 7.796 

074 11a CH3 (CH2)3CH3 H 9.854 

075 11b C2H5 C2H5 H 9.081 

076 11e (CH2)3CH3 (CH2)3CH3 H 9.469 

077 11g CH3 p-Cl-C6H4 H 9.886 

078 11n CH3 (CH2)3CH3 F 9.886 

079 11q CH3 p-Cl-C6H4 F 9.553 

         *: Reference [88]. 
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          *: Reference [89]. 
 

Compounds 
Number 

Index * R1 R2 R3 X pIC50 

080 8a 4-(CH3O)C6H4 CH3 Cl =O 9.046 

081 8b 4-ClC6H4 CH3 Cl =O 9.208 

082 8c CH2C6H5 CH3 Cl =O 7.585 

083 8d CH2C6H5 C2H5 Cl =O 7.824 

084 8e (CH2)5CH3 (CH2)5CH3 Cl =O 7.678 

085 9a C6H5 CH3 Cl =O 7.357 

086 9b 4-(CH3O)C6H4 H Cl =O 7.119 

087 9c 4-(OH) C6H4 CH3 Cl =O 7.131 

088 9d CH2CCH CH3 Cl =O 6.495 

089 9e 4-(CH3O)C6H4 CH3 H =O 7.921 

090 9f 4-ClC6H4 CH3 H =O 8 

091 9g 4-(CH3O)C6H4 CH3 Cl =H2 5.627 
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Compounds Number Index * Bridge (B) X R1 R2 pIC50 

092 7a n-Bu-CH - Benzyl - 6.092 

093 7b CH2-CH2-CH2 - s-Bu - 5.921 

094 7c CH2-CH2-CH2 - Benzyl - 6.777 

095 8a - H s-Bu H 6.638 

096 8b - F s-Bu H 7.886 

097 8c - H Benzyl H 5.921 

098 8d - H 4-Cl- 
Benzyl 

H 5.769 

099 8e - F 4-Cl- 
Benzyl 

H 6.569 

100 8f - H s-Bu Me 8.678 

101 8g - F s-Bu Me 8.538 

102 8h - H Benzyl Me 8.678 

103 8i - H 4-Cl- 
Benzyl 

Me 8.009 

104 8j - F 4-Cl- 
Benzyl 

Me 8.469 

105 8k - H 4-Cl-Ph Me 8.194 

106 8l - H 4-MeO-Ph Me 8.056 
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*: Reference [49] 

 

 

Compounds 
Number 

Index * X R pIC50 

117 4a CH - 8.301 

118 4b N - 7.569 

119 5a - Me 6.387 

120 5b - CL 6.678 

*: Reference [49] 

107 9a CH2 - s-Bu - 6.208 

108 9b CH2 - Benzyl - 6.319 

109 9c CH2-CH2-CH2 - s-Bu - 6.108 

110 9d CH=CH-CH2 - s-Bu - 6.309 

111 9e CH=CH-CH2 - Benzyl - 7.347 

112 10a - - s-Bu H 6.259 

113 10b - - s-Bu Me 7.959 

114 10c - - Benzyl Me 8.509 

115 11a CH2-CH2 - - - 8.051 

116 11b O-CH2-CH2 - - - 8 
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O

N
R2

R1

N

133-134 N
O

N

N

135

 

Compounds 
Number 

Index * R R1 R2 pIC50 

121 6a CH2N(Et)Bn - - 6.155 

122 6b N(Et)Bn - - 6.268 

123 12a Cl - - 5.432 

124 12b CH2THIQ - - 5.926 

125 13a CONMe2 - - 6.640 

126 13b CONEt2 - - 6.428 

127 13c CON(n-Pr)2 - - 6.341 

128 13d CON(Me)Ph - - 5.880 

129 13e CON(Me)4-Cl-Ph - - 5.606 

130 13f CON(H)n-Pr - - 6.059 

131 13g CON(H)Bn - - 5.538 

132 13h H - - 5.469 

133 15b - Et Et 5.086 

134 15c - n-Pr n-Pr 5.052 

135 16 - - - 8.387 

         *: Reference [49] 
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Comp. 
Number 

Reference  
Compound  

pIC50 
[86] 

 

pIC50 
[87] 

pIC50 
[88] 

pIC50 
 [89] 

pIC50 
 [49] 

136 PK11195 8.075 8.155 8.886 8.677 8.657 

 

2.1.2 Compounds optimization 

 

To calculate the properties of each molecule; a well-defined structure which represents a 

minimum potential energy surface is needed. Therefore after choosing the 136 compounds, 

start drawing each compound structure using HyperChem to optimize it. 

 Steps of optimization using HyperChem: 

1. Draw the compound structure on HyperChem Workspace using drawing tools, as 

seen in figure 2-1. 

2. The drawn compound is in two- dimensional (2D) form, therefore a conversion from 

the 2D compound structure into a 3D structure using the HyperChem Model Builder 

is needed. So select (Add H and Model build) from the Build menu to convert the 2D 

form to 3D. 

3. Click start log on the File menu to save the new drawn structure, name the file, and 

choose a directory to save in it,  



 

34 
 

4. Then in order to perform the optimization of the compound structure; choose the 

semi-empirical calculation from the setup tab, accordingly a dialog box of types of 

semi-empirical methods will open. Thus choose from it the AM1 method and after 

that press on the options button to determine the geometry optimization parameters; 

total charge = 0, spin multiplicity = 1, spin pairing = RHF (Restricted Hartree-Fock), 

convergence limit = 0.1.                                                                                      

         These parameters mean that the calculation ends when the difference in energy after 

two consecutive iterations is less than 0.1 kcal/mol. The calculation is performed on 

the lowest state without special convergence acceleration. 

5. Click OK to close the semi-empirical options dialog box, and then click OK to close 

the semi-empirical method dialog box. 

6. To start the optimization process, click on geometry optimization from HyperChem 

menu. A dialog box of Semi-empirical optimization will open. Set Polak-Ribiere as 

algorithm method, 0.1 for RMS gradient and keep the defaulted value for the rest of 

the fields. 

          Then click OK so the optimization process initiate. 

7. When the optimization process stopped, select stop log from the file menu to save the 

calculation output as log file. The output file will be saved in (.hin) format. 
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     Figure 2-1: Drawing using HyperChem 

 

2.1.3 Descriptors calculation 

 

To establish QSAR we are not able mathematically to link between the chemical structures 

and their activity directly, thus a numerical factor is needed to link between the chemical 

structure and the activity. This numerical factor is the chemical structure properties which 

called Molecular Descriptors 

“The molecular descriptor is the final result of a logic and mathematical procedure which 

transforms chemical information encoded within a symbolic representation of a molecule 
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into a useful number or the result of some standardized experiment [90] .‖ Molecular 

descriptors play a fundamental role in chemistry, pharmaceutical sciences, environmental 

protection policy, health research and quality control. It has been used to predict biological 

and physicochemical properties of molecules (QSAR/QSPR) and for virtual screening of 

molecule libraries. 

There are simple molecular descriptors derived by counting some atom-types or structural 

fragments in the molecule, other derived from algorithms applied to a topological 

representation (molecular graph) and usually called topological or 2D-descriptors, and 

there are molecular descriptors derived from a geometrical representation called 

geometrical or 3D-descriptors. 

In current research we have been using two software's to calculate different descriptors; 

HyperChem and Dragon. 

2.1.3.1 Descriptors calculated by HyperChem 

 

a. Descriptors extracted from the output log file 

The HyperChem calculate the quantum chemical descriptors and more. We open the output 

log file for each optimized chemical structure and take from it the following values then 

put the values in excel file: 

 HOMO (highest occupied molecular orbital). 

 LUMO (Lowest occupied molecular orbital). 

 Heat of formation (kcal/mol). 

 Dipole moment (Debyes). 
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From the HOMO and LUMO values we can calculate the below descriptors: 

 Hardness (0.5* (LUMO - HOMO)). 

 Softness (1/Hardness). 

 Electronegativity (-0.5* (LUMO + HOMO)). 

 Electrophilicity    (Electronegativity* Electronegativity/(2*Hardness)) [91]. 

 

b. Descriptors calculated from the HyperChem using the optimized structures 

We can calculate certain descriptors by performing the following steps: 

1. Open the HyperChem file of the optimized 3D structure of each compound in the 

dataset. 

2. Then choose QSAR properties from the computer tab, thus a dialog box contain the 

below properties will open (Fig 2-2). 

 Surface Area (Approx). 

 Surface Area (Grid). 

 Volume. 

 Hydration Energy. 

 Log P. 

 Refractivity. 

 Polarizability. 

 Mass. 
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Figure 2-2: QSAR Properties dialog box in HyperChem software. 

3. Choose one of the properties in the dialog box and press on Compute button, then 

copy the result to an excel file. Repeat this step to calculate all the properties one by 

one for each chemical structure. 

2.1.3.2 Descriptors calculated by Dragon 

 

DRAGON 2.1 software provides the calculation of thousands of descriptors which are 

divided into 18 blocks (groups) of descriptors as seen in table 1- 1, also some of the 

descriptor groups is mentioned in table 2-2.  

2.1.3.2.1 Brief description about Dragon descriptors: 

 

Constitutional descriptors are the most simple and commonly used descriptors, reflecting 

the composition of a molecule without any geometrical information. Examples of these 

descriptors are the number of atoms, bonds, rings, specific atom types, rotatable bonds, etc.  

The descriptor blocks: topological, walk and path counts, information indices, 2D 

autocorrelation, and charge indices contain topological and topographic descriptors. 

Topological descriptors are based on a graph representation of the molecule. They are 

numerical quantifiers of molecular topology obtained by the application of algebraic 

operators to matrices representing molecular graphs. They can be sensitive to one or more 
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structural features of the molecule such as size, shape, symmetry, branching and cyclicity 

and can also encode chemical information concerning atom type and bond multiplicity. 

Topographic indices are derived from the graph representation of molecules in the same 

way as the topological indices, but using the geometric distances between atoms instead of 

the topological distances. 

 The blocks: geometrical, RDF, 3D-MoRSE, WHIM, and GETAWAY descriptors include 

descriptors derived from the knowledge of the 3D structure of the molecule. Some of the 

Molecular properties block derived from literature models, such as Moriguchi logP, 

Ghose-Crippen logP, Lipinski rule-of-five, etc. 

However the descriptors groups are divided into four types: 

0D: Constitutional descriptors.  

1D:  Empirical, Functional groups, Properties, Atom-centred fragments descriptors. 

2D: Autocorrelations, Topological, Molecular walk counts, Galvez topological charge     

indices, BCUT descriptors.  

3D: Geometrical, Randic molecular profiles, WHIM, GETAWAY, RDF, 3D-MoRSE, 

Charge descriptors. 

 

2.1.3.2.2 Steps to perform descriptors calculation using DRAGON software: 

 

1. After starting DRAGON, press on calculate descriptors button from the left side list 

of program interface. A dialog box will open, to select the files for calculations. 

2. Select the output files resulted from the HyperChem structures optimization process 

and choose the type of the file to be in (.hin) format then choose the type of 

descriptor group to be calculated, then press run. 
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3. Save the output file in notepad format once the calculation of input compound file 

for certain group of descriptors is done.  

4. Change the format file from the notepad to excel format. So we can use it as input 

file for SPSS and other analysis softwares. 

5. Accordingly repeat these steps for all compounds each time calculate one group of 

descriptors, till all descriptors groups for each compound is calculated. 

 

      Table 2-2: Brief description of some of the descriptors used in this study 

Descriptors Descriptors Group 

Molecular weight (MW),  number of atoms (nAT),  number of non H-

atoms (nSK), number of bonds (nBT), number of multiple bonds (nBM), 

number of rings (nCIC), number of circuits (nCIR), number of H-bond 

donor (nHDon), number of H-bond acceptor (nHAcc). 

 

Constitutional 

Information index molecular size (ISIZ), connectivity indices(X), average 

connectivity index (XA), kier symmetry index (S0K), total walk count 

(TWC), Zagreb index (Z), Schultz molecular topological index, Balaban j 

index (J), Wiener w index (W) 

 

Topological indices 

Highest occupied molecular orbital energy(EHOMO), Lowest unoccupied 

molecular orbital energy (ELUMO), Most positive charges(MPC), Least 

negative charges (LNC), Most negative charges(MNC),  Sum of positive 

charges(SPC), Sum of negative charges (SNC),  Sum of squares of 

positive charges (SSPC),  Sum of squares of negative 

charges(SSNC),Sum of squares of charges (SSC), Sum of absolute of 

charges (SAC) ,molecular Dipole moment (DM) , Electronegativity (χ=-

0.5(EHOMO-ELUMO)).Hardness(η=0.5(EHOMO+ELUMO)).Softness 

(S=1\η).Electrophilicity (ω=χ
2
/2η). Heat of formation (Hf). 

Quantum 

Chemical 

Octanol-water partition coefficient (LogP), hydration energy (HE) 

polarizability (Pol), refractivity (Ref), volume (V), surface area (SA), 
Chemical 

descriptors 
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2.2 Data analysis 

 

2.2.1 Multiple linear regression (MLR) 

 

MLR simultaneously considers the relationship between dependent variables (biological 

activity) and a independent variable (theoretical molecular descriptors) by fitting a linear 

equation to observed data using SPSS software. The MLR is the first statistical step that 

done because of the assumption that there is a linear correlation between the independent 

variables (descriptors) and the response variable (Y, Activity in our study). 

2.2.1.1 Steps to perform MLR for each descriptor group using SPSS: 

 

1. Import to SPSS one of the output files which resulted from the descriptors 

calculation on HyperChem and DRAGON (e.g. Constitutional descriptors file for all 

the compounds). The file will contain the activities of all compounds and each 

compound related calculated descriptors as seen in table 2-3. 

 

  Table 2-3: The format of the input file in SPSS to perform MLR (The activities of all 

compounds and their corresponding properties.  

Activity 

(IC50) 

Molecular 

weight (MW) 

Sum of atomic van 

der Waals volumes 

(sv) 

Sum of atomic 

Sanderson 

electronegativities 

(Se) 

Sum of atomic 

polarizabilities 

(Sp) 

5.569 337.44 30.89 44.43 32.28 

7.194 351.47 32.48 47.32 34.04 

7.194 338.43 30.28 43.65 31.53 

7.420 352.46 31.88 46.54 33.29 

5.180 351.47 32.48 47.32 34.04 

8.009 365.5 34.08 50.2 35.8 

4.988 352.46 31.88 46.54 33.29 

8.337 366.49 33.48 49.42 35.04 

5.827 370.45 31.99 47.05 33.22 

8.658 384.48 33.59 49.94 34.98 
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2.  After importing the file data to the SPSS, press on Analyze tab, choose regression ► 

Linear as seen in figure 2-3. Thus a dialog box of linear regression as seen in figure 

2-4 will open to set the below fields: 

 First set IC50 as a dependent variable and the descriptors as independent variables. 

And also choose stepwise method for analysis method. 

 Then press on options button. Another dialog box will open to set the F value (F 

entry and F removal). Keep changing the F value till getting a convincing results. 

 And then press on Statistics to click on the field of Estimate Regression coefficient. 

 After that press on save button, and click on the unstandardized predicted values 

field. 

3. Click Ok button on the linear regression dialog box, in order to start the MLR. 

4. Repeat the previous steps on each descriptors group file. 

5. Choose the best model from each descriptor's group output. The best model which 

has higher R value and minimum number of descriptors among the results of each 

group. 

Figure 2-3: Choosing linear regression analysis using SPSS. 
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Figure 2-4: Dialog box which open after choosing the linear regression analysis. 

 

2.2.1.2 Steps to perform MLR for all the descriptors resulted from the first MLR   

using the SPSS: 

 

1. After choosing the best model for each descriptor's group, gather all the descriptors 

which mentioned in the best models in one file. 

2. Then import the prepared file into the SPSS and follow the steps of MLR as in 

section 2.2.1.1. 

3. From the resulted models; choose all the models having R
2
 ≥ 0.6 [92]. 
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2.2.2 MLR Model validation 

 

Model validation has been the subject of much recent debate in the scientific and 

regulatory communities. It was considered important to develop an internationally 

recognized set of principles for QSAR validation, to provide regulatory bodies with a 

scientific basis for making decisions on the acceptability of QSAR estimates of regulatory 

endpoints, and to promote the mutual acceptance of QSAR model. In current research, two 

internal validation methods have been performed to validate the MLR and the ANN 

resulted models; cross-validation and scrambling (Y-Randomization) respectively.  

2.2.2.1 Cross-validation 

 

The cross validation is used to validate the models resulted from the MLR. And it's divided 

into two types of procedures: leave one out (LOO) and leave many out (LMO) cross-

validation. 

2.2.2.1.1 Steps to perform leave one out (LOO) using MATLAB 

 

1. Prepare a file which contains in the first column the observed activity and then 

comes the predicted activities of each model resulted from the MLR with R
2
 ≥ 0.6. 

Where the predicted activities value taken from SPSS. 

2. By running a special MATLAB script to perform LOO and entering the file name, 

the MATLAB will ask for the model number and after that will ask to enter the 

number of descriptors for the model of interest. 
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3. A proper output file should look like:  

       Model   PRESS      SPRESS    SST        R2CV     PRESS/SST    PSE        RSEP 

     ------------------------------------------------------------------------------- 

1   25.0874    0.7155    16.9432    -0.4807    1.4807     0.6693     61.1801 

4. Choose the models which have PRESS/SST value < 0.4, and compare it with the 

LMO results, and continue with the chosen models to the PCA and ANN. 

2.2.2.1.2 Steps to perform leave many out (LMO) using MATLAB 

 

1. Prepare a file of each model alone containing the observed activity and the 

descriptors of the model.  

2. Run certain MATLAB script, and choose the data file. 

3. A proper output file should look like:  

PRESS      SPRESS     SST        R2CV     PRESS/SST    PSE        RSEP 

-------------------------------------------------------------------------------- 

45.7577  1.0198     42.6208     -0.0736     1.0736     0.9292     44.1042 

4. Repeat the previous steps for each prepared model file. 

5. Choose the models which have PRESS/SST value < 0.4, and compare it with the 

LOO results, and continue with the chosen models to the PCA and ANN. 
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2.2.3 Principal component analysis (PCA) 

 

Principal components analysis (PCA), It is a way of identifying patterns in data, and 

expressing the data in order to highlight their similarities and differences. Therefore the 

PCA is used to divide the dataset into three groups; training, validation and test set. As 

dividing the data should not be done randomly, instead, use the factor spaces of the 

descriptors and activity data. To do so, gather the descriptors and the activities in a single 

matrix (X). Perform principal component analysis (PCA) on X and then plot the first score 

against the second.  You will obtain a scatter distribution of data (molecules) in the two 

first factor spaces. Select the training set molecules from these data points so they span the 

same space of the entire data. Data division should be done as to have 60% of the data in 

the training set and 20% for each of the validation and test sets.  

 

Steps to perform PCA using MATLAB: 

1. Open MATLAB, and Run special MATLAB script to plot the first two PCs. 

2. Then the MATLAB will ask for the data excel file name. Thus enter the name of the 

file that contains the activities and all descriptors of models which were chosen after 

the second MLR validation. 

3. A figure of first two PCs will produced, from plotting (new data (:,x),new data 

(:,y),'+').  

        Where: x label ('xth Principal Component'); y label ('yth Principal Component'). 

4. Using the data distribution from the figure produced for the first two PCs, select the 

training, validation and test sets molecules.  

 

Hint: If the first two PCs were not enough to describe the data distribution, plotting the 

third PC can be helpful.  
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2.2.4 Artificial Neural Networks (ANN) 

 

Artificial Neural Networks (ANN) is used either when the linear method of analysis is not 

producing good predicting models or when more evidence that the linear method of 

analysis is good predicting method. 

2.2.4.1 Steps to perform ANN for each model using MATLAB: 

 

1. Use the same models which used in PCA to divide the dataset, prepare excel file of 

activity and descriptors for each model. 

2. Open MATLAB, and Run special MATLAB script for ANN. 

3. Then the MATLAB will ask for the data excel file name. Thus enter the name of the 

file. 

4. After that the MATLAB will ask for model number and the number of hidden nodes, 

see figure 2-5.  

5. Choose the best models which have high R value for test set and low PRESS and 

RESP values. 

 

 

 

 

 

 

Figure 2-5: MATLAB Command window asking for file name, model number and 

number of hidden nodes. 



 

48 
 

2.2.4.2 Steps to perform ANN of the best models with range of hidden nodes (Hn) using 

MATLAB: 

1. After choosing the optimal models based on the first ANN round, perform the ANN 

again for each model with range of hidden nodes starting from 5 to 20 by repeating 

the same steps in section 2.2.4.1.  

2. Pick best models having high R value for test set, low PRESS, low RESP values, and 

small number of hidden nodes. 

2.2.5 Randomization test (chance correlation or scrambling model)  

 

Randomization test is performed in this research to ensure that the ANN resulted model is 

not due to a chance.  

Steps to perform Randomization test using MATLAB: 

1. Prepare file for each model resulted from the ANN, the file content is similar to the 

content of the LMO data files.  

2. Run special MATLAB script, then enter the data file name and the number of trail 

when asked to. 

3. Repeat the test for each model more than ten times. 

Summary of QSAR process: 

 Dataset preparation (Chemical structure’s and their pIC50) 

 Geometry optimization through semi-empirical quantum mechanics using   

HyperChem. 

 Descriptors calculation using HyperChem and Dragon. 

 MLR Model building using SPSS as well as validation of these models  

 PC-ANN statistical model using MATLAB as well as validation of the models 
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3. Results and Discussion: 

 

QSAR models were developed as a result of this study using the 136 compounds and their 

related observed activity (pIC50) against Translocator protein (TSPO).  

3.2 Data preparation results 

 

 Compounds optimization using HyperChem resulted with optimized 136 compounds, 

through semi-empirical AM1 (Austin Model 1) method. Where the semi-empirical 

method is used because it is very fast compared with ab initio method, applicable to 

large molecules, and give accurate results. 

As well AM1 prove that it’s more reliable method than other semi-empirical methods 

(e.g. MNDO). 

  

 Descriptors calculation using HyperChem; allow to calculate one group of descriptors 

called G-16 quantum chemical descriptors. All the descriptors calculated through 

HyperChem is mentioned below and in section 2.1.3.1. 

 HOMO (highest occupied molecular orbital). 

 LUMO (Lowest occupied molecular orbital). 

 Heat of formation (kcal/mol). 

 Dipole moment (Debyes). 

 Log P. 

 Hardness (0.5* (LUMO - HOMO)). 

 Softness (1/Hardness). 

 Electronegativity (-0.5* (LUMO + HOMO)). 

 Electrophilicity    (Electronegativity* Electronegativity/(2*Hardness)) [91]. 
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 Surface Area (Approx). 

 Surface Area (Grid). 

 Volume. 

 Hydration Energy. 

 Refractivity. 

 Polarizability. 

 Mass. 

 Descriptors calculation using Dragon; 1235 descriptors have been calculated, in which 

represented through 18 groups. The results are explained below: 

 Two groups (Empirical and Properties descriptors) were constant or near 

constant.  Thus Dragon software discard these groups of descriptors because 

they are correlated with each other and with activity at the same time.  

 Other groups of descriptors; constitutional, topological, molecular walk counts, 

BCUT, Galvez topological charge indices, 2D autocorrelations, charge 

descriptors, aromaticity indices, Randic molecular profiles, geometrical, RDF, 

3D-MoRSe, WHIM, GETAWAY, functional, and atom-centered fragments 

were calculated with non-constant descriptors.  

Examples: A 37 descriptors were calculated within the constitutional group, a 

225 descriptors within the topological group and so on... 

 Performing the first MLR using SPSS, in which an MLR for each group of descriptors 

performed separately, except for the groups which contain small number of descriptors 

such as charge descriptors, aromaticity indices and G-16 quantum chemical were 

gathered in one input file for the MLR.   
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Results of first MLR is summarized in table 3-1, where (No.) refers to group number, 

(R) refers to correlation coefficient, (R
2
) refers to coefficient of determination, (R

2
adj.) 

refers to adjusted R
2 

, and selected descriptors refer to chosen descriptors by MLR 

model.  

 

Table 3-1: MLR Models resulted from each group of descriptors. 

No. Group name 

# of 

calculated 

descriptors 

R R
2
 R

2
adj. 

Standard 

Error of 

estimation 

Selected descriptors 

1 Constitutional 37 0.484 0.234 0.176 1.189 

Ms, nR10, RBF, nCL, 

nH, nTB, nR11, nR09, 

nAB, nCIC, nDB, Mp, 

AMW, nR07, nCIR, 

Mv, RBN, Ss, nSK, 

nX, Sp, Me, nR05 

2 Topological 225 0.806 0.649 0.585 0.798 

HNar, X4Av, piPC10, 

SPI, piPC09, D/Dr10, 

piPC07, D/Dr06, 

T(O..Cl), CIC2, X5v, 

T(Cl..Cl), Jhetp, 

piPC06, piPC03, 

MPC06, X2sol, 

SEige, X2Av, 

D/Dr11, D/Dr07 

3 
Molecular 

walk 
19 0.532 0.283 0.213 1.098 

MWC08, MWC06, 

SRW08, SRW05, 

SRW10, MWC05, 

MWC04, SRW04, 

MWC09, MWC01, 

MWC07, SRW07 
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No. Group name 

# of 

calculated 

descriptors 

R R
2
 R

2
adj. 

Standard 

Error of 

estimation 

Selected descriptors 

4 BCUT 64 0.781 0.609 0.521 0.857 

 BELm2, BELm3, 

BELe4, BEHe5, 

BEHv8, BELp1, 

BEHm4, BEHm8, 

BELv3, BEHv2, 

BELm5, BELv5, 

BEHm5, BELm1, 

BELe2, BELp3, 

BEHp4, BEHe4, 

BELp8, BELm8, 

BELe5, BEHv4, 

BEHe6, BELv7, 

BELm7 

5 

Galvez 

topological 

charge indices 

21 0.708 0.501 0.409 0.952 

JGI2, JGI6, JGT, 

JGI3, JGI4, JGI10, 

GGI6, GGI2, GGI8, 

GGI1, JGI1, JGI8, 

GGI3, GGI10, JGI9, 

GGI7, JGI7, JGI5, 

GGI4, GGI5, GGI9 

6 

2D 

autocorrelatio

ns 

96 0.729 0.532 0.495 0.880 

MATS4e, MATS1v, 

GATS6e, GATS7v, 

ATS4p, MATS5p, 

MATS5m, GATS8e, 

GATS7p, MATS7m 

7+8

+17 

Charge+ 

Aromaticity+

G16 

35 0.648 0.419 0.300 1.036 

dipole moment 

(Debyes), Hardness, 

TE1, Hydration 

Energy (kcal/mol), 

Qneg2, Log P, qpos, 

qneg, Mass (amu), 

Polarizability, LDip, 

Surface Area (Grid), 

Volume, Qmean, 

Refractivity, TE2, 

heat of formation 

(kcal/mol), PCWTe, 

electrophilicity, 

HOMO (eV), Q2, 

RPCG, softness 
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No. Group name 

# of 

calculated 

descriptors 

R R
2
 R

2
adj. 

Standard 

Error of 

estimation 

Selected descriptors 

9 

Randic 

molecular 

profiles 

41 0.367 0.135 0.073 1.19163 

DP20, SHP2, DP01, 

DP04, SP02, SP15, 

SP01, SP13, DP17 

10 Geometrical 31 0.539 0.290 0.129 1.15519 

 DELS, SPH, PJI3, 

G(N..N), TIE, SPAN, 

H3D, SPAM, SEig, 

MEcc, MAXDP, 

MAXDN, W3D, 

G(O..Cl), G(F..Cl), 

J3D, G(Cl..Cl), G2, 

FDI, ADDD, G1, 

AGDD, G(N..O), 

ASP, L/Bw 

11 RDF 150 0.658 0.433 0.372 0.98087 

RDF125m, 

RDF030m, 

RDF035m, RDF075v, 

RDF090e, RDF070u, 

RDF125v, RDF130e, 

RDF120v, RDF105m, 

RDF090m, RDF015u, 

RDF050v 

12 3D-MorSE 160 0.673 0.453 0.374 0.97902 

Mor10u, Mor15e, 

Mor04p, Mor22e, 

Mor28v, Mor31u, 

Mor02u, Mor32e, 

Mor11e, Mor05m, 

Mor10v, Mor11u, 

Mor15u, Mor10p, 

Mor19p, Mor12u, 

Mor08m 
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No. Group name 

# of 

calculated 

descriptors 

R R
2
 R

2
adj. 

Standard 

Error of 

estimation 

Selected descriptors 

13 WHIM 99 0.613 0.376 0.279 1.051 

L2v, G1v, P2m, G1e, 

L2p, L2e, Vv, Vp, Ve, 

E2s, Vu, L2u, Vm, 

L2m, Ds, E3m, Dm, 

G3s 

14 GETAWAY 196 0.784 0.615 0.544 0.836 

R8e+, R1p+, H5e, 

R4e+, R4u+, R4m+, 

H3u, HGM, HATS1e, 

R7m, ITH, R1m+, 

H5m, R6v+, HATS6p, 

H5u, HATSv, 

HATS2p, R8u, H6p, 

R8m 

15 Functional 24 0.694 0.481 0.385 0.970 

nCONR2, nN-N, 

nCONR2Ph, nC=NPh, 

nCrH2, nNR2, 

nCONHRPh, n#CH, 

nCs, nCaH, nCt, 

n=CHR, nPhX, nCaR, 

nRORPh, nCp, 

nCrHR, nC=N, 

nCONHR, nNHR, 

nHDon 

16 
Atom-centered 

fragments 
38 0.795 0.632 0.553 0.828 

C-005, C-043, C-027, 

N-068, N-071, H-050, 

C-003, C-031, C-040, 

C-001, C-008, H-054, 

C-028, C-021, O-059, 

N-075, C-026, C-006, 

N-073, H-051, O-060, 

H-047, C-024, C-016 
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 Performing the second MLR using SPSS, in which MLR applied on the groups of 

descriptors resulted from the first MLR together. 

Results of second MLR is summarized in table 3-2, where only the models having R
2
 

≥ 0.6 were taken to continue into the next step. So models 12- 24 which have R
2
 ≥ 0.6 

were taken for cross validation (leave one out and leave many out) [92]. 

 

 

 Table 3-2: MLR Models resulted from all the groups of descriptors together 

 

Model 

No. 

No. of 

descriptors 
R R

2
 R

2
adj. Selected descriptors 

12 12 0.787 0.620 0.583 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4 

13 13 0.803 0.645 0.607 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e 

14 14 0.815 0.665 0.626 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e, BELm3 

15 15 0.828 0.686 0.647 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e, BELm3, nHDon 

16 16 0.842 0.709 0.670 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e, BELm3, nHDon, C-003 
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Model 

No. 

No. of 

descriptors 
R R

2
 R

2
adj. Selected descriptors 

17 17 0.851 0.725 0.685 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e, BELm3, nHDon, C-003, 

MATS4e 

18 18 0.862 0.742 0.703 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e, BELm3, nHDon, C-003, 

MATS4e, BEHm4 

19 19 0.875 0.765 0.727 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e, BELm3, nHDon, C-003, 

MATS4e, BEHm4, Hydration 

Energy (kcal/mol) 

20 20 0.886 0.784 0.747 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e, BELm3, nHDon, C-003, 

MATS4e, BEHm4, Hydration 

Energy (kcal/mol), G(O..Cl) 

21 21 0.893 0.797 0.760 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e, BELm3, nHDon, C-003, 

MATS4e, BEHm4, Hydration 

Energy (kcal/mol), G(O..Cl), 

electrophilicity 

22 22 0.897 0.805 0.767 

 JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e, BELm3, nHDon, C-003, 

MATS4e, BEHm4, Hydration 

Energy (kcal/mol), G(O..Cl), 

electrophilicity, Mor22e 
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Model 

No. 

No. of 

descriptors 
R R

2
 R

2
adj. Selected descriptors 

23 23 0.902 0.813 0.775 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e, BELm3, nHDon, C-003, 

MATS4e, BEHm4, Hydration 

Energy (kcal/mol), G(O..Cl), 

electrophilicity, Mor22e, 

Mor08m 

24 24 0.909 0.826 0.788 

JGI2, Mor10u, C-005, R8e+, 

nN-N, nR10, Mor19p, 

RDF035m, RDF030m, 

nCONHRPh, X4Av, BEHe4, 

G1e, BELm3, nHDon, C-003, 

MATS4e, BEHm4, Hydration 

Energy (kcal/mol), G(O..Cl), 

electrophilicity, Mor22e, 

Mor08m, Mor11e 

 

The below equation represents the best MLR model number 24; 

pIC50 = 32.804 (± 5.902) - 8.386 (±6.190) JGI2 - 0.159 (±0.122) Mor10u + 0.249 (± 

0.120) C-005 - 6.653 (±3.382) R8e
+
 - 2.222 (±0.258) nN-N + 0.661 (±0.192) nR10 

+ 0.537 (±0.191) Mor19p + 0.106 (±0.022) RDF035m - 0.043 (±0.031) RDF030m - 

1.288 (±0.348) nCONHRPh -205.791 (±27.444) X4Av - 12.548 (±1.485) BEHe4 - 

36.414 (±15.927) G1e + 8.988 (±1.817) BELm3 -0.106 (±0.0947) nHDon - 2.671 

(±0.382) C-003 - 4.090 (±0.913) MATS4e + 5.928 (±1.338) BEHm4 + 0.255 

(±0.057) Hydration Energy + 0.032 (±0.007) G(O..Cl) - 1.366 (±0.471) 

electrophilicity - 0.525 (±0.181) Mor22e - 0.360 (±0.102) Mor08m - 0.288 (±0.103) 

Mor11e. 

Where R=0.909, R
2
 = 0.826, R

2
adj =0.788, and the STD error of the estimate = 0.5700. 
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Each descriptor in model 24 equation is mentioned with brief description and its group in 

table 3-3. 

 

Table 3-3: Brief description of the descriptors in the best MLR model equation. 

 

Name   Description Block (group) 

JGI2 

Mean topological charge index of order 2 

Galvez topol. Charge 

indices 

Mor10u Signal 10 / unweighted 3D-MoRSE descriptors 

C-005 

CH3X 

Atom-centred 

fragments 

R8e+ R maximal autocorrelation of lag 8 / 

weighted by Sanderson electronegativity GETAWAY descriptors 

nN-N Number of N hydrazines Functional group counts 

nR10 Number of 10-membered rings Ring descriptors 

Mor19p Signal 19 / weighted by polarizability 3D-MoRSE descriptors 

RDF035m Radial Distribution Function - 035 / 

weighted by mass RDF descriptors 

RDF030m Radial Distribution Function - 030 / 

weighted by mass RDF descriptors 

nCONHRPh Number of secondary amides (aromatic) Functional group counts 

X4Av Average valence connectivity index of 

order 4 Connectivity indices 

BEHe4 Highest eigenvalue n. 4 of Burden matrix 

/ weighted by atomic Sanderson 

electronegativities BCUT 

G1e 1st component symmetry directional 

WHIM index / weighted by Sanderson 

electronegativity WHIM descriptors 

BELm3 Lowest eigenvalue n. 3 of Burden matrix 

/ weighted by atomic masses BCUT 

nHDon Number of donor atoms for H-bonds (N 

and O) Functional group counts 

C-003 

CHR3 

Atom-centred 

fragments 
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Name   Description Block (group) 

MATS4e Moran autocorrelation of lag 4 weighted 

by Sanderson electronegativity 2D autocorrelations 

BEHm4 Highest eigenvalue n. 4 of Burden matrix 

/ weighted by atomic masses BCUT 

Hydration Energy 

(kcal/mol) 

Hydration Energy (kcal/mol) 

G16-quantum-chemical 

G(O..Cl) Sum of geometrical distances between 

O..Cl Geometrical descriptors 

Electrophilicity Electrophilicity G16-quantum-chemical 

Mor22e Signal 22 / weighted by Sanderson 

electronegativity 3D-MoRSE descriptors 

Mor08m Signal 08 / weighted by mass 3D-MoRSE descriptors 

Mor11e Signal 11 / weighted by Sanderson 

electronegativity 3D-MoRSE descriptors 

 

 

Based on the equation of the best MLR model, the following descriptors have a 

positive effect on the compounds activity: 

C-005, nR10, Mor19p, RDF035m, BELm3, BEHm4, Hydration Energy, G(O..Cl). 

While the below descriptors have a negative effect on the compounds activity,   

 JGI2, Mor10u, R8e
+
, nN-N, RDF030m, nCONHRPh, X4Av, BEHe4, G1e, nHDon,   

C-003, MATS4e, electrophilicity, Mor22e, Mor08m, Mor11e. 

 

 Cross validation performed on the MLR resulted models (12-24), using MATLAB 

software. The results of cross validation LOO and LMO are summarized in table (3-4) 

and (3-5) respectively. Where:  PRESS (Predictive residual sum of squares) which 

also called SSE (Error sum of squares). PRESS is standard index to measure the 

accuracy of the model, SST (Total sum of squares), R
2

CV or Q
2
 (Cross validated 

correlation coefficient), SPRESS (uncertainty of prediction), PSE (Predictive Square 
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Errors) which also called RMSE (Root Mean Square Error), and RSEP (Relative 

Standard Error of Prediction). 

 

Table 3-4 and 3-5 show a good predictive power for models 19-24 because of having 

high R
2

CV and PRESS/SST less than 0.4. Thus, models 19-24 were chosen for ANN 

analysis.  

 

 

Table 3-4: LOO cross validation results. 

 

model No. desc. PRESS SPRESS SST R
2

CV PRESS/SST PSE RSEP 

12 12 87.824 0.845 125.942 0.302 0.697 0.803 11.004 

13 13 87.431 0.846 125.303 0.302 0.697 0.801 10.980 

14 14 78.757 0.806 132.741 0.406 0.593 0.760 10.421 

15 15 74.705 0.789 136.882 0.454 0.545 0.741 10.149 

16 16 68.680 0.759 142.558 0.518 0.481 0.710 9.731 

17 17 67.408 0.755 144.202 0.532 0.467 0.704 9.641 

18 18 63.928 0.739 147.714 0.567 0.432 0.685 9.389 

19 19 56.146 0.695 154.679 0.637 0.362 0.642 8.799 

20 20 54.708 0.689 156.560 0.650 0.349 0.634 8.685 

21 21 52.413 0.678 158.942 0.670 0.329 0.620 8.501 

22 22 50.644 0.669 160.676 0.684 0.315 0.610 8.356 

23 23 49.162 0.662 162.211 0.696 0.303 0.601 8.233 

24 24 46.108 0.644 165.143 0.720 0.279 0.5822 7.973 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

62 
 

Table 3-5: LMO cross validation results. 

 

Model No. desc. PRESS                               

 

SPRESS  SST  R
2

CV       PRESS/SST PSE  RSEP  

12 12 102.289 0.911 145.424 0.296 0.703 0.867 11.795 

13 13 95.909 0.886 152.582 0.371 0.628 0.839 11.421 

14 14 89.930 0.862 154.158 0.416 0.583 0.813 11.060 

15 15 84.282 0.838 157.975 0.466 0.533 0.787 10.707 

16 16 83.151 0.835 162.574 0.488 0.511 0.781 10.635 

17 17 82.525 0.836 172.536 0.521 0.478 0.779 10.595 

18 18 77.411 0.813 174.643 0.556 0.443 0.754 10.261 

19 19 69.566 0.774 177.321 0.607 0.392 0.715 9.727 

20 20 64.308 0.747 179.401 0.641 0.358 0.687 9.352 

21 21 62.574 0.740 189.644 0.67 0.33 0.678 9.225 

22 22 59.976 0.728 191.991 0.687 0.312 0.664 9.032 

23 23 58.036 0.719 195.521 0.703 0.296 0.653 8.885 

24 24 52.387 0.687 195.586 0.732 0.267 0.620 8.441 

 

 The PCA was performed to divide the molecules into training, validation, and prediction 

(test) sets. Performing PCA on the whole data of 136 compounds, 24 descriptors and 

plotting the first and second principals, first and third principals, and second and third 

principals. The data division into 60% training, 20% test and 20% validation, should be 

in equal manner in which picking one compound from each zone to each set. 

The first and second principals and first and third principals plots were having a 

condensed data towards the X axis, however second and third principals plot have the 

data distributed in a good way in comparison with the other plots. 

Therefore relying on the second and third principals plot, it shows compounds 13, 22 

and 86 as outliers (Figure 3-1). Although these three compounds don't differ structurally 

in comparison with other compounds. But they behave in a different manner, therefore 

these compounds removed from the data in the next analysis. And so the data divided 

after removing the outliers into 60% (81 compounds) training group, 20% (26 

compounds) of each test and validation groups. 
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Figure 3-1: Second and third principal components plot. 
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 First Artificial Neural Networks (ANN), Performed on the chosen models (19-24) from 

LOO and LMO validation. Apply the ANN on each model with 7 hidden nodes. 

The results of first ANN is in table 3-6, the table shows that model 24 has the highest 

correlation coefficient for the test set (0.850) indicating its high predictive power and 

the one after it is model 21. 

 

Figure 3-2 shows the relation of PRESS values for the training, test and validation sets 

versus model number. This figure shows that the minimum PRESS of the training set is 

obtained for model 21 the one after it is model 20. While the minimum PRESS of the 

test sets is obtained for model 24 the one after it is model 21 then 23.  

 

Figure 3-3 shows the relation of correlation coefficient (R) values for the training, test 

and validation sets versus model number. This figure shows that the highest (R) value of 

the training set is obtained for model 21 then 20. While the highest (R) value of the test 

set is obtained for model 24 then model 21 then model 23. 

 

Figure 3-4 shows the relation of R
2

CV (Cross validated correlation coefficient) values for 

the training, test and validation sets versus model number. This figure shows that the 

highest (R
2

CV) value of the training set is obtained for model 21 then 20. While the 

highest (R
2

CV) value of the test set is obtained for model 21 then model 24 then model 

23. 

Accordingly, models 20, 21, 23, and 24 were subjected for further analysis by 

optimizing the number of hidden nodes, because these models have the highest R, R
2
CV 

and low PRESS values for test set.
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      Table 3-6: Correlation Coefficient and Cross Validation Parameters for ANN Models 19-24. 

Mo.# hn nPCs R_tr           PRESS_tr       R
2

CV_tr R_test          PRESS_test        R
2

CV_test          R_val PRESS_val R
2

CV _val 

19 7 7 0.905 19.605 0.753 0.805 15.511 0.401 0.718 26.234 0.210 

20 7 7 0.927 15.319 0.824 0.812 15.064 0.437 0.726 26.259 0.298 

21 7 7 0.932 14.085 0.840 0.832 14.034 0.607 0.740 25.528 0.358 

22 7 6 0.911 18.292 0.789 0.802 15.934 0.335 0.686 28.443 -0.047 

23 7 6 0.906 19.118 0.783 0.818 14.526 0.502 0.655 30.734 -0.133 

24 7 6 0.909 18.701 0.785 0.850 12.206 0.578 0.685 28.852 0.108 
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Figure 3-2: Plots of ANN Predictive Residual Sum of Squares (PRESS) values for the 

training, test and validation sets versus model number. 

 

Figure 3-3: Plots of ANN correlation coefficient (R) values for the training, test and 

validation sets versus model number. 
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Figure 3-4: Plots of ANN R
2

CV (Cross validated correlation coefficient) values for the 

training, test and validation sets versus model number. 

 Second ANN performed on the chosen models 20, 21, 23, 24, each model with a range 

of hidden nodes starting from 5 to 20. The results are shown in tables; 3-7, 3-8, 3-9 and 

3-10 respectively. 

According to the results tables; model 20 with 10 hidden nodes, model 21 with 7 hidden 

nodes, model 23 with 5 hidden nodes, and model 24 with 7 hidden nodes were chosen 

as the best models with the optimal hidden nodes because they have high prediction 

power (R), minimum PRESS value of the test group, and minimum number of hidden 

nodes. 

 Table 3-11 summarize the correlation coefficients and cross validation parameters for 

the optimal number of hidden nodes for each one of the chosen models, where Models 

23 and 24 chosen as best models to continue to randomization test. 
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Table 3-7: Correlation Coefficients and Cross Validation Parameters of Number of Hidden Nodes for Model #20. 

 

 

 

 

hn nPCs R_tr    PRESS_tr R
2

CV _tr RSEP_tr R_test          PRESS_test        R
2

CV _test          RSEP_test       R_val PRESS_val R
2

CV _val RSEP_val 

5 7 0.903 19.757 0.768 6.694 0.842 13.437 0.483 9.496 0.807 20.161 0.471 12.207 

6 7 0.907 19.034 0.787 6.571 0.808 15.277 0.515 10.125 0.728 25.439 0.259 13.712 

7 7 0.927 15.319 0.82 5.895 0.812 15.064 0.437 10.054 0.726 26.259 0.299 13.931 

8 7 0.922 16.072 0.814 6.038 0.815 15.467 0.520 10.188 0.708 26.973 0.158 14.119 

9 7 0.912 18.143 0.784 6.415 0.807 15.290 0.416 10.129 0.671 29.785 -0.030 14.837 

10 7 0.938 13.007 0.859 5.432 0.847 13.384 0.483 9.477 0.736 26.058 0.361 13.877 

11 7 0.921 16.289 0.820 6.079 0.817 15.042 0.359 10.047 0.688 29.179 0.042 14.684 

12 7 0.908 18.927 0.774 6.552 0.807 15.419 0.366 10.172 0.669 30.706 -0.199 15.064 

13 7 0.903 20.615 0.739 6.838 0.804 15.704 0.517 10.266 0.679 29.911 0.081 14.868 

14 7 0.917 17.037 0.811 6.217 0.809 15.277 0.377 10.125 0.695 29.035 0.254 14.649 

15 7 0.922 16.162 0.812 6.055 0.818 15.358 0.614 10.152 0.678 32.198 0.174 15.426 

16 7 0.908 18.879 0.781 6.544 0.847 12.532 0.644 9.170 0.693 28.242 0.063 14.447 

17 7 0.913 17.872 0.793 6.367 0.817 14.673 0.464 9.923 0.722 27.241 0.338 14.189 

18 7 0.928 15.041 0.823 5.841 0.809 15.818 0.265 10.303 0.707 28.550 0.123 14.526 

19 7 0.909 18.727 0.783 6.518 0.801 16.211 0.315 10.429 0.748 24.144 0.293 13.358 

20 7 0.926 15.574 0.812 5.944 0.811 15.109 0.469 10.069 0.757 24.439 0.328 13.439 
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Table 3-8: Correlation Coefficients and Cross Validation Parameters of Number of Hidden Nodes for Model #21. 

 

hn nPCs R_tr    PRESS_tr R
2

CV _tr RSEP_tr R_test          PRESS_test        R
2

CV _test          RSEP_test       R_val PRESS_val R
2

CV _val RSEP_val 

5 7 0.902 20.061 0.773 6.746 0.839 14.090 0.498 9.723 0.756 25.788 0.291 13.81 

6 7 0.903 19.896 0.766 6.718 0.813 14.874 0.494 9.991 0.694 28.482 0.185 14.509 

7 7 0.932 14.085 0.840 5.652 0.832 14.034 0.607 9.704 0.739 25.528 0.358 13.736 

8 7 0.901 20.916 0.716 6.888 0.829 14.141 0.431 9.742 0.735 26.559 0.139 14.010 

9 7 0.901 20.259 0.763 6.779 0.807 16.340 0.471 10.472 0.729 27.239 0.187 14.188 

10 7 0.912 18.574 0.759 6.491 0.838 13.134 0.539 9.388 0.672 29.733 -0.314 14.824 

11 7 0.926 15.351 0.834 5.901 0.811 16.364 0.579 10.479 0.732 26.434 0.124 13.98 

12 7 0.917 17.107 0.807 6.229 0.800 17.048 0.571 10.696 0.686 30.444 0.244 14.999 

13 7 0.923 15.824 0.823 5.991 0.810 15.321 0.368 10.14 0.716 27.400 0.159 14.230 

14 7 0.900 20.319 0.768 6.789 0.829 13.876 0.596 9.649 0.654 32.595 0.029 15.521 

15 7 0.905 19.758 0.746 6.695 0.813 15.798 0.241 10.296 0.669 32.587 0.106 15.519 

16 7 0.901 20.166 0.769 6.763 0.804 15.683 0.431 10.259 0.728 25.551 0.099 13.742 

17 7 0.919 17.195 0.778 6.245 0.817 14.738 0.441 9.945 0.689 29.422 0.077 14.746 

18 7 0.929 14.557 0.841 5.746 0.856 11.967 0.544 8.961 0.724 25.729 0.1445 13.789 

19 7 0.908 18.974 0.801 6.560 0.804 16.337 0.561 10.470 0.704 29.388 0.205 14.737 

20 7 0.910 18.534 0.781 6.484 0.820 14.726 0.361 9.941 0.716 26.183 0.100 13.911 
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Table 3-9: Correlation Coefficients and Cross Validation Parameters of Number of Hidden Nodes for Model #23. 

 

hn nPCs R_tr    PRESS_tr R
2

CV _tr RSEP_tr R_test          PRESS_test        R
2

CV _test          RSEP_test       R_val PRESS_val R
2

CV _val RSEP_val 

5 6 0.905 19.511 0.769 6.653 0.832 14.019 0.468 9.699 0.680 30.185 0.183 14.936 

6 6 0.909 18.783 0.789 6.527 0.804 16.982 -0.017 10.675 0.679 29.667 0.000 14.807 

7 6 0.906 19.118 0.782 6.585 0.818 14.526 0.502 9.873 0.655 30.734 -0.132 15.071 

8 6 0.928 15.063 0.824 5.845 0.812 15.349 0.445 10.149 0.722 26.162 0.266 13.905 

9 6 0.931 14.482 0.833 5.731 0.803 15.675 0.372 10.256 0.785 20.716 0.435 12.373 

10 6 0.903 19.740 0.781 6.692 0.801 16.609 0.137 10.558 0.714 27.067 0.227 14.143 

11 6 0.908 19.090 0.759 6.580 0.800 15.915 0.376 10.334 0.618 34.389 -0.129 15.942 

12 6 0.910 18.548 0.772 6.486 0.831 13.888 0.424 9.654 0.767 22.356 0.189 12.854 

13 6 0.910 18.485 0.779 6.475 0.849 12.798 0.518 9.267 0.662 30.394 -0.05 14.988 

14 6 0.917 17.426 0.783 6.287 0.801 16.244 0.362 10.441 0.625 34.708 -0.458 16.016 

15 6 0.901 20.441 0.775 6.809 0.818 15.041 0.603 10.047 0.704 27.055 0.038 14.140 

16 6 0.939 12.585 0.862 5.343 0.871 10.868 0.603 8.540 0.673 31.389 0.123 15.230 

17 6 0.902 19.957 0.769 6.728 0.803 16.809 0.075 10.621 0.659 31.511 -0.273 15.260 

18 6 0.926 15.324 0.841 5.896 0.804 16.482 0.571 10.517 0.654 33.083 0.179 15.636 

19 6 0.918 16.946 0.815 6.199 0.802 16.063 0.443 10.382 0.642 33.224 0.045 15.669 

20 6 0.935 13.616 0.851 5.557 0.811 15.441 0.423 10.179 0.612 34.747 -0.115 16.025 
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Table 3-10: Correlation Coefficients and Cross Validation Parameters of Number of Hidden Nodes for Model #24. 

 

hn nPCs R_tr    PRESS_tr R
2

CV _tr RSEP_tr R_test          PRESS_test        R
2

CV _test          RSEP_test       R_val PRESS_val R
2

CV _val RSEP_val 

5 6 0.905 19.461 0.773 6.644 0.836 14.17 0.447 9.751 0.733 24.915 0.188 13.569 

6 6 0.916 17.311 0.809 6.266 0.864 13.813 0.171 9.628 0.728 26.033 -0.108 13.871 

7 6 0.909 18.701 0.785 6.513 0.850 12.206 0.578 9.050 0.685 28.852 0.108 14.602 

8 6 0.939 12.766 0.861 5.381 0.802 15.810 0.518 10.30 0.659 32.616 0.076 15.526 

9 6 0.901 20.272 0.763 6.781 0.815 15.077 0.346 10.059 0.626 32.803 -0.28 15.570 

10 6 0.904 19.657 0.779 6.678 0.816 14.657 0.487 9.918 0.643 32.636 -0.042 15.530 

11 6 0.918 17.379 0.783 6.279 0.831 14.127 0.418 9.737 0.655 33.441 -0.359 15.720 

12 6 0.901 20.287 0.755 6.784 0.847 12.705 0.572 9.233 0.644 32.928 0.046 15.599 

13 6 0.919 16.803 0.795 6.174 0.850 13.344 0.364 9.463 0.648 31.485 -0.169 15.254 

14 6 0.931 14.464 0.836 5.728 0.846 12.668 0.626 9.219 0.726 26.054 0.185 13.876 

15 6 0.919 16.688 0.808 6.153 0.837 13.353 0.554 9.466 0.703 28.696 -0.469 14.563 

16 6 0.905 19.644 0.757 6.675 0.814 15.279 0.321 10.128 0.673 29.618 -0.385 14.795 

17 6 0.912 18.087 0.782 6.405 0.841 13.534 0.413 9.530 0.773 21.857 0.231 12.709 

18 6 0.939 12.555 0.873 5.337 0.823 14.911 0.415 10.002 0.691 29.843 -0.054 14.851 

19 6 0.938 12.968 0.853 5.424 0.810 15.186 0.459 10.095 0.612 35.254 -0.257 16.141 

20 6 0.942 12.428 0.881 5.309 0.839 13.094 0.621 9.374 0.647 33.343 -0.063 15.698 
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Table 3-11: Summary of the Correlation Coefficients and Cross Validation Parameters of the Optimal Number of Hidden Nodes of Each Model 

Mo. 

# 

hn nPCs R_tr  PRESS_tr  R
2

CV _tr RSEP_tr R_test          PRESS_test        R
2

CV _test          RSEP_test       R_val PRESS_val R
2

CV _val RSEP_val 

20 10 7 0.938 13.007 0.859 5.432 0.847 13.384 0.482 9.477 0.736 26.058 0.361 13.877 

21 7 7 0.932 14.085 0.84 5.652 0.832 14.034 0.607 9.704 0.739 25.528 0.358 13.736 

23 5 6 0.905 19.511 0.769 6.653 0.832 14.019 0.468 9.699 0.68 30.185 0.183 14.936 

24 7 6 0.909 18.701 0.785 6.513 0.85 12.206 0.578 9.05 0.685 28.852 0.108 14.602 
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 ANN resulted model validation through randomization test, to ensure that the ANN 

resulted model is not due to a chance. Results of model 23 with 5 Hn and model 24 with 

7 hn are shown in tables 3-12 and 3-13 respectively. These tables show that the 

Correlation coefficients obtained by chance are low in general while PRESS values are 

high. This indicates that models 23 and 24 which obtained from PCA-ANN are better 

than those obtained by chance and they are not due to chance. 

 

Figures 3-5 and 3-6 show regressions between observed and predicted activity as well 

as their residuals for the training, validation, and test sets for these two models.  
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Table 3-12: Chance Correlation of Model 23 with 5 Hidden Nodes 

 

Trial No. nPCs           R_tr PRESS_tr R
2

CV _tr R_test PRESS_test  R
2

CV _test  R_val  PRESS_val  R
2

CV _val  

1 6 0.155 186.679 -15.323 -0.248 11.546 -90.928 0.636 5.875 -32.209 

2 6 0.151 199.228 -4.803 0.261 12.329 -219.405 -0.223 14.905 -82.514 

3 6 0.065 204.245 -8.594 -0.37 11.879 -109.392 0.117 6.576 -46.601 

4 6 0.130 189.856 -13.569 -0.348 11.517 -842.777 -0.785 9.682 -72.311 

5 6 0.105 191.083 -18.737 -0.138 11.052 -377.239 -0.748 7.378 -317.342 

6 6 -0.245 214.801 -31.479 0.311 10.846 -591.173 0.582 5.568 -728.723 

7 6 0.116 374.285 -5.095 0.024 11.339 -39.912 -0.783 8.307 -11.770 

8 6 0.037 213.845 -6.671 -0.027 11.011 -307.729 -0.630 6.815 -221.652 

9 6 0.248 180.384 -6.080 0.198 15.225 -389.789 -0.6916 19.562 -106.548 

10 6 -0.043 219.869 -7.936 0.358 9.702 -5.176 0.964 3.538 -8.333 
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Table 3-13: Chance Correlation of Model 24 with 7 Hidden Nodes  

 

Trial No. nPCs           R_tr PRESS_tr R
2

CV _tr R_test PRESS_test  R
2

CV _test  R_val  PRESS_val  R
2

CV _val  

1 6 0.224 183.467 -6.709 0.189 12.548 -270.109 -0.257 11.440 -69.747 

2 6 0.292 175.064 -10.017 -0.454 14.204 -1085.815 -0.108 13.204 -292.240 

3 6 0.077 195.875 -12.219 -0.358 13.879 -63.759 0.354 3.999 -23.686 

4 6 -0.277 229.782 -16.547 -0.381 13.326 -502.793 0.652 3.759 -51.454 

5 6 0.076 200.859 -13.897 -0.345 11.929 -301.221 -0.808 11.332 -74.118 

6 6 0.061 223.055 -4.677 -0.161 11.580 -19590.4 0.639 9.807 -1928.422 

7 6 -0.173 283.432 -3.888 0.365 10.382 -27.965 -0.728 19.075 -8.395 

8 6 0.047 257.630 -2.261 -0.454 13.189 -35.861 0.699 3.071 -6.059 

9 6 -0.179 268.564 -4.842 -0.428 16.450 -19.304 0.443 3.942 -5.322 

10 6 0.167 203.664 -3.476 0.009 11.528 -367.780 -0.692 4.978 -832.566 
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Figure 3-5: Plot of the predicted activity against observed one as well as their residues for 

model 23 using 5 hidden nodes. Training set, validation set, and external test 

set. 
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Figure 3-6: Plot of the predicted activity against observed one as well as their residues for 

model 24 using 7 hidden nodes. Training set, validation set, and external test 

set. 
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The following conditions proposed by Golbraikh and Tropsha [92] were applied to 

conclude that the QSAR model has acceptable prediction power if: 

     (1) R
2

CV> 0.5 

     (2) R
2
 > 0.6 

     (3) (R
2
 - R

2
0)/ R

2
 < 0.1 and 0.85 < k < 1.15 

           Or 

          (R
2
 – R'

2
0)/R2 < 0.1 and 0.85 < k' < 1.15 

 

where R
2

0 and R'
2

0 are the coefficients of determination characterizing linear regression 

with Y-intercept set at zero, the first associated with observed vs. predicted values, the 

second related to predicted vs. observed values; k and k' are the slopes of the regression 

lines forced through zero, relating observed vs. predicted and predicted vs. observed 

values. 

(4) | R
2

0 - R'
2

0 | < 0.3 

 

Alternatively, the parameter R
2

m (R
2
* (1 - (R

2
- R

2
0)

1/2
)) can be used. This parameter 

penalizes a model for large differences between observed and predicted values, was also 

calculated. R
2

m should be larger than 0.5 for a good external prediction.  

If a model shows good statistical performance for all these criteria, on both the training and 

the test sets, its reliability and robustness are high. 

Model 24 validated according to these criteria, and shows to have acceptable prediction 

power. 
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Structure-Activity Relationships of the Dataset: 

  Compounds 1 to 16 in table 2-1, SAR [86]: 

1- Position 3: 

The introduction of substituents in position 3 of the quinoline nucleus (Compound 4) 

increased the TSPO affinity in variable degree depending on the stereoelectronic 

properties of the substituent involved.  

The introduction of a methyl group produced an affinity enhancement of about an 

order of magnitude (compare 8 with 4), while an affinity increase of about 2 orders of 

magnitude was observed when a chloromethyl substituent was involved (compare 13 

with 4). The introduction of a hydroxymethyl or differently substituted aminomethyl 

groups (compounds 14,15) had less dramatic effects on TSPO affinity, and the 

comparison of the affinities shown by 4,8,9-15 suggests that the presence in 3-

position of substituents showing a wide range of stereoelectronic properties is 

compatible with a productive binding to TSPO.  

2- Position 2: 

Favorable effect of the introduction of a fluorine atom in position 2 of the pendent 

phenyl group (compare 10 vs. 8). 

 

3- Tolerance showed by the receptor in accommodating the second benzyl group on the 

amide nitrogen (compare 11 vs. 8). 

 

4- Slight superiority of the quinoline bicyclic system with respect to naphthalene (4 vs. 2 

and 8 vs. 6).  
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 Compounds 17 to 53 in table 2-1, SAR [87]: 

These findings are consistent with suggestions from QSAR analysis on the 2 

phenylimidazo[1,2-a]pyridine derivatives which suggested that a four carbon chain is the 

optimum length for the alkyl substitution on the carboxamide nitrogen. 

 

 Compounds 80 to 91 in table 2-1, SAR [89]: 

1- Comparison of the results obtained with compounds 80 and 86 confirms the previously 

observed difference in affinity between secondary and tertiary amides. In fact, 

secondary amide 86 shows a significantly lower TSPO affinity when compared to its N-

methylated counterpart 80.  

 

2- The comparison of the most potent compounds 80, 81 with 85, 87 demonstrates the 

importance of a lipophilic substituent in para-position of the amide phenyl.  

 

- The replacement of the amide phenyl group of compound 85 with the benzyl of 82 

appears to be well tolerated by TSPO, whereas the same substitution with a 

propargyl moiety is not accepted equally well (compare 88 vs 85). 

- The removal of the lipophilic chlorine atom in the pendant phenyl ring of the most 

active compounds 80, 81 leads to a decrease in TSPO affinity of about one order of 

magnitude (compounds 89, 90). 

- The transformation of the amide carbonyl of 80 into the methylene group of 91 

produces a dramatic decrease (2600 times) in the receptor affinity.  
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 Compounds 92 to 135 in table 2-1, SAR [49]: 

Compounds 92-116 confirm the essential role of the carbonyl function as the primary 

pharmacophoric element, and the importance of the role of both the amide substituents and 

the pendant phenyl ring for which a dispersive nature of the interactions with TSPO 

binding site. 

Compounds 117-135 show that the replacement of the ester function of 121 with a 

secondary (130) or tertiary amides (125- 127) affords compounds with similar micromolar 

range affinities, when compared with ester 121.  

 

In addition, the environment of the carbonyl amide seems to be relatively sensitive to steric 

hindrance since the increase in size of the amide substituents results in a progressive 

decrease in affinity (compare compounds 126-129 with 125).  

However suitably oriented lipophilic amide group plays a more substantial role and 

contributes to the binding strength much more than the one in the 3-position of the 

quinoline nucleus of 125-131. Taken together, these results suggest that the lipophilic 

amide groups in 3-position of the quinolone nucleus of compounds 125-131 occupy a 

receptor area different from the one occupied by the lipophilic amide groups of the high 

affinity TSPO ligands. 
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 Suggestion of new chemical structure with better activity than the available ones 

According to the previous SAR, and based on MLR model, the QSAR for TSPO ligand 

should have: 

1- Less number of N hydrazine groups (nN-N). 

2- Less number of secondary amides (aromatic) (nCONHRPh). 

3- Less number of donor atoms for H-bonds (N and O). 

4- Less number of CHR3 groups. 

5- Less Electrophilicity is required. 

6- More CH3X groups is useful. 

7- Increase number of 10-membered rings is useful. 

 

Below suggested compound as TSPO ligand: 

N

N

O

Cl

 

 

According to model 24 equation, the PIC50 of the suggested compound is range between 

20.7 – 31.9. Where the PIC50 of all the compounds used as dataset in this study was 

ranging between 4.6 – 9.8. 
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The suggested compound apply Lipinski rule of 5 with molecular weight less than 500, log 

P less than 5, no more than 5 hydrogen bond donors and no more than 10 hydrogen bond 

acceptors. 

 

Comparison with previous QSAR studies: 

There are seven Quantitative structure-activity relationship (QSAR) studies performed on 

TSPO ligands for different purposes, however only few of the studies performed on 

compounds of this study;  

 A linear regression analysis on pCI50 values for compounds 17 to 53 listed in table  

2-1   showed a good correlation (R
2
 = 0.870) [87]. 

 

  Study on compounds which have serial numbers from 17 to 39 listed in table 2-1.  

          was  performed by Kunal Roy, Toropov and Raska in 2006, which achevied a 

QSAR modeling of peripheral Versus Central Benzodiazepine Receptor Binding 

Affinity of 37 compounds 2-Phenylimidazo[1,2-a] pyridineacetamides using 

Optimal Descriptors Calculated with SMILES (Simplified Molecular Input Line 

Entry System) [93]. The results indicate promising potential of the optimization of 

correlation weights based on SMILES notation in modeling studies. 

 

  A quantitative structure-affinity relationships (QSAR) study performed on 

compounds 92 to 116 listed in table 2-1. Through comparison of the van der Waals 

volumes of the different ligands [49].  
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Other QSAR studies on TSPO ligands: 

 3D interaction model of endogenous and synthetic peripheral benzodiazepine 

receptor ligands was developed. Two lipophilic regions and one electrostatic 

interaction site are essential features for high affinity ligand binding, while a further 

lipophilic region plays an important modulator role. A comparative molecular field 

analysis, performed over 130 PBR ligands by means of the GRID/GOLPE 

methodology, led to a PLS model with both high fitting and predictive values 

(r
2
 = 0.898, Q

2
 = 0.761). The outcome from the 3D QSAR model and the GRID 

interaction fields computed on the putative endogenous PBR ligands DBI 

(Diazepam Binding Inhibitor) and TTN (Tetracontatetraneuropeptide) was used to 

identify the amino acids most probably involved in PBR binding. Three amino 

acids, bearing lipophilic side chains, were detected in DBI (Phe49, Leu47 and 

Met46) and in TTN (Phe33, Leu31 and Met30) as likely residues underlying 

receptor binding [94]. 

 

 Kunal and Sengupta in 2002 performed QSAR study for the binding affinities of 31 

compounds of [2-phenylimidazo[1,2-a]pyridin derivatives with central 

benzodiazepine and peripheral benzodiazepine (TSPO) receptors using physico-

chemical parameters. Attempt has been made to explore the structural and/or 

physico-chemical requirements of the compounds that are responsible for the 

selective action against peripheral benzodiazepine receptors over central ones [95].  

 

 Dalai, Leonard & Kunal [96] performed a QSAR for TSPO binding affinity in 2006, 

with 35 compounds of 2-phenlpyrazolo(1,5-a)pyrimidin-3-yl-acetamides using 

topological and physicochemical descriptors and resulted with sex models with 
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average R
2
=0.7.  The calculated hydrophobicity, logPcalc, shows a parabolic relation 

with the TSPO receptor binding affinity, which suggests that the binding affinity 

increases with the increase in the partition coefficient of the compounds until it 

reaches the critical value after which the affinity decreases. The range of the 

optimum values of logPcalc is between 5.423-5.819 as found from different equations. 

 

 Roy Kunal and Dalai performed a QSAR study in 2007 to explore the structural and 

physicochemical requirements of ligands N, N-dialkyl-2-phenylindol-3-yl-

glyoxylamides for binding with peripheral benzodiazepine receptor (TSPO) by using 

27 compounds. The calculated partition coefficient values show parabolic relations 

with the TSPO binding affinity, suggesting that the binding affinity increases with 

increase in the partition coefficient of the compounds until it reaches the critical 

value after which the affinity decreases. The critical value of logP is within range of 

6.052-6.410 [97].  

 

The disadvantage of the previous QSAR studies on TSPO ligand was that the number of 

used data set is small (e.g. 29 or 37 etc.) and thus affect the real prediction power of the 

resulted models. While in the current study 136 compound is used. Also all the previous 

QSAR studies performed to study certain group of descriptors (properties) such as: 

studying the physico-chemical parameters or the partition coefficient effect on the 

compounds activity. While in the current study all the possible properties were calculated 

for all the compounds and treated to build a predictive MLR model. .  

Also the methods used in the current study are MLR and PC-ANN, while in the previous 

studies either MLR alone or other methods which are having less powerful and prediction 

capabilities.  
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Chapter Four 

 

       Conclusions 
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CONCLUSIONS: 

 

A quantitative-structural activity relationship analysis has been conducted on the activity 

of a set of 136 ligand for Translocator protein (TSPO), by using MLR and principal 

component-artificial neural networks (PC-ANN) modeling methods, where the strength 

and the predictive performance of the proposed models was verified using internal (cross-

validation and Y-scrambling). 

 

The results obtained by MLR was a number of models (Models 12- 24) which have a good 

predictive power (R
2
) > 0.6 , the best model was model number 24 which includes 24 

descriptors, and resulted with R= 0.909, R
2
=.826, and R

2
adj.= 0.788.  

Cross Validation LOO and LMO were performed on the resulted MLR models, models 19-

24 showed a good predictive power because of having high R
2

CV and PRESS/SST less than 

0.4. Thus, models 19-24 were chosen for ANN analysis.  

PCA performed to divide the data into three data sets, then the ANN performed on the 

chosen models (19-24) from LOO and LMO validation.  

The results shows that model 24 has the highest correlation coefficient for the test set 

(0.85016) indicating its high predictive power. While also there are other good predictive 

models (As model # 20, 21, 23), which chosen to continue ANN to find the optimal 

number of hidden nodes for each one of these models  

 

According to the results; model 20 with 10 hidden nodes, model 21 with 7 hidden nodes, 

model 23 with 5 hidden nodes, and model 24 with 7 hidden nodes were chosen as the best 

models with the optimal hidden nodes because they have high prediction power (R), 

minimum PRESS value of the test group, and minimum number of hidden nodes. 
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ANN resulted model were validated through randomization test, then the conditions 

proposed by Golbraikh and Tropsha were applied to conclude that the QSAR models have 

acceptable prediction power or not. However the best ANN model with a good predictive 

power was model #24. 

A new suggested compound with predicted PIC50 ranging between 20.7 – 31.9. 
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  ( PC-ANNو  MLR) تيدراسة العلاقة الكمية بين الفاعمية والصيغة البنائية باستخدام طريق
 Translocator (TSPO)لها فعالية عمى بروتين  لبعض المركبات التي 

 
 هناء سميم بني عودةإعداد: 
 عمر ديب: أ.د. إشراف

 
 : المُمًّخًص

 
مركب وصيغها البنائية عمى بروتين  631فعالية يتناول موضوع هذا البحث دراسة العلاقة الكمية بين 

(  MLRباستخدام الانحدار الخطي المتعدد )  QSAR. وقد وضعت نماذج Translocatorيسمى 

( كطريقة غير  PC- ANNكطريقة خطية . بينما تم استخدام الشبكات العصبية الاصطناعية ) 

رة تنبؤ جيدة . النماذج التي نتجت عن النتائج التي تم الحصول عميها هي نماذج ذات قدخطية .

MLR وكان الافضل  12-61هم النماذج من  0.6التي حصمت عمى معامل ارتباط اعمى من  و

، وتم التحقق من قدرة النماذج عمى التنبؤ عن 0.0..مع معامل ارتباط يساوي  12نموذج رقم  بينها

ج، ثم تم توزيع المركبات الى افضل نتائ 12-60واظهرت النماذج  LMOو   LOOطريق استخدام 

 ANNفي  12-60استخدام النماذج تم . و PCAثلاث مجموعات عن طريق 

 (randomization test)باستخدام  ANNتم التحقق من قوة وأداء كل النماذج المقترحة من من ثم و 

هو  12، وقد وجد ان النموذج رقم Tropsha و   Golbraikhاقترحاها  يالظروف التوتطبيق 

 .0.832معامل ارتباط  فضل معالا

 
 


