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Abstract 

In this paper we study the joint treatment of not missing at random response mechanism and informative 

sampling for survey data. This is the most general situation in surveys and other combinations of sampling 

informativeness and response mechanisms can be considered as special cases. The proposed method 

combines two methodologies used in the analysis of sample surveys for the treatment of informative 

sampling and the nonignorable nonresponse mechanism. One incorporates the dependence of the first order 

inclusion probabilities on the study variable, while the other incorporates the dependence of the probability 

of nonresponse on unobserved or missing observations. The main purpose here is the estimation of finite 

population mean and superpopulation parameters when the sampling design is informative and nonresponse 

mechanism is nonignorable. Under four scenarios of sampling design and nonresponse mechanism, we 

obtained the method of moment estimators of finite population mean, with their biases and mean square 

errors. Furthermore, a four-step estimation method is introduced for the estimation of superpopulation 

parameters under informative sampling and nonignorable nonresponse mechanism. New relationships 

between moments of response, nonresponse, sample, sample-complement and population distributions were 

derived. Most estimators for finite population mean known from sampling surveys can be derived as a 

special case of the results derived in this paper.  

Keywords: Response distribution, Nonignorable nonresponse, Informative sampling 

design, Poststatification. 

1.   Introduction 

Data collected by sample surveys are used extensively to make inferences on assumed 

population models. Often, survey design features (clustering, stratification, unequal 

probability selection, etc.) are ignored and the sample data are then analyzed using 

classical methods based on simple random sampling. This approach can, however, lead to 

erroneous inference because of sample selection bias implied by informative sampling - 

the sample selection probabilities depend on the values of the model outcome variable (or 

the model outcome variable is correlated with design variables not included in the 

model). See Pfeffermann et. al (1998) and Eideh and Nathan (2006). In addition to the 

effect of complex sample design, one of the major problems in the analysis of survey data 

is that of missing values. Rubin (1976) and Little and Rubin (2002) consider three types 

of nonresponse mechanism or missing data mechanism: 

 

(a) Missing completely at random (MCAR): if the response probability does not depend 

on the study variable, or the auxiliary population variable, the missing data are MCAR.  

 

(b) Missing at random (MAR) given auxiliary population variable: if the response 

probability depends on the auxiliary population variable but not on the study variable, the 

missing data are MAR. 
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(c) Not missing at random (NMAR): if the response probability depends on the value of a    

missing study variable, the missing data are NMAR. 

 

So, the cross-classification of sampling design and response mechanism is summarized in 

the following table: 

Table 1 

Sampling Design Response Mechanism 

MCAR MAR NMAR 

Informative-INF INFMCAR INFMAR INFNMAR 

Noninformative-NINF NINFMCAR NINFMAR NINFNMAR 

 

The literature dealing with the treatment of nonresponse in surveys, deals with 

NINFMCAR, NINFMAR, NINFNMAR, INFMCAR, and INFMAR. See for example, 

Little and Rubin 2002, Schafer 1997, Little 1982, Rubin 1976, Särndal and Swensson 

1987, Cobben 2009, Chambers and Skinner 2003, Pfeffermann and Sikov (2011), Little 

(1993; 1994), Tang et al. (2003) Qin et al. (2002) Chang and Kott (2008). The methods 

used in these papers are summarized by Pfeffermann and Sikov (2011) and Eideh (2012). 

 

For inference problem, Little (1982) classify the nonresponse mechanism as ignorable 

(MAR and MCAR) and nonignorable (NMAR). Foe this sense, the cross classification of 

sampling design and nonresponse mechanism is: 

Table 2 

Sampling Design Nonresponse Mechanism 

Ignorable Nonignorable 

Informative II IN 

Noninformative NI NN 

 

Pfeffermann and Sikov (2011), and Eideh (2012) consider estimation of superpopulation 

parameters and prediction of finite population parameters (census parameters) under 

nonignorable nonresponse via response and nonresponse distributions when the sampling 

design in noninformative. 

 

None of the above studies consider simultaneously the problem of informative sampling 

and the problem of nonignorable nonresponse when analyzing survey data.  

 

In this paper, we study, within a modeling framework, the joint treatment of nonignorable 

nonresponse mechanism and informative sampling for survey data, by specifying the 

probability distribution of the observed measurements when the sampling design is 

informative. This is the most general situation in surveys and other combinations of 

sampling informativeness and response mechanisms can be considered as special cases.  

 

It should be pointed here that, according to Sarndal (2011) “Nonresponse causes both 

bias and increased variance. Its square is typically the dominant portion of the Mean 

Squared Error (MSE). We address primarily surveys on individuals and households with 
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quite large sample sizes, as is typical for Journal of Official Statistics for government 

surveys; consequently, the variance contribution to MSE is low by comparison. Increased 

variance due to nonresponse is nevertheless an issue; striking a balance between variance 

increase and bias reduction is considered, for example, in Little and Vartivarian (2005).”  

Furthermore, Brick (2013) mentioned that “Model assumptions and adjustments are made 

in an attempt to compensate for missing data. Because the mechanisms that cause unit 

nonresponse are almost never adequately reflected in the model assumptions, survey 

estimates may be biased even after the model based adjustments. Nonresponse also 

causes a loss in the precision of survey estimates, primarily due to reduced sample size 

and secondarily as the result of increased variation of the survey weights. However, bias 

is the dominant component of the nonresponse-related error in the estimates, and 

nonresponse bias generally does not decrease as the sample size increases. Thus, bias is 

often the largest component of mean square error of the estimates even for subdomains 

when the sample size is large”. In we focus here on the bias, variance and MSE. 

 

The paper is structured as follow. Section 2 reviews the definition of response 

distribution and estimation of response probabilities. Section 3 introduces new 

relationships between moments of response, nonresponse, sample, sample-complement 

and population distributions. Section 4 describes the estimation of finite population total 

 


N

i iU yNY
1

1
, under the four scenarios mentioned in Table 2. Also the main purpose 

in this section is the computation of the biases and mean square errors of the estimators.  

Section 5 is devoted to the estimation of superpopulation parameters under informative 

sampling and nonignorable nonresponse mechanism. Section 6 provides the conclusions. 

2.   Response and Nonresponse Distributions 

Let  NU ,...,1  denote a finite population consisting of N  units. Let y  be the study 

variable of interest and let iy  be the value of y  for the thi  population unit. A probability 

sample s  is drawn from U  according to a specified sampling design. The sample size is 

denoted by n . Let   ipii xx ,...,1x , Ui  be the values of a vector of auxiliary variables,

pxx ,...,1 , and  Nzz ,...,1z  be the values of known design variables, used for the sample 

selection process not included in the model under consideration. In what follows, we 

consider a sampling design with selection probabilities 0)Pr(  sii , and sampling 

weight iiw 1  ; Ni ,...,1 . In practice, the i ’s may depend on the population values

 zyx ,, . We express this dependence by writing:   ),,|Pr( zyxsii   for all units

Ui . Denote by   NII ,...,1I  the N  by 1 sample indicator (vector) variable, such that 

1iI  if unit Ui  is selected to the sample and 0iI  if otherwise. So that 

 1,|  iIUiis  and its complement is  0,|  iIUiics . We consider the 

population values Nyy ,...,1  as random variables, which are independent realizations from 

a distribution with probability density functions (pdf)  ;| iip yf x , indexed by a vector 

of parameters .   
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In addition to the effect of complex sample design, one of the major problems in the 

analysis of survey data is that of missing values. In recent articles by Eideh (2009), 

Pfeffermann and Sikov (2011), and Eideh (2012), the authors defined and studied the 

problem of nonignorable nonresponse using the response and nonresponse distributions 

where the sampling design is noninformative. Following the notations, denote by 

  NRRR ,...,1  the N  by 1 response indicator (vector) variable such that 1iR  if unit 

si  is observed and 0iR  if otherwise. We assume that these random variables are 

independent of one another and of the sample selection mechanism (Oh and Scheuren 

1983). The response set is defined accordingly as  1|  iRsir  and the nonresponse 

set by  0|  iRsir . We assume probability sampling, so that 0)Pr(  sii  for 

all units .Ui  Let the response probability 0 ),,|Pr(  zyxrii  for all units si  

and ii  1  be the response weight for si .  

 

Eideh (2009) defined and studies the properties of response and nonresponse distributions 

when the sampling design is informative and nonresponse mechanism is NMAR or 

nonignorable. According to Eideh (2009), the (marginal) response pdf of iy  is given by: 
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where, according to  Pfeffermann et al. (1998), the sample pdf of iy  is: 
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Furthermore, Sverchkov and Pfeffermann (2001) define the sample-complement pdf of 

iy  as: 
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(3) 

 

Note that   ,,,| iir yf x  is completely specified by  ,| iip yf x ,   ,,| iiip yE x  

and   ,,| iiis yE x .          

 

Similarly, the (marginal) nonresponse pdf of iy  is given by: 
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(4) 

 

It should be noted here that, the parameters   and   that index mechanisms of response 

and sample models, respectively, are characteristics of the data collection but are not 

generally of scientific interest. For more discussion on the use of response and 

nonresponse distributions for analytic inference in survey sampling, see Pfeffermann and 

Sverchkov (2004), Pfeffermann and Sikov (2011), and Eideh (2009, 2012). 
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Estimation of response probabilities i  for all si :  

If the nonresponse mechanism is not missing ate random, then the classical methods for 

estimating the response probabilities using auxiliary variables, available for respondents 

and nonrespondents, is logistic or profit models. If we use the logistic model, then 

 
 i
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(5) 

 

We can fit this model using maximum likelihood approach. Thus the estimate of  i  is: 
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(6) 

 

If the nonresponse mechanism is NMAR, then values of iy  for ri  is available, but for 

ri are not available, so we cannot fit the following model: 
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(7) 

directly using maximum likelihood method. A recent approach of estimation i  under 

nonignorable nonresponse is discussed by Matei A. and Giovanna M.R. (2015), based on 

latent modeling approach.   

3.  Relationships between Moments of Response, Nonresponse, Sample, Sample-

Complement and Population distributions. 

Following the definitions of response, and nonresponse distributions, we notice that, 

given the population distribution, these distributions are completely determined by 

identifying    iiisiiip yEyE ,|,,| xx  . In practice, these conditional expectations are 

not known. Assuming that the available data to the analyst is 

   siwxRUiI iiiii   , ,,,, ,  and rixy ii   ,, , which is the case in secondary analysis, 

the question that arises is: how can we identify and estimate,  iiip yE x,|  and 

 iiis yE ,| x  based only on the theses data? The following relationships answers this 

question. Let  iiy x,  be a vector of random variables. 

 

According to Pfeffermann and Sverchkov (1999), the following relationship hold: 

 
      iiisiisiip ywEwEyE xxx |||

1


     
(8) 

 

Also, according to Sverchkov and Pfeffermann (2004), we have: 
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Furthermore, for vector of random variables  iiy x, , Eideh (2009), proved the following 

relationship: 

      iiiriiriis yEEyE xxx |||
1





     

(10) 

 
  
  

  
  iir

iiir

iis

iiis

iir
E

yE

E

yE
yE

x

x

x

x
x

|1

|1

|1

|1
|



















    

(11) 

 

The previous relationships and the following new relationships are fruitful in estimation 

of the parameters indexing superpopulation model, informative sampling design, 

nonresponse mechanism, and prediction of finite population parameters.  

Lemma 1. 
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Proof: 

Using (8) and (10), we get: 
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Lemma 2. 
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Proof: 

According to (9) and (10), we have: 
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Lemma 3. 
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where        isisiisiis EyEyEyCov  , . 
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Proof: 

According to (11), we have  
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Similar proof for equation (15). 

Note that Section 3.3 of Beaumont (2002) is a special case of equation (14).

 

Lemma 4.  

   
 

 ip

iip

ipis
E

yCov
yEyE








1

,

     

(16) 

   
 

 ip

iip

isip
E

yCov
yEyE








1

,

     

(17) 

where        ipipiipiip EyEyEyCov  , . 

Proof: 

According to (9), we have 

 
  

 

   

 

           

 

     

 
 

 

 ip

iip

ip

ip

iipipip

ip

ipipipipiipip

is

iipip

ip

iip

is

E

yCov
yE

E

yCovEyE

E

EyEEyEyEyE

E

yEyE

E

yE
yE












































1

,

1

,1
            

1
            

11

1

 

Lemma 5.  
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(18) 

where        iiririiiriiir wEyEywEywCov  , . 
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Proof: 

According to Lemma 1, and (11), we get: 

   
 
 

  
  

 
 

  
 

           
    

             
    

      
    

       
    

 
    

       
    

                           

11

,

11

1

1

1

1

1

1

1







































iriir

iiriiririiir

iriir

iiir

iriir

iiriiririiir

iriir

iriiriiir

iriir

iiririiriiriiiririiir

iriir

iiririiririiir

ir

iir

iir

iiir

is

iis

is

iis
irip

EwE

wEyEEywE

EwE

ywCov

EwE

wEyEEywE

EwE

yEwEywE

EwE

wEyEwEyEywEEywE

EwE

wEyEyEEywE

E

yE

wE

ywE

E

yE

wE

ywE
yEyE





































 

Lemma 6. 
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Proof: 

Using Lemmas 1 and 2, we get: 
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4.   Method of Moments Estimators of Finite Population Mean  

In this section we consider the estimation of finite population total  


N

i iU yNY
1

1
, 

under the four scenarios mentioned in Table 2, namely: IN, II, NI, and NN. Also the main 

purpose of this section is the computation of the biases and mean square errors of these 

estimators.   
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Case 1:  Informative sampling design and nonignorable nonresponse (IN). 

According to Eideh (2009), we can show that the method of moments estimate (MME) of 

the finite population total, 



Ui

iU yNY 1  is given by 
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(20) 

which is the two-phase nonresponse adjusted estimator, see Sarndal and Lundstrom 

(2005, p 51).   

Lemma 7. Statistical properties of wy . 

(a)      0 Uww YyEyB   

(b)  If N is known, 
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where Nt 2 . 

 

If N is unknown 
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where jiij    for all units ji   and iij    for ji  . 

Proof: 

Let 
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iii ywt 1̂  and 



ri

ii wt 2̂ . Note that  21
ˆˆ tty w   is a ratio estimator of UY . 

Now, 
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That is, 
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iii ywt 1̂  is an unbiased estimator of 1t . 

Similarly, 

 

2

2

1         

ˆ

tNw

RwEwEtE

Ui

ii

Ui

ii

Ui

iii

ri

ii

































 

That is, 



ri

ii wt 2̂  is an unbiased estimator of 2t . 
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Expand 21
ˆˆ tty w   in a Taylor series, around 2211

ˆ   and  ˆ tttt  , we have 
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So that   21 ttyE w  . Hence     0 Uww YyEyB  . 

 

(b) Since     0 Uww YyEyB  , therefore        wwww yVyByVyMSE   2
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So that, 
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Estimation of  wyV   

If N known, 

        jjii

ri rj

wjwi

ijij

jjiiijij

w wwyyyy
N

yV 



 

 





2

1ˆ

 

(21) 

where 0 ),,|,Pr(  zyxrjiij  for all units rji , . 
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If N unknown, 
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Case 2: Informative sampling design and nonresponse mechanism is ignorable (II). 

The MME of  UY  becomes,  
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which is similar to the estimator given by Sarndal (1980) and discussed in details by 

Bethlehem (1988).  

Lemma 8. Statistical properties of  wy  (Bethlehem (1988)). 

(a)  
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I did not see the proof anywhere, I decided to show the reader the proof.  
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Using Taylor series, expand 21
ˆˆ ttyw   around 2211

ˆ   and  ˆ tttt  , we get: 
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Now,  
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Note that, if the nonresponse mechanism is ignorable, that is the population covariance 

between the study variable and response probability is zero,   0, yC , then   0wyB , 

and wy  is an unbiased estimator of UY . So, in order to reduce the bias, we can apply 

poststratification estimation, based on the estimated response probabilities î  for all 

   . 

(b) Computation of  wyV : Note that 
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Estimation of  wyMSE  

First need estimation of  wyV : 
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Estimation of   wyB  
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Case 3: Noninformative sampling design and nonignorable nonresponse mechanism  

We can show that the MME of  UY is,  
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Lemma 9. Statistical properties of y  
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Using Taylor series, expand 21
ˆˆ tty   around 2211

ˆ   and  ˆ tttt  , we get: 
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Note that, if the sampling design is noninformative, that is the population covariance 

between the study variable and first order inclusion probability is zero,  ,yC , then 

  0yB , and y  is an unbiased estimator of UY . So, in order to reduce the bias, we can 

apply poststratification estimation, based on the inclusion probabilities i  for all    . 

(b) Computation of   yV  

We can write y  as follows: 
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So that, 
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Estimation of  yV  
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Estimation of  yB  
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Case 4: Sampling design is noninformative and nonresponse mechanism is ignorable  

Here, we can show that the MME of UY  is given by:  
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Lemma 10. Statistical properties of ry  

(a)  
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Proof: 

(a) Since 
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Note that, if the sampling design is noninformative and nonresponse mechanism is 

ignorable, that is the population covariance between the study variable and inclusion 

probability is zero,  ,yC , then   0ryB , and ry  is an unbiased estimator of UY . So, 

in order to reduce the bias, we can apply poststratification estimation, based on the 

product of inclusion probabilities i  and estimated response probabilities î , )ˆ( ii for 

all    .  

(b) Computation of   ryV  
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Estimation of  ryV  
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Estimation of  ryB  
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where   
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The four cases can be summarized in Table 3. 

Table 3:  Method of Moments Estimators of UY  Bias and Variance,     
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An interesting feature of the theses results is that several classical estimators in common 

use, within randomization theory (design-based school) of survey sampling,  are shown to 

be special cases of the proposed approach, thus providing them a new justification.  
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5.  Estimation under Informative Sampling and Nonignorable Nonresponse 

Mechanism 

One of the main advantages of basing the inference on the response distribution is that it 

permits the use of standard inference procedures like those based on the likelihood 

principle. Having derived the response distribution when the sampling design is 

informative and the nonresponse mechanism in nonignorable (NMAR) and if the 

response measurements are independent, then the response likelihood for   (the 

parameter indexing the superpopulation model),   (the parameter indexing the sampling 

design) and   (the parameter indexing the nonresponse mechanism), is given by: 
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(36) 

and the logarithm of the response likelihood for   ,,  is: 
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(37) 

 

The function given in equation (37) can be maximized with respect to   ,,  to obtain 

the maximum response likelihood estimates of these parameters. Maximum response 

likelihood estimators of other parameters, which are the parameters of interest, (e.g. the 

parameter   characterizing the population distribution of y ) are defined using the 

invariance properties of the maximum likelihood (ML) approach. 

 

The response likelihood function,   ,,,inrL , can be interpreted as a weighted 

likelihood, where the weight is the product of the two ratios, the first one is 

    ,,|,,| iipiiip EyE xx , which characterize the sampling design, and the 

second ratio is     ,,,|,,| iisiiis EyE xx , that characterise the missing data 

mechanism.  

 

It should emphasize here that, 

(a)  If    iipiiip EyE xx |,|    for all values of iy , then the sampling design is 

noninformative. 

(b)  If    iisiiis EyE xx |,|    for all values of iy , then the nonresponse process is 

ignorable. 
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Particular Cases: 

Case 1: Sampling design is noninformative and nonresponse process is nonignorable. 

Then (40) becomes: 

        ,,|log,,|log,|log,
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(38) 

 

Case 2: Sampling design is noninformative and nonresponse process is ignorable. Then 

(37) becomes: 
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(38) 

which is the standard estimation processes, where the missing value mechanism and 

process of sampling design are ignored and base the inference on the classical log-

likelihood function. However, analysis using standard estimation methods, which ignores 

the last four terms of (22), leads to inconsistent estimates of . Thus the effect of the 

nonignorable missing value mechanism and informative sampling design must be taken 

into account. 

 

Case 3: Sampling design is informative and nonresponse process is ignorable. Then (37) 

becomes: 
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Now, assuming  ,| iip yf x ,   ,,| iiip yE x  and   ,,| iiis yE x  are completely 

specified, then the maximum likelihood (ML) estimator of   ,,  can be obtained by 

maximizing the log likelihood function given in (40) with respect to   ,,  

simultaneously, or in four-step method. For modeling of   ,,| iiip yE x , Pfeffermann et 

al. (1998) introduced exponential and polynomial function of  ii y,x , later Eideh (2003) 

considered logit and probit functions. Furthermore, Eideh (2012) adopted the 

exponential, linear, logit and probit functions for modeling   ,,| iiis yE x . 

 

In practice the response probabilities are theoretical quantities and they are unknown. For 

estimation of i , see Section 2.  

Four steps method 

Step 1: Estimation of i . See Section 2. Denote the estimate by î , so that ii  ˆ1ˆ  . 

We refer to  î  as the response propensity.  

Step 2:  Estimation of the effect of nonresponse mechanism. Estimate the parameter   

using the relationship given in (10), namely: 
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Thus the parameter   can be estimated by regressing î  on  ii y,x  using the data set

 riy iii   ,,,ˆ x . Denoting the resulting estimate of   by~ .  

 

Step 3:  Estimation of the effect of sampling design. Estimate the parameter   using 

the relationship given in (12), namely: 
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Thus the parameter   can be estimated using regression analysis. This can be proceed as 

follows: 

 

(a) Write (42) as:  
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where 
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(44) 

 

(b) Estimate  iiir wE x|  by regressing ii ŵ  on ix  using the data set r iwii ,,ˆ, ix . 

(c) Let  iiiriii wEwl x|ˆˆˆ  , and then regress ii yl̂  on ix  using the response data set  

 riyl iii   ,,.ˆ x . Denoting the resulting estimate of   by~ . 

 

Step 4:  Estimation of the superpopulation model parameter. Substitute ~ and ~  in 

the response log-likelihood function, (40), and since   ~,,| iiip yE x  and 

  ~,,| iiis yE x  do not contain , then the ML estimator of   is obtained by maximizing 

the resulting response log-likelihood function with respect to the population parameter , 

namely: 
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(45) 

 

In this paper we study the joint treatment of not missing at random response mechanism 

and informative sampling for survey data. This is the most general situation in surveys 

and other combinations of sampling informativeness and response mechanisms can be 

considered as special cases. The proposed method combines two methodologies used in 

the analysis of sample surveys for the treatment of informative sampling and the 

nonignorable nonresponse mechanism. One incorporates the dependence of the first order 

inclusion probabilities on the study variable, while the other incorporates the dependence 

of the probability of nonresponse on unobserved or missing observations. The main 

purpose here is the estimation of finite population mean and superpopulation parameters 

when the sampling design is informative and nonresponse mechanism is nonignorable. 

Under four scenarios of sampling design and nonresponse mechanism, we obtained the 

method of moment estimators of finite population mean, with their biases and mean 
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square errors. Furthermore, a four-step estimation method is introduced for the estimation 

of superpopulation parameters under informative sampling and nonignorable nonresponse 

mechanism. New relationships between moments of response, nonresponse, sample, 

sample-complement and population distributions were derived. Most estimators for finite 

population mean known from sampling surveys can be derived as a special case of the 

results derived in this paper. This paper can be considered as generalization and extension 

of Bethlehem paper (1988). 

6.   Conclusions 

In this article we use two methodologies used in the analysis of sample surveys for the 

treatment of informative sampling and the nonignorable nonresponse mechanism. One 

incorporates the dependence of the first order inclusion probabilities on the study 

variable, while the other incorporates the dependence of the probability of nonresponse 

on unobserved or missing observations. Using the new relationships, derived in the 

present study, between moments of response, nonresponse, sample, sample-complement 

and population distributions, we develop four estimators of finite population mean under 

classification of sampling design and nonresponse mechanism. Known estimators in 

common use in official statistics are shown to be special cases of the present theory, so 

provide new justification of these estimators as method of moments estimators.  Further 

experimentation (simulation and real data problem) with this kind of estimators and is 

therefore highly recommended.  

 

Furthermore, in this paper, we show the role of informative sampling design and 

nonignorable nonresponse in adjusting various estimators for bias reduction. In addition 

to the estimation of finite population mean, we introduce a new method for the estimation 

of superpopulation parameters under informative sampling and nonignorable nonresponse 

mechanism.  

 

In brief, ignoring informativeness of sampling design and nonignorable nonresponse, will 

yield biased estimators of finite population total. To reduce the bias, we propose the use 

of poststratification based on first order inclusion probabilities (in case of informative 

sampling design and ignorable nonresponse mechanism), or estimated response 

probabilities (for noninformative sampling design and nonignorable nonresponse 

mechanism), or product of them (if the sampling deign is noninformative and the 

nonresponse mechanism is ignorable).  

 

I hope that the new mathematical results obtained in the present article will encourage 

further theoretical, simulation, real data problem, empirical and practical research in these 

directions. 
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