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Abstract This paper deals with the on-line estimation of
time-varying frequency-flat Rayleigh fading channels based
on training sequences and using H∞ filtering. When the
fading channel is approximated by an autoregressive (AR)
process, the AR model parameters must be estimated. As
their direct estimations from the available noisy observations
at the receiver may yield biased values, the joint estimation
of both the channel and its AR parameters must be addres-
sed. Among the existing solutions to this joint estimation
issue, Expectation Maximization (EM) algorithm or cross-
coupled filter based approaches can be considered. They
usually require Kalman filtering which is optimal in the H2

sense provided that the initial state, the driving process and
measurement noise are independent, white and Gaussian.
However, in real cases, these assumptions may not be satis-
fied. In addition, the state-space matrices and the noise
variances are not necessarily accurately estimated. To take
into account the above problem, we propose to use two cross-
coupled H∞ filters. This method makes it possible to provide
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1 Introduction

Current wireless communication systems such as Worldwide
Interoperability for Microwave Access (WiMAX) are desi-
gned to provide high data rate transmission and to support
terminal mobility. This kind of transmission usually leads to
severe frequency-selective fading, which can be converted to
frequency-flat fading by using multicarrier modulation [1].
In addition, due to terminal mobility, the received signal is
subject to Doppler shifts which result in time-varying fading.

Thus, after demodulation, matched filtering and sampling
at bit rate 1/T , the resulting received signal can usually be
expressed as

y(n) = h(n)d(n) + v(n) (1)

where d(n) ∈ {−1, 1} is the nth transmitted data bit when
Binary Phase Shift Keying (BPSK) is considered, h(n) is the
fading process and v(n) is assumed to be a complex additive
white Gaussian noise process with zero-mean and variance
σ 2

v .
Given the received signal y(n), estimating the time-varying

frequency-flat fading process h(n) is a major challenge for
coherent symbol detection. For this purpose, parametric
approaches can be considered.

Rayleigh fading channels are usually modeled as zero-
mean wide-sense stationary circular complex Gaussian
processes, whose stochastic properties depend on the maxi-
mum Doppler frequency fd . According to Jakes [2], the
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theoretical Power Spectrum Density (PSD) associated with
either the in-phase or quadrature portion of the fading pro-
cess h(n) is band-limited and U-shaped. Moreover, it has two
infinite peaks at ± fd . Its corresponding discrete-time auto-
correlation function is a zero-order Bessel function of the
first kind:

Rhh(n) = J0(2π fd T |n|) (2)

where T is the symbol period and fd T denotes the Doppler
rate.

When dealing with channel simulation, three main fami-
lies of approaches have been proposed: Sum-Of-Sinusoids
(SOS) models [2–5], frequency domain filtering combined
with an Inverse Discrete Fourier Transform (IDFT) [6,7]
and time-domain filtering of white noise sequence leading
to Autoregressive Moving Average (ARMA) model [8–10]
or Moving Average (MA) model [11]. In various papers
[12–14], the fading channel is modeled as a pth order Auto-
regressive (AR) process, denoted by AR(p) and defined as

h(n) = −
p∑

i=1

ai h(n − i) + w(n) (3)

where {ai }i=1,...,p are the AR parameters and w(n) is the
zero-mean complex white Gaussian driving process with
variance σ 2

w.
From a theoretical point of view, as the PSD is not log-

integrable, the variance of the driving process of the AR
model should be equal to zero according to the Kolmogoroff-
Szego formula1 [15]. Although this way of modeling the
channel may be debatable, it is of interest in practical cases
because the model is simple and few parameters have to be
estimated. In addition, it can be combined with an optimal
filter for channel prediction and equalization.

In this latter case, a Kalman filter can be used, which
is optimal in the H2 sense if the initial state, the driving
process and measurement noise are independent, white and
gaussian. However, these assumptions do not always hold
in practical cases. In addition, model uncertainty should be
taken into account. Indeed, the AR model does not fit exactly
the fading process, especially when low-order AR models are
used. See Fig. 1 which shows the PSD of the theoretical Jakes
model and that of the simulated AR channel when the order
is set to 1, 2, 5 and 20. Moreover, the noise variances and
the AR model parameters are unknown and hence need to be
estimated. This results in model parameter errors. Thus, for
practical systems, the performance of the Kalman estimator
may suffer degradation.

Therefore, H∞ estimation techniques, initially developed
in the framework of control [16], can be considered. The

1 σ 2
w = exp( 1

2π

∫ π

−π
ln�hh(ω)dω), where �hh(ω) denotes the PSD of

the AR process that fits the theoretical Jakes spectrum.
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Fig. 1 Power spectrum density (PSD) of the Jakes model and that of
the fitted AR process whose order is 1, 2, 5 and 20. fd T = 0.05

estimation criterion is to minimize the worst possible effects
of the noise disturbances (i.e., the initial state, the driving
process and the measurement noise) on the channel estima-
tion error. Furthermore, this criterion requires no a priori
constraints about the noises, except that they have boun-
ded energies. According to [16], H∞ filtering is more robust
against the noise disturbances and modeling approximations
than Kalman filtering.

In [17], Cai et al. have proposed a channel estimation
scheme for Orthogonal Frequency Division Multiplexing
(OFDM) wireless systems based on two serially connected
H∞ filters (see Fig. 2). The first one aims at estimating the
AR parameters, which then are used to estimate the fading
process by means of a second H∞ filter. Nevertheless, the
AR parameter estimates are biased since they are estimated
directly from the noisy data. This might result in poor estima-
tion of the autoregressive process, as pointed out by Labarre
et al. in [18].

In this paper, we propose to investigate the relevance of a
structure based on two cross-coupled H∞ filters for the joint
estimation of time-varying frequency-flat Rayleigh fading
channel and its AR parameters (see Fig. 3). This structure
has provided significant results in the field of speech enhan-
cement [19] and is here derived for channel estimation when
training sequences are used. Thus, during the so-called trai-
ning mode, the first H∞ filter in Fig. 3 uses the training
sequence d(n) known at the receiver, the observation y(n)

and the latest estimated AR parameters {âi }i=1,...,p to esti-
mate the fading process h(n), while the second H∞ filter
uses the estimated fading process ĥ(n) to update the AR
parameters. At the end of the training period, the receiver
stores the estimated AR parameters. Then, in the so-called
decision directed mode, a standard H∞ filter provides a pre-
diction of the fading process ĥ(n + 1) by using the obser-
vation y(n), the stored AR parameters {âi }i=1,...,p and the
decision
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Fig. 2 Two serially connected
H∞ filter based channel
estimator [17]
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Fig. 3 Proposed two cross-coupled H∞ filter based channel estimator

d̂(n) = sgn(Re(ĥ∗(n)y(n))) (4)

where sgn(.) denotes the signum function, Re(.) denotes the
real part and ĥ∗(n) is the complex conjugate of ĥ(n).

The remainder of the paper is organized as follows. The
estimation of autoregressive fading channels based on H∞
filtering is presented in Sect. 2. It includes a state of the art
on AR parameter estimation from noisy observations. Simu-
lation results are reported in Sect. 3. Conclusions are drawn
in Sect. 4.

2 Joint AR parameter and channel estimation based on
H∞ filters

Before presenting the approach which aims at jointly
estimating the fading process h(n) and its AR parameters
{ai }i=1,...,p by means of two cross-coupled H∞ filters, let us
recall various approaches that have been proposed for AR
parameter estimation.

2.1 State-of-the-art on AR parameter estimation

In addition to the techniques based on support vector method
[20], high-order statistics [21] or Least Absolute Deviation
(LAD) techniques [22,23], two main families of approaches
have been proposed for AR parameter estimation. Let us first
have a look on the off-line second-order statistics solutions.

One standard method consists in solving the so-called
Yule-Walker (YW) equations. For this purpose, the authors
in [13,14] suggest using the theoretical autocorrelation func-
tion of the channel. Given Eq. (2), this can be done provi-
ded that the maximum Doppler frequency fd is known. As

this quantity is difficult to be estimated, the autocorrelation
function of the channel can be estimated directly from the
noisy observations available at the receiver. However, due to
the additive noise, this approach results in biased AR para-
meter estimates [24]. To overcome this problem, alternative
approaches have been proposed such as the Modified YW
equations [25], the total least square YW approach [26], the
high-order YW estimator [27], and the truncated singular
value decomposition method [28]. Nevertheless, the noise
variances σ 2

v and σ 2
w, which are required to estimate the pro-

cess by means of Kalman filter, are not necessarily easy to
be retrieved with the above off-line methods.

To avoid this drawback, we have recently investigated the
relevance of Errors-In-Variables (EIV) approaches [29]. In
that case, the estimation of the AR parameter vector consists
in searching the null space of the autocorrelation matrix of the
vector

[
(h(n) − w(n)) h(n − 1) · · · h(n − p)

]
. This matrix

is unknown and hence has to be estimated from the autocorre-
lation matrix of noisy observations. The method aims at sear-
ching the noise variances that enable the noise-compensated
autocorrelation matrices of the noisy observations to be posi-
tive semi-definite. Nevertheless, the computational cost is
high.

As an alternative, on-line methods based on the
Expectation-Maximization (EM) algorithm which often
implies a Kalman smoothing could be used [30]. Neverthe-
less, since it operates repeatedly on a batch of data, it results
in large storage requirements and high computational cost. In
addition, its success depends on the initial conditions. Alter-
natively, to solve the so-called joint estimation issue [31], i.e.
the estimations of both the AR process and its parameters,
Extended Kalman Filter (EKF) and Sigma Point Kalman fil-
ters such as Unscented Kalman Filter (UKF) [32] and Central
Difference Kalman Filter (CDKF) [33] can be used. Never-
theless, the noise variances must be a priori known. To avoid
the use of approaches dedicated to non-linear state model,
two recursive filters can be cross-coupled. Thus, each time
a new observation is available, the first filter uses the latest
estimated AR parameters to estimate the signal, while the
second filter uses the estimated signal to update the AR para-
meters. According to Gannot [34], this dual filtering approach
can be viewed as a sequential version of the EM algorithm.
Recently, a variant [35] based on two interacting Kalman
filters has been developed in which the variance of the inno-
vation process in the first filter is used to define the gain of
the second filter. As this solution can be seen as a recursive
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instrumental variable technique, it has the advantage of provi-
ding consistent estimates of the AR parameters. In the follo-
wing, we suggest relaxing the Gaussian assumptions required
for Kalman filtering, by using H∞ filtering.

2.2 Estimation of the fading process

Since our purpose is to estimate the fading sequence h(n)

modeled by a pth order AR process, the p × 1 state vector is
defined as

h(n) = [
h(n) h(n − 1) · · · h(n − p + 1)

]T
(5)

As dT(n)h(n) = h(n)d(n), the resulting state-space repre-
sentation of the fading channel system (3) and (1) is given
by
{

h(n) = �h(n − 1) + gw(n)

y(n) = dT(n)h(n) + v(n)
(6)

where �=

⎡

⎢⎢⎢⎣

−a1 −a2 · · · −ap

1 0 · · · 0
. . .

...

0 · · · 1 0

⎤

⎥⎥⎥⎦, g =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ and

d(n) = d(n)g.
Unlike Kalman filtering, the H∞ filtering not only deals

with the estimation of the state vector h(n), but also makes it
possible to focus on the estimation of a specific linear com-
bination of the state vector components:

z(n) = lh(n) (7)

where l is a 1 × p linear transformation operator. Here, as
we aim at estimating the fading process h(n), this operator
is defined as

l = [
1 0 · · · 0

]
(8)

Given Eqs. (6)–(7) and Fig. 4, the H∞ filtering provides an
estimation of the fading process ĥ(n) = lĥ(n), by minimi-
zing the H∞ norm of the transfer operator T . This operator
maps the discrete-time noise disturbances w(n), v(n) and the
initial state error e0 = h(0)− ĥ(0) to the channel estimation
error e(n) = lh(n) − lĥ(n), as follows:

J∞ = sup
w(n),v(n),h(0)

J (9)

Fig. 4 Transfer operator T

where

J =
∑N−1

n=0 |e(n)|2
eH

0 P−1
0 e0 + ∑N−1

n=0

(
Q−1

w |w(n)|2 + R−1
v |v(n)|2

) (10)

with N the number of available data samples. In addition,
Qw > 0 and Rv > 0 are weighting parameters which often
correspond to the instantaneous power of the sequences w(n)

and v(n), respectively. Furthermore, P0 > 0 denotes a posi-
tive definite matrix that reflects a priori knowledge on how
small is the initial state error e0 = h(0)− ĥ(0). These weigh-
ting parameters are usually tuned by the designer to achieve
performance requirements.2

However, as a closed-form solution to the above optimal
H∞ estimation problem does not always exist, the following
suboptimal design strategy is usually considered:

J∞ < γ 2 (11)

where γ > 0 is a prescribed level of disturbance attenuation.
Following the method presented in [36], there exists an

H∞ channel estimator ĥ(n) for a given γ > 0 if there exists
a stabilizing symmetric positive definite solution P(n) to the
following Riccati-type equation

P(n + 1) = �P(n)C−1(n)�T + gQwgT, P(0) = P0 (12)

where

C(n) = Ip − γ −2lTlP(n) + d(n)R−1
v dT(n)P(n) (13)

This leads to the following constraint:

P(n)C−1(n) > 0 (14)

If the condition (14) is fulfilled, the H∞ channel estimator
exists and is defined by

ĥ(n) = lĥ(n) (15)

ĥ(n) = �ĥ(n − 1) + K(n)α(n), ĥ(0) = 0 (16)

where the so-called innovation process α(n) and the H∞ gain
K(n) are respectively given by

α(n) = y(n) − dT(n)�ĥ(n − 1) (17)

K(n) = P(n)C−1(n)d(n)R−1
v (18)

As mentioned in [37], the matrix P(n) can be seen as an
upper bound of the error covariance matrix in the Kalman
filter theory, i.e. E[(h(n) − ĥ(n))(h(n) − ĥ(n))H ] ≤ P(n).
Moreover, the H∞ channel estimator (12)–(18) has similar
observer structure as the Kalman one. However, due to (13),
the H∞ channel estimator has a computational cost slightly
higher than Kalman’s one. If the weighting parameters Qw,
Rv and P0 are respectively chosen to be σ 2

w, σ 2
v and the ini-

tial error covariance matrix of h(0), then the H∞ estimator
reduces to a Kalman one when γ −→ +∞.

2 We will explain how to tune them in Sect. 2.4.
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It should be noted that the level attenuation factor γ must
be carefully selected to satisfy the condition in (14) as [38]

γ 2 > max
(

eig
[
lTl

[
P−1(n) + d(n)R−1

v dT(n)
]−1

])
(19)

where max (eig [A]) is the maximum eigenvalue of the
matrix A. The level attenuation factor γ mainly depends
on the weighting parameter Rv and the matrix P(n). Given
Eq. (19), γ should be updated at each iteration. In practical
cases, to guarantee that the matrix P(n + 1) is not singular,
γ is selected as

γ 2 = ζ max
(

eig
[
lTl

[
P−1(n) + d(n)R−1

v dT(n)
]−1

])
(20)

with ζ > 1.

2.3 Estimation of the AR parameters

In this subsection, we propose to estimate the AR parameters
{ai }i=1,...,p from the estimated fading process ĥ(n). For this
purpose, Eqs. (15) and (16) are firstly combined to express
ĥ(n) as a function of the AR parameters:

ĥ(n) = l�ĥ(n − 1) + lK(n)α(n)

= ĥT(n − 1)θ(n) + u(n) (21)

where θ(n) = [−a1 −a2 · · · −ap ]T is a vector of the AR
parameters and u(n) = lK(n)α(n).

When the channel is assumed stationary, the AR parame-
ters are time-invariant and satisfy the following relationship:

θ(n) = θ(n − 1) (22)

Equations (21) and (22) hence define a state-space represen-
tation for the estimation of the AR parameters. By defining
the AR parameter estimation error as eθ = ĥT(n − 1)θ(n)−
ĥT(n −1)θ̂(n), a second H∞ filter can be used to recursively
estimate θ(n) as follows:

θ̂(n) = θ̂(n − 1) + Kθ (n)αθ (n), θ̂(0) = 0 (23)

αθ (n) = ĥ(n) − ĥT(n − 1)θ̂(n − 1) (24)

Kθ (n) = Pθ (n)C−1
θ

(n)ĥ(n − 1)R−1
u (25)

Cθ (n) = Ip − γ −2
θ

ĥ(n − 1)ĥH (n − 1)Pθ (n)

+ĥ(n − 1)R−1
u ĥH (n − 1)Pθ (n) (26)

Pθ (n + 1) = Pθ (n)C−1
θ

(n), Pθ (0) = Pθ 0
(27)

where Ru > 0 and Pθ 0
> 0 are the weighting parameters.

In addition, γθ > 0 is the disturbance attenuation level. To
guarantee the existence of this H∞ filter, the attenuation level
γθ should be selected in the same manner as γ in (19).

It should be noted that our approach is different from
the one in [17] where two serially connected H∞ filters are
used to estimate the fading process and its AR parameters.
On the one hand, the approach in [17] yields biased values
of the AR parameters which may result in poor estimation

of the fading process. On the other hand, our approach can
provide better estimation quality as it makes it possible to
estimate the AR parameters from the estimated fading pro-
cess.

2.4 Tuning the parameters Qw, Rv , Ru , P0 and Pθ 0

As stated in Sect. 2.2, the weighting parameters Qw and Rv

in the first H∞ filtering algorithm (12)–(18) often correspond
respectively to the instantaneous power of the sequences
w(n) and v(n).

In [17], the authors mentioned that in practical wireless
communication systems the weighting parameters Qw and
Rv can be chosen respectively as the variance of the dri-
ving process and the additive sequence (i.e., Qw = σ 2

w and
Rv = σ 2

v ). Thus, by analogy with the Kalman filter theory,
the weighting parameter Qw can be recursively tuned as [35]:

Q̂w(n) = λQ̂w(n − 1) + (1 − λ)fM(n)fT (28)

where M(n) = P(n)−�P(n −1)�T +K(n)|α(n)|2KH (n),
f = [ 1 0 · · · 0 ] and λ is the forgetting factor.

Here, the parameter Rv is assigned to the true value of σ 2
v .

In addition, we suggest setting Ru to the power of the process
u(n):

Ru = lK(n)|α(n)|2KH (n)lT (29)

Furthermore, as we have no a priori knowledge about the
initial state error, the weighting matrices P0 and Pθ 0

are assi-
gned to the identity matrix (i.e., P0 = Pθ 0

= Ip).
It should be noted that, although the selected values of the

weighting parameters might not correspond to the true values
(i.e. instantaneous powers of the corresponding sequences),
the H∞ filtering by its nature is robust to this deviation [16].

3 Simulation results

In this section, we carry out a comparative simulation study
on the estimation of the fading channel AR parameters bet-
ween several methods:

1. The two cross-coupled H∞ filters.
2. The two cross-coupled Kalman filters [35].
3. The two serially connected H∞ filters [17].
4. The two serially connected Kalman filters [17].
5. The YW estimator: routine aryule of MATLAB 7.1.

In the first experiment, the fading process h(n) is generated
according to the autoregressive channel simulator [14] and
a given Doppler rate fd T . It is normalized to have a unit
variance, i.e. σ 2

h = 1. A zero-mean complex white Gaussian
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noise v(n) with variance σ 2
v is then added to h(n)d(n). Thus,

the SNR is defined as follows:

SNR = 10 log10

(
σ 2

h

σ 2
v

)
= 10 log10

(
1

σ 2
v

)
(30)

Here, the additive noise variance σ 2
v is assumed to be avai-

lable. The level attenuation factor γ in the H∞ filters is upda-
ted at each iteration to satisfy Eq. (19). In our simulations, to
avoid any singularity of the matrix P(n + 1), the attenuation
factor γ is selected to be larger than the minimum allowable
value multiplied by at least a factor of ζ > 2. This factor
depends on the AR model order. The smaller the order, the
lower the factor.

When fd T = 0.1, N = 500 and p = 2, Baddour’s
simulator [14] provides a channel process whose AR para-
meters are a1 = −1.7625 and a2 = 0.9503. According to
Fig. 5 and Table 1, the two cross-coupled H∞ filter based
approach provides approximately the same results as the
two cross-coupled Kalman filter based one proposed in [35].
In addition, the two cross-coupled Kalman and H∞ filter
based approaches yield much better estimates than the other
approaches, especially at low SNR. Indeed, the YW estima-
tor and the two serially connected Kalman or H∞ filter based
estimators result in biased AR parameter estimates and smoo-
thed spectra. Similar results are obtained with high-order AR
models. Therefore, although the two cross-coupled H∞ filter
based approach does not provide better results than the two
cross-coupled Kalman filter based one, it has the advantage

3 H(z) = 1
1+∑

i ai z−i = 1

i (1−pi z−1)

, where pi is the i th pole. Hence,

the positions of the poles in the z-plane are related to the AR parameters
and the shape of the process PSD.

Table 1 Average AR(2) parameters and driving process variance esti-
mates based on 1,000 realizations. The true values are a1 = −1.7625,
a2 = 0.9503 and σ 2

w = 0.0178. N = 500 and fd T = 0.1

SNR 10 dB 15 dB 20 dB 40 dB

Two cross-coupled â1 −1.4878 −1.6746 −1.7400 −1.7576

H∞ filters â2 0.6975 0.8724 0.9336 0.9454

Q̂w 0.0882 0.0192 0.0066 0.0031

Two cross-coupled â1 −1.4908 −1.6348 −1.7001 −1.7557

Kalman filters [35] â2 0.6991 0.8326 0.8926 0.9434

σ̂ 2
w 0.0682 0.0344 0.0280 0.0167

Two serially connected â1 −1.0274 −1.4018 −1.6184 −1.7567

H∞ filters [17] â2 0.2601 0.6043 0.8107 0.9443

Two serially connected â1 −1.0293 −1.4009 −1.6177 −1.7560

Kalman filters [17] â2 0.2616 0.6033 0.8100 0.9436

Yule–Walker â1 −1.0318 −1.3958 −1.6031 −1.7359

Routine aryule of â2 0.2647 0.5995 0.7970 0.9249

MATLAB 7.1 σ̂ 2
w 0.3284 0.1506 0.0704 0.0252

of relaxing the Gaussian assumptions required by Kalman
filtering.

In the second simulation experiment, the fading process
h(n) is generated according to the modified Jakes simula-
tor [3] with fd T = 0.05. It is normalized to have a unit
variance (i.e., σ 2

h = 1). A complex Gaussian white noise
v(n) is then added to h(n)d(n). According to Fig. 6, the pro-
posed approach yields lower Bit Error Rate (BER) than the
Kalman based one [35] when considering AR(1) and AR(2)
models. Hence, the proposed method is more robust to mode-
ling approximations than the one proposed in [35]. For high-
order AR models (e.g., p = 5, 10 or 20), both approaches
provide approximately similar results.
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Fig. 6 Performance of the proposed H∞ filter based channel estimator
and the one based on two cross-coupled Kalman filter [35], with various
order AR models. fd T = 0.05 and fd = 250 Hz
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Fig. 7 Performance of the proposed two cross-coupled H∞ filter based
channel estimator and the one based on two cross-coupled Kalman filters
[35], when using AR(20) model. fd = 250 Hz,−0.8 fd ≤ � fd ≤ 0.8 fd
and SNR = 20 d B

In the above simulation experiments, we consider fast
fading processes with fixed Doppler frequency. However, due
to mobile movement, the Doppler frequency might change
and, hence, the AR parameters should be re-estimated. Accor-
ding to the various tests we have carried out, it takes about 200
training symbols for the proposed H∞ estimator to converge
to the true AR parameter values. To evaluate the robustness
of the Kalman and H∞ filter based approaches against the
changes in Doppler frequency, we consider a scenario in
which we used the AR parameter estimates obtained during
the last training cycle to estimate in the decision directed
mode the fading process when the Doppler frequency
changes. In that case, the AR parameter estimates corres-
pond to Doppler frequency fd +� fd with −0.8 fd ≤ � fd ≤
0.8 fd , while the fading process is estimated when the Dop-

pler frequency is fd . Figure 7 shows the BER performance
of the Kalman and H∞ filter based estimators versus ( fd +
� fd)/ fd when fd = 250 Hz. When the Doppler frequency
changes (i.e., � fd �= 0) both approaches suffer from a degra-
dation in BER performance especially when� fd < 0. Never-
theless, one can notice that when ( fd +� fd)/ fd is lower than
0.4, our approach outperforms the Kalman based solution.

4 Conclusion

In this paper, we present a method for the joint estimation of
the time-varying fading processes and their corresponding
AR parameters based on two cross-coupled H∞ filters. The
estimation criterion of the proposed approach is based on the
minimization of the worst possible effects of the noise dis-
turbances (i.e., the initial state, the driving process and the
measurement noise) on the estimation error. As this criterion
requires no a priori constraints about the noises except that
they have bounded energies, the presented method is more
robust against the noise disturbances and modeling approxi-
mations than existing methods based on Kalman filtering.
According to the comparative simulation study we carried
out on fading channel estimation, the proposed approach out-
performs the existing two serially connected H∞ filter based
method.
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