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Abstract 

 

We address the problem of load balancing which is considered as a technique to spread 

work between two or more computers in order to get optimal response time  and resource 

utilization between servers by using Nash equilibrium which is the central concern of game 

theory. We use a normal form table to express the payoff for every client, every client has 

estimate time for execution and every server has speed, from these facts, we innovate a 

dynamic payoff matrix to evaluate a Nash equilibrium point and then determine which 

server can serve an appropriate client to achieve best load balancing which is called 

"server matching" (Each client is matched to exactly one server, but a server can be 

matched to multiple clients or none.). We use Netlogo simulation to implement this 

matching, besides a useful game theory toolset called GAMBIT (Gambit toolset 

homepage, 2005) to solve the payoff matrix and compute Nash equilibrium point. 

 

This paper was done between the years 2007 – 2009, and to know what was done in this 

paper we can argue that we contribute in accomplishing the load balancing between 

servers, using new technique depends on game theory perspective, for that reason we can 

answer the question why this thesis was done, because it is very vital in achieving this goal. 

 

We use in our thesis a simulation methodology to prove the results that we have obtained 

from the simulation program which is a Netlogo V4.0.2, and we compare the results with 

traditionally techniques in load balancing. 

 

Finally, the results show that we improve the performance for the whole system by 4% in 

achieving load balancing and overweight the possibilities of using this technique in real 

system around the world. 
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  Chapter 1 

Introduction 

 

Over many years, load balancing, is a problem that inspired the researcher. In this thesis, 

we try to have a new approach using game theory perspective. 

This thesis was affected by the continued growth of internet applications, and in the 

absence of central authority that can control this growth, so users have choice to choose its 

own server to download their data, that each user wants to minimize its own latency, 

without concerning the optimal welfare for the whole system, this selfish behavior could 

lead us to bottleneck in the system. 

Game theory is generally considered to have begun with the publication of von Neumann 

& Morgenstern’s, "The Theory of Games and Economic Behavior", in 1944, it introduced 

the idea that conflict could be mathematically analyzed that have a methodology and 

provided the terminology with which to do it. The development of the ―Prisoner’s 

Dilemma‖ and Nash’s papers on the definition and existence of equilibrium laid the 

foundations for modern noncooperative game theory. At the same time, cooperative game 

theory reached important on bargaining games and on the core. (Rasmusen, 2005) 

We propose to use the game theory perspective in order to achieve  load between several 

servers which is called "load balancing" which aims to spread work between two or more 

computers, in order to get optimal resource utilization, or response time. 

In our thesis, we concentrate on load balancing criteria with response time for every client; 

every client that achieves minimum time on serving his request on any server will require 

underpinning for our approach in achieving load balancing between servers. 
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1.1 Motivation for this thesis 

Game theory is considered as an interrelated area of researcher in which it involves 

computer science, also it is interrelated to many useful aspects as political, marketing, 

auctions, and  any other subject that have to do a decision making. 

As the user’s population accessing internet services grow in size and dispersion, it is 

necessary to improve performance and scalability by deploying multiple, distributed server 

sites. Distributing services has the benefit of reducing access latencies, and improving 

service scalability by distributing the load among several sites. One important issue in such 

a scenario is how the user chooses the appropriate server. 

Similar problem occurs in the context of routing where the user has to select one of a few 

parallel links. For instance, many enterprise networks are connected to multiple internet 

service providers (ISPs) for redundant connectivity, and backbones often have multiple 

parallel trunks. Users are likely to behave "selfishly" in such cases that is each user makes 

decisions so as to optimize its own performance, without coordination with the other users.  

Basically, each user would like to either maximize the resources allocated to it or, 

alternatively, minimize its cost. Load balancing and other resource allocation problems are 

prime candidates for such a "selfish" behavior. 

A natural framework to analyze this class of problems is that of non-cooperative games, 

and an appropriate solution concept is that of Nash equilibrium. Users' strategy at Nash 

equilibrium if no user can access by unilaterally deviating from its own policy. An 

interesting class of non-cooperative games, which is related to load balancing, is 

congestion games and its equivalent model of potential games. In a potential game there is 

a potential function which maps the current state to a real number (in the load balancing 

scenario a state would include assignment of jobs to machines).  

They consider (Kothari, 2005) deviations of a single player (job) and compare the change 

in the deviating player's utility (load) to the change in the potential function. In an exact 

potential game the changes are identical. In a weighted potential game the changes are 

related by a factor that depends only on the player. In an ordinal potential game the 

changes are in the same direction, while in a generalized potential game an increase in a 

player's utility implies an increase in the potential function (but not vice versa). 
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In this thesis, we develop a new approach that depends on the normal form table which is 

different from the model in (Kothari, 2005) which focuses on calculating the price of 

anarchy. 

Secondly, we build our model depending on MultiAgent system that operates on local 

knowledge and possessing limited abilities to achieve a desirable result which is similar to 

model (Kothari, 2005). 

Finally, we also use a state-of-the-art game theory tool from University of Minnesota 

called GAMBIT (Gambit toolset homepage, 2005), it is open source software, which allow 

us to calculate the Nash equilibrium on any normal from table. 

1.2 Game theory as a predictive theory 

Game theory can be a good theory of human behavior for two distinct reasons. First, it may 

be the case that game theory is a good theory of rationality, that agents are rational and that 

therefore game theory predicts their behavior well. If game theory was correct for this 

reason, it could reap the additional benefit of great stability. Many social theories are 

inherently unstable, because agents adjust their behavior in the light of its predictions. If 

game theory is a good predictive theory because it is a good theory of rationality, this will 

be because each player expects every other player to follow the theory’s prescriptions and 

have no incentive to deviate from the recommended course of action. Thus, game theory 

would already take into account that players’ knowledge of the theory has a causal effect 

on the actions it predicts.  

Second, and independently of the question of whether game theory is a good theory of 

rationality, game theory may be a good theory because it offers the relevant tools to 

systematize and predict interactive behavior successfully. This distinction may make sense 

when separating our intuitions about how agents behave rationally from a systematic 

account of our observations of how agents behave.  

We begin with some game theory background information in chapter 2, for readers who 

might not familiar with game theory. Chapter 3 describes our server matching model in 

achieving load balancing, chapter 4 explains the details implementation, chapter 5 

conclusions and future work.  
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1.3 Objectives 

Our goal in this thesis is to find an optimal strategy to achieve load balancing using game 

theory with dynamic clients, one of the ways proposed by (Kothari, 2005), they introduce 

this but with static number of clients, and each of clients chooses a server from a 

permissible set. A server's latency is inversely proportional to its speed, but it grows 

linearly with the number of clients matched to it. In our model, we use Netlogo simulation 

to propose a new model with dynamic clients, that our server matching game is a form of 

the congestion games, that every congestion game has a pure strategy Nash equilibrium. A 

strategy in our server matching game is the choice of the servers. We focus on the atomic 

version of the game, where each client chooses exactly one server. 
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Chapter 2 

Background 

 

2.1 History of game theory 

One pedestal of game theory is the concept of mixed strategy based on the concept of 

probability which is therefore essential to reach some interesting results. The beginning of 

probability calculus is associated with the correspondence of Pierre de Fermat and Blaise 

Pascal dated in 1654. Hence the true prehistory can start only after this event that happened 

just 353 years ago and represent the first key milestone in the history of game theory. 

(Hyksova, 2004) 

2.2 Waldegrave with Mixed strategy 

James Waldegrave gave the first known mixed strategy solution of a matrix game. It was 

related to the game, he was looking for a strategy that maximizes the probability of player's 

win, whichever strategy was chosen by the opponent, that is, exactly in the sense of today 

minmax principle. He came to the following mixed strategy solution formulated in terms of 

black and white chips: Tony should choose the strategy‖ change 7 and lower‖ with the 

probability 5/8 and the strategy― hold 7 and higher‖ with the probability 3/8; Hanna should 

choose the strategy‖ change 8 and lower‖ with the probability 3/8 and the strategy‖ hold 8 

and higher‖ with the probability 5/8. (Hyksova, 2004) 

 2.3 Game theory and Mathematics 

In the period 1921 – 1928 the concept of mathematics in game theory was existed 

(Hyksova, 2004), Emile Borel published a series of notes on symmetric two players zero 

sum games with a finite number n of pure strategy of each player. Borel was the first who 

attempted to mathematic the game of strategy, he introduced the concept of method of play 

in the sense of today pure strategy and he was looking for a solution in mixed strategy in 

the sense of today minmax solution.   
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The next important milestone is represented by the publication "Theory of games and 

Economic behavior" in 1944 (Hyksova, 2004), which was the result of a fruitful 

collaboration of Von Neumann and Oskar Morgenstern. This event is usually considered as 

the beginning of the existence of game theory as a fully fledged mathematical discipline. 

Neumann and Morgenstern started with a detailed formulation of economical problem 

showed the exceptionally broad application possibilities of game theory in economy; then 

they settled the foundations of an axiomatic utility theory. 

In 1954 Lloyd Shapley published a paper which represents one of the earliest explicit 

applications of game theory to political sciences. They used the Shapley value, one of the 

solution concepts for cooperative games introduced by Shapley one year earlier to 

determine the power of the members of the United Nations Security Council. 

2.4 Entrance of Game theory into evolutionary Biology 

Nowadays game theory is the main tool for the investigation of conflict and cooperation of 

animals and plants. As for zoological applications, the game theory is used for the analysis, 

modeling and understanding the fight, cooperation and communication of animals, 

coexistence of alternative traits, mating systems, conflict between the sexes, offspring sex 

ratio, distribution of individuals in their habitats, etc. Among botanical applications we can 

find the questions of seed dispersal, seed germination, root competition, nectar production, 

flower size, sex allocation, etc. (Hyksova, 2004) 

In 1960’s several isolated works using a game-theoretical approach in biology appeared. A 

historical milestone is represented by the short but ‖epoch-making‖ paper The Logic of 

Animal Conflict by J. Maynard Smith and G. R. Price. This treatise, published in 1973, 

stimulated a great deal of successful works and applications of game theory in evolutionary 

biology; the development of the following decade was summarized in Maynard Smith’s 

book Evolution and the Theory of Games Not only proved game theory to provide the 

most satisfying explanation of the theory of evolution and the principles of behavior of 

animals and plants in mutual interactions, it was just this field which turned out to provide 

the most promising applications of the theory of games at all. Is this a paradox? How is it 

possible that the behavior of animals or plants prescribed on the base of game-theoretical 

models agree with the action observed in the nature? Can a fly or a fig tree, for example, be 

a rational decision-maker who evaluates all possible outcomes and by the tools of game 
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theory selects his optimal strategy? How is it possible that even the less developed the 

thinking ability of an organism is, the better game theory tends to work? The explanation is 

simple: the players of the game are not taken to be the organisms under study, but the 

genes in which the instinctive behavior of these organisms is coded.  

The strategy is then the behavioral phenotype, i.e. the behavior preprogrammed by the 

genes – the specification of what an individual will do in any situation in which it may find 

itself; the payoff function is a reproductive fitness, i.e. the measure of the ability of a gene 

to survive and spread in the genotype of the population in question. The main solution 

concept of this model is the evolutionary stable strategy which is defined as a strategy such 

that, if all the members of a population adopt it, no mutant strategy can invade. In certain 

specific situations, this somewhat vague concept is expressed more precisely. (Hyksova, 

2004) 

2.5 Normal form and extensive form 

In game theory there are two ways to represent a game. The first one is called normal form 

(Martin J. Osborne, 1994), which is used in simple games and economics, the second one 

is called the extensive form, which also used widely in economics. 

We can define the three parts that every game must have: 

1. The players: the players in a game are actual participants who make relevant 

decisions that jointly determine the outcome of a game. 

2. The strategy: every player have a complete description of how a player could play a 

game, the strategy is comprised of all a player's possible alternative strategies. 

3. The Payoffs: A payoff is what the player will get at the end of the game conditions 

on the actions of all other opponents in the game (the opponents here do not 

suggest players are necessarily trying to beat each other, rather they are making 

decisions to maximize their own utility. Since the game may be zero-sum or non-

zero-sum, these independent decisions may lead to conflict or coalition). (Romp, 

1997) 
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2.6 Normal form game 

A strategic form game (Martin J. Osborne, 1994) shows the payoffs of all combinations of 

different players' strategies in a matrix. Players are said to be rational when they seek to 

maximize their payoff. In game theory we are interested in rational players. 

Table 2.1 illustrates the strategic form of a classic two-player game called the prisoner's 

Dilemma. This game is often used to explain basic game theory concept. The motivation 

story is that two suspects have been arrested by police and are being held in two different 

cells. Each suspect has a choice of confess (C) or deny (D). They don't know each other's 

decision when they have to make their own decision. The entries in the matrix are two 

numbers representing the utility or payoff suspect 1 and suspect 2 respectively. Note that 

higher numbers are better (more utility). If either of them deny, both of them will be 

convicted of a minor crime and put in jail for one month (each of them receive a utility of -

2, which represented as (-2,-2) in table 2.1. (Rasmusen, 2005) 

Normal game of Prisoner Dilemma 

Table 2.1: Normal form table for Prisoner Dilemma1 

  Player 2 

  C D 

Player 1 

C -8,-8 0,-10 

D -10,0 -2,-2 

 

If both of them confess, they will both convicted and sentenced to six month in jail (each 

of them get a utility of -8, which is represented as (-8,-8) in Table 2.1. If one of them 

confesses, but the other one doesn't, then the one who confesses will be released 

immediately and will get a utility of 0, while the other will be sentenced to nine months in 

jail and will get a utility of -10. This corresponds to the other two cells in Table 2.1. For 

example if player 1 confesses, but player 2 deny, then player 1 will get a utility of 0 and 

player 2 will get a utility of -10. (Rasmusen, 2005) 
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In this example, player 1 and player 2 are the two players. They have identical strategy (C, 

D), which means each has two different choices of actions. The payoffs are the number in 

the table. The first number in a cell represents player 1's payoff, the second number 

represents the player 2's payoff. For example if both players confess, the top-left table item 

tells us both players will get a payoff of -8. (Romp, 1997) 

2.7 Extensive form game 

Normal form games (Vidal, 2007) do not provide a simple way to analyze the dynamics of 

strategic interactions, since all players simultaneously make their decisions. Extensive 

form game (Rasmusen, 2005) provides more information about how the timing actions 

may affect outcomes. This type of game is represented as a game tree instead of matrix. 

The four parts that combine the Extensive form (Martin J. Osborne, 1994): 

1. Nodes: This is a position in the game tree where a player must have to make a 

decision. Each node is labeled with a number so as to identify who is making the 

decision. 

2. Branches: These branches of the game tree represent different alternative choices 

available to a player. 

3. Payoff vector: These represents the payoffs for each player, the payoffs are listed in 

the order of players at the leaves of the tree. 

4. Information set: An information set is a collection of decision nodes for a single 

player, but which are indistinguishable for the player who is making the decision. 

Since any two nodes in the same information set are indistinguishable, they must 

have exactly the same number of branches. 
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Figure 2.1:  Extensive form of Prisoner's Dilemma (Martin J. Osborne, 1994) 

 

Each circle represents a node in the game tree (Romp, 1997); the label on the node 

represents which player is going to make decision. The branches coming out of a node 

represent the actions available to the player at that point in the game. Player 1 can either 

confess or deny. At the end of these two branches there is a node representing player 2's 

decision. Player 2 also has two choices: Confess or deny, these are represented by the 

branches stemming out of player 2's node. In this case, player 2 has to make his decision 

without knowing player 1's action. This means when player 2 needs to make his decisions, 

he only knows he is at one node in this information set, but he is not sure which node he is 

at. Finally, at the end of each branch, is the payoff vector, with the payoffs of each player 

listed in order. For example, the top payoff vector is (-8,-8). This means if player 1 and 

player 2 both decide to confess, the payoff of player 1 is -8, the payoff of player2 is -8. 

1 

(-10,0) 

2 

(-8,-8) 

(0,-10) 

(-2,-2) 
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2.8 Pure strategy 

A pure strategy (Martin J. Osborne, 1994) in game theory is a policy that states the player's 

decision at any decision node in game tree. 

2.9 Mixed strategy 

A mixed strategy (Rasmusen, 2005) allows the player to select from a set of actions 

randomly selecting one of choices. The choices are weighted by pre assigned probabilities. 

It is a fundamental concept in game theory, whereas, in certain situations your best strategy 

is to behave unpredictably. In fact, a pure strategy is just a special case of mixed strategy 

with only one action in the decision set. A mixed strategy is beneficial when given your 

opponent's action. 

In mixed strategy of players 1 and 2 are the vectors of probabilities p, q for which the 

following conditions hold: 

 P=(p1,p2,…pm);   pi ≥0,  p1 + p2 +….+pm =1,     (2.1) 

 Q=(q1,q2,…qn);   qi ≥0,  q1 + q2 +….+qn =1.     (2.2) 

So a mixed strategy is therefore again a certain strategy that can be characterized the 

following way: 

"Use the strategy s1    S with the probability p1,  

..., 

Use the strategy sm     S with the probability pm." 

Definition 1: the expected payoffs are defined by the relations: 

 Player 1 ∏1(p,q)=∑ ∑ piqjaij      (2.3) 

 Player 2: ∏2(p,q)=∑ ∑ piqjbij      (2.4) 

A mixed strategy s
*
 =(p1,..pm) is the best reply to t

*
 if and only if each of pure strategies 

that occur in s
*
 with positive probabilities is the best reply to t

*
. (Morris, 1994) 
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Example: Consider the following payoff: 

Table 2.2: Normal form table (Morris, 1994)2 

  Player 2 

 Strategy T1 T2 

Player 1 

S1 (4,-4) (-1,-1) 

S2 (0,1) (1,0) 

 

Expected values for particular players are the following: 

   ∏1(p,q) = 4pq-p(1-q) + 0 + (1-p)(1-q) 

       = p (6q-2) –q + 1 

   ∏2(p,q) = -4pq-p(1-q) + (1-p)q + 0 

       = q (-4p +1) –p 

Now we will search best replies of the player of the player 1 to various choices of 

probabilities q: 

If 0 ≤ q < ⅓, then for a fixed value of q, ∏1(p,q) is a linear function with the negative 

slope, which is therefore decreasing. Maximum of this function occurs for the least 

possible value of p. i.e. for p=0; in this case it is: R1 (q) =0. 

If q=⅓, then ∏1(p,⅓)=⅔ is a constant function for which each value is maximal and 

minimal – player 1 is therefore indifferent between both strategies, R1(⅓) =(0,1). 

If ⅓ < q ≤ 1, then for a fixed value of q, ∏1(p,q) is a liner function with the positive slope, 

which is therefore increasing. Maximum occurs for the greatest possible value of p, i.e. for 

p=1; in this case it is R1 (q) =1. 

On the whole 
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Similarly for player 2: 

 R2(p) = 
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Equilibrium point is therefore ))
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Provided the players follow these strategies, the expected payoff to the first player will be 

⅔ and to second one -1/4. (Morris, 1994) 

2.10 Elimination of dominated strategies 

In some cases it is possible to eliminate obviously bad, so called dominated strategies: 

Definition 2: The strategy sl    S of the player 1 is called dominating another strategy si   S 

if, for each strategy t   T of the player 2 we have: 

   U1 (sl, t) ≥ u1 (si, t)      (2.7) 

If there remains the only element in the bimatrix after an iterated elimination of dominated 

strategies, it is the desired equilibrium point. If there remain more elements, we have at 

least a simpler bimatrix. 

 We see the following example: 

  

(2.5) 

(2.6) 
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Table 2.3: Table before elimination of dominated element3 

 

 

 

 

 

Example: Consider the following payoff 

The strategy s2 of the first player is dominated by the strategy s3, because he receives more 

when he chooses s3 than when he chooses s2, whatever strategy is chosen by the second 

player. Similarly the strategy t3 of the second player is dominated by the strategy t2. Since 

the rational player 1 will not choose the dominated strategy s2 and the rational player 2 will 

not choose the dominated strategy t3, the decision is reduced in this way: 

 

The reduced Table 

Table 2.4: The reduce table after elimination of dominated element4 

  Player 2 

 Strategy T1 T2 

Player 1 

S1 (1,0) (1,3) 

S3 (0,2) (2,4) 

  

Strategy t1 dominated by the strategy t2, the second player therefore chooses t2. The first 

player now decides between the values in the second column of the bimatrix, and since 1 < 

2, he chooses s3. Hence an equilibrium point of the game is (s3, t2) think over the fact that 

in the original matrix, one sided deviation from the equilibrium strategy does not bring an 

improvement to the "deviant". 

  Player 2 

 Strategy T1 T2 T3 

Player 1 

S1 (1,0) (1,3) (3,0) 

S2 (0,2) (0,1) (3,0) 

S3 (0,2) (2,4) (5,3) 
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2.11 Games with complete and incomplete information 

Perfect information (Haurie, 2000): at each move in the game, the player with the move 

knows the full history of the play of the game. 

Imperfect information (Haurie, 2000): at some move the player with move does not know 

the history of the game. 

2.12 Nash equilibrium 

In games, a pair of strategies (a
*
, b

*
) is defined to be a Nash equilibrium (Rasmusen, 2005) 

if a
*
 is player A's best strategy when player B plays b

*
, and b

*
 is player B's best strategy 

when player A plays a
*
. For example, in a two person strategic interaction, a Nash 

equilibrium combination of strategic is such that each agent's best reply to the other agent's 

best reply to it. We will say that each strategy in the combination is a Nash equilibrium 

component strategy. Solving a game is just the process of finding the Nash equilibrium of 

this game. 

2.12.1 Shortcomings of the Nash equilibrium concept  (Multiple equlibria)  

It is possible that a bimatrix game (Haurie, 2000) can have several equilibria in pure 

strategies. There may be also additional equilibria in mixed strategies as well. The multiple 

values of Nash equilibria for bimatrix games are a serious theoretical and practical 

problem.   

The following table shows the two equilibria in pure strategies. 
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Table 2.5: This bimatrix game has two equilibria5 

  Player 2 

 

 A B 

Player 1 

A 2  2 0  0 

B 0  0 2  2 

 

It is difficult to decide how this game should be played if player 1 choose (A,A) and 

player2 choose (B,B) independently of  one another. Each player has two pure strategies A 

and B.  The numbers in the table denote the utility of player 1 and player 2 respectively. 

There are two pure strategy Nash equilibria at (A,A) and (B,B).  There is also one mixed 

strategy Nash equilibrium where both player randomize with a 1/2 chance of A and a 1/2 

chance of B. 

What would we expect to happen in this game?  Both players prefer either of the two pure 

strategy Nash equilibria to the mixed strategy Nash equilibrium, since the expected utility 

to each player at the pure equilibrium is 2, while the expected utility at the mixed 

equilibrium is only 1.  But in the absence of any coordinating device, it is not obvious how 

the two players can guess which equilibrium to go to. This might suggest that they will 

play the mixed equilibrium. But at the mixed equilibrium, each player is indifferent, so 

while equilibrium requires that they give each strategy exactly the same probability, there 

is no strong reason for them to do so.  Moreover, if player 1, say, believes that player 2 is 

even slightly more likely to play A than B, then player 1 will want to play A with 

probability one.  From an intuitive point of view, the stability of this mixed strategy 

equilibrium seems questionable. 

In contrast, it seems easier for play to remain at one of the pure equilibria, because here 

each player strictly prefers to play his part of the Nash equilibrium profile as long as he 
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believes there is a high probability that his opponent is playing according to that 

equilibrium.   Intuitively, this type of equilibrium seems more robust.   

This coordination game example, although simple, illustrates the two main questions   that 

the theory of learning in games has tried to address, namely: When and why should we 

expect play to correspond to Nash equilibrium?  And, if there are several Nash equilibria, 

which ones should we expect to occur? 

Moreover, these questions are closely linked: Absent an explanation of how the players 

coordinate their expectations on the same Nash equilibrium, we are faced with the 

possibility that player 1 expects the equilibrium (A,A) and so plays A, while player 2 

expects (B,B) and plays B, with the result the non-equilibrium outcome (A.B).  Briefly, the 

idea of learning-based explanations of equilibrium is that the fact that the players share a 

common history of observations can provide a way for them to coordinate their 

expectations on one of the two pure-strategy equilibria.  Typical learning models predict 

that this coordination will eventually occur, with the determination of which of the two 

equilibria arise left either to (unexplained) initial conditions or to random chance. 

However, for the history to serve this coordinating role, the sequence of actions played 

must eventually become constant or at least readily predictable by the players, and there is 

no presumption that this is always the case.  Perhaps rather than going to Nash equilibrium, 

the result of learning is that the strategies played, wander around aimlessly, or perhaps play 

lies in some set of alternative larger than the set of Nash equilibria. 

2.12.2 Algorithms for the Computation of Nash Equilibria in Bimatrix 

Games 

Linear programming (Haurie, 2000) is closely associated with the characterization and 

computation of saddle points in matrix games. For bimatrix games, one has to rely on 

algorithms solving either quadratic programming or complementarily problems. There are 

also a few algorithms which permit us to find equilibrium of simple bimatrix games. 
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2.13 Shapley Value  

The Shapley value (Gul, 1989)represents each player’s bargaining power in terms of a 

percentage of the total value created. Bargaining power varies with value contributed. 

Persons who contribute more receive a higher percentage of the benefits. 

Unlike non-cooperative game theory, cooperative game theory does not specify through 

the game a minute description of the strategic environment, including where to move, and 

a set of procedures in each step, and the consequences of return to play for rather than what 

might be detrimental to this set of data to the coalitional form. Cooperation should be a 

game theorist accurately forecast the reward of all the opportunities available to the 

alliance, which moved one of the real number: gone are the actions and movements of 

individual payoffs. Prime advantage of this approach, at least in the multiple player 

environments, is the practical usefulness. A real-life situation more easily fit in the form of 

a coalitional game, in which the structure is more than that of non-cooperative game, 

whether in the form of a normal or large-scale. 

 Before the advent of the Shapley value, one solution to the concept of cooperative game 

theory: the von Neumann Morgenstern solution (Gul, 1989). The core would not be 

defined until around the same time as the Shapley value. As set-valued solutions 

suggesting ―reasonable‖ allocations of the resources of the grand coalition, both the von 

Neumann–Morgenstern solution and the core are based on the coalitional form game. 

However, no single-point solution concept existed as of yet to associate a single payoff 

vector to a coalitional form game. In fact, in the form of coalitional game these days, even 

in a little black box of information on the establishment of one point and it seems that the 

solution can not be defended by. It was in spite of these sharp limitations that Shapley 

came up with the solution. Obviously, the use of an approach based Shapley not only a 

great solution for the definition of an attractive and intuitive, but also for the unique 

characteristics of a set of reasonable axioms. 

2.14 Using computer algebra to find Nash equilibrium 

A central concern of game theory is the computing of Nash equilibrium. These are 

characterized by systems of polynomial equations and inequalities.  
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Game theory has been used to model conflict and cooperation between rational agents. So 

game theory is a mathematical model of this interaction.  

The main computer package for studying game theory today is Gambit which is, developed 

by McKelvey, McLennan, and Turocy, is currently the standard software package for 

computing Nash equilibrium. Most of the code focuses on solving two person games 

because the two persons’ situation is already quite rich and interesting. Furthermore, the 

last version of this package gives precise solutions for more than two person games. (Datta, 

2003) 

2.14.1 GAMBIT 

GAMBIT (Gambit toolset homepage, 2005) is a library of game theory software toolsets 

for the construction and analysis of finite extensive and normal form games. Its core 

functionality was from 1994 to 1996. The project was supported by a NSF award to 

Caltech and the University of Minnesota. This software has been updated several times 

since. The latest version Gambit 0.2007.01.30 was released on January 30, 2007. Gambit is 

designed to work on both Microsoft windows (95/98/NT/XP) and UNIX (Linux, Solaris 

and others) platforms. 

Gambit is comprised of 3 parts: 

1- A GUI interface that can be used to construct and solve a normal form or extensive 

form game. 

2- A Gambit command line language, this is a script language, somewhat like Lisp. It 

has a set of built-in functions that can be used to write small programs to construct 

and analyze games. 

3- A library of C++ source code for representing games. This library can be 

incorporated in other applications to facilitate the analysis of games. 

2.15 Game theory and Computer science 

The influence of computer science in game theory has perhaps been most strongly felt 

through complexity theory. They consider a game-theoretic problem that originated in the 

computer science literature, but should be of interest to the game theory community: 
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2.15.1 The Price of Anarchy 

In a computer system, there are situations where they may have a choice between invoking 

a centralized solution to a problem or a decentralized solution. By ―centralized‖ here, they 

mean that each agent in the system is told exactly what to do and must do so; in the 

decentralized solution, each agent tries to optimize his own selfish interests. Of course, 

centralization comes at a cost. For one thing, there is a problem of enforcement. For 

another, centralized solutions tend to be more vulnerable to failure. On the other hand, a 

centralized solution may be more socially beneficial. How much more beneficial can it be? 

(Papadimitriou E. K., 1999) They formalized this question by comparing the ratio of the 

social welfare of the centralized solution to that of the social welfare of the Nash 

equilibrium with the worst social welfare (assuming that the social welfare function is 

always positive). They called this ratio the price of anarchy (Halpern, 2007), and proved a 

number of results regarding the price of anarchy for a scheduling problem on parallel 

machines. Since the original paper, the price of anarchy has been studied in many settings, 

including traffic routing, facility location games (e.g., where is the best place to put a 

factory), and spectrum sharing (how should channels in a Wi-Fi network be assigned). 

2.15.2 Game Theory and Distributed Computing 

Distributed computing and game theory are attentive in much the same problems: this 

system that many agents have different aims with uncertainty environment. In practice, 

however, there has been a significant difference in emphasis in the two areas. In distributed 

computing, the focus has been on problems such as fault tolerance, asynchrony, scalability, 

and proving correctness of algorithms; in game theory, the focus has been on strategic 

concerns. (Halpern, 2007) 

2.15.3 Implementing Mediators 

The question of whether there is a problem in MultiAgent system that can not be resolved 

with a trusted mediator can be solved only through agents in the system, without the 

mediator, has attracted a great deal of attention in both computer science (particularly in 

the cryptography community) and game theory. In cryptography, the focus on the problem 

has been on secure multiparty computation. (Halpern, 2007) 
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2.15.4 Interactive epistemology: 

There has been a great deal of activity in trying to understand the role of knowledge in 

games, and providing epistemic analyses of solution concepts in computer science, there 

has been a parallel literature applying epistemic logic to reason about distributed 

computation. One focus of this work has been on characterizing the level of knowledge 

needed to solve certain problems. For example, to achieve Byzantine agreement common 

knowledge among the no faulty agents of an initial value is necessary and sufficient. More 

generally, in a precise sense, common knowledge is necessary and sufficient for 

coordination. Another focus has been on defining logics that capture the reasoning of 

resource-bounded agents. This work has ranged from logics for reasoning about awareness, 

a topic that has been explored in both computer science and game theory. (Halpern, 2007) 

2.15.5 Network growth: 

If we view networks as being built by selfish players (who decide whether or not to build 

links), what will the resulting network look like? How does the growth of the network 

affect its functionality? For example, how easily will influence spread through the 

network? How easy is it to route traffic? (Halpern, 2007) 

2.15.6 Learning in games: 

There has been a great deal of work in both computer science and game theory on learning 

to play well in different settings for an overview of the work in game theory). One line of 

research in computer science involves learning to play optimally in a reinforcement 

learning setting, where an agent interacts with an unknown (but fixed) environment. The 

agent then faces a fundamental tradeoff between exploration and exploitation. The 

question is how long it takes to learn to play well (i.e., to get a reward within some fixed e 

of optimal; for the current state of the art. A related question is efficiently finding a 

strategy minimizes regret— that is, finding a strategy that is guaranteed to do not much 

worse than the best strategy would have done in hindsight (that, even knows what the 

opponent would have done). (Halpern, 2007) 



22 

 

2.16 Related Work 

Game theory provides a good starting point for computer scientists in their endeavor to 

understand selfish rational behavior in complex networks with many agents (clients). Such 

scenario are readily modeled using techniques from game theory, where players with 

potentially conflicting goals participate in a common setting with well prescribe 

interaction. 

A.Kothari, S. Suri, And Y. Zhou in paper (Kothari, 2005) has focusing there work on 

balancing the load across servers, but they assume that there are static clients set. They 

considered a set U on n client and a set V of m servers, there is a bipartite graph G between 

U and  and a server vj is permissible for client ui only if (ui, vj) is an edge in G. 

This problem for assigning clients (jobs) to servers (machines) back to the early days of 

computing or distributed scheduling, and there is an enormous literature on it. A small 

sample of these results includes the following (Westbrook, 1998), and (Shmoys, 

1995)investigate the online assignment of unit length jobs which is measured according to 

maximum number of jobs assigns to any server. (Alon, 1997) And (Lenstra, 1990) consider 

offline assignment of unit length jobs; (Avidor A., 2001), and (Coffman, 1976) consider 

the greedy assignment of weighted jobs under this measure, where the client-server graph 

is complete bipartite. 

They consider a set of U of n clients and a set V of m servers, then a server matching is a 

mapping M: U → V that assigns each client to a server. The number of clients assigned to 

server v in a (many to one) matching M is denoted by dM(v), the load of v in M. When the 

matching M is clear from the context, we will simply use the shortened notation d(v). Each 

client matched to v in the matching M experiences a latency λV(dM(v)). The cost of a 

matching M is the total latency of all the clients. 

Koutsoupias and Papadimitriou in paper (Papadimitriou E. K., 1999) considered a 

transportation problem where n independent agents wish to rout their traffic through a 

network of m parallel edges. They studied the price of anarchy on unsplittable flow games. 

In the general version of this game we have n agents; agent i wants to transfer an amount 

wi of flow between a source si and a destination ti and chooses, as his strategy, a path from 

si to ti to transfer his flow. Unsplittable means agents are not allowed breaking their flow 
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and transferring it partially across more than one path. As a result, each edge e carries 

some amount of traffic, say le, going through it, and there would be a latency caused by 

this edge which is a function of le and is denoted by fe(le). Assume agent i is using path Pi 

to transfer his flow. The latency corresponding to him would be the sum of latencies over 

all edges in Pi, i.e.  

wi ∑e  Pife(li).         (2.8) 

The aim of each agent is to minimize his associated latency whereas the social objective is 

to minimize either the total latency or the maximum latency over all edges in the network. 

That is, within constant factors, the worst case network is the simplest one (the parallel 

links network). This implies that, for this family of networks, the network structure does 

not affect the quality of the outcome of the congestion games played on the network in an 

essential way. 

Panagopoulou and Spirakis (Spirakis, 2005) consider selfish routing in single commodity 

networks, where selfish users select paths to route their loads (represented by arbitrary 

integer weights). They consider identical delay functions for the links of the network. That 

work focuses also on an algorithm suggested in (Fotakis, 2005) ; this is a potential based 

algorithm for finding pure Nash equilibrium in such works. the analysis of this algorithm 

(Fotakis, 2005) has given an upper bound on its running time, which is polynomial in n 

(the number of users) and the sum W of their weights. This bound can be exponential in n 

when some weights are superpolynomial. Therefore, the algorithm is only known to be 

pseudo polynomial. The work of Panagopoulou and Spirakis (Spirakis, 2005) provides 

strong experimental evidence that this algorithm actually converges to a pure Nash 

equilibria in polynomial time in n (and, therefore, independent of the weights values). 

In (Vocking, 2005), Fischer and Vocking reexamined the question of worst case Nash 

Equilibria for the selfish routing game associated with the KP model (Papadimitriou E. K., 

1999), where n weighted jobs are allocated to m identical machines. Recall that Gairing et 

al (Gairing, 2005), had conjectured that the fully mixed Nash equilibrium is the worst Nash 

equilibrium for this game (with respect to the expected maximum load over all machines). 

The known algorithms for approximating the price of anarchy relied on proven case of that 

conjecture.  
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In (Vocking, 2005) the authors interesting present a counter example to the conjecture 

shows that fully mixed Nash equilibria cannot be generally used to approximate the price 

of anarchy within reasonable factors. In addition, they present an algorithm that constructs 

the so called concentrated Nash equilibria, which approximate the worst-case Nash 

equilibrium within constant factors. 

Although the work of Fischer and Vocking (Vocking, 2005) has disproved the fully mixed 

Nash equilibrium conjecture for the case of weighted users and identical links, the 

possibility that the conjecture holds for the case of identical users and arbitrary links is still 

open. 
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Chapter 3 

Game theory model for load balancing 

3.1 Load Balancing 

load balancing (www.wikipedia.org, 2008) is a technique (usually performed by load 

balancers) to spread work between two or more computers, network links, CPUs, hard 

drives, or other resources, in order to get optimal resource utilization, throughput, or 

response time. Using multiple components with load balancing, instead of a single 

component, may increase reliability through redundancy.  

3.2 Game theory as basic rule for load balancing 

Game theory is the branch of decision theory with interdependent decisions, and it is 

considered as the study of MultiAgent decision problem, from these facts, we can use the 

game theory to play the rule for realization the load balancing between servers. From the 

axiom of Nash equilibrium that we can get the equilibrium between any two players as the 

well-known ―Prisoners Dilemma‖ game shown in Table 3.1. This game involves two 

players, whose names simply A and B. In this basic game, each player must 

simultaneously choose one of the two possible actions: cooperation or aggression. The 

payoff for each player depends on both of their actions, as shown in Table 3.1. For each 

pair of actions, Table 3.1 lists two numbers, the first being A’s payoff and the second being 

B’s payoff. 

Table 3.1:  A game with pervasive incentives for aggression (the Prisoners’ Dilemma). 

 B cooperative B aggressive 

       A cooperative 0,0 -8,1
* 

       A aggressive 
*
1,-8 

*
-3,-3

* 
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The asterisks (*) here indicate the best payoff that each player could get in response to 

each possible action of the other player (Myerson, 2006). 

This game has an achievement to equilibrium between these players, so it could have best 

results in achievement the load balancing between servers through the MultiAgent system. 

3.3 MultiAgent system 

The goal of MultiAgent systems’ research is to find methods that allow us to build 

complex systems composed of autonomous agents  while operating on local knowledge 

and possessing only limited abilities, are nonetheless capable of enacting the desired global 

behaviors. We want to know how to take a description of what a system of agents should 

do and break it down into individual agent behaviors. At its most ambitious, MultiAgent 

systems aim to reverse-engineering emergent phenomena as typified by ant colonies, the 

economy, and the immune system. MultiAgent systems approach the problem using the 

well proven tools from game theory, Economics, and Biology. It supplements these with 

ideas and algorithms from artificial intelligence research, namely planning, reasoning 

methods, search methods, and machine learning. 

 

 These disparate influences lead to the development of many different approaches, some of 

which end up incompatible with each other. That is, it is sometimes not clear if two 

researchers are studying variations of the same problem or completely different problems. 

Still, the model that has thus far gained most attention, probably due to its flexibility as 

well as its well established roots in game theory and artificial intelligence, is that of 

modeling agents as utility maximizers who inhabit some kind of Markov decision process. 

3.3.1 Utility 

We generally assume that an agent’s preferences are captured by a utility function (Vidal, 

2007). This function provides a map from the states of the world or outcome of game to a 

real number. The bigger the number is, the more the agent likes that particular state. 

Specifically, given that S is the set of states in the world the agent can perceive then agent 

i’s utility function is of the form 
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U: S →R          (3.1) 

Notice that the states are defined as those states of the world that the agent can perceive. 

For example, if a robot has only one sensor that feeds him a binary input, say 1 if it is 

bright and 0 if its dark, then that robot has a utility function defined over only two states 

regardless of how complicated the real world might be. In practice, agents have 

sophisticated inputs and it is impractical to define a different output for each input. Thus, 

must agents also end up mapping their raw inputs to a smaller set of world states. Creating 

this mapping function can be challenges as it requires a deep understanding of the problem 

setting. 

We can use utility functions to describe the behavior of almost every agent. Utility 

functions are also useful for capturing the various tradeoffs that an agent must make, along 

with the value or expected value of its actions. For example, we can say that a robot 

receives a certain payment for delivering a package but also incurs a cost in terms of the 

electricity used as well as the opportunity cost which he could have been delivering other 

packages. If they translate all these payments and costs into utility numbers then they can 

easily study the tradeoffs among them. 

Once they have defined a utility function for all the agents then all they have to do is to 

take actions which maximize their utility. As in Economics, they use word selfish to refer 

to a rational agent that wants to maximize its utility. Notice that this use is slightly different 

from the everyday usage of the word which often implies a desire to harm others, a true 

selfish agent simply cares exclusively about its utility. The use of selfish agents does not 

preclude the implementation of cooperative MultiAgent systems. They can view a 

cooperative MultiAgent system as one where the agents’ utility functions have been 

defined in such a way so that the agents seem to cooperate. For example, if an agent 

receives a higher utility for helping other agents then the resulting behavior will seem 

cooperative to an observer even though the agent is acting selfishly. Since they are 

concerned with building agents, they needn’t be distracted by the question of whether or 

not humans are really selfish or not. 
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3.3.2 Utility is Not Money 

Note that while utility represents an agent’s preferences which are not necessarily equated 

with money. In fact, the utility of money has been found to be roughly logarithmic. For 

example, say Bill has $100 million while Tim has $0 in the bank. They both contemplate 

the possibility of winning one million dollars. Clearly, that extra million will make a 

significant difference in Tim’s lifestyle while Bill’s lifestyle will remain largely 

unchanged, thus Tim’s utility for the same million dollars is much larger than Bill’s. There 

is experimental evidence that shows this holds for most people.  Very roughly, people’s 

utility for smaller amounts of money is linear but for larger amounts it becomes 

logarithmic. Note that here we are considering the marginal utility or money, that is, it is 

the utility for the next million dollars. We assume that both Bill and Tim have the same 

utility for their first million dollars. (Vidal, 2007) 

3.3.3 Expected Utility 

Once we have utility functions we must then determine how the agents will use them. They 

assume each agent has some sensors which it can use to determine the state of the world 

and take action. These actions can lead to new states of the world. For example, an agent 

senses its location and decides to move forward one foot. Of course, these sensors and 

effectors might not operate perfectly: the agent might not move exactly one foot or its 

sensors might be noisy 

3.3.4 Markov Decision Processes  

So far we have considered only a fixed state of the world. But, the reality in most cases is 

that agents inhabit an environment whose state changes either because of the agent’s action 

or due to some external event. They can think of the agent sensing the state of the world 

then taking an action which leads to a new state. They also make the further simplifying 

assumption that the choice of the new state therefore depends only on the agent’s current 

state and the agent’s action. This idea is formally captured by a Markov decision process or 

MDP. 
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3.3.5 MultiAgent Markov Decision Processes  

The MDP model represents the problems of only one agent, not of a MultiAgent system. 

There have been several ways of transforming an MDP into a MultiAgent MDP. The 

easiest way is simply to place all the other agents’ effects into the transition function. That 

is, assume they don’t really exist as entities and are merely part of the environment. This 

technique can work for simple cases where the agents are not changing their behavior since 

the transition function in an MDP must be fixed. Unfortunately, agents that change their 

policies over time, either because of their own learning or because of input from the users, 

are very common. 

3.3.6 MultiAgent system and game theory model for load balancing  

In our model we have agents , every agent has local knowledge and possessing limited 

abilities, and because the most commonly used problem representation in game theory is 

the payoff matrix which shows the utility the agents will receive given their actions, in this 

game, we assume that the players have common knowledge of the utilities that all players 

can receive, and we can also assume that the players take their actions simultaneously, so 

every agent (client) from his payoff can determine a suitable strategy (server) to select, and 

then to achieve the desired load balancing that we model using Netlogo simulation 

program. 
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Chapter 4 

The Model 

 

4.1 Our Model 

In our model we have dynamic number of servers and dynamic number of clients, we 

innovate a dynamic payoff matrix to evaluate the Nash equilibrium point, we will use the 

Netlogo simulation to implement this situation. Because of this dynamic clients that some 

clients arrive and other departure, for that we can implement this as queue, also we must 

take this behavior into consideration to apply the suitable distribution. 

Every server has different speed, in our model each client needs request from server but we 

fulfill the game theory fundamentals, so every client chooses a server not depending on the 

speed only, but every client must not play unilateral. 

Our model use the M/D/c queuing system in which the arrival has a Poisson distribution 

and the time spent on servers is deterministic and the number of servers can be two or four 

or six.  

In my hypothesis we assume the following variables. 

   s1
1
 : speed for server 1 

   s2: speed for server 2 

   t1: estimate time for client 1 to execute instructions. 

   t2: estimate time for client 2 to execute instructions. 

We innovated a dynamic normal form matrix (payoff matrix) based on the facts that we 

can acquire from both clients and servers. After we compute the payoff matrix the 

GAMBIT toolset was used to attain the Nash equilibrium point.  

                                                             

1
  In our thesis we assume that every execution time that need 1 second will spend this execution over 
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So the payoff for the two clients will be as following: 

Table 4.1: The payoff for two clients by meaning of variables 
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Where 
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For (s1 > s2) and (t1 > t2) the payoff matrix will be as following: 

Table 4.2: The payoff for two clients by meaning of variables 

 

 

 

 

 

 

For (s1 > s2) and (t1 < t2) the payoff matrix will be as following: 

  Client 2 

  Server 1 Server2 

Client 1 

Server 1 
1

1

t

s
        

2

1

t

s
 

2

1

t

s
    

2

2

12

t

ts 
 

Server 2 2

1

22

t

ts 
       

1

1

t

s
  

1

2

t

s
       

2

2

t

s
 

  Client 2 



32 

 

Table 4.3: The 

payoff for two 

clients by 

meaning of variables for S1 > S2 

 

 

 

 

 

For (s1 < s2) and (t1 > t2) the payoff matrix will be as following: 

Table 4.4: The payoff for two clients by meaning of variables for S1 < S2 

 

 

                

 

 

 

   For (s1 < s2) and (t1 < t2) the payoff matrix will be as following: 

Table 4.5: The payoff for two clients by meaning of variables for S1 < S2 
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We will now use several estimated times for the clients and several speeds for the servers 

and in different order to explore the efficiency for the new method in load balancing: 

4.1.1 Objective for the following example  

In the following example we have four variables: 

 t1 : estimation time for client 1 

 t2 : estimation time for client 2 

 s1 : speed for server 1 

 s2 : speed for server 2 

In the following example we have sixteen clients; every two clients have estimation 

time to serve their requests on several servers that have different speeds.  This example 

will illustrate the difference in time for the two models (Nash model and sequential 

model). 

Example: 

Table 4.6: This table compare in time between Sequential and Nash for several clients 

No. t1 t2 s1 s2 Nash point t1 on 

server 

t2 on server T on Nash T on 

seq 

1 30 17 3 2 (18,21) Server 1 Server 2 10 10 

2 30 17 2 3 (18,21) Server 2 Server 1 10 15 

3 30 20 3 1 (10,15) Server 1 Server 1 10 20 

4 15 12 2.5 3 (25,26) Server 2 Server 2 5 6 
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5 6 6 2 3 (50,50) Server 2 Server 2 2 3 

6 12 15 3 2.5 (26,25) Server 2 Server 1 5 6 

7 17 30 3 2 (21,18) Server 2 Server 1 10 15 

8 25 30 2 3 (12,10) Server 2 Server 2 10 12.5 

 

In No. 1 the payoff matrix will be as following: 

Table 4.7: The Nash equilibrium point in upper right corner 6 

 

 

 

 

1 

In No.2 the payoff matrix will be as following: 

Table 4.8: The Nash equilibrium point in lower left corner7 

 

 

 

2 

 

In No.3 the payoff matrix will be as following: 

Table 4.9: The Nash equilibrium point in upper left corner8 

                                                             

2
 The Nash equilibrium point is in bold font. 

  Client 2 

  Server 1 Server2 

Client 1 

Server 1 10  18 18            21
2
 

Server 2 4  10 7  12 

  Client 2 

  Server 1 Server2 

Client 1 

Server 1 7  12 4  10 

Server 2 18  21 10  18 
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  Client 2 

  Server 1 Server2 

Client 1 

Server 1 10  15 15  8 

Server 2 2  10 3  5 

 

In No.4 the payoff matrix will be as following: 

Table 4.10: The Nash equilibrium point in lower left corner9 

 

    

 

 

3 

In No.5 the payoff matrix will be as following: 

Table 4.11: The Nash equilibrium point in lower right corner10 

  Client 2 

 
  Server 1 Server2 

Client 1 

Server 1 33  33 33  50 

Server 2 50  33 50  50 

4 

In No.6 the payoff matrix will be as following: 

Table 4.12: The Nash equilibrium point in lower left corner11  5 

  Client 2 

 
  Server 1 Server2 

Client 1 Server 1 25  20 31  21 

  Client 2 

 
  Server 1 Server2 

Client 1 

Server 1 17  21 13  20 

Server 2 25  26 20  25 
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Server 2 26  25 21  17 
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In No.7 the payoff matrix will be as following: 

Table 4.13: The Nash equilibrium point in lower left corner12 

  Client 2 

 
  Server 1 Server2 

Client 1 

Server 1 18  10 31  12 

Server 2 21  18 12  7 

6 

In No.8 the payoff matrix will be as following: 

Table 4.14: The Nash equilibrium point in lower left corner13  7 

 

      

 

 

Finally, we implement this situation by using Netlogo V.4.0.2, so we assume that we have 

two servers and dynamic number of clients that need requests form servers, and to explore 

the difference between the Nash solution and sequential solution to obtain the optimal load 

balancing, we use two models, the first for the Nash equilibrium and the second for the 

sequential one. 

4.1.1.1 Discussion for the previous example  

From the previous example, we can draw a conclusion that from the eight runs we have 

one run only gives the same execution time, three runs the Nash model have a surpass by 

10%, one run the Nash model surpasses by about 25%, two runs the Nash model surpass 

by about 50%, and finally one run the Nash model surpasses by about 100%.  

  Client 2 

 
  Server 1 Server2 

Client 1 

Server 1 8  7 10  12 

Server 2 14  8 12  10 
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Chapter 5 

Implementing the Model 

 

5.1 Implementing the model 

The main purpose of our model is to serve the clients that arrive in a minimum time, we 

assume that every client arrives and holds his estimation time, in our model we deal with 

every two clients to determine which client to choose suitable server in order to achieve 

load balancing for the whole clients. 

So our goal is to construct a model to tell client to match the best server in order to achieve 

load balancing using Nash equilibrium which is the central concern of game theory, to 

enhance the system overall and to optimize the time needed to complete his request. 

  

  

Figure 5.1: The environment for the model of load balancing, at left side the 
servers and at the right side the clients 
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The environment setup in our model which we have from two to six servers, each one has a 

different speed, and we have a dynamic number of clients from two to thirty, each one has 

an estimation time, the experiments here reported have been programmed in Netlogo 4.0.2 

(Figure 5.1 ). 

 

The figure A.1 in the appendix show the interface for our simulation model 

The typical simulation would have a number of clients and servers, where each client has a 

request, we express this request by a red line from client to specify server. Then it would 

run until the whole clients finish their requests.  

The results we present in this thesis are mostly taken from typical runs, so the monitor 

labeled with "Total Time" denoted to the total time consumed by the all clients. Although 

we run 20 experiments and averaged the result, we obtain a desired outcome for the all 

experiments. 

In figure A.1 we have the following buttons: 

1- Switch with label Run-Nash if it is on it will run the experiment in Nash; otherwise it 

will run the experiment in sequential balancing. 

2- We have two sliders for the number of servers and clients. 

3- We have one monitor to show for us the total time spent on servers. 

We do twenty random experiments;  
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Figure 5.2: This graph represents the number of clients versus time under different number 

of servers. 
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Figure 5.3: Sequential load balancing. 

 

From Figure 5.2 and Figure 5.3 we note the following: 

When the number  of clients less than 10 clients, the difference in time less than 5 seconds, 

and when the number of clients is more than 15 clients the difference will be more than 10 

seconds between Nash load balancing and sequential load balancing. 

Second we note that when we immigrate from two servers to four servers the difference 

will be more than 60 seconds, when we immigrate to 6 servers the difference will be less 

than 30 seconds. 

Finally, our plot was linear multiplying with a constant number, so we can predict what 

will be the time at any circumstances. 
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Objective for Experiment1 

In this experiment we have six clients and two servers have different speed, we 

assume that every two clients arrive at the same t ime, we illustrate in this  

experiment how the clients will behave and  to decide which strategy (server) 

to select through strategic form table (normal form table) de pending on Nash 

equilibr ium point.  

Experiment 1 

 The following table shows the six clients, and two servers (speed 3 GHz and the second 

one 2.5 GHz respectively), the six clients each of one has the following estimation time 

respectively,  

Table 5.1: We have 6 clients and six different estimation times in sequential order. 

Client Number Estimation Time in Seconds 

1 15 

2 18 

3 20 

4 22 

5 25 

6 30 

 

In our model using Netlogo we have two methods to make a comparison between them, the 

first one sequential load balancing that every client is served by the first server and the 

second client is served by the second one respectively and so on for the remaining clients. 

The second method was the Nash load balancing which is the core of our thesis that 

depends on normal form table. 

If the switch Run-Nash is off and we push the Setup button then we push the Start button, 

after finished we can see the result on the Monitor Total time 49.91 seconds Figure A.2. 
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If we run the same experiment but we turn the Switch Run-Nash on we can observe the 

Monitor Total Time will be 47.72 seconds, Figure A.4.  

So in our Nash model we can save 2.19 seconds. 

To trace how clients choose a suitable server as following: 

Client 1 has estimation time 15 seconds and the second client 2 has 18 seconds, if we use 

the normal form table we have the following values: 

Table 5.2: The Nash equilibrium point in lower left corner 

20  17 24  17 

20  20 17  14 

 

The second column and the first row have Nash equilibrium which is the client 1 chooses 

server 2 and client 2 chooses server 1. 

Next we have client 3 20 seconds and client 4 22 seconds which give us the following 

values: 

Table 5.3: The Nash equilibrium point in upper right corner 

15  13 16  12 

13  15 12  11 

 

The Nash exists in column one and row one that's mean that client 1 chooses server 1 and 

client 2 chooses server 1 also.  

Finally we have client 5 25 seconds and client 6 30 seconds which give us the following 

values: 
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Table 5.4: The Nash equilibrium point in lower left corner 

11  9 13  10 

12  11 10  8 

 

The Nash exists in column one and row two that's mean that client 1 chooses server 2 and 

client 2 chooses server 1. 

We must take in consideration that the servers have some degradation while the clients 

serve by these servers. 

Discussion for Experiment 1: 

From these inputs we can conclude a normal form table, and from this table we can orient 

each client to serve his request by a suitable server, finally, when we use the Nash model 

the time used by clients was 47.72 seconds, where the time used by clients in sequential 

model was 49.91, the difference was 2.19 seconds. 

Objective for Experiment 2  

In the following experiment we use six clients, and two servers, in this 

experiment the est imat ion time for the clients could be the same, we assume 

every two clients arrive at the same t ime.  

Experiment 2: 

In the second experiment we have six clients and two servers the first server speed 3 GHz 

and the second one 2.3 GHz, the six clients each of one has the following estimation time 

respectively, 
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Table 5.5: We have 6 clients and six estimation time, some estimation time was equal 

Client Number Estimation Time in Seconds 

1 15 

2 12 

3 10 

4 12 

5 15 

6 12 

 

If the switch Run-Nash is off and we push the Setup button then we push the Start button 

after finished we can see the result on the Monitor Total time 16.39 seconds Figure A.3 . 

If we run the same experiment but we turn the Switch Run-Nash on we can observe the 

Monitor Total Time will be 14.9 seconds Figure A.6. 

So in our Nash model we can save 1.49 seconds. 

To trace how clients choose a suitable server as following: 

Client 1 has estimation time 15 seconds and the second client 2 has 12 seconds, if we use 

the normal form table we have the following values: 

Table 5.6: The Nash equilibrium point in upper left corner 

20  25 25  24 

12  20 15  19 

 

The first column and the first row have Nash equilibrium which is the client 1 choose 

server 1 and client 2 choose server 1 also, in this case we note that the two clients choose 

the same server to get best utilization and less time for the two clients. 

Next we have client 3 10 seconds and client 4 12 seconds which give us the following 

values: 
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Table 5.7: The Nash equilibrium point in lower left corner 

28  23 34  23 

28  28 23  19 

 

The Nash exists in column one and row two that's mean that client 1 choose server 2 and 

client 2 choose server 1.  

Finally we have client 5 15 seconds and client 6 12 seconds which give us the following 

values: 

Table 5.8: The Nash equilibrium point in upper right corner 

18  23 23  23 

12  18 15  18 

 

The Nash exists in column two and row one that's mean that client 1 choose server 1 and 

client 2 choose server 2. 

Discussion for Experiment 2: 

In this experiment we use also six clients but some clients have the same estimation time, it 

doesn’t exceed 16 seconds, and two servers have different speeds, from the results we 

obtain we can observe that the Nash model has less time for serving the clients with 

opposite to the sequential model, Nash model 14.9 seconds and the sequential model 16.39 

seconds, the difference was 1.49 seconds in this experiment. 

Objective for Experiment 3  

In the last experiment we have eight clients and two servers, the first server 

has less speed than the other one, and we illustrate in this experiment the 

performance of the Nash model over the sequent ial model.  
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Table 5.9: Eight clients every one has an estimation time 

Client Number Estimation Time in Seconds 

1 45 

2 30 

3 18 

4 14 

5 13 

6 15 

7 8 

8 8 

 

Experiment 3: 

In the third experiment we have eight clients and two servers the first server speed 2.7 GHz 

and the second one 3 GHz respectively, the eight clients each of one has the following 

estimation time respectively,  

If the switch Run-Nash is off and we push the Setup button then we push the Start button 

after finished we can see the result on the Monitor Total time 32.12 seconds Figure A.5. 

If we run the same experiment but we turn the Switch Run-Nash on we can observe the 

Monitor Total Time will be 29.37 seconds Figure A.7 

So in our Nash model we can save 2.75 seconds. 

To trace how clients choose a suitable server as following: 

Client 1 has estimation time 45 seconds and the second client 2 has 30 seconds, if we use 

the normal form table we have the following values: 
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Table 5.10: The Nash equilibrium point in lower left corner 

6  9 4  7 

10  14 7  10 

 

The first column and the second row have Nash equilibrium which is the client 1 choose 

server 2 and client 2 choose server 1  

Next we have client 3 18 seconds and client 4 14 seconds which give us the following 

values: 

Table 5.11: The Nash equilibrium point in lower left corner 

14  19 11  16 

21  24 16  21 

 

The Nash exists in column one and row two that's mean that client 1 choose server 2 and 

client 2 choose server 1.  

Next we have client 5 13 seconds and client 6 15 seconds which give us the following 

values: 

Table 5.12: The Nash equilibrium point in upper right corner 

19  17 22  22 

25  19 22  19 

 

The Nash exists in column two and row one that's mean that client 1 choose server 1 and 

client 2 choose server 2. 

Finally we have client 7 8 seconds and client 8 8 seconds which give us the following 

values: 
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Table 5.13: The Nash equilibrium point in lower right corner 

30  30 30  34 

34  30 34  34 

The Nash exists in column two and row two that's mean that client 1 choose server 2 and 

client 2 choose server 2 also. 

Objectives for Experiment 3: 

In the last experiment we use eight clients two of them have the same estimation time, and 

we have two servers, the first one has less speed contrary to the first two experiments, from 

the results we obtain we can observe that our Nash model also has less time for serving the 

clients with opposite to the sequential model, the time we save by Nash model was 2.75 

seconds for the whole experiment. 

Finally, we can summarize these results in the following table, that show the time was 

saved (in seconds) in the last row by the second method (Nash Equilibrium): 

Table 5.14: The summary for the three experiments 

Method Experiment 1 Experiment 2 Experiment 3 

Sequential Balancing 21.82 16.39 32.12 

Nash equilibrium 18.83 14.9 29.37 

Time saved /in seconds 2.99 1.49 2.75 

5.2 Discuss the results 

From the result we obtain we notice that the total time for 2 servers 30 clients 416.34 

seconds and for 4 servers 30 clients 350.25 seconds, the difference will be 66.09 seconds, 

and the total time for 6 servers 30 clients 324.58 seconds, the difference will be 25.67 

seconds, so we can see the difference when we immigrate from 2 to 4 servers is greater 

than when we immigrate from 4 to 6 servers, that Nash load balancing cannot work. 
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Chapter 6 

Conclusion 

 

6.1 Conclusion and Future Work 

From game theory fundamentals (chapter 2), we computed the Nash equilibrium which we 

discussed in (chapter 2.12.2) to have a rational choice (chapter 1.2) for every client,  that 

clients are rational and therefore game theory predicts their behavior well. If game theory 

is correct for this reason, it could reap the additional benefit of great stability and achieve 

load balancing between servers. This equilibrium that makes the game to have rational 

strategy in any decision, it also accomplishes the balancing of load (chapter 3, 3.1) 

between servers through a new technique based on dynamic strategic normal form (chapter 

4, the model) that guide the players to choose suitable strategies. 

In this thesis we develop a dynamic normal form table (As we introduce in Chapter 4) to 

explore the best server matching for the clients. Due to the complexity of solving the Nash 

equilibrium, we use the GAMBIT toolset to derive the results. We ran some simulations to 

test the performance of our system (Chapter 5). The experimental results show that the 

new technique for server matching gives us preferable results from the previous one 

"sequential load balancing"(Chapter 4). In our simulations we use the Netlogo program to 

model our system.  The techniques we explore are quite flexible, and relaxations of the 

assumptions in the model lead to interesting future research topics.   

We have demonstrated that our mathematical model (Chapter 4, Our model section) and 

our simulation agrees with each other by showing that the Nash equilibrium that exists in a 

normal form table gives us best results and this is achieved by the simulation(Chapter 5, 

Implementing the model section). 

Our main results contribute an important idea to make the normal form table more dynamic 

to give us a best server matching for every two clients. 



51 

 

We compare between two techniques (Chapter 5), the first one sequential load balancing 

and between the new models Nash load balancing, we show the improvement of the 

performance for the new model. For 2 servers the performance is 3.19% according to table 

A.4, for 4 servers the performance is 4.59%, and for 6 servers the performance is 3.98%. 

Finally, our model is linear as shown in figure.5.2.  

6.2 Future Work 

As future work, our current model does not consider a non atomic
3
 version of data, so it 

could be possible to work in this direction. Other future work may include the pure Nash 

equilibrium for the dynamic situation that was implemented through Netlogo 

simulation. Finally, we can extend this model as a MultiAgent system to have dynamic 

number of clients and servers and not to be restricted by the time requested by the clients.  

                                                             

3
  Non atomic version that client can choose more than one server to access one request. 
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Appendixes 

Twenty random experiments; we have the following results (for 2 servers): 

Table A. 1: Twenty random experiments done for two servers. 

 2 Clients 4 Clients 6 Clients 8 Clients 10 Clients 12 Clients 

 Nash Sequential Nash Sequential Nash Sequential Nash Sequential Nash Sequential Nash Sequential 

1 12.67 12.67 27.8 28.73 47.39 48.5 73.92 76.25 108.1 109.96 136.27 138.52 

2 12.67 12.67 27.8 28.74 47.39 48.59 73.98 76.32 108.22 111.3 136.78 139.29 

3 12.67 12.67 27.8 28.79 47.64 48.89 74.05 76.35 108.51 111.69 137.77 139.81 

4 12.67 12.67 27.8 28.79 47.65 48.89 74.48 76.4 109.76 112.3 137.88 139.85 

5 12.67 12.67 27.8 28.87 47.7 48.96 74.5 76.41 109.78 112.32 137.9 139.9 

6 12.67 12.67 28.68 29.01 47.86 48.97 75.01 76.42 109.95 112.84 137.96 140.71 

7 12.67 12.67 28.68 29.01 47.9 49.01 75.09 76.5 110.19 112.87 138.01 140.78 

8 12.67 12.67 28.68 29.04 47.99 49.1 75.13 76.52 110.35 112.98 138.04 140.99 

9 12.67 12.67 28.79 29.12 48.19 49.17 75.18 77.14 110.42 112.98 138.09 141.02 

10 12.67 12.67 28.79 29.12 48.54 49.33 75.25 77.19 110.44 113.05 138.85 141.03 

11 12.67 13 28.79 29.15 48.65 49.4 75.25 77.35 110.53 113.08 139.04 141.28 

12 12.67 13 28.79 29.31 48.71 49.62 75.32 77.72 110.62 113.39 139.18 141.52 

13 12.67 13 28.79 29.4 48.71 49.8 75.4 77.97 110.71 113.5 139.24 141.55 

14 12.67 13 28.79 29.46 48.72 49.88 75.45 78.07 111.06 113.89 139.44 142.3 

15 12.67 13 28.79 29.54 48.72 49.94 75.6 78.11 111.12 113.96 139.58 142.72 

16 12.67 13 28.79 29.59 48.77 50.08 75.91 78.21 111.64 114.02 139.7 142.8 

17 12.67 13 28.95 29.59 48.83 50.19 76.1 78.26 111.7 114.35 139.77 143.58 

18 12.67 13 28.95 29.62 48.86 50.23 76.27 78.63 111.88 115.49 140.51 144.08 

19 12.67 13 28.95 29.62 49 50.26 76.3 78.66 112.55 115.62 140.57 144.27 

20 12.67 13 28.95 29.62 49.17 50.31 76.71 78.76 113.1 115.85 141.4 145.79 

Av 12.67 12.84 28.56 29.21 48.32 49.46 75.25 77.36 110.53 113.27 138.80 141.59 
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Table A.1 

 14 Clients 16 Clients 18 Clients 20 Clients 22 Clients 24 Clients 

 Nash Sequential Nash Sequential Nash Sequential Nash Sequential Nash Sequential Nash Sequential 

1 145.26 153.67 170.39 174.84 194.83 201.86 219.5 225.38 261.9 266.22 291.72 299.71 

2 146.96 153.08 171.05 175.08 195.43 201.91 220.57 226.2 263.08 268.55 292.73 303.04 

3 147.39 154.37 172.17 176.94 196.1 202.82 221.08 226.78 263.48 269.37 293.11 305.67 

4 147.72 153.13 172.48 176.97 197.67 203.02 222.48 227.13 264.08 269.54 294.71 305.85 

5 147.94 149.39 172.69 177.52 197.78 203.7 222.9 228.13 265.45 270.21 295.52 305.89 

6 148.12 151.49 173.07 178.05 197.9 203.92 222.94 228.59 265.47 271.64 296 306.63 

7 148.44 153.57 173.22 178.17 197.95 204.39 224.13 229.38 265.67 272.53 296.98 307.48 

8 148.59 154.85 173.49 179.66 198.32 205.07 224.13 231.37 266.04 275.33 297.45 307.64 

9 148.73 152.08 174.17 180.15 198.49 205.56 224.29 231.97 266.39 276.47 298.15 308.35 

10 149.18 158.73 174.35 180.59 198.67 205.63 224.87 232.15 267.34 276.99 298.5 308.39 

11 149.7 155.04 174.81 182.18 199.48 205.77 225.04 232.76 267.34 277.7 298.72 309.31 

12 149.93 153.99 174.89 182.64 200.7 206.04 227.25 232.96 267.4 278.02 299.53 310.13 

13 149.95 151.76 175.04 183.31 200.77 206.55 227.3 233.06 268.29 280.23 299.81 310.66 

14 149.95 158.23 175.4 183.83 200.92 207.17 228.18 234.42 268.97 281.35 301.53 311.03 

15 150.38 152.2 175.54 184.02 201.3 208.33 229.04 235.13 270.3 282.09 302.49 311.44 

16 150.67 152.86 175.89 184.09 201.51 208.84 229.05 235.91 270.31 283.44 302.93 314.21 

17 150.78 150.11 175.9 185.16 202.93 212.03 229.57 236.32 271.77 285.15 303.33 314.4 

18 151.04 156.98 177.39 186.76 203.04 212.46 229.86 237.19 272.15 286.37 304.39 315.64 

19 151.45 148.97 178.95 188.11 203.8 213.54 230.02 238.75 272.25 286.91 304.77 320.76 

20 151.9 156.2 180.3 190.78 203.91 214.16 232.21 240.82 272.63 287.91 304.98 321.65 

Av 149.2 153.54 174.56 181.44 199.58 206.64 225.72 232.22 267.52 277.30 298.87 309.89 
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Table A.1 

 

 26 Clients 28 Clients 30 Clients 

 Nash Sequential Nash  Sequential Nash Sequential 

1 324.78 335.07 354.81 372.7 404.53 434.21 

2 327.92 336.88 358.21 372.9 406.16 438.81 

3 328.1 338.71 360.33 374.46 407.03 434.53 

4 330.85 338.83 364.6 374.86 407.99 425.22 

5 331.32 340.83 364.67 380.82 411.34 429.36 

6 332.7 341.79 367.46 381.5 412.02 415.14 

7 333.02 341.85 368.09 381.86 414.1 428.61 

8 334.17 342.38 368.39 383.85 415.6 420.74 

9 334.17 343.27 368.53 384.48 415.72 444.81 

10 335.12 343.5 369.97 384.9 415.73 426.42 

11 335.18 344.8 370.11 385.64 415.85 430.44 

12 335.3 345.87 371.73 388.22 417.73 411.23 

13 335.9 347.49 371.9 388.26 418.01 410.27 

14 336.41 348.68 372.48 389.3 420.7 447.55 

15 339.38 349.29 372.58 389.59 420.97 446.21 

16 340.25 349.52 375.76 389.87 421.12 442.66 

17 340.9 350.61 377.1 394.74 422.23 416.65 

18 341.25 350.86 379.19 395.16 422.88 426.68 

19 341.99 355.42 379.9 395.77 423.35 419.84 

20 342.22 356.14 380.75 397.75 433.76 433.96 

Av 335.1 345.09 369.83 385.33 416.34 429.17 
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And we do twenty random experiments; we have the following results (for 4 servers): 

Table A. 2: Twenty random experiments done for four servers. 

 2 Clients 4 Clients 6 Clients 8 Clients 10 Clients 12 Clients 

 Nash Seq. Nash Seq. Nash Seq. Nash Seq. Nash Seq. Nash Seq. 

1 12.02 13.66 27.24 29.52 46.31 49.58 72.9 77.21 106 113.09 131.56 137.81 

2 12.02 13.19 27.24 29.28 46.5 50.03 72 76.02 105.66 113.77 131.06 141.29 

3 12.02 13.19 27.27 30.3 46.64 52.7 72.83 78.2 106.34 111.28 132.11 139.21 

4 12.02 13.14 27.25 30.12 46.47 49.85 73.71 77.24 105.47 116.4 132.08 136.23 

5 12.02 14.7 27.24 29.66 46.9 48.17 71.97 76.95 105.44 114.94 131.5 140.08 

6 12.02 14.05 27.39 29.62 46.29 50.68 73.07 77.14 104.67 112.81 131.46 138.5 

7 12.02 14.05 27.25 29.46 46.35 49.53 73.03 78.94 106.6 111.72 133.26 136.95 

8 12.02 14.05 27.21 30.01 46.42 50 72.66 77.08 106.96 113.23 131.69 139.73 

9 12.02 13.66 27.27 30.21 46.52 49.41 72.55 76.77 105.93 107.03 133.19 137.73 

10 12.02 14.05 27.31 29.75 46.75 49.53 73.58 76.81 105.53 112.63 131.87 140.52 

11 12.02 12.14 27.25 29.66 46.97 48.19 72.43 75.72 104.89 112.14 130.92 139.91 

12 12.02 14.7 27.27 29.28 46.4 51.15 73.57 77.98 104.85 114.56 132.07 138.84 

13 12.02 12.14 27.24 29.42 46.32 51.37 72.76 76.54 104.46 114.35 131.34 136.69 

14 12.02 13.66 27.24 29.75 46.43 49.45 73.05 75.26 104.08 111.15 131.84 141.33 

15 12.02 13.19 27.39 29.52 46.63 50.36 72.24 76.39 104.76 115.62 131.48 137.63 

16 12.02 12.67 27.31 29.85 46.44 48.33 72.97 76.01 105.4 116.18 132.45 136.55 

17 12.02 13.19 27.21 29.66 46.37 48.66 73.35 76.86 105.86 112.68 133.11 139.8 

18 12.02 14.52 27.27 29.96 46.38 47.75 72.83 76.94 105.19 112.37 131.03 138.46 

19 12.02 12.14 27.21 29.32 47.07 49.9 74.14 76.73 105.92 112.64 130.18 141.31 

20 12.02 12.67 27.27 29.28 46.53 50.29 72.51 75.66 105.93 112.84 130.67 139.71 

Av 12.02 13.44 27.27 29.68 46.53 49.75 72.91 76.82 105.50 113.07 131.74 138.91 
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Table A.2 

 14 Clients 16 Clients 18 Clients 20 Clients 22 Clients 24 Clients 

 Nash Sequential Nash Sequential Nash Sequential Nash Sequential Nash Sequential Nash Sequential 

1 142.64 146.13 165.85 175.77 184.9 197.23 205.77 217.54 243.99 251.31 267.6 280.02 

2 141.61 148.89 164.71 176.35 186.88 195.37 206.13 216.18 239.75 248.45 265.8 276.6 

3 141.34 147.42 165.59 167.4 186.27 194.95 207.28 217.17 242.41 248.58 269.89 277.89 

4 143.22 150.06 162.94 174.82 189.42 191.25 206.05 217.17 242.68 256.68 270.22 284.12 

5 141.96 150.79 164.86 172.5 187.43 195.85 211.76 217.11 241.83 257.1 266.6 283.73 

6 144.02 148.51 165.55 169.27 185.03 198.28 207.37 218.26 241.79 255.77 270.12 271.96 

7 140.83 146.83 166.82 173.23 184.12 198.45 209.22 214.64 241.22 253.51 269.13 275.83 

8 140.67 151.46 164.9 175.28 185.59 198.73 207.73 218.62 239.84 257.36 264.68 283.42 

9 140.24 149.3 165.16 173.77 186.3 195.46 204.55 214.48 239.77 252.67 268.33 277.17 

10 143.33 151.5 162.02 172.84 184.09 199.03 205.86 215.87 241.7 254.36 267.8 279.83 

11 143.72 151.79 164.13 175.03 184.97 191.25 207.1 218.86 244.53 251.17 266.6 276.98 

12 141.77 148.28 164.13 166.76 185.47 197.26 207.32 217.15 242.12 252.11 270.64 281.32 

13 141.28 147.32 164.32 171.26 185.6 197.63 208.18 221.17 240 250.19 267.87 281.96 

14 141.02 150.73 162.85 175.33 187.15 195.88 203.5 212.91 238.92 254.15 270.18 284.76 

15 141.79 150.05 165.31 170.46 187.6 190.86 208.38 217.8 243.76 255.76 266.91 279.11 

16 141.35 148.11 164.47 175.49 186.13 196.8 204.19 215.35 241.99 256.89 267.09 277.95 

17 140.63 149.79 164.42 172.16 183.47 194.96 205.44 218.54 239.65 252.17 266.72 281.03 

18 140.89 148.6 165.23 174.88 184.56 195.6 211.88 214.08 243.53 243.37 270.19 276.98 

19 140.05 148.45 164.51 169.79 186.37 191.96 206.59 214.44 243.55 252.16 267.48 282.82 

20 141.41 152.32 162.44 171.41 186.39 191.27 206.07 217.54 240.82 250.24 267.55 281.35 

Av 141.69 149.32 164.51 172.69 185.89 195.40 207.02 216.74 241.69 252.70 268.07 279.74 
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Table A.2 

 26 Clients 28 Clients 30 Clients 

 Nash Sequential Nash  Sequential Nash Sequential 

1 293.22 308.52 317.67 335.2 345.46 371.95 

2 291.82 301.49 315.89 335.51 349.4 362.52 

3 295 300.82 315.72 336.61 351.49 359.58 

4 296.95 302.36 317.22 334.22 346.81 359.82 

5 293.14 299.62 315.08 324.75 350.35 358.67 

6 294.49 310.39 324.68 338.91 349.34 370.62 

7 291.31 313.39 320.14 325.9 347.56 363.52 

8 294.49 314.55 323.53 326.35 356.56 371.27 

9 293.16 306.92 316.23 332.96 354.54 362.06 

10 292.25 301.98 320.36 331.38 349.57 361.42 

11 293.95 303.62 319.88 332.41 350.24 372.92 

12 294.85 301.49 321.64 330.97 347.47 359.74 

13 291.38 302.24 319.67 337.9 355.77 364.06 

14 295.39 300.17 319.16 334.32 347.87 370.68 

15 289.15 309.27 320.32 334.03 351.75 369.34 

16 291.38 306.57 321.39 326.44 353.93 365.03 

17 290.41 302.25 320.33 331.08 347.84 370.32 

18 292.75 309.08 322.71 326.47 351.68 365.5 

19 296.96 303.54 316.74 328.74 346.37 362.68 

20 290.57 314.46 313.17 328.47 350.96 362.12 

Av 293.13 305.64 319.08 331.63 350.25 365.19 
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And we do twenty random experiments; we have the following results (for 6 servers): 

Table A. 3: Twenty random experiments done for six servers 

 2 Clients 4 Clients 6 Clients 8 Clients 10 Clients 12 Clients 

 Nash Seq. Nash Seq. Nash Seq. Nash Seq. Nash Seq. Nash Seq. 

1 11.84 12.22 26.89 29.55 45.4 48.44 70.41 77.27 101.81 108.78 126.17 135.79 

2 11.84 13.56 26.79 28.58 45.45 49.1 70 72.92 102.58 110 127.26 132.92 

3 11.84 12.9 26.94 29.13 45.34 47.81 70.31 77.42 102.19 107.82 126.1 133.66 

4 11.84 13.7 26.89 28.47 45.16 48.89 69.93 75.85 102.35 106.78 126.65 134.67 

5 11.84 13 26.79 30.38 45.2 48.44 70.21 73.66 102.45 107.47 126.61 132.71 

6 11.84 13.14 26.83 29.4 45.24 49.33 69.98 72.73 101.84 109.1 125.94 131.94 

7 11.84 13.66 26.79 29.75 45.2 48.89 69.82 74.92 101.77 108.3 126.06 134.37 

8 11.84 13.56 26.94 30.38 45.46 48.19 70.58 76.55 101.59 105.69 126.21 136.05 

9 11.84 13.96 26.79 29.52 45.14 48 69.86 72.83 101.37 108.37 126.98 133.28 

10 11.84 12.32 26.79 29.7 45.46 48.72 69.84 76.78 101.53 106.71 125.97 134.12 

11 11.84 13.17 26.94 28.82 45.14 48.33 69.56 72.81 101.76 110.57 126.3 132.22 

12 11.84 12.41 26.85 28.58 45.16 49.15 69.66 74.95 101.74 110.24 126.46 131.43 

13 11.84 11.84 26.79 29.11 45.28 49.17 69.93 76.3 102.79 109.38 126.86 132.59 

14 11.84 13.66 26.94 29.78 45.22 47.95 69.86 73.7 101.13 108.32 127.56 133.58 

15 11.84 13.93 26.79 27.51 45.22 48.36 70.11 75.58 102.34 109.57 126.49 132.04 

16 11.84 14.52 26.94 30.26 45.41 48.38 70.02 75 102.01 109.63 125.66 134.89 

17 11.84 14.05 26.85 29.57 45.44 49.07 70 73.67 102.58 111.07 126.33 131.96 

18 11.84 12.32 26.85 30.54 45.41 48.21 69.69 75.39 101.2 109.09 126.89 133.8 

19 11.84 12.41 26.89 29.87 45.4 48.82 69.78 74.46 101.05 109.84 126.03 132.29 

20 11.84 12.9 26.83 28.54 45.22 48.8 69.78 73.94 102.23 107.37 125.88 136.35 

Av 11.84 13.16 26.86 29.37 45.30 48.60 69.97 74.84 101.92 108.71 126.42 133.53 
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Table A.3 

 14 Clients 16 Clients 18 Clients 20 Clients 22 Clients 24 Clients 

 Nash Sequential Nash Sequential Nash Sequential Nash Sequential Nash Sequential Nash Sequential 

1 135.21 141.3 157.99 167.25 175 187.09 196.57 206.89 227.21 239.3 254.96 265.48 

2 135.68 144.26 156.73 163.78 176.27 183.42 193.14 200.82 227.58 238.64 255.29 262.66 

3 134.47 142.55 155.5 158.91 174.76 185.74 198.45 209.32 229.35 236.14 251.92 258.16 

4 135.88 138.31 155.07 163.49 176.21 187.53 195.19 200.28 228.6 237.15 251.87 261.09 

5 135.86 145.96 156.05 163.95 177.21 187.22 195.25 204.17 227.64 232.54 250.83 258.52 

6 134.95 141.95 157.11 166.21 176.44 183.19 195.88 201.26 230.22 240.84 252.57 258.5 

7 135.28 140.24 157.61 165.95 178.4 180.79 197.34 203.47 225.27 241.06 252.76 258.88 

8 134.41 144.87 157.1 162.16 175.04 186.68 197.63 204.71 227.81 236.44 252.78 261.49 

9 135.83 141.88 156.2 161.05 175.86 184.46 195.8 202.02 227.79 237.67 255.01 256.56 

10 135.42 144.44 158.32 161.7 175.9 187.08 196.62 200.67 229.22 244.48 250.23 261.15 

11 135.58 142.87 156.7 157.88 175.33 182.97 194.93 201.58 227.61 237.37 250.1 259.99 

12 135.6 141.61 156.63 162.69 176.56 181.94 194.93 198.17 229.99 238.91 252.29 261.95 

13 135.6 140.73 157.16 166.6 176.58 183.6 195.94 206.9 227.28 238 251.3 257.29 

14 136.19 141.29 158.75 169.2 176.32 184.55 197.24 204.35 229.97 237.8 254.88 257.64 

15 135.6 140.96 157.04 162.97 177.56 184.79 196.05 203.45 227.49 236.15 253.54 260.45 

16 136.92 140.4 158.18 162.2 176.26 186.64 196.39 203.16 225.96 238.47 253.12 261.83 

17 134.96 143.95 157.8 162.26 176.41 184.63 196.27 202.37 225.9 234.64 249.84 260.23 

18 135.63 141.83 156.12 162.6 176.02 182.03 196.12 201.87 230.74 236.66 251.73 259.69 

19 136.01 142.47 156.99 163.26 176.55 186.15 196.71 201.96 228.16 234.63 251.07 260.46 

20 134.11 140.24 156.32 165.01 176.48 183.93 194.92 198.52 227.07 235.68 252.09 260.89 

Av 135.46 142.11 156.97 163.46 176.26 184.72 196.07 202.80 228.04 237.63 252.41 260.15 
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Table A.3 

 26 Clients 28 Clients 30 Clients 

 Nash Sequential Nash  Sequential Nash Sequential 

1 276.2 287.27 300.33 312.32 323.15 339.95 

2 272.47 279.81 295.18 305 325.4 334.55 

3 274.72 281.69 297.36 305.74 325.27 332.34 

4 273.59 281.83 296.12 305.36 328.56 333.63 

5 276.29 280.55 297.2 308.03 324.35 334.44 

6 276.93 282.1 297.32 305.64 323.58 335.88 

7 275.02 284.69 298.06 311.79 324.31 327.79 

8 274.18 281.56 298.5 307.39 322.04 334.98 

9 272.82 289.27 294.81 309.48 323.25 333.35 

10 275.21 282.89 295.7 305.54 327.82 335.08 

11 275.96 286.44 297.47 308.32 326.06 334.45 

12 272.3 281.72 297.48 303.48 323.83 335.51 

13 277.56 279.42 299.54 305.87 324.66 331.95 

14 273.88 286.17 298.28 304.37 321.96 336.62 

15 271.78 292.59 299.73 310.58 323.99 338.62 

16 275.16 280.5 294.91 303.84 326.33 337.25 

17 276.53 290.39 298.65 310.35 325.13 334.58 

18 271.68 286.51 298.43 306.25 322.3 330.65 

19 273.1 283.98 297.14 303.88 327.39 333.22 

20 272.13 282.12 299.14 298.55 322.21 337.41 

Av 274.38 284.08 297.57 306.59 324.58 334.61 
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The average for the two strategies 

Table A. 4: This table is average of averages variables for Nash and Sequential. 

Servers  

   Strategy 

Av (Av(Nash)) Av(Av(Sequential)) R=
𝜎𝑛

𝜎𝑠
× 100% 

2 190.052 196.32 96.81% 

4 171.15 179.38 95.41% 

6 161.6 168.28 96.02% 

 

 

The standard deviation for the two strategies 

Table A. 5: This table is standard deviation of averages variables for Nash and Sequential. 

Servers  

   Strategy 

StDev (Av(Nash)) StDev(Av(Sequential)) R=
𝜎𝑛

𝜎𝑠
× 100% 

2 126.89 131.5 96.49% 

4 107.8 111.8 96.42% 

6 99.94 102.39 97.61% 
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Figure A. 1: The environment for the simulation model. 
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Figure A. 2: The sequential load balancing for the first experiment. 
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Figure A. 3: The sequential load balancing for the second experiment. 
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Figure A. 4: The Nash Equilibrium load balancing for the first Experiment. 
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Figure A. 5: The sequential load balancing for the third experiment. 
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Figure A. 6: the Nash equilibrium load balancing for the second experiment. 
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Figure A. 7: The Nash equilibrium load balancing for the third experiment. 
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