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Characterization of WWOX
Inactivation in Murine Mammary
Gland Development
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2Al Quds-Bard Honors College and Medical Research Center, Al-Quds University, East Jerusalem-Abu Dies, Palestine
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Columbus, Ohio

The WW domain-containing oxidoreductase (WWOX) is commonly inactivated in multiple human cancers, including breast cancer.
Wwox null mice die prematurely precluding adult tumor analysis. Nevertheless, aging Wwox-heterozygous mice at C3H genetic
background develop higher incidence of mammary tumors. We recently generated a Wwox conditional knockout mouse in which loxp
sites flank exon 1 in theWwox allele and showed that total ablation ofWWOX in these mice resembles that of conventional targeting of
Wwox. Here, we report the characterization of WWOX ablation in mouse mammary gland using MMTV-Cre transgenic line. We
demonstrated that WWOX ablation leads to impaired mammary ductal growth. Moreover, targeted deletion of WWOX is associated
with increased levels of fibronectin, a component of the extracellular matrix. In addition, we showed that shRNA knockdown ofWWOX
in MCF10A breast epithelial cells dramatically increased fibronectin and is associated with enhanced cell survival and impaired growth in
three-dimensional culture Matrigel assay. Taken together our results are consistent with a critical role for WWOX in normal breast
development and tumorigenesis.
J. Cell. Physiol. 228: 1391–1396, 2013. � 2012 Wiley Periodicals, Inc.

The WW domain-containing oxidoreductase (WWOX) was
identified as a potential tumor suppressor in breast cancer
(Bednarek et al., 2000). Several lines of evidence support this
fact: (1) loss or reduced expression of WWOX occurs in
approximately two-thirds of breast cancers due to frequent
loss of heterozgosity and/or hypermethylation of its regulatory
element (Guler et al., 2005; Nunez et al., 2005; Aqeilan et al.,
2007a).WWOX loss is associated with more aggressive breast
cancers including basal and triple negative subtypes (Aqeilan
et al., 2007a); (2)WWOXoverexpression inWWOX-negative
breast cancer cells attenuates cell growth in vitro and
inhibits tumor growth in immunocompromised mice
(Bednarek et al., 2001; Iliopoulos et al., 2007); (3) Aging
Wwox-heterozygous C3H mice strain spontaneously develop
higher incidence of mammary tumors (Abdeen et al., 2011);
(4) at the molecular level WWOX inhibits the transactivation
function of well known oncoproteins implicated in breast
carcinogenesis including AP2g (Aqeilan et al., 2004) and ErbB4
(Aqeilan et al., 2007a, 2005). These findings led to hypothesize
that WWOX acts as a tumor suppressor in breast cancer.
Since Wwox-knockout mice die at or before weaning age
(Aqeilan et al., 2008, 2007b; Ludes-Meyers et al., 2009), detailed
analysis of mammary development and tumorigenesis was not
possible so far.

The WWOX protein encodes a 46-kDa that contains two
WW domains and a short-chain dehydrogenase/reductase
domain (SDR) (Bednarek et al., 2000; Ried et al., 2000). Through
its firstWWdomain,WWOX binds and regulates localization,
stability, and transactivation function of PPxY-containing
proteins [reviewed in (Del Mare et al., 2009; Salah et al., 2010)].
The SDRdomainwas shown to bind non-PPxY proteins (Chang
et al., 2007), though no substrates were identified.

To better explore the tumor suppressor function of
WWOX in vivo, we recently set a strategy to generate a
conditional knockoutmousemodel for theWwox gene (Wwoxfl/
fl) hoping this would enable careful adult tumor analysis.Wwoxfl/
flmice are viable and fertile (Abdeen et al., 2012). Breeding these
mice with a general deleter (EIIa-Cre) transgenic strain resulted
in phenotypes resembling conventional Wwox knockout mice,

that is, sever metabolic defect, bone growth defects and death
by 3weeks of age (Abdeen et al., 2012). These findingswere also
consistent with data obtained from (Ludes-Meyers et al., 2009).

To examine the possible role of WWOX in mammary
development and adult mammary tumorigenesis, we generated
mice with a targeted deletion of Wwox in the mammary gland
epithelium (WwoxMGE�/�). Analysis of mammary gland
development in these mice revealed a transient defect in
branching morphogenesis and ductal outgrowth. Monitoring
these mice for more than a year did not associate with
spontaneous mammary tumor formation. Nevertheless,
mechanistic insight into mammary gland biology revealed
impaired expression of fibronectin. Additionally, WWOX
knockdown in immortalized mammary epithelial MCF10A cells
was associated with increased fibronectin levels and enhanced
survival and spheroid formation. These results suggest an
important role of WWOX in mammary gland biology and
tumorigenesis.
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Materials and Methods
Animals

Wwoxfl/fl mice (Abdeen et al., 2012) were crossed with MMTV-Cre
(obtained from JAX laboratory, Bar Harbor, ME; #003553).
Genotyping of Cre was performed using the following primers:
Forward, 50-ATG TCC AAT TTA CTG ACC GTA CAC C-30;
50-Reverse, CGC CTG AAG ATA TAG AAG ATA ATC G-30. All
experiments involving mice were approved by the Hebrew
University Institutional Animal Care and Use Committee.

Whole-mount mammary gland analysis

Excised mammary fat pad (MFP) were spread onto glass slides and
fixed with Tellyesniczky’s fixative overnight. MFPs were then
soaked in three changes of 100% acetone each for 6 h, followed by
2 h-treatments with each 100%, 95%, and 70% ethanol, and stained
with 0.2% carmine red overnight. After rinsing in water, MFPswere
dehydrated sequentially in 50%, 70%, 95%, and 100% ethanol each
for 2 h, cleared with xylene overnight and examined under a
dissecting microscope. Mammary gland whole mounts were
evaluated by extent of ductal outgrowth: maximal outgrowth
beyondMFP lymph nodemeasured inmillimeters. Aminimumof 3–
5 mice per age-category and genotype were analyzed.

Immunohistochemistry

Tissues were fixed in 4% formalin. Paraffin-embedded tissue
sectionswere deparaffinized and rehydrated. Antigen retrieval was
performed in 10mM sodium citrate buffer pH 6.0 (for fibronectin,
ER, CK5, SMA, and CK18) or EDTA buffer pH 8.0 (for b-catenin,
Ki67, and WWOX) using pressurized chamber for 2.5min.
Endogenous peroxidasewas blockedwith 3%H2O2 for 10min. The
sections were then incubated with blocking solution (CAS Block,
Invitrogen, Grand Island, NY) for 30min to reduce non-specific
binding followed by incubation with the primary antibody:
Polyclonal anti-WWOX antibody (Guler et al., 2005) [dilution of
1:15,000], or rabbitmonoclonal anti CK5 antibody (ab52635, 1:350
from Abcam, Cambridge Science Park, Cambridge, UK), or mouse
monoclonal anti smooth muscle actin (SMA) (MA1-37027, 1:600
from Thermo Scientific, Waltham, MA), or goat polyclonal anti-
cytokeratine 18 (sc-31700, 1:300 from Santa Cruz, Santa Cruz,
CA), or rabbit monoclonal anti Ki67 (RM-9106-S, 1:100 from
Thermo Scientific), or rabbit polyclonal anti fibronectin (ab2413,
1:300 from Abcam), or mouse monoclonal anti b-catenin (610154,
1:200 from BD Transduction, San Jose, CA) in humidity chamber
for overnight incubation. Slides were subsequently incubated with
horseradish peroxidase-conjugated anti-rabbit or anti-mouse or
anti-goat immunoglobulin antibody for 30min. The enzymatic
reactionwas detected in a freshly prepared 3,3 diamminobenzidine
tetrahydrochloride using DAKO Liquid DAB Substrate-
Chromogen (Carpinteria, CA) Solution for several minutes at
room temperature. The sections were then counterstained with
hematoxylin.

Isolation of primary mouse epithelial cells (MECs)

Mammary glands were isolated and minced from the indicated
mice. For each gram tissue, 5ml digestion mix [DMEM media, 5%
fetal bovine serum, 1% penstrep, 1:100 collagenase A (from stock
1.5mg/ml) and 1:1,000 DNase-I (from 10mg/ml stock)] was added
and left for 1.5 h at 378C under moderate shaking (50 rpm). MECs
were separated from fat by differential centrifugation (three times)
at 700g for 3000. MECs were washed twice with PBS.

RNA extraction and RT-PCR

Total RNA was isolated using Tri reagent (Sigma, St Louis, MO).
RNA (1mg) was reversed transcribed using the iScript cDNA
synthesis kit (Bio-Rad Laboratories, Hercules, CA). Real-time PCR
was done using SYBRGreen PCRMaster Mix (Applied Biosystems,
Foster City, CA). The real-time PCR was performed using Ubc

primers: Forward 50-CAG CCG TAT ATC TTC CCA GAC T-30,
Reverse 50-CTC AGA GGG ATG CCA GTA ATC TA-30 and
Wwox primers: Forward 50-TCA CAC TGA GGA GAA GAC
CCA-30, Reverse 50-CCT ATT CCC GAA TTT GCT CCA-30.

Immunoblotting

Whole cell lysates were prepared using lysis buffer containing
50mMTris (pH 7.5), 150mMNaCl, 10% glycerol, 0.5%Nonidet P-
40, and protease inhibitors (1:100). Lysates were resolved on SDS/
PAGE. Antibodies used were Rabbit polyclonal anti-GST-WWOX
(1:10,000) (Guler et al., 2005) andmousemonoclonal anti-GAPDH
(1:10,000) (Calbiochem, San Diego, CA) and rabbit polyclonal anti-
fibronectin (1:1,000; Sigma–Aldrich, St. Louis, MO; cat # F3648).

Cell culture assays

Immortal MCF10A cells were cultured as in (Debnath et al., 2003)
For colony formation assay, MCF10A cells were plated at a density
of 300 cells/well in a sixwells plate in triplicate. After 1–2weeks the
cells were fixed with 70% Ethanol, stained with Giemsa and
counted. The test was performed in triplicates. For three-
dimensional (3D) culture assay, 3,000 cells were seeded on a
solidified layer of growth factor reduced Matrigel measuring
approximately 1–2mm in thickness. The cells are grown in an assay
medium containing 5 ng/ml EGF and 2% Matrigel. To test for cell
survival, the growth medium was depleted of growth factors.

Statistical analysis

Results were expressed as mean� SD or� SEM. The Student’s
t-test was used to compare values of test and control samples.
P< 0.05 indicated significant difference.

Results
Characterization of WWOX expression in the
developing mammary gland

To characterize the role ofWWOX in murine mammary gland
development, we determined theWWOX protein expression
levels during the different stages. Mammary gland epithelium
from virgin (3, 5, and 8 weeks), pregnant (P18.5) and lactating
females from control (Wwoxfl/fl) mice were isolated, paraffin
embedded and immunostained with anti-WWOX antibodies
(Fig. 1). At 3 weeks of age, very low levels of WWOX were
detected. Of note, WWOX levels were induced in 5 and
8 weeks virgin mammary gland epithelium. WWOX levels
continue to be high at pregnancy, although therewas a tendency
of decreased levels, while it reached peak levels in lactating
glands (Fig. 1). These results suggest that WWOX might be
important for proper mammary gland epithelium function,
particularly at early stages of puberty (4 weeks).

Specific WWOX ablation in mammary gland epithelium
(WwoxMGE�/�) mice

To investigate the role of WWOX in pubertal mammary gland
development,Wwoxfl/flmice were bred with anMMTV-Cre strain.
Proper mice genotypes were next used to examine WWOX
expression and its ablation. Histological sectioning of mammary
glands and immunohistochemistry using anti-WWOX antibodies
revealed absence ofWWOX inWwoxMGE�/� mice as compared
toWwoxfl/fl mice (Fig. 2A). Absent WWOX was correlated with
expression of CRE as indicated in Figure 2B. This was further
confirmed by quantitative real-time PCR of Wwox mRNA
expression in P18.5 females (Fig. 2C).

WWOX knockout at puberty induces transient delay of
ductal growth

To further learn about WWOX significance during mammary
gland maturation, carmine red-stained mammary fat pad (MFP)
from 3-, 5- and 12-week-old, virgin Wwoxfl/fl and WwoxMGE�/

�micewere analyzed. At 3 and 5weeks of age, mammary glands
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of WwoxMGE�/� mice exhibited a statistically significant
retardation in ductal outgrowth relative to Wwoxfl/fl (Fig. 3A).
At 12 weeks of age, mammary glands of WwoxMGE�/� mice
displayed variable growth of ducts and branching as compared
with Wwoxfl/fl mice (Fig. 3A,B); that is, in �50% of mice we
observed higher number of branching though this could be due
to the mosaic effect of MMTV-cre recombinase (Wagner et al.,
1997). This later effect could also resemble a compensatory
effect due to the early ductal growth retardation.

Quantification of ductal growth in both mice genotypes is
shown in Figure 3C.

Previous analysis of Wwox-heterozygous mice at the
susceptible mammary tumor C3H genetic background,
revealed increased incidence of mammary tumors as compared
with wild type littermates (Abdeen et al., 2011). Therefore, we
set to determine whether conditional Wwox ablation in
mammary gland epithelium is sufficient to induce spontaneous
mammary tumors. Examining of WwoxMGE�/� and Wwoxfl/fl

Fig. 2. Conditional knockout ofWWOX inmammary gland epithelium usingMMTV-cre transgenic mice. A: Immunohistochemical staining of
mammaryglandepitheliumisolatedfrom2-monthwildtype(Wwoxfl/fl)versusconditionalknockout(WwoxMGE�/�)usinganti-WWOXantibody.B:
Immunohistochemical staining of mammary gland epithelium isolated from 2-month-old in wild type (Wwoxfl/fl) versus conditional knockout
(WwoxMGE�/�) using anti-Cre antibody. Scale bar represents 50mm. C: Real-time PCR of WWOX using total RNA isolated from mammary
epithelial cells (MECs) isolated from pregnant mice.

Fig. 1. WWOX expression during mammary gland development. H&E (upper) and immunohistochemical (IHC) staining using anti WWOX
antibody (lower) were performed onmammary glands excised from wild type mice at different ages as indicated. Magnification bar represents
50mm.

Fig. 3. TargetedWWOXdeletion results in delayed ductal growth. A: Carmine red staining of wholemountmammary fat pad of the indicated
virgin ages. Magnification of 0.7T (A) and 4T (B). C: Quantification of ductal outgrowth beyond the MFP lymph node at different ages of virgin
females. Error bars indicate SEM.
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mice in mixed B6-129 genetic background up to 16-month-old
did not reveal a tumor phenotype (data not shown).

WWOX loss is associated with upregulation of
fibronectin in the developing mammary gland

To further learn on the phenotype obtained in WwoxMGE�/�

mice, we examined several keymarkers for themammary gland
epithelium. Immunohistochemical analysis of luminal
cytokeratin-18 (K18), basal (K-5) showed very mild differences
betweenWwoxMGE�/�mice and their counter control mice at 5
weeks, respectively (Fig. 4A). We also examined whether
proliferation (Ki67) is affected and found no significance
differences between WwoxMGE/mice and their counter
control mice at 5 and 8 weeks (Fig. 4A,B). Staining of b-catenin
also did not reveal major differences among the different
genotypes, though a slight increase in nuclear b-catenin was
observed in 4 weeks old virgin mammary glands (Fig. 4A,B).
Interestingly, we observed a clear and significant difference in
fibronectin staining specifically at 4–5 weeks old mice.
WwoxMGE�/� mice displayed higher levels of fibronectin as
compared to control littermates (Fig. 4C).

Knockdown of WWOX in MCF10A cells is associated
with impaired growth and acinar morphogenesis

To further investigate whether WWOX loss in normal human
breast epithelial cells would have an impact on the ability of
these cells to form acini, we utilized non-transformed,
immortalized MCF10A human breast epithelial cells. MCF10A
immortalized breast epithelial cells serve as an in vitro model
system to understand normal epithelial function and
development. MCF10A cells express low-moderate levels of
WWOX (Fig. 5A). WWOX knockdown effectively lowered
WWOX protein levels up to 90% in two cell lines (Fig. 5A).
Interestingly, fibronectin levels became higher in MCF10A-
shWWOX cells (Fig. 5A) consistent with our in vivo data
(Fig. 4C). Analysis of cell survival revealed that WWOX
knockdown led to enhanced cell survival as compared to
control, approximately fourfold greater in MCF10A-
shWWOX cells (Fig. 5B). Next, we conducted a three-
dimensional culture Matrigel assay. An equal number of
cells were plated onto Matrigel in the absence or presence
of EGF, and acinar formation was followed at different times

after culturing the cells. MCF10A-shWWOX cells formed
acini in the presence or absence of EGF as early as 3–4 days,
whereas visible acini were only seen in MCF10A control cells in
the presence of EGF (Fig. 5C). Furthermore, the acini
morphology of MCF10A-shWWOX cells was less organized.
Collectively, these data show that WWOX loss in vitro is
associated with impaired growth of normal mammary epithelial
cells.

Fig. 4. Immunohistochemical stainingofmammaryepithelialmarkersduringmammarydevelopment.A: Immunohistochemical stainingof the
different indicatedmarkersofvirgin5-weekoldmice(A),8weeksoldmice(B).C: Immunohistochemicaloffibronectinofthe indicatedvirginmice.
Magnification bar represents 50mm.

Fig. 5. Effect of WWOX knockdown on MCF10A cells. A:
Immunoblot analysis of MCF10A cells transduced with empty vector
(EV) or shRNAs against WWOX. Whole cell lysates were probed
with antibodies against fibronectin andWWOX.GAPDHwas used as
a loading control. B: Clonogenic assay of MCF10A cells. The number
of surviving colonieswas counted after 2weeks.Data are presentedas
meanWSD. C: Effect of WWOX knockdown in MCF10A cells on
spheroid formation in three-dimensional Matrigel culture. Spheroid
formation progression is shown on Day 14.

JOURNAL OF CELLULAR PHYSIOLOGY

1394 A B D E E N E T A L .



Discussion

Previous characterization ofWWOX function in breast cancer
exposed its tumor suppressor function (Chang et al., 2007;
Lewandowska et al., 2009; Salah et al., 2010). In fact,WWOX is
deleted or altered in high percentage of breast cancer cases and
its overexpression in breast cancer cells suppresses
tumorigenecity (Guler et al., 2005; Iliopoulos et al., 2007;
Aqeilan et al., 2007a). However, the outcome of WWOX
ablation on murine mammary development could not be
revealed so far due to the postnatal lethality of conventional
Wwox�/� mice (Aqeilan et al., 2007b, 2008). In the current
study, we examined the phenotype of specific Wwox
inactivation in mammary gland epithelium. Our results
demonstrate that Wwox ablation is associated with impaired
ductal growth and increased fibronectin levels. Furthermore,
WWOX knockdown in immortalized MCF10A cells revealed
increased cell survival and impaired 3D cell culture spheres.
Together, these findings argue for an important function of
WWOX in normal mammary biology.

Our data demonstrate that WWOX expression in
mammary gland epithelium is induced at 3–4 weeks of age. It is
also at this age that we observed a delayed ductal growth in
WwoxMGE�/� mice suggesting that WWOX expression at this
time is playing a critical role. These findings are in agreement
with recent observations of Ferguson et al. (2012). Analysis of
several mammary lineage markers revealed no major
differences between knockout and control mice. Of note, we
also observed some inconsistencies in mammary ductal
branching and density in 2–3 months old WwoxMGE�/� mice.
This could be well related to the known mosaic MMTV-Cre
expression in ductal mammary epithelium (Wagner et al.,
1997). Importantly, depletion of WWOX expression in the
normal MCF10A mammary cell demonstrates increase survival
and impaired 3D culture further highlighting WWOX role in
normal breast development.

A novel WWOX effector that is revealed from our study is
fibronectin. Fibronectin is a component of the extracellular
matrix that is known to play a critical role as a mitogen and in
invasion/migration (Williams et al., 2008; Jinka et al., 2012). The
major fibronectin transducer is integrin a5b1 through which it
signals to induce its biological functions including proliferation,
migration and invasion. Fibronectin levels are increased in
mammary glands of WwoxMGE�/� mice and in WWOX-
depleted MCF10A cells. In a recent report, (Gourley et al.,
2009) demonstrate that WWOX overexpression in ovarian
cancer cells results in reduced attachment and migration on
fibronectin. How does WWOX lead to increased levels of
fibronectin is to be determined. Intriguingly, specific ablation of
fibronectin in mammary epithelium is also associated with
transient retardation in outgrowth and branching of the ductal
tree (Liu et al., 2010). It is thus possible that the observed
increased in fibronectin levels could stem from a compensatory
effect due to the impaired ductal growth. Nevertheless, it is
very likely that ablation of WWOX in mammary gland
epithelium affects other signaling pathways that remains to be
revealed.

The fact that WwoxMGE�/� mice did not develop mammary
tumors further confirm our previous observations in
convectional Wwox-heterozygous mice at the B6-129 mixed
genetic background which did not form mammary tumors as
well. By contrast, Wwox-heterozygous mice at the mammary
tumor susceptible C3H genetic background exhibited
significantly higher incidence of mammary tumors as compared
with litter-matched control mice (Abdeen et al., 2011). It is thus
necessary to examine the incidence of mammary tumor
formation of WwoxMGE�/� mice in C3H or other mammary
tumor susceptible genetic backgrounds.Nonetheless, there are
several examples in the literature showing that mice deficient

for classical tumor suppressors do not develop tumors.
For example, p53 null mice rarely develop mammary
tumors (Donehower, 1996). It is only when transferring
the p53-targeted alleles into the balb c genetic background
that some aging p53-heterozygous mice (42%) develop
mammary tumors of different kinds (Kuperwasser et al., 2000).
Additionally, specific ablation of p53 alleles (Trp53D2-10) in
mammary gland epithelium at 129/FVB mixed background
does not associatewithmammary tumors (Jonkers et al., 2001).
However, cooperative inactivation of different tumor
suppressors, such as BRCA2 and BRCA1, with p53
results in mammary tumor development (Jonkers et al., 2001;
Liu et al., 2007). It is also possible that WWOX plays a
role in mammary tumor progression and that other earlier
event are necessary to lead to tumor formation. Taken
together, the notion that WwoxMGE�/� mice at the B6-129
mixed genetic background did not develop mammary
tumors does not question WWOX tumor suppressor
role in breast cancer. Further research work would decipher
the specific contribution of WWOX toward breast
carcinogenesis.

In conclusion, the present study demonstrates that
expression ofWWOX in normal breast epithelial cells is critical
for proper ductal growth and survival.
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