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Abstract 

Nonsteroidal anti-inflammatory drugs (NSAIDs) or Cyclooxygenase-2 enzyme inhibitors are a 

mainstay in the treatment of inflammatory disease and are among the most widely used drugs 

worldwide. In this thesis, Quantitative structure–activity relationship study using principal 

component artificial neural network (PC-ANN) methodology was performed to predict the 

inhibitory activities expressed as pIC50 of 121 cyclooxygenase-2 (COX-2) inhibitors. We 

divided these compounds to two parts according to chemical structure as tricyclics (part 1) 

which has 48 chemical compounds and non-tricyclics (part 2) that has 73 chemical 

compounds. The results for each part obtained by PC-ANN give advanced regression models 

with good prediction ability. Part 1: the two optimal artificial neural network models obtained 

have correlation coefficients of 0.937 and 0.924. The lowest prediction sum of squares 

(PRESS) value obtained for the prediction set is 3.947 which accounts for better predictability 

of the model. Part 2: the two optimal artificial neural network models obtained have 

correlation coefficients of 0.823 and 0.757. The lowest prediction sum of squares (PRESS) 

value obtained for the prediction set is 4.727. Artificial neural networks provide improved 

models for heterogeneous data sets. Both the external and cross-validation methods are used to 

validate the performances of the resulting models. Randomization test is employed to check 

the suitability of the models. 
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:الملخص  

الانتقائية والتي تنتمي إلى فصيلة الأدوية المسماة مضادات الالتهاب  COX- 2مثبطات إنزيم

هي الأكثر استخداماً في العالم لعلاج أمراض متعددة منها التهاب المفصل ( NSAIDs) اللاستيروئيدية 

وفي دراستنا هذه ؛ , ل الألم والتورم في المفاصل وفي العضلاتالروماتويدي وتساعد أيضاً على تقلي

مركب كيميائي يعمل كمثبط لهذا الإنزيم لكل مركب صيغة بنائية معروفة وتقدر فاعلية كل  121جمعنا 

ومن ثم تم تقسيم هذه المركبات ( . 50IC)مركب على تثبيط الإنزيم بقيمة محسوبة مخبرياً ويعبر عنها ب  

مركبات ذات الحلقات الثلاثية ومركبات لا تمتلك )لى الصيغة البنائية لكل مركب إلى قسمين بالاعتماد ع

وقد قمنا في هذه الدراسة ببناء علاقات كمية خطية ما بين هذه المركبات وفاعليتها باستخدام (.حلقات ثلاثية

(MLR ) , كما تم استخدام(ANN-PC )لتي تم الحصول إن النتائج ا .لبناء علاقات كمية غير خطية

عليها باستخدام العلاقات المختلفة التي قمنا بها توضح أن العلاقة الغير خطية قد أعطت نتائج أفضل من 

حيث أن معامل الارتباط للعلاقات الأفضل التي تم الحصول عليها للقسم الأول من المركبات . الخطية

الثاني فان معامل الارتباط للعلاقات أما في القسم .  7.9.3( PRESS)مع أقل قيمة  0.924و  0.937

وبعد ذلك تم فحص . 323..( PRESS)مع أقل قيمة  3.3.3و  3.827الأفضل التي تم الحصول عليها 

هذه العلاقات بطريقة اختبار العشوائية وتبين لنا قدرة هذه العلاقات على التنبؤ بفاعلية مركبات أخرى لم 

 .تستخدم في بناء هذه العلاقة
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1.1 Cyclooxygenase-2 Inhibitors 

Nonsteroidal anti-inflammatory drugs (NSAIDs) or Cyclooxygenase enzyme inhibitors are a 

mainstay in the treatment of inflammatory disease and are among the most widely used drugs 

worldwide
1
. Vane in 1971 showed the pharmacological action of aspirin that is the first 

NSAID with therapeutic benefits
2
 , which has now been used for more than 100 years as a 

NSAID.
1 

NSAIDs or Cyclooxygenase enzyme inhibitors are anti-inflammatory, antipyretic, and 

analgesic. They are prescribed as first choice for the treatment of rheumatic disorders as well 

as relieving the pains of everyday life.
1-3 

A large number of epidemiological studies have indicated that the use of NSAIDs may prevent 

or delay the clinical features of Alzheimer’s disease and the users of (NSAIDs) could be of 

benefit against the development and growth of malignancies. In contrast, the main limitation 

in using NSAIDs consists in their side effects, including bronchospasm and gastrointestinal 

ulcerogenic activity including complications such as bleeding and perforation.
3-5

 

Cyclooxygenase enzyme (COX enzyme) is available in two isoforms, COX-1 and COX-2; 

however the traditional non-steroidal anti-inflammatory drugs (NSAIDs) inhibit both enzymes. 

Whereas, a new class of COX-2 selective inhibitors (COXIBs) preferentially inhibit the COX-

2 enzyme.
6
 

Cyclooxygenase (COX) is the key enzyme required for the conversion of arachidonic acid to 

prostaglandins
 
that are involved in physiological functions such as protection of the stomach 

mucosa, aggregation of platelets and regulation of kidney function. They also have 

pathological functions such as their involvement in inflammation, fever and pain.
7-8 

Cyclooxygenase (COX) or prostaglandin H2 synthase (PGHS) is the enzyme that catalyzes the 

first two steps in the biosynthesis of the prostaglandins (PGs) from the substrate arachidonic 

acid (AA). These are the oxidation of AA to the hydroperoxy endoperoxide PGG2 and its 

subsequent reduction to the hydroxyl endoperoxide PGH2. The PGH2 is transformed by a 

range of enzymes and nonenzymic mechanisms into the primary prostanoids, PGE2, PGF2α, 

PGD2, PGI2, and TXA2 .
9 

As shown in the following figure (1.1). 
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Figure (1.1): Schematic representation of cyclooxygenase pathway. 

Inhibition of the PGHSs with NSAIDs acutely reduces inflammation, pain, and fever, and 

long-term use of these drugs reduces fatal thrombotic events, as well as the development of 

colon cancer and Alzheimer's disease. 
10

 

COX-1 is referred to as a constitutive isoform and is constitutively expressed throughout the 

gastrointestinal system, the kidneys, the vascular smooth muscle and platelets. COX-1 is 

presumably involved in the housekeeping functions of PGs, such as the cytoprotective effects 

in the gastric mucosa, the integrity of platelet function and the maintenance of renal perfusion. 

Conversely, COX-2 is undetectable in most tissues, but its expression can be induced by a 

variety of stimuli related to inflammatory response. COX-2 is, therefore, commonly referred 

to as the inducible COX isoform because, like other immediate-early genes, it can be rapidly 

up-regulated in during various conditions response to growth factors and cytokines.
11-12

 

The differences between COX-1 and COX-2 represent in their chemical structure, three amino 

acid differences result in a larger (about 20%) and more accessible channel, in COX-2. The 

exchange of a valine at position of 523 in COX-2 for a relatively bulky isoleucine (Ile) residue 

in COX-1 at the same position of the active site of the enzyme causes a structural 

modification. This modification in the COX-2 enzyme allows the access to an additional side 

pocket, which is a pre-requisite for COX-2 drug selectivity. Access to this side pocket is 
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restricted in the case of COX-1. In addition, the exchange of Ile-434 for a valine in COX-2 

allows a neighboring residue phenylalanine-518 (Phe-518) to swing out of the way, increasing 

further access to the side cavity. There is another essential amino acid difference between the 

two isoforms, which does not alter the shape of the drug-binding site but rather changes its 

chemical environment. Within the side pocket of COX-2 is an arginine in place of histidine-

513 (His-513) in COX-1, which can interact with polar moieties. But also the cyclooxygenase 

active site is created by a long hydrophobic channel that is the site of non-steroidal anti-

inflammatory drug binding.
 13-14

 

The undesirable side-effects of NSAIDs are thought to be due to the inhibition of COX-1 

(constitutive isoform), whereas the beneficial effects are related to the inhibition of COX-2 

(inducible isoform) but increasing selectivity for COX-2 also increased toxicity, since the anti-

thrombotic prostacyclin is formed by COX-2 and inhibiting its synthesis precipitated heart 

attacks. The problem of this side action has not yet been resolved.
1, 15

 

The discovery of cyclooxygenase-2 and the establishment of its structure led to the 

development of selective inhibitors of this enzyme, such as celecoxib and rofecoxib, with 

potent anti-inflammatory actions but with reduced gastrotoxic effects.
15

 

Within the last two decades, the volume of literature on the structural types introduced as 

selective COX-2 inhibitors is enormous. In this review
13

, they have chosen to focus on the 

structure activity relationship (SAR) and also various structural families of compounds, which 

have emerged within the last years. Contrary to the classic NSAIDs, this new class of enzyme 

inhibitors is lacking a carboxylic group, thus effecting COX-2 affinity by a different 

orientation within the enzyme without formation of a salt bridge in the hydrophobic channel of 

the enzyme.
13

 

In general classification, selective COX-2 inhibitors belong to two major structural classes:  

1) Tricyclics    and     2) Non-tricyclics. 

 

Tricyclics: 

All of the compounds in this class possess 1,2-diarylsubstitution on a central hetero or 

carbocyclic ring system with a characteristic methanesulfonyl, sulfonamido, azido, 

methanesulfonamide or pharmacophore-based tetrazole group on one of the aryl rings that 

plays a crucial role on COX-2 selectivity. Coxibs such as Celecoxib, Rofecoxib, Valdecoxib 

and etc, belong to this common structural class. 
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Non-tricyclics “lack the cyclic central core”. 

In addition to the classical tricyclic COX-2 inhibitors such as Coxib family, there are several 

non-classical structures which we here classify as non-tricyclics. These series of compounds 

lack the cyclic central core. Instead, they possess acyclic central systems such as olefinic, 

iminic, azo, acetylenic and α,β-unsaturated ketone structures. The central acyclic core may 

contain a two-membered or three-membered chain structure which is the basic point for sub 

classification of these compounds.
13

 

1.2 COMPUTATIONAL CHEMISTRY 

The term computational chemistry is generally used when a mathematical method is 

sufficiently well developed that it can be automated for implementation on a computer. Note 

that the words ``exact'' and ``perfect'' do not appear in these definitions. Very few aspects of 

chemistry can be computed exactly, but almost every aspect of chemistry has been described 

in a qualitative or approximately quantitative computational scheme. The challenge in 

computational chemistry is to simplify the calculation enough to be solvable, but still accurate 

enough to predict the desired physical quantity.
16

 

Molecular descriptors have been applied extensively in, for example, bioinformatics, network 

biology structure-oriented drug design, medicinal chemistry, chemometrics, chemical graph 

theory, and mathematical chemistry. Also, their positive impact in quantitative structure–

activity relationship/quantitative structure–property relationship (QSAR/QSPR) has been 

demonstrated and important subgroups of descriptors such as topological indices have been 

explored.
 17

 

There are two ways to approach chemistry problems: computational quantum 

chemistry and non-computational quantum chemistry. Computational quantum chemistry is 

primarily concerned with the numerical computation of molecular electronic structures by ab 

initio and semi-empirical techniques and non-computational quantum chemistry deals with the 

formulation of analytical expressions for the properties of molecules and their reactions. 
18

 

Scientists mainly use three different methods to perform numerical computation: 

1) Ab initio calculation:  

“ab initio” is Latin for “from the beginning” We begin with fundamental physical properties, 

and we calculate how electrons and nuclei interact. Most often this requires solving 

approximations to the time-independent Schödinger equation. Occasionally we need to solve 

the time-dependent Schödinger equation. 
16
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Schrödinger equation: 

Given the importance of the ability to calculate the electronic structure of a molecule in 

computational chemistry, it is important to outline, albeit briefly, the underlying theory that 

both the commonly used semi-empirical and density functional methods attempt to solve. The 

mathematics is complex and will be kept to an absolute minimum, the aim being to set the 

scene concerning the various components that must be dealt with if quantum mechanics is to 

be utilized to help understand the electronic structure of chemicals. The subsequent sections 

dealing with the commonly used semi-empirical and density functional approaches will 

highlight how each of these methods approximates these important mathematical 

components.
19

 

The starting point of any discussion into quantum mechanics is always the time-independent 

Schrödinger equation. 

Schrödinger equation (1.1); 

Hψ= Eψ  
 

(1.1) 

Where H is the Hamiltonian operator,  

E is the energy of the molecule and; 

Ψ is the wave function which is a function of the position of the electrons and nuclei within 

the molecule. 

 

An essential part of solving the Schrödinger equation is the Born–Oppenheimer 

approximation, where the coupling between the nuclei and electronic motion is neglected. This 

allows the electronic part to be solved with the nuclear positions as parameters, and the 

resulting potential energy surface (PES) forms the basis for solving the nuclear motion. The 

major computational effort is in solving the electronic Schrödinger equation for a given set of 

nuclear coordinates.
20

 

 

2) Semi-empirical techniques: 

Semiempirical quantum chemistry attempts to address two limitations, namely slow speed and 

low accuracy, of the Hartree-Fock (HF) calculation by omitting or parameterizing certain 

integrals based on experimental data, such as ionization energies of atoms, or dipole moments 

of molecules. As a result, semiempirical methods are very fast, applicable to large molecules, 

and may give accurate results when applied to molecules that are similar to the molecules used 
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for parameterization. On the downside, accuracy of semiempirical methods is erratic on many 

systems. 

 

The success of semi-empirical methods relies on turning the remaining integrals into 

parameters, and fitting these to experimental data, especially molecular energies and 

geometries. Such methods are computationally much more efficient than the ab initio HF 

method, but are limited to systems for which parameters exist.
 20-21 

 

Molecular mechanics, the molecular mechanics energy expression consists of a simple 

algebraic equation for the energy of a compound. It does not use a wave function or total 

electron density. The constants in this equation are obtained either from spectroscopic data or 

ab initio calculations. A set of equations with their associated constants is called a force field. 

The fundamental assumption of the molecular mechanics method is the transferability of 

parameters. In other words, the energy penalty associated with a particular molecular motion, 

say, the stretching of a carbon-carbon single bond, will be the same from one molecule to the 

next. This gives a very simple calculation that can be applied to very large molecular 

systems.
16

 

1.3 Quantitative structure activity relationship (QSAR)  

QSARs, or quantitative structure–property relationships (QSPRs), are mathematical models 

that attempt to relate the structure-derived features of a compound to its biological or 

physicochemical activity. This method has predictive and diagnostic abilities. They can be 

used to predict the biological activity (e.g., IC50) or class (e.g., inhibitor versus non inhibitors) 

of compounds before the actual biological testing. They can also be used in the analysis of 

structural characteristics that can give rise to the properties of interest.
22

 

There are many practical purposes of a QSAR, includes the following:- 

• To predict biological activity and  physico-chemical properties by rational means. 

• To comprehend and rationalize the mechanisms of action within a series of chemicals.  

Underlying these aims, the reasons for wishing to develop these models include 

1) Savings in the cost of product development (e.g. in the pharmaceutical, pesticide, personal 

products, etc. areas). 

2) Predictions could reduce the requirement for lengthy and expensive animal tests. 
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3) Reduction (and even, in some cases, replacement) of animal tests, thus reducing animal use 

and obviously pain and discomfort to animals. 

4) Other areas of promoting green and greener chemistry to increase efficiency and eliminate 

waste by not following leads unlikely to be successful. 
23 

 

TECHNIQUES AND TOOLS OF QSAR:- 

The process of QSAR model development can be generally divided into three stages: data 

preparation, data analysis, and model validation. The first stage includes selection of a 

molecular dataset for QSAR studies, calculation of molecular descriptors, and selection of a 

QSAR (statistical analysis and correlation) method. 

Data preparation starts by selection of the data set to be used; this may simply be the 

extraction of data from a database or may need additional experimental studies. There are two 

steps to complete data preparation: geometry optimization and descriptors calculation. 

Geometry optimization or minimization is finding the coordinates that represents the potential 

energy minimum. Theoretical molecular descriptor is a value that describes the molecular 

structure numerically. These descriptors can be simple such as molecular weight or complex 

such as geometrical descriptors.  

In data analysis, the first step is to decide which techniques for statistical analysis and 

correlation to be used. If our correlation models to be built are linear then we use multilinear 

regression (MLR) or non linear then we use artificial neural network (ANN). Model validation 

is the final part of the model development process, the predictive power of the model is tested 

on an independent set of compounds, generally predictive power is the most important 

characteristics of the model and model predictivity is the ability of the model to predict 

accurately the target activity of a compound that was not used for model development. 

In model validation step, most of validation processes implement the leave one out (LOO) 

and leave many out (LMO) cross-validation procedures. The most common outcome 

parameters resulted from cross-validation procedures are cross-validated determination 

coefficient q2(R
2
cv) and root mean squares error (RMSE). High R

2
cv and low RMSE values 

is a result of good and more predictive model and that lead to better description of the 

observed data.  

Finally and the most important advantage of QSAR is that we can use QSAR resultant models 

outside the range of the data set; the model can be used to design new drugs depending on the 

most effective descriptors.
24
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The QSAR models employ descriptors and statistical approaches to provide an estimation of 

the desired property and the molecular descriptors play a fundamental role in developing 

models for chemistry, pharmaceutical sciences, environmental protection policy, toxicology, 

health research, and quality control. Evidence of the interest of the scientific community in 

molecular descriptors is provided by the huge number of descriptors that have been proposed: 

more than 5000 descriptors, derived from different theories and approaches are defined and 

computable by using dedicated software of chemical structure. 
25 

 

Examples of different types of descriptors: 

Constitutional Descriptors: Molecular weight, Number of atoms of various elements, Number 

of bonds of various orders, Number of rings 

Topological Descriptors: Weiner index, Randic indices, Kier and Hall indices, Information 

content, Connectivity index, Balaban index 

Quantum Chemical Descriptors: highest occupied molecular orbital energy (HOMO) and 

lowest unoccupied molecular orbital energy (LUMO), reactivity indices, Refractivity, Total 

energy, Ionization potential, Electron affinity, Energy of protonation, Orbital populations, 

Frontier orbital densities. 

Chemical Descriptors: Octanol-water partition coefficient (LogP), Surface area, refractivity, 

volume, polarizability.
16

 

 

Developing QSAR models starts with the collection of data for the property of interest while 

taking into consideration the quality of the data. It is necessary to exclude low-quality data as 

they will lower the quality of the model. Following that, representation of the collected 

molecules is done through the use of features, namely molecular descriptors, which describe 

important information of the molecules. There are many types of molecular descriptors but not 

all will be useful for a particular modeling task. Thus, uninformative or redundant molecular 

descriptors should be removed before the modeling process. Subsequently, for tuning and 

validation of the QSAR model, the full data set is divided into a training set and a testing set 

prior to learning. Various modeling methods like multiple linear regression, logistic 

regression, and machine learning methods are used to build models that describe the empirical 

relationship between the structure and property of interest. The optimal model is obtained by 

searching for the optimal modeling parameters and feature subset simultaneously. This 

finalized model built from the optimal parameters will then undergo validation with a testing 

set to ensure that the model is appropriate and useful.
22
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In our lab, several QSAR studies have been applied for many topics that got good results over 

last years to predict compounds' properties, including biological activity, physical property 

and even toxicity.
26-30 

 

Statistical methods 

Sometimes QSAR statistical methods are also classified into the following two categories, 

depending upon the type of correlation technique employed to establish a relationship between 

structural properties and biological activity: 

•Linear methods including linear regression (LR), multiple linear regression (MLR), partial 

least-squares (PLS), and principal component analysis/regression (PCA/ PCR). 

•Non-linear methods consisting of artificial neural networks (ANN), k-nearest neighbors 

(kNN), and Bayesian neural nets.
 31

 

 

1.4.1 Multiple Linear Regressions 

Multiple linear regressions (MLR) is a method used to model the relationship between two or 

more explanatory variables (x1, x2,….,xp) and a response variable “dependent variable” (Y), 

and the relationship between them is represented by the following equation (1.2): 

yi =β0 + β1xi1 + β2xi2 + ... + βpxip + ei          (1.2) 
 

Where: 

β0 is the constant term and β1 to βp are the coefficients relating the independent variables 

(descriptors) to the variable of interest. 

 ei: is an error term. 

Multiple linear regression finds a correlation between molecular structures and their 

corresponding property (biological activity) through a linear combination of structural 

descriptors, and the quality of the obtained model is estimated by the correlation coefficient R 

between the observed values of the investigated property (y) and those predicted by Equation 

(1.2), and the important thing; the molecular descriptors in the model should be independent of 

each other and the number of instances for model building should be at least five times the 

number of descriptors used.
 32-34

 

In a regression analysis we study the relationship, called the regression function, between one 

variable (predicted values) y, called the dependent variable, and several others xi (descriptors), 
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called the independent variables then the use and interpretation of multiple regression models 

often depend on the estimates of individual regression coefficient. The predictor variables in a 

regression model are considered orthogonal when they are not linearly related. But, when the 

regressors are nearly perfectly related, the regression coefficients tend to be unstable and the 

inferences based on the regression model can be misleading and erroneous, this condition is 

known as multicollinearity.
34-36

 

 

Construction of a model that describes the relationship of the highly correlated X-data with a 

property y (biological activity) is then problematic when applying the classic multiple linear 

regression (MLR) approach, since the regression coefficients cannot be calculated. A possible 

remedy for this problem is to select several orthogonal variables either using some preliminary 

knowledge or using a variable selection scheme. Another more general and efficient strategy 

to deal with the multicollinearity in X-data is to obtain a few orthogonal variables that 

describe the covariance between X-data and y. The partial least squares (PLS) regression has 

proved to be a successful tool for this purpose.
37

 

In fitting an MLR model, the goal is to find the “best” estimates of the coefficients (β) that 

minimize the differences between all of the observed responses (yi) and the corresponding 

model prediction ( y
i
 ). In the same manner as for simple linear regression, the coefficients are 

found by minimizing the sum of the squares of the errors (i) (that is, minimize 

  i =  (yi - yi    ) in a least squares regression analysis.
38 

 

1.4.2 Partial least squares 

Partial least squares (PLS) is a method for constructing predictive models when the factors are 

many and highly collinear. 

In principle, MLR can be used with very many factors. However, if the number of factors gets 

too large (for example, greater than the number of observations), you are likely to get a model 

that fits the sampled data perfectly but that will fail to predict new data well. This 

phenomenon is called over-fitting. In such cases, although there are many manifest factors, 

there may be only a few underlying or latent factors that account for most of the variation in 

the response. The general idea of PLS is to try to extract these latent factors, accounting for as 

much of the manifest factor variation.
39 
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The PLS regression model may be written as the following equation (1.3): 

 

 

(1.3) 

 

Where Y is an appropriate activity, bi are the PLS regression coefficients, xi is the  ith 

descriptor value, and N is the total number of descriptors. This is not apparently different from 

MLR, except that the values of the coefficients b are calculated using PLS. However, the 

assumptions underlying PLS are radically different from those of MLR. In PLS one assumes 

the x-variables to be collinear and PLS estimates the covariance structure in terms of a limited 

number of weights and loadings. In this way, PLS can analyze any number of x-variables 

relating to the number of objects (N). 
40

 

A partial least squares (PLS) algorithm is used for this type of fitting. This method starts with 

matrices of field data and activity data. These matrices are then used to derive two new 

matrices containing a description of the system and the residual noise in the data. Earlier 

studies used a similar technique, called principal component analysis (PCA). PLS is generally 

considered to be superior.
16

 

PLS has been applied on various QSAR studies like inhibitors of vascular endothelial growth 

factor receptor-2 (VEGFR-2) tyrosine kinase.
30

 

 

1.4.3 Artificial Neural Networks (ANNs) 

The Artificial Neural Networks (ANNs) are a type of mathematical model that simulates the 

biological nervous system and draws on analogues of adaptive biological neurons. A 

biological neuron receives inputs from many external resources, combines them, performs a 

non-linear operation, and then makes a decision based on the final results.  

ANNs are known to be a powerful tool to simulate various non linear systems and have been 

applied to numerous problems of considerable complexity in many field including 

pharmaceutical research, engineering, psychology and medicinal chemistry; hence ANNs have 

been shown to be an effective tool to establish this type of relationship and predict the 

activities of new compounds.
 
In addition, ANNs are certainly very useful in the preformulation 

design and would help reduce the cost and length of preformulation study.
41

 

Artificial neural network consists of input layer, one or more hidden layers and one output 

layer; the input layer provides data from the external source. The mapping of the input data 

occurs by neural network hidden layers, and then the final representative signal is generated 
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by the output layer. The ability of neural networks to classify information depends on hidden 

layers, which are fully connected by the synapses to the neighboring layers. In each hidden 

layer and output layer, the processing sums up its input from previous layer by the sigmoidal 

function to compute the output to the following layer. As shown in the figure (1.2) 

 

Figure (1.2): A schematic of four layered artificial network. Input layer units (in blue) receive 

input signals (X1, X2, X3) and transfer the signal to the hidden layers. Output layer receive the 

signals provides the representative output signal. 

The ANN learns an approximate nonlinear relationship by a procedure called training, which 

is the search process for the optimized set of weight values to minimize the squared error 

between the estimation and experimental data of units in the output layer. Most commonly 

used methods is back-propagation method, which requires three simple steps—network 

design, learning or training, and usage. In the network design stage the number of connections 

and layers is selected based on the type of application. Then, the training stage requires of 

selection of training set of data and remodeling of the network to minimize the error. And 

lastly, following the training ANN is suitable to use. 

Number of hidden layers is essential to the purpose and function of an ANN as it influences 

the number of connections in the network and, thus, its performance. A very common 

approach to select the optimal number of hidden nodes is by trial and error method.
42

 

For better predictive model we used principle component analysis (PCA) which is a useful 

tool for reducing the number of variables in a data set and for obtaining useful two 

dimensional views of a multi-dimensional data set.  

Principal component analysis (PCA) and more specifically factor analysis (FA) groups 

together variables that are collinear to form a composite indicator capable of capturing as 
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much of common information of those indicators as possible. Each factor reveals the set of 

variables having the highest association with it. The idea under this approach is to account for 

the highest possible variation in the indicators set using the smallest possible number of 

factors.  

PCA was used to classify the molecules into training, validation and prediction sets. 

Application of PCA on a descriptor data matrix results in a loading matrix containing factors 

or principal components, which are orthogonal and therefore do not correlate with each other. 

We used these factors as the inputs of ANN instead of the original descriptors.
43 

 

1.5 QSAR modeling software: 

There are many commercial or free software available for QSAR development. These include 

specialized software for drawing chemical structures, generating 2D structures, calculating 

chemical descriptors, developing QSAR models, and general-purpose software that have all 

the necessary components for QSAR development.  

 

1.5.1 HyperChem (http://www.hyper.com/) 

HyperChem is a sophisticated molecular modeling program and simulation program that is 

known for its quality, flexibility, and ease of use. And it offers many types of molecular and 

quantum mechanics calculations. Furthermore, HyperChem calculates some of QSAR 

descriptors, some of structural properties, studying dynamic behavior, etc. 

 HyperChem lets you build and display molecules easily. Since HyperChem contains a 

graphical interface, you can monitor the construction of molecules. And by using the Drawing 

tool, you can draw a two-dimensional (2D) representation of a molecule, and then use the 

Model Builder to generate a three-dimensional (3D) structure. HyperChem tool icons are 

shown in the following figure (1.3): 

http://www.hyper.com/
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Figure (1.3): HyperChem window and tool icons 

To calculate the properties of a molecule, you need to generate a well-defined structure. A 

calculation often requires a structure that represents a minimum on a potential energy surface. 

HyperChem contains several geometry optimizers to do this. You can then calculate single 

point properties of a molecule or use the optimized structure as a starting point for subsequent 

calculations. 

 

1.5.2-Dragon (http://www.talete.mi.it/products/dragon_description.htm) 

Dragon is commercial software for the computation of molecular descriptors. Dragon version 

5.5 can compute 3224 molecular descriptors which are divided into 22 blocks. These blocks 

include constitutional or topological descriptors, walk and path counts, connectivity or 

information indices, 2D autocorrelations, BCUT descriptors, topological charges indices, 3D-

MoRSE descriptors, WHIM descriptors, GETAWAY descriptors, functional group counts, 2D 

frequency fingerprints and so on. Dragon can work in both Windows and Linux, and it also 

has simple functions for conducting preliminary graphical and statistical analysis of 

descriptors, for example, histograms, Pareto plots, and 2D and 3D scatter plots. 
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1.5.3 SPSS software  (http://www-01.ibm.com/software/analytics/spss/) 

The software name stands for Statistical Package for the Social Sciences (SPSS), is 

software for managing data and calculating a wide variety of statistics. But in our study we use 

SPSS software to perform multiple linear regression analysis. 

SPSS consists of two windows: Data Editor and Data Views 

1) Data editor has two views: “Data View” and “Variable View”. The Data Editor 

window (As shown in figure (1.4)) has two views that can be selected from the lower 

left hand side of the screen. Data View is where you see the data you are using. 

Variable View is where you can specify the format of your data when you are creating 

a file or where you can check the format of a pre-existing file. The data in the Data 

Editor is saved in a file as shown in the following figure: 

 

Figure (1.4): Data editor window. 

2) The Output Viewer (As shown in figure (1.5)) collects your statistical tables and 

graphs, and gives you the opportunity to edit them before you save or print them. The 

Output Viewer is divided into two main sections, an outline pane on the left, and a 

tables pane on the right. When you print your output, it is the tables pane that is 

printed. As shown in the following figure: 

http://www-01.ibm.com/software/analytics/spss/
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Figure (1.5): Output viewer window. 

 

1.5.4-MATLAB (http://www.mathworks.com/products/matlab/)  

MATLAB is commercial software that provides an interactive system for algorithm 

development, data visualization, data analysis, and numeric computation with wide application 

in image processing, financial analysis, computational biology, and so on. Data can be 

analyzed easily with ready-to-use functions, but users are also allowed to customize some of 

these tools or add their own algorithms for use. It also has functions to integrate MATLAB-

based algorithms with external applications and languages such as Microsoft Excel, Java, and 

C++ .This enables developed QSAR models to be easily distributed as stand-alone programs 

or software modules. 

 

 

 

 

 

http://www.mathworks.com/products/matlab/
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1.6 Objective 

The objective of this study is to develop QSAR models for inhibition activity of 121 chemical 

compounds of cyclooxygenase-2 inhibitors, we divided 121 chemical compounds into two 

major structural parts: Tricyclics with 48 chemical compounds and Non-tricyclics with 73 

chemical compounds, by applying different statistical methods such as MLR, PLS and PC-

ANN these models will be used to design new COX-2 inhibitors. 
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The objective of this study was to build QSAR model that can predict the activity of new 

chemical compound as COX-2 inhibitor, using several statistical methods performed by 

several types of software. 

This QSAR model is achieved by the following steps:- 

- Data preparation 

- Extracting the descriptors 

- Choosing the informative descriptors 

- Modeling the descriptors 

 

2.1 Data preparation: 

2.1.1 Data selection 

A data set of 121 chemical structures of Cyclooxygenase-2 inhibitors and their biological 

activity (pIC50) were obtained from the literature (44-57), and we divided this data set to two 

classes according to chemical structure: 

- Tricyclic chemical structures (Part 1) from the literature (44-49):  These compounds 

have a tricyclic structure with variety of cores as hetero or carboxylic ring system or 

olefin. 

- Non-tricyclic (Part 2) from the literature (50-57): These compounds lack the cyclic 

central core, and have monocyclic structures or bicyclic structures. 

The chemical structures and the biological activities of each class (Tricyclics and Non-

tricyclics) are summarized in tables (2.1) and (2.2), respectively. 

The biological activity of each compound is expressed as pIC50, it’s the negative logarithm of 

the IC50 value in molar, which means negative logarithm of the concentration of drug 

required for half-maximal inhibition of COX-2 enzyme inhibitors, and it is used to measure 

the effectiveness of a substance in inhibiting cyclooxygenase-2 enzymes. 

 This is the formula for nanomolar conversion of IC50 values to pIC50 values  

pIC50 = -log (IC50*10^-9) 

 

  



21 | P a g e  
 

Table (2.1): Molecular structures and observed inhibitory activities of the 48 COX-2 

inhibitors expressed as pIC50.  (Part 1) 

 

O

N
S

CH
3

OO

R

O

H

 

 

Compound 

number 

Index * R 1 pIC50 

 

1
P 

11a H 5.770 

2
V 

11b F 5.495 

3
V 

11c Cl 6.097 

4
V 

11d Br 5.495 

5
P 

11e Me 6.046 

6
V 

11f OMe 4.502 

*Ref 44 
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O

O

O

n

 

S

O

O

CH
3

15 , 16   

O

N

O

S

O

O

n

 

O-R

CH
3

17 , 18       

O O

S

O

O

CH
3

N
COOROH

20  

 

 

Compound 

number 

Index * n R pIC50 

 

7
C 

15 0 --- 5.921 

8
C 

16 1 --- 5.456 

9
P 

17a 0 H 5.854 

10
C 

17b 0 CH3 5.538 

11
V 

18a 1 H 5.569 

12
C 

18b 1 CH3 4.955 

13
C 

20a --- CH(Me)2 5.180 

14
C 

20c --- Ph 5.959 

15
C 

20d --- CH2Ph 4.921 

*Ref 45 
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R1

R2

S

O

O

Me

2 a-g or 12a-b or 13a-e  

R1

14  

 

Compound 

number 

Index * R 1 R2 pIC50 

16
C 

9a Me H 6.201 

17
V 

9b Et H 5.921 

18
P 

9c n-C4H9 H 7.854 

19
P 

9d n-C6H13 H 7.523 

20
C 

9e n-C7H15 H 6.824 

21
C 

9f n-C9H19 H 5.959 

22
C 

12a H H 5.745 

23
P 

(Z)-12b Et OH 5.721 

24
C 

(Z)-13b Et OAc 7.523 

25
P 

(Z)-13c n-C4H9 OAc 4.500 

26
C 

(Z)-13d n-C7H15 OAc 5.102 

27
C 

14 n-C4H9 ---- 5.102 

*Ref 46 
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R1

NHSO
2
Me

8

R1

N
3

9  

Compound 

number 

Index * R 1 pIC50 

28
C 

(Z)-8a Me 4.480 

29
V 

(Z)-8b Et 5.745 

30
P 

(Z)-8c n-Butyl 6.495 

31
C 

(Z)-8d n-Hexyl 7.523 

32
C 

(Z)-8f n-Octyl 5.222 

33
C 

(Z)-9a Et 6.553 

34
C 

(Z)-9b n-Butyl 6.000 

35
C 

(Z)-9c n-Hexyl 6.959 

36
C 

(Z)-9d n-Octyl 7.854 

  *Ref 47 
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O

O

R2

R3

R1

8a-e  

Compound 

number 

Index * R1 R2 R3 pIC50  

 

37
V 

8a H SO2NHCOMe H 6.495 

38
P 

8b F SO2NHCOMe H 5.987 

39
C 

8c Cl SO2NHCOMe H 5.349 

40
C 

8d Me H SO2NHCOMe 5.314 

41
C 

8e OMe H SO2NHCOMe 5.001 

* Ref 48 
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R1

MeO
2
S t-Bu OH

t-Bu

6

MeO
2
S t-Bu OH

t-Bu

R1

9  

Compound 

Number  

Index * R1 pIC50  

42
C 

6a Me 5.444 

43
C 

6b Et 4.495 

44
C 

6c n-Butyl 5.481 

45
C 

6d n-heptyl 6.000 

46
V 

9b Et 5.752 

47
C 

9c n-Butyl 6.444 

48
C 

9d n-Heptyl 7.000 

 Ref 49 

C 
Compounds classified in the training or calibration set, 

P
 compounds classified in the 

external test set (prediction set), 
V 

compounds classified in the validation set. 
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Table (2.2) Molecular structures and observed inhibitory activities of the 73 

COX-2 inhibitors expressed as pIC50.  (Part 2) 

 

O

R2R1

 

 

Compound 

number 

Index *  R1 R2 pIC50  

 

1
C 

9a H SO2Me 6.097 

2
C 

9b Me SO2Me 6.523 

3
V
 9c F SO2Me 5.000 

4
C 

9d OMe SO2Me 5.310 

5
C 

9e SO2Me H 6.000 

6
C 

9f SO2Me Me 6.523 

7
C 

9g SO2Me F 6.222 

8
C 

9h SO2Me OMe 5.495 

 Ref 50 
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R2

R1

SO
2
Me

11 a-f  

 

R2

R1 SO
2
Me

12 a-f

R2

R1 SO
2
Me

13 a-f  

Compound  number Index * R1  R2 pIC50 

9
V
 11a H H 6.051 

10
V
 11b F H 5.222 

11
P
 11d H Me 6.495 

12
V
 11e OH H 6.678 

13
C 

11f OAc H 7.222 

14
C 

12a H H 5.495 

15
C 

12b F H 5.721 

16
C 

12c OMe H 5.469 

17
C 

12d H Me 6.495 

18
V
 12e OH H 6.495 

19
p
 12f OAc H 7.301 

20
C 

13b F H 6.495 

21
P
 13c OMe H 5.319 

22
V
 13d H Me 4.500 

23
C 

13e OH H 5.456 

24
C 

13f OAc H 6.854 

*Ref 51 
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H CO
2
H

MeO
2
S

R
4

3

 

 

Compound 

number 

Index * R pIC50 

 

25
P
 9a 4-H 5.523 

26
V
 9b 4-Br 5.444 

27
P
 9c 4-F 4.444 

28
V
 9d 4-OH 5.276 

29
C 

9e 4-OMe 5.721 

30
C 

9f 4-OAc 5.538 

31
C 

9g 4-NHAc 5.602 

32
C 

9h 3-Br 6.509 

*Ref 52 
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R2R1

CH
2
COOH

SO
2
NHCOMe

17 a-d, 19

F CH
2
COOH

SO
2
NHCOMe

12

CH
2
COOHF

SO
2
NHCOMe

12

SO
2
NHCOMe

CH
2
COOH

R1

20a-c, e  

 

*Ref 53 

 

Compound 

number 

Index * R 1 R2 pIC50 

33
C 

12 --- ---- 6.010 

34
C 

14 --- --- 7.929 

35
C 

17a H H 6.081 

36
C 

17c F F 6.000 

37
Out 

17d OCH(CH3)2 H 5.500 

38
C 

19 SO2CH3 H 4.502 

39
C 

20a H --- 5.754 

40
V
 20b F --- 5.818 

41
Out 

20c OCH(CH3)2 --- 6.824 

42
C 

20e SO2CH3 --- 5.943 
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COOH

R1

11

R2

R1

COOH

SO
2
NHCOCH

3

20 a-d

R2

R1

SO
2
NHCOCH

3

COOH

19 a,c  

Compound 

number 

Index * R 1 R2 R3 pIC50 

 

43
V
 11 SO2NHCOCH3 ---- ---- 6.602 

44
C 

19a H H ---- 7.523 

45
V
 19c F F ---- 7.060 

46
P
 20a H H H 5.921 

47
C 

20b F H H 5.420 

48
P
 20c F F H 6.114 

49
C 

20d SO2CH3 H H 6.523 

*Ref 54 

 

O

R2R1

 

Compound 

number 

Index * R 1 R2 pIC50 

50
P
 7a NHSO2Me H 6.495 

51
C 

7b NHSO2Me Me 6.000 

52
C 

7d NHSO2Me O Me  5.000 

 Ref 55 
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R

R1 SO
2
NH

2

9 c-d

R

R1

SO
2
NH

2

10 a-d

R

R1

SO
2
NH

2

11 b  

 

Compound 

number 

Index * R  R1 pIC50 

 

53
V
 9c OMe H 5.167 

54
P
 9d OH H 4.487 

55
P
 9e F H 6.523 

56
V
 10a H H 6.347 

57
V
 10b H Me 5.495 

58
P
 10c OMe H 5.699 

59
C 

10d F H 5.167 

60
P
 11b H Me 4.495 

            *Ref 56 
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Het

R

4

3 2

20-31
               

OHO

O CH
3

O

Aspirin
 

Compound 

Number 

Index * R Het pIC50  

 

61
C
 20 4-SO2NH2 2-Pyridyl 6.523 

62
C 

21 4-SO2NH2 4-Pyridyl 4.572 

63
P
 22 4-SO2NH2 3-Me-2-Pyridyl 7.155 

64
C 

23 2-SO2CH3 2-Pyridyl 6.678 

65
C 

24 2-SO2CH3 3-Pyridyl 4.500 

66
P
 25 2-SO2CH3 4-Pyridyl 6.959 

67
C 

26 2-SO2CH3 3-Me-2-Pyridyl 6.377 

68
C 

27 3-SO2CH3 2-Pyridyl 6.699 

69
C 

28 3-SO2CH3 3-Pyridyl 4.496 

70
C 

29 3-SO2CH3 4-Pyridyl 6.495 

71
C 

30 4-SO2CH3 2-Pyridyl 6.481 

72
C 

31 4-SO2CH3 3-Pyridyl 7.398 

73
C 

 (Aspirin)  --- 5.620 

*Ref 57 

C 
Compounds classified in the training or calibration set, 

P
 compounds classified in the 

external test set (prediction set), 
V 

compounds classified in the validation set and 
out

 

compounds classified as outliers. 
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2.1.1 Structure drawing and optimization 

All chemical structures in the last tables were drawn by HyperChem software for 121 

compounds which were taken from the (44-57). 

To perform geometry optimization for the chemical structure you have to follow many steps as 

below: 

1) After drawing the structure using the drawing tools, we choose “add H and model 

building” from build menu to have 3D structure. as shown in following figures (2.1). 

 

 

Figure (2.1): menu bar and build menu 

2) Then Click on “start log” in the file menu to give it a name, and choose a directory to 

save it. as shown in following figure. 
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Figure (2.2) file menu 

3) From the setup menu choose “semi-empirical” method of calculation and then select 

“AM1” from the semi-empirical window as shown in following figures. 

Figure (2.3): setup menu and semi-empirical method 

4) Click on the option button of the semi-empirical window and select geometry 

optimization parameters, choose total charge= 0, spin multiplicity= 1, spin pairing= 

RHF, convergence limit= 0.1, and select accelerate convergence. As shown in 

following figures (2.4): 
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Figure (2.4): compute menu and semi-empirical options 

5) Click OK to close the semi-empirical options dialog box, and then click OK to close 

the semi-empirical method dialog box. 

6) From compute menu, Choose “geometry optimization”, the semi-empirical 

optimization dialog box will open as shown in following figure.  

 

Figure (2.5): semi-empirical optimization.
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7) Select Polak-Ribiere as algorithm method, then choose 0.01 for RMS gradient 

condition, and the default values for the other variables, then click OK to initiate the 

optimization and close the dialog box. We can increase the maximum cycles if needed. 

 

8) Finally, When the program finish the optimization , select “stop log” from the file 

menu to save the calculation output as log file. And then save the structure as HIN file 

as shown in following figure. 

 

Figure (2.6): file menu 

After finishing from these steps, we had 121 HIN files that represent the optimized chemical 

structures of the compounds, which is the input of Dragon software. And 121 log files that 

represent the calculation output divided to two parts: part 1 and part 2 with 48 log files and 73 

log files, respectively. 

 

2.1.3 Descriptor  extraction 

Sixteen groups of descriptors were calculated directly and indirectly by using HyperChem and 

Dragon software.  

2.1.3.1 Descriptors calculated by HyperChem 

We calculated one group of descriptors called quantum descriptors from the output file (Log 

file) of HyperChem calculation to obtain the following descriptors: 

- Highest occupied molecular orbital energy  (EHOMO) and Lowest unoccupied molecular 

orbital energy (LUMO), Molecular dipole moment (DM), and Heat of formation.  
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And we calculated other descriptors by HyperChem using the optimized HIN file of chemical 

structure, then we select the QSAR properties from compute menu after that we can calculate 

the following descriptors: 

- Surface area (Approx), Surface Area (Grid), Volume, Mass, Hydration Energy, 

Octanol-Water partition coefficient (Log P), Refractivity and Polarizability. 

 

2.1.3.2 Descriptors calculated manually 

Four quantum descriptors were calculated manually by using excel software according to the 

equation below: 

                        
               

 
 

               
             

 
 

              
 

 
 

                     
  

  
 

 

2.1.3.3 Descriptors calculated by Dragon software. 

Fifteen groups of descriptors were calculated by Dragon software by applying the following 

steps: 

1) All HyperChem outputs (HIN files) of each compound will be used in Dragon 

software. 

2) Open Dragon software, the program will open a window as in the following 

figure.(2.7): 
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Figure (2.7): Dragon software window. 

3) Choose Calculate descriptors 

4) Then open the compounds folder, and select all the HIN files. 

5) Click on descriptor selection button 

6) Now open the descriptors group/ groups “ we calculated each group of descriptors 

alone for all the compounds“ 

7) Select the calculation terms, click on “stop calculation in error” 

8) Press Run button to start calculation. 

9) Finally, after the software calculation finished name and save the output. 

At the end of this work, we had separate file for each group of descriptors ready to be used in 

the next step. 

2.2 Data analysis 

Many of descriptors were calculated by Dragon and HyperChem software, and some of these 

descriptors that can provide the best model are chosen by SPSS software to predict the 

biological activity. 

We collected all descriptors for each Part in the same excel file, and perform multiple linear 

regression ( MLR) analysis to obtain the best model , this process is applied according to the 

following steps: 
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1) Prepare the files (part 1 and 2) to be used as SPSS input; excel files that has the 

experimental activity (dependent variable) as the first column, and the descriptors (the 

independent variables) as the rest of the columns. as shown in the following figure 

(2.8): 

 

 

Figure (2.8): SPSS software window. 

2) Open the file containing the dependent variable and independent variables using SPSS, 

then analyze menu and choose regression and select linear as in the following figure 

(2.9): 
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Figure (2.9): Analyze menu. 

3) Set activity as the dependent variable and set the descriptors in the input file as the 

independent variable in the linear regression dialog box, and then press on the options 

button of the same dialog box as shown in the following figure (2.10): 

 
Figure (2.10): Linear regression dialog. 
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4) Select use F value and set F Entry and F Removal values and leave other parameters 

without any change in the linear regression option dialog box. As shown in the 

following figure (2.11): 

 

Figure (2.11): linear regression options. 

 

5) Choose the method to be stepwise, click save to store results back to the input sheet, 

choose the predicted values to be unstandardized and then click continue. As shown in 

the following figure (2.12): 
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Figure (2.12): Linear regression save. 

6) Click statistics to generate additional statistics for variables then click continue, and 

finally click OK in the linear regression dialog box. As shown in figure (2.10). 

 

By finishing these steps, we will have linear model for each part of data set, which contain the 

best informative descriptors from each part. So these steps must be performed again on a file 

that has the whole descriptors chosen by the MLR models of each part of descriptors (final 

MLR) to get the final model that has the best informative descriptors from the whole 

descriptors. 

 

2.3 Model Validation 

2.3.1 MLR validation 

In the previous method, the best models for part 1 and 2 were obtained from the output of 

SPSS software, and then these models relate the activity with the descriptors linearity, so the 
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models should be validated. And the statistical fit of a QSAR can be assessed in many easily 

available statistical terms as correlation coefficient R. 

Correlation coefficient (R) gives a quantitative measure of how well each descriptor describes 

the activity and also it is used for indicating goodness of fit. The values are between 0 and 1, 

with 0 denoting that model does not explain any variation and 1 denoting that it perfectly 

explains the observed variation. 

R
2 
is calculated by SPSS program while building the MLR model. 

 

2.3.1.1 Leave One Out Cross validation using MATLAB 

As the name suggests, leave-one-out cross validation (LOOCV) involves using a single 

observation from the original sample as the validation datum and the remaining observations 

as the training data. This is repeated such that each observation in the sample is used once as 

the validation data. 

Usually, one compound of the set is extracted each time, and then the model is recalculated 

using as training set the n-1 (where n is number of compounds) remaining compounds, so that 

the biological activity value for the  extracted compound is predicted once for all compounds. 

This process is repeated n times for all the compounds of the initial set, thus obtaining a 

prediction for each object. This process referred as leave-one-out (LOO) method. 

The idea behind this method is to predict the property value for a compound from the data set, 

which is in turn predicted from the regression equation calculated from the data for all other 

compounds. For evaluation, predicted values can be used for PRESS,  RMSPE, and squared 

correlation coefficient criteria (r
2

cv). 

This type of validation for both parts 1 and 2 is performed by the following steps: 

1) Prepare the input file by copying the observed and predicted activity columns from the 

SPSS data editor and paste them in an excel file and save it. The observed activity 

should be the first column and then comes the predicted activities. 

2) Copy excel file to Matlab working directory (C:\Matlab1\work) or any directory you 

are working in. In the same directory, there should be a file ( script ) with the name 

(cross_val_param_loop.m) which will perform the validation. 

3) Open the script file, then you will have a massage says “model number”, where the 

next line contains number which is the model number. 

4) Matlab script will ask you for the number of descriptors for each individual model. 

Towards the end, cross validation results for all models will be saved in a file called 

“CV_LOO.dat” on directory (C:\Matlab1\work) or the directory you are working in. 
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2.3.1.2 Leave Many Out Cross validation using MATLAB 

In the leave many out cross-validation, the original sample is randomly partitioned into x 

subsamples, of the x subsamples, a single subsample is considered as the validation data for 

testing the model, and the remaining (x-1) subsamples are used as training data. The cross-

validation process is then repeated x times. Using each of the x subsamples once as the 

validation data. Also an alternative method can be defined when  leaving out more than a 

compound of the data set at each time. 

This type of cross validation is done by the following steps: 

1) Prepare an excel file that contains the activity (first column) and the descriptors 

entered in the regression model of interest. 

2) Then run Matlab script “lgocv.m”. this script performs Leave-group-out cross 

validation where 20% of the data are classified as test set so that each compound is 

entered only once in the test set. 

3) Enter excel file name and number of compounds to be used in the training set when 

you are asked for these information and press enter. 

4) The output file: “CV_LOG.dat”, appears in the same directory in addition to printing 

cross validation parameters on the screen. 

 

2.3.2 Principle Component Artificial Neural Networks (PC-ANN) 

We perform PC-ANN analysis when the relation between the activity and the chemical 

descriptors is more complicated than a linear relationship, to obtain the better model than 

MLR models. After using SPSS software to perform MLR analysis, we finished up with 

several good models; those models will be the input to PC-ANN step. The choice of the best 

models depends on their validation parameters. After choosing which MLR models are the 

best, you need to perform the following steps: 

 

2.3.2.1 Principal component analysis (PCA) 

Before starting ANN analysis, you should divide the data into training, validation and external 

test set. We use PCA to perform this step, because the division should not be done randomly. 

Data division should be done as to have 60% of the data in the training set and 20%for each of 

the validation and test set. 

1) Prepare two excel files (for part 1 and part 2) containing the experimental activity as 

the first column, and the descriptors of the whole chosen models as the rest of the 

columns. 
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2) Use Matlab script "calcaplot.m" to perform the analysis (the script file and the file you 

work on should be in the same directory). Open the script file, by going to Matlab 

menu and click on the open file icon, and then run the script. 

3) After running the script you will be asked about the file name, enter the name of the 

file that you prepared. 

4) Then you will obtain a figure with a scatter distribution of the data(compounds),each 

compound indicated by a point when you press it, the compound number will appears. 

Select the training, validation and test sets molecules from these data points so they 

span the same space of the entire data. 

 

2.3.2.2 Performing ANN model  

1) Prepare an excel file for each model for both part 1 and part 2 of the chosen MLR 

models. Each file should contain the experimental activity as the first column and the 

descriptors used in the model as the other columns. 

2) To implement the data division of ANN analysis , you should edit the Matlab script 

"ann_ext_test_4loop.m" to indicate the training, validation, and sets in the calculation. 

3) Then, you must open and run the Matlab script "nnloop.m" which read the previous 

script and perform the analysis to end up with the model. 

You may also need to modify the R (regression coefficient) value in the script 

"nnloop.m" to make it stop, because it will still working until it reach  the value in the 

script (we chose it to be more than 0.75 , 0.8 according to the test set and training set 

respectively). When you run the "nnloop.m" script, you will be asked for the excel file 

name for the model of interest, model number (to be inserted) and the number of 

hidden nodes. To run the “ann_ext_test_4loop.m" file, a Matlab script named 

"subplotspace.m" should be in the same directory. 

When the work is done, the cross validation results will be printed out on Matlab 

screen at the end of the optimization and saved in a file with the name 

"CV_model_"N"_hn"H".dat", where "N" is the model number and "H" is the number 

of hidden nodes. The steps are done for each model will be compared with each one of 

the chosen models and cross validation results for each model will be compared with 

each other in order to choose the best one. The  script "ann_ext_test_4loop.m" 

produces three regression figures, one for each data set. These files are named as 

"mlr_"test"_model_"N"_hn"H".fig", where N and H are the same as in the cross 

validation sets , respectively. The residue, the difference between predicted and 

observed activities for each data is saved to a file named as 

"pred_obs_"test"_model_"N"_hn"H".dat" while for the complete data without division, 
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the file is named, "pred_obs_all_model_"N"_hn"H".dat" Residue figures  for each data 

set are named "residue_"test"_model_"N"_hnee"H".fig". 

4) After choosing the optimal models, you have to optimize the number of the hidden 

nodes for these models. To do so, you have to choose a range of hidden nodes numbers 

(in order case 3-20) and optimize the network for each number of hidden nodes. The 

optimal model choice is based on cross-validation results. 

After these steps you will end up with several PC-ANN models for each part, you choose 

the best of them according to the cross validation parameters. 

 

2.3.2.3 Randomization (Chance correlation).  

For further validation, run chance correlation test for the optimal models for each part. In this 

test, the activity column is being randomized and the network performance is checked. To 

perform this test, run Matlab script "nn_chance_corr_new.m". When you are asked for; enter 

the excel file name for the model of interest, model number, number of hidden nodes and trial 

number of chance correlation test. The output is similar to that original model. 

Then the cross validation parameters values of the original models compared with the ones of 

the chance correlation models. They shouldn't be the same to prove that our work doesn't 

produce by chance. 

 

2.3.3 Partial Least Squares (PLS) 

Partial least squares is another linear regression method other than MLR which build a linear 

relation between the activity and the descriptors.   

The descriptors which have correlation will be gathered in one latent variable which indicates 

them and that is avoid the intercorrelation that may be happen in MLR. 

PLS is performed using Matlab software by the following steps: 

1) In this method, we divide the data set into two sets training set (80% of the data set) for 

the PLS work and test set (20 % of data set) for the PLS work. 

2) After dividing the data set, prepare four notepad files for each model of the chosen 

MLR models as the following: 

Xcal: that has the column of descriptors (independent variables) of training (cal) set. 

Ycal: that has the column of activity (dependent variable) of training set 
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Xtest: that has the column of descriptors (independent variables) of test set. 

Ytest: that has the column of activity (dependent variable) of test set. 

3) Open the Matlab software in the pathway in which the script needed is present, which 

is “PLS.M”. 

4) Type the following commands in the Matlab sheet: 

>> load xcal.txt, >> load ycal.txt, >> load xtest.txt and >> load ytest.txt 

These commands to load the files that have the data, then type the following commands in 

Matlab sheet, and then click enter. 

>> p, q, w, b, t, u, x, y, l = pls(xcal, ycal, 10);  

>> plspsr = plspress(xcal, ycal, p, q, w, b, 10); 

Then type the command: >> plot(plsprs,’*’) 

Those commands typed to run the needed script.  

5) At the time a plot is appeared. You should choose the point in which the curve remains 

constant after it, which define the number of latent variable. 

6) Type >> [c, x] = plspred(xtest, p, q, w, b, 2); 

Before clicking enter, you should change the number 2 in the command with the point 

obtained from the step 5 and then click enter. 

Choosing this point is dependent on the respective curve and can vary in diverse datasets. This 

command is used to bring out the predicted activity values of the test set. 

7) Type the command: >> predtest=c: then click enter 

From the workspace menu, you can find the predicted results in the predtest. 

8) Type >>[c, x] = plspred(xcal, p, q, w, b, 2) 

Befor clicking enter, you should change the number 2 in the command with the point obtained 

from the step 5 and then click enter. 

Choosing this point is dependent on the respective curve and can vary in diverse datasets. This 

command is used to bring out the predicted activity values of the training set. 

9) Type the command: >> predtest=c: then click enter 

10) From the workspace menu, you can find the predicted results in the training set. 
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PLS analysis with cross validation can be used to advanced investigation of the linear 

relationships of the obtained regression models and the PLS results are close to MLR.  

On the other hand, the results of MLR are good for all used models, so the PLS method was 

neglected. 
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-Chapter three 
Results and Discussion 
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In this study we developed MLR-QSAR model that relates the activity of 121 cyclooxygenase 

-2 enzyme inhibitors to their structures using their theoretical descriptors as structure 

indicators. The work was done by successive steps to build the linear and non linear models 

and perform their validations. The results are discussed in this chapter. 

 

Descriptors calculation 

From the literature (44-57), we take the structures and experimental activities values of our 

121 compounds of cyclooxygenase-2 enzyme inhibitors. 

The compounds were gathered as two parts according to the type of chemical structure. Each 

part has the compounds structures and their activities as pIC50 and these structures and their 

activities are summarized in the table (2.1) and (2.2). 

We built the structure of each compound by HyperChem software and AM1 semi-empirical 

method was used to optimize the chemical structures. On the other hand, we used HyperChem 

to calculate some of descriptors (quantum chemical descriptors). 

The other groups of descriptors were calculated by Dragon software for each part. We 

neglected the constant or near constant descriptors because they cannot differentiate between 

the different compounds. 

All Dragon output were fifteen files and each one has the results of one group of the 

descriptors which are topological, constitutional, BUCT, molecular walk count, Galvez 

topological and charge indices, charge indices, charge descriptors, 2D autocorrelation, randic 

molecular profiles, geometrical, RDF, 3D-MoRSE, WHIM, getaway, functional groups and 

atom-centered fragment descriptors. All output of each group of descriptors were gathered (as 

one group) in two Excel files to each part. 

Finally, Excel files (part1 and part2) were prepared to the next step. 

MLR 

We used the previous Excel files (part1 and part2) to perform MLR analysis by using SPSS 

software by stepwise regression method. And the results of performing MLR regression for 

each part are summarized in table (3.1) and (3.8). The MLR analysis was done by applying the 

individual method
58

,
 
in which we apply MLR to each group of descriptors alone and then 

perform final MLR on the gathered best descriptors of each group.                      

By using SPSS software, we tried to reach a model with the highest correlation coefficient (R), 

and in the same time the lowest number of descriptors for each part to reduce the inter 

correlation between descriptors in the model as much as we can. 
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Part 1: Results and discussion. 

Table (3.1): The final MLR models for Part1 

Model 

No.* 

R R
2 

Adjusted 

R
2 

SE Descriptors 

1 0.594 0.352 0.338 0.703 Mor11p 

2 0.638 0.407 0.381 0.680 Mor11p, P1m 

3 0.681 0.464 0.428 0.653 Mor11p, P1m, nSO2N 

4 0.720 0.518 0.473 0.627 Mor11p, P1m, nSO2N, Km 

5 0.747 0.558 0.506 0.608 Mor11p, P1m, nSO2N, Km, RDF150m 

6 0.782 0.611 0.554 0.577 Mor11p, P1m, nSO2N, Km, RDF150m, 

Mor12v 

7 0.803 0.645 0.583 0.558 Mor11p, P1m, nSO2N, Km, RDF150m, 

Mor12v, Mor03u 

8 0.831 0.690 0.627 0.528 Mor11p, P1m, nSO2N, Km, RDF150m, 

Mor12v, Mor03u, RDF135p 

9 0.850 0.723 0.657 0.505 Mor11p, P1m, nSO2N, Km, RDF150m, 

Mor12v, Mor03u, RDF135p, ISH 

10 0.873 0.763 0.698 0.474 Mor11p, P1m, nSO2N, Km, RDF150m, 

Mor12v, Mor03u, RDF135p, ISH, G3s 

*Model No. refers to model number as SPSS output, R refers to correlation coefficient, R2 refers to coefficient of determination, R2
adj refers to 

adjusted R2. 

Model 10 that has the highest R
2
 and Radj is the best model for part 1, and the following 

equation represents the best MLR model: 

 

(Equation Part 1) 

pIC50   = -14.401 (±8.149) – 1.854 (±0.283) × “Mor11p”  + 13.791 (±3.032) × “P1m”  - 0.457 

(±0.173) × “nSO2N” – 9.808 (±2.614) × “Km”  - 1.185 (±0.252) × “RDF150m” -1.815 (±0.445) × 

“Mor12v” + 0.221 (±0. .061) × “Mor03u” +0 .346 (±0.107) × “RDF135p” + 21.882 (±8.388) × 

“ISH” - 30.921 (±12.446) × “G3s” 
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According to the above equations Part 1, the most important descriptors of this equation are 

G3s and ISH which reflect the molecular geometrical coordinates of the compounds; G3s is 

inversely proportional to the inhibitory activity of the compounds while ISH is directly 

proportional to the inhibitory activity of the compounds. 

By Matlab software, we applied LOO cross validation on the MLR models for each model that 

has R
2
 more than 0.6.

59
 and the results are summarized in table 3.2 below: 

 

Table (3.2) LOO cross validation parameters for the final MLR models 6-10 of Part 1.  

Model PRESS SPRESS SST R
2

CV PRESS/SST PSE RSEP 

6 13.6238 0.5764 21.4294 0.3642 0.6358 0.5328 8.9637 

7 12.4541 0.5580 22.5991 0.4489 0.5511 0.5094 8.5703 

8 10.8606 0.5277 24.1926 0.5511 0.4489 0.4757 8.0033 

9 9.7088 0.5055 25.3443 0.6169 0.3831 0.4497 7.5670 

10 8.3209 0.4742 26.7324 0.6887 0.3113 0.4164 7.0053 

PRESS (predictive residual sum of squares) which is a standard index to measure the accuracy of the model. It is 

also called SSE (error sum of squares), STT (total sum of squares), R
2

CV (cross-validated correlation coefficient), 

SPRESS(uncertainty of prediction), PSE (predictive square errors), and also called RMSE (root mean square 

error), and RSEP is relative standard error of prediction. 

From the results of LOO cross validation for part 1 in tables (3.2), we can see that PRESS 

values always less than SST values and this means that the model predicting ability better than 

chance. 

The best models of part 1 that have the highest values of R
2

CV and the lowest values of PSE, 

the models (9 and 10) are the best for part 1. So we picked those models for part 1 as the best 

models to be the candidate to next step, as inputs to PC-ANN. 

PC-ANN 

The first step before running ANN we applied PCA on the data to get rid of the inter 

correlation between descriptors, divide the compounds into training, validation and test sets 

and get rid of outliers compounds that disturb the model, So we used the proper Matlab script 

and apply it on a file that had the activity as the first column and all the descriptors of the 

picked models. This process applied for part 1. 
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The results of PCA application is shown in the figure (3.1) for part 1. 

 

Figure (3.1): Correlation between 1
st
 and 2

nd
 principle components for part 1. 

In the previous figure (3.1) of PCA for part 1, the 48 compounds were partitioned into 

validation set 20%, test set 20% and the other 60% for training set. The compounds of each set 

were picked from the whole area of the compounds cluster. And in the next step, 48 

compounds were used as data points to ANN for part 1. 

PC-ANN models were built using the proper Matlab script. We applied the script on each one 

of the picked models for part 1(Models 9 and 10) with constant hidden nodes for all the 

models. 

The table (3.3) shows a summary of the cross validation parameters of the models for part 1. 

Table (3.3): correlation coefficient and cross validation results for ANN models 9 and 10 

for part 1. 

Mo

del 

No

.* 

hn

. 

N

o.

** 

nP

Cs 

*** 

R_trai

n           

PRES

S_trai

n        

R
2

CV

_train           

R_tes

t          

PRES

S_test        

RSEP

_test       

R_val            PRES

S_val         

RSEP

_val 

9 6 5 0.842      6.898      0.511      0.847      3.861      10.45

2      

0.735       1.288      6.639 

10 6 5 0.781      9.784      0.106      0.874      3.529      9.993      0.714       1.255      6.555 

*Model No. (Model number),** Hn-No. (number of hidden nodes ), *** nPCs (number of principle 

components). 
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All results in table (3.3) are close to each other, for this reason we chosen models 9 and 10 of 

part 1 to apply the next step in ANN work. 

Each one of these models was used to train the ANN model using different numbers of hidden 

nodes from (3-20). And we determined that we want R for the test set to be more than (0.75). 

The results of part 1 are summarized in the tables (3.4), (3.5) for Model 9 and model 10, 

respectively. 

Table (3.4): Correlation coefficient and cross validation parameters for optimizing 

number of hidden nodes for model 9 for Part 1. 

*Hn-No. (number of hidden nodes ), ** nPCs (number of principle components). 

 

No. 

Hn.* 

nPCs 

** 

R_trai

n           

PRES

S_trai

n        

R
2
CV_t

rain           

R_test          PRES

S_test        

RSEP

_test       

R_val            PRES

S_val         

RSEP

_val       

3 5 0.751      9.007      0.137      0.803      5.550      12.532      0.826       2.967      9.759 

4 5 0.813     7.395      0.193      0.759     5.679      12.676     0.706     3.718      10.923 

5 5 0.789      8.386     0.481     0.829      3.200      9.516    0.727       2.706      9.320 

6 5 0.798      7.475  0.400  0.856     4.783    11.633   0.795     2.979      9.778 

7 5 0.810  8.466    0.263    0.871    2.758    8.834 0.756   2.636    9.197 

8 5 0.828      6.766    0.481   0.791   4.256    10.975      0.738    2.945     9.722 

9 5 0.846 6.028   0.553    0.784     4.563   11.363   0.702    3.182 10.105 

10 5 0.781 9.026      0.562   0.824    4.452    11.224   0.734  3.393  10.436 

11    5 0.866  5.830   0.601    0.868    3.428   9.850 0.721   3.211   10.152 

12 5 0.846     6.240      0.625    0.937      4.140     10.824   0.749     2.723      9.348 

13 5 0.820    7.043     0.597   0.772    5.177    12.104 0.750   3.681  10.869 

14 5 0.845    5.911    0.606    0.797    6.215    13.261 0.717      4.720    12.307 

15 5 0.891    4.511   0.660  0.839   4.532   11.324  0.810   3.238  10.195 

16 5 0.874    4.947   0.648  0.834      4.816  11.674    0.707   4.328   11.786 

17 5 0.786     8.554   0.552   0.764     5.919   12.942  0.873       2.686    9.285 

18 5 0.870    5.264   0.655   0.773      4.081    10.746      0.707   4.113    11.490 

19 5 0.811    7.047    0.505     0.816     5.150    12.072    0.909   3.460    10.538 

20 5 0.864     5.234  0.634  0.906    3.518  9.977      0.711    3.643    10.812 
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Table (3.5): Correlation coefficient and cross validation parameters for optimizing 

number of hidden nodes for model 10 for part 1. 

Hn- nP

Cs   

R_trai

n           

PRESS

_train        

R2CV_

train           

R_test          PRES

S_test        

RSEP_te

st       

R_val            PRES

S_val         

RSEP_

val       

3 5 0.764 10.641 0.192 0.789 6.786 13.857 0.701 4.768 12.37 

4 5 0.75 9.149 0.349 0.8 5.077 11.985 0.704 3.638 10.806 

5 5 0.783 8.267 0.27 0.823 4.712 11.547 0.756 3.921 11.217 

6 5 0.763 10.047 -0.855 0.883 5.92 12.943 0.709 3.529 10.643 

7 5 0.774 9.446 -0.263 0.807 5.535 12.515 0.712 3.834 11.092 

8 5 0.753 10.219 0.204 0.844 4.175 10.869 0.729 3.081 9.944 

9 5 0.84 6.247 0.521 0.764 5.726 12.729 0.707 3.466 10.547 

10 5 0.816 6.937 0.568 0.924 3.947 10.569 0.729 3.665 10.845 

11 5 0.83 6.66 0.486 0.838 4.376 11.128 0.725 3.731 10.943 

12 5 0.814 7.202 0.527 0.856 4.638 11.456 0.749 4.344 11.807 

13 5 0.774 9.024 -0.209 0.782 5.873 12.891 0.818 3.682 10.871 

14 5 0.771 9.198 0.073 0.78 4.95 11.835 0.746 3.233 10.186 

15 5 0.869 5.051 0.654 0.896 5.292 12.237 0.72 3.769 10.998 

16 5 0.777 8.512 0.421 0.915 5.956 12.982 0.747 2.961 9.749 

17 5 0.825 6.568 0.505 0.828 5.87 12.888 0.815 3.763 10.989 

18 5 0.883 4.55 0.699 0.918 3.26 9.604 0.756 2.71 9.325 

19 5 0.866 5.161 0.637 0.904 5.601 12.589 0.745 4.25 11.679 

20 5 0.863 5.408 0.564 0.866 5.711 12.712 0.709 3.665 10.845 

*Model No. (Model number), Hn-No. (number of hidden nodes ), nPCs (number of principle components). 
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Figure (3.2): PRESS against number of hidden nodes as well as regression factor against number of hidden nodes 

for model 9 and 10. 

Figure (3.2) shows the PRESS values against the number of hidden nodes as well as the 

regression factor against number of hidden nodes for models 9 and 10 for part 1. This figure 

shows that the lowest PRESS value (4.14) is obtained when using 12 hidden nodes for model 

9 with regression coefficient for the test set of 0.937. For model 10, the lowest PRESS (3.947) 

is obtained when using 10 hidden nodes with regression coefficient for the test set of 0.924. 

Both models model 9 and model 10 of part 1 were examined to inspect the presence of outliers 

that may affect models validity. By inspecting the residuals of these models, the residue equals 

the difference between the predicted and observed one, there were no outliers as it is shown in 

figures (3.3). 
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Figure (3.3): Predictive activity against observed one as well as their residue for part 1 models 

9 and 10 using 12 and 10 hidden nodes, respectively. 

 

The correlation between calculated and observed pIC50  for the training set of model 9 is given 

by: 

Calculated pIC50 = 0.762 Observed pIC50 + 1.49    

And for the test set of this model is given by: 

Calculated pIC50 = 0.515 Observed pIC50 + 2.543    

While the Correlation between calculated and observed pIC50 for the training set of model 10 

is given by: 

Calculated pIC50 = 0.722 Observed pIC50 + 1.62    

And for the test set of this model is given by: 

Calculated pIC50 = 0.664 Observed pIC50 + 1.566    
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Randomization 

Randomization test is performed to investigate the probability of chance correlation for the optimal 

models (models 9 and 10 with 12 and 10 hidden nodes in the network, respectively, of part 1. Chance 

correlation was done using the same configuration parameters and the same activation functions of all 

our ANN models. The results of chance correlation of part 1 for models 9 (using 12 hidden nodes) and 

10 (using 10 hidden nodes) are summarized in the following tables (3.6) and (3.7) respectively. These 

tables show that the coefficients of determination obtained by chance are low in general while the 

PRESS values are high. This indicates that the models obtained from ANN are better than those 

obtained by chance.  

As we can see, our models were validated by calculating different statistical parameters, using external 

test set and finally performing randomization test. 

Table (3.6): Statistical parameters of chance correlation of model 9 with 12 hidden 

nodes. (Part 1) 

Tri

al 

No

. 

nP

Cs 

R_trai

n 

PRESS

_train 

R2CV

_train 

R_test PRESS

_test 

R_val PRES

S_val 

R2CV_v

al 

1 5 -0.268 30.745 -9.399 0.189 9.757 -0.14 3.177 -9.438 

2 5 -0.268 30.745 -9.399 0.189 9.757 -0.14 3.177 -9.438 

3 5 0.097 32.019 -1.683 0.035 11.424 -0.138 7.159 -2.697 

4 5 0.033 28.149 -4.082 -0.011 11.395 -0.208 4.146 -2.952 

5 5 -0.179 48.25 -1.81 -0.058 17.888 -0.256 5.046 -2.302 

6 5 -0.19 36.222 -3.875 0.021 9.534 0.134 3.803 -1.77 

7 5 0.097 32.019 -1.683 0.035 11.424 -0.138 7.159 -2.697 

8 5 0.241 23.612 -2.988 0.025 11.469 -0.079 2.831 -9.74 

9 5 -0.098 37.479 -2.439 -0.179 14.053 0.102 5.523 -3.314 

10 5 0.105 26.033 -4.479 -0.096 10.358 0.005 5.74 -12.847 
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Table (3.7): Statistical parameters of chance correlation of model 10 with 10 hidden 

nodes. 

Trial 

No. 

nPCs R_train          PRESS

_train       

R2CV

_train          

R_test         PRESS

_test       

R_val           PRESS

_val        

R2CV

_val           

1 5 0.172 21.113 -13.051 0.166 8.656 0.012 5.517 -60.904 

2 5 0.067 32.604 -2.16 -0.07 12.306 -0.247 10.97 -2.343 

3 5 0.054 25.692 -3.011 -0.179 12.554 0.054 6.615 -3.402 

4 5 -0.3 36.968 -4.131 -0.087 12.714 -0.177 10.50 -2.009 

5 5 -0.094 33.831 -2.436 0.024 9.301 -0.289 13.60 -4.045 

6 5 0.279 26.425 -0.656 0.26 9.957 0.236 5.423 -3.844 

7 5 0.157 25.195 -2.158 -0.129 12.497 0.032 6.788 -4.322 

8 5 0.247 22.6 -1.6 -0.01 10.101 -0.016 5.921 -14.981 

9 5 -0.049 37.462 -2.043 0.01 10.186 -0.152 7.241 -5.764 

10 5 0.042 32.375 -1.444 -0.232 15.194 0.095 7.077 -3.096 

 

Both the external and cross-validation methods are used to validate the performances of the 

resulting models. Employed randomization test indicates that the models obtained from ANN 

are better than those obtained by chance. 
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Part 2 : Results and discussion: 

Table (3.8): The final MLR models for (Part 2). 

Model 

No. 

R R
2
 Adjusted 

R
2
 

SE Descriptors 

1 0.331 0.109 0.097 0.776 MATS3e 

2 0.429 0.184 0.161 0.748 MATS3e, E1v 

3 0.533 0.284 0.253 0.706 MATS3e, E1v, E3s 

4 0.631 0.398 0.363 0.652 MATS3e, E1v, E3s, Me 

5 0.676 0.457 0.417 0.624 MATS3e, E1v, E3s, Me, C-028 

6 0.707 0.499 0.454 0.604 MATS3e, E1v, E3s, Me, C-028, G3p 

7 0.726 0.527 0.476 0.591 MATS3e, E1v, E3s, Me, C-028, G3p, BELm3 

8 0.755 0.57 0.516 0.568 MATS3e, E1v, E3s, Me, C-028, G3p, 

BELm3, Mor03u 

9 0.77 0.593 0.535 0.557 MATS3e, E1v, E3s, Me, C-028, G3p, BELm3, 

Mor03u, G2u 

10 0.785 0.616 0.554 0.545 MATS3e, E1v, E3s, Me, C-028, G3p, BELm3, 

Mor03u, G2u, MATS8e 

11 0.799 0.639 0.573 0.534 MATS3e, E1v, E3s, Me, C-028, G3p, BELm3, 

Mor03u, G2u, MATS8e, dipole moment 

(Debyes) 

12 0.822 0.675 0.611 0.51 MATS3e, E1v, E3s, Me, C-028, G3p, BELm3, 

Mor03u, G2u, MATS8e, dipole moment 

(Debyes), G3m 

13 0.837 0.7 0.634 0.494 MATS3e, E1v, E3s, Me, C-028, G3p, BELm3, 

Mor03u, G2u, MATS8e, dipole moment 

(Debyes), G3m, H7m 

14 0.849 0.72 0.652 0.482 MATS3e, E1v, E3s, Me, C-028, G3p, BELm3, 

Mor03u, G2u, MATS8e, dipole moment 

(Debyes), G3m, H7m, R6m 

15 0.848 0.719 0.657 0.478 MATS3e, E1v, E3s, Me, C-028, G3p, BELm3, 

Mor03u, G2u, dipole moment (Debyes), 

G3m, H7m, R6m 
*Model No. refers to model number as SPSS output, R refers to correlation coefficient, R

2
 refers to coefficient of 

determination, R
2

adj refers to adjusted R
2
. 
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Model 14 that has the highest R
2
 and Radj  is the best model for part 2, and the following 

equation represents the final MLR model: 

(Equation Part 2) 

p IC 50   = -7.938 (±11.143) - 2.987 (±1.328) × “MATS3e” + 7.043 (±1.705) × “E1v” + 2.967 

(±0.727) × E3s -17.669 (±8.819) × “Me” + 0.424 (±0 .167) × “C-028” + 21.414 (±5.236) × 

“G3p” + 7.092 (±1.299) × “BELm3” + 0 .182 (±0.095) × “Mor03u” + 28.858 (±8.360) × 

“G2u” + 0 .179 (±0.057) × “dipole moment (Debyes)” + 46.973 (±12.190) × “G3m” - 4.845 

(±1.268) × “H7m” +  1.783 (±0.705) × “R6m” 

According to the above equations Part 2,  the most important descriptors of this equation are 

G3m, G2u and G3p which reflect the molecular geometrical coordinates of the compounds 

and they are directly proportional to the inhibitory activity of the compounds. 

By Matlab software, we applied LOO cross validation on the MLR models for each model that 

has R
2
 more than 0.6.

59
 and the results are summarized in table 3.9 below: 

Table (3.9) LOO cross validation parameters for the final MLR models 10-15 of part 2 

Model 

 

PRESS SPRESS SST R
2

CV PRESS/SST PSE RSEP   

10 18.4383 0.5453 29.6084 0.3773 0.6227 0.5026 8.36 

11 17.3663 0.5336 30.6803 0.434 0.566 0.4877 8.1134 

12 15.592 0.5098 32.4547 0.5196 0.4804 0.4622 7.6877 

13 14.3906 0.4939 33.656 0.5724 0.4276 0.444 7.3856 

14 13.5021 0.4825 34.5446 0.6091 0.3909 0.4301 7.154 

15 13.5021 0.4784 34.5446 0.6091 0.3909 0.4301 7.154 
PRESS (predictive residual sum of squares) which is a standard index to measure the accuracy of the model. It is also called SSE (error sum 

of squares), STT (total sum of squares), R2
CV (cross-validated correlation coefficient), SPRESS (uncertainty of prediction), PSE (predictive 

square errors), and also called RMSE (root mean square error), and RSEP is relative standard error of prediction. 

From the results of LOO cross validation for part 2 in tables (3.9), we can see that PRESS 

values always less than SST values and this means that the model predicting ability better than 

chance. 

The best models of part 2 that have the highest values of R
2

CV and the lowest values of PSE, 

the models (14 and 15) are the best for part 2. So we picked those models for part 2 as the best 

models to be the candidate to next step, as inputs to PC-ANN. 

PC-ANN 

The first step before running ANN we applied PCA on the data to get rid of the inter 

correlation between descriptors, divide the compounds into training validation and test sets 

and get rid of outliers compounds that disturb the model, So we used the proper Matlab script 
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and apply it on a file that had the activity as the first column and all the descriptors of the 

picked models. This process applied for part 2. 

The results of PCA application is shown in the figure (3.4) for part 2. 

 

Fig. (3.4): Correlation between 1
st
 and 2

nd
 principle components for part 2. 

The previous figure (3.4) of PCA for part 2, the 73 compounds have 2 outliers (compounds 37 

and 41), which are lie from the compound cluster, this means that those two compounds act in 

different way from other compounds with respect to activity and descriptors. Then the 71 

compound were partitioned as the previous step to validation set, test set and training set.  

And in the next step, 71 compounds were used as data points to ANN. 

PC-ANN models were built using the proper Matlab script. We applied the script on each one 

of the picked models for part 2, and part 2 models 14 and 15 were used by using constant 

hidden nodes for all the models. 

The table (3.10) shows a summary of the cross validation parameters of the models for part 2. 



64 | P a g e  
 

 

Table (3.10) Correlation coefficient and cross validation results for ANN models 14 and 

15 for part2. 

M

od

el 

No

. 

hn. 

No 

n

P

C

s 

R_trai

n          

PRES

S_trai

n       

R
2

CV_

train          

R_te

st         

PRE

SS_t

est       

RSEP_

test      

R_val           PRES

S_val        

RSEP

_val      

14 7 6 0.706 13.84

2 

-0.533 0.75

5 

6.02 10.933 0.688 4.166 9.337 

15 7 6 0.666 14.96

5 

-0.406 0.72

6 

6.29

4 

11.179 0.66 4.378 9.572 

*Model No. (Model number), Hn-No. (number of hidden nodes ), nPCs (number of principle components). 

All results in table (3.10) are close to each other, for this reason we chosen models 14 and 15 of part 2 

to apply the next step in ANN work. 

Each one of these models was used to train the ANN model using different numbers of hidden 

nodes from (3-20). And we determined that we want R for the test set to be more than (0.75). 

The results of the two parts are summarized in the tables (3.11), (3.12) for Model 14 and 

model 15 of part 2, respectively. 
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Table (3.11) Correlation coefficients and cross validation parameters for model 

optimizing number of hidden nodes for model 14 for part 2. 

Hn. 

No. 

nP

Cs  

R_train          PRESS

_train       

R2CV

_train          

R_test         PRESS

_test       

RSEP_t

est      

R_va

l           

PRES

S_val        

RSEP

_val     

6 6 0.675 14.846 -0.401 0.656 7.158 11.922 0.662 4.35 9.541 

7 6 0.689 14.597 -0.638 0.689 7.184 11.944 0.689 4.086 9.247 

8 6 0.654 16.33 -1.656 0.66 7.682 12.351 0.665 4.957 10.185 

9 6 0.666 15.166 -0.107 0.654 7.251 11.999 0.655 4.263 9.445 

10 6 0.741 12.175 0.074 0.702 6.293 11.178 0.658 4.439 9.639 

11 6 0.733 12.833 -0.289 0.738 6.042 10.953 0.658 4.382 9.577 

12 6 0.778 10.827 0.141 0.757 5.928 10.849 0.661 4.45 9.651 

13 6 0.684 14.324 -0.211 0.733 6.096 11.002 0.662 4.746 9.966 

14 6 0.737 13.082 -0.395 0.696 6.775 11.599 0.651 4.323 9.512 

15 6 0.744 12.026 0.06 0.652 7.52 12.22 0.69 4.384 9.578 

16 6 0.675 14.648 -0.418 0.77 5.602 10.547 0.717 3.892 9.025 

17 6 0.756 11.527 0.288 0.718 6.035 10.947 0.686 4.207 9.383 

18 6 0.715 13.822 -0.624 0.748 5.573 10.519 0.65 4.329 9.518 

19 6 0.665 15.19 -0.64 0.666 6.925 11.726 0.652 4.3 9.486 

20 6 0.653 15.859 -0.488 0.728 6.728 11.558 0.653 4.486 9.689 

*Model No. (Model number), Hn-No. (number of hidden nodes ), nPCs (number of principle components). 

 

With model 14 at 3, 4 and 5 hidden nodes numbers we did not get R of the test set more than 

0.6, so the trials were neglected. 
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Table (3.12) Correlation coefficient and cross validation parameters for model 

optimizing number of hidden nodes for model 15 for part 2. 

 

*Model No. (Model number), Hn-No. (number of hidden nodes ), nPCs (number of principle components). 

In model 15 the trial with 3 and 4 hidden nodes numbers failed to reach 0.75 as R-test, so the 

trials were neglected. 

hn. 

NO 

n

P

C

s 

R_tra

in          

PRESS

_train       

R2CV

_train          

R_test         PRES

S_test       

RSEP

_test                 

R_va

l 

PRESS

_val        

RSEP

_val      

5 6 0.670 16.033 -1.023 0.706 6.835 12.171 0.706 3.241 8.702 

6 6 0.705 14.782 -0.681 0.710 6.616 11.974 0.663 3.538 9.092 

7 6 0.730 13.707 -0.392 0.823 4.727 10.122 0.711 3.109 8.522 

8 6 0.653 16.133 -0.510 0.772 5.841 11.251 0.689 3.441 8.967 

9 6 0.754 12.506 -0.027 0.687 6.617 11.975 0.681 3.246 8.709 

10 6 0.692 14.677 -0.108 0.687 6.878 12.209 0.660 3.550 9.108 

11 6 0.680 16.342 -1.156 0.707 6.417 11.792 0.700 3.269 8.739 

12 6 0.662 16.359 -1.116 0.714 3.570 0.726 0.682 3.553 9.112 

13 6 0.659 16.020 -0.609 0.755 5.797 11.209 0.706 3.417 8.936 

14 6 0.665 15.791 -0.407 0.818 4.685 10.076 0.688 3.004 8.378 

15 6 0.664 15.826 -0.459 0.725 5.867 11.276 0.651 3.745 9.354 

16 6 0.717 13.921 -0.185 0.755 5.348 10.766 0.690 3.078 8.481 

17 6 0.754 12.343 0.015 0.794 5.175 10.590 0.670 3.464 8.997 

18 6 0.756 12.129 0.112 0.723 7.075 12.383 0.656 4.319 10.046 

19 6 0.687 15.048 -0.062 0.654 7.020 12.334 0.705 2.940 8.289 

20 6       0.70   14.476      -0.116      0.688       6.626     11.98      0.687      3.220      8.674    
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Figure (3.5): PRESS against number of hidden nodes as well as regression factor against 

number of hidden nodes for model 14 and 15 respectively. 

Figure (3.5) shows the PRESS values against the number of hidden nodes as well as the 

regression factor against number of hidden nodes for models 14 and 15 for part 2. This figure 

shows that the lowest PRESS value (5.928) is obtained when using 12 hidden nodes for model 

14 with regression coefficient for the test set of 0.757. For model 15, the lowest PRESS 

(4.727) is obtained when using 7 hidden nodes with regression coefficient for the highest test 

set of 0.823. 

 

All models model 14 and model 15 of part 2 were examined to inspect the presence of outliers 

that may affect models validity. By inspecting the residuals of these models, the residue equals 

the difference between the predicted and observed one, there were no outliers as it is shown in 

figures (3.6). 
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Figure (3.6): Predictive activity against observed one as their residue for part 2 models 14 and 

15 using 12 and 7 hidden nodes numbers respectively. 

The correlation between calculated and observed pIC50 for the training set of model 14 is given 

by: 

Calculated pIC50 = 0.534 Observed pIC50 + 2.783    

And for the test set of this model is given by: 

Calculated pIC50 = 0.4252 Observed pIC50 + 3.486   

While the Correlation between calculated and observed pIC50 for the training set of model 15 

is given by: 

Calculated pIC50 = 0.432 Observed pIC50 + 3.393    

And for the test set of this model is given by: 

Calculated pIC50 = 0.503 Observed pIC50 + 3.08  
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Randomization 

Randomization test is performed to investigate the probability of chance correlation for the optimal 

models (models 14 and 15 with 12 and 7 hidden nodes in the network, respectively, of part 2). Chance 

correlation was done using the same configuration parameters and the same activation functions of all 

our ANN models. the results of chance correlation for models 14 (using 12 hidden nodes) and 15 

(using 7 hidden nodes) are summarized in the following tables (3.13) and (3.14) respectively. These 

tables show that the coefficients of determination obtained by chance are low in general while the 

PRESS values are high. This indicates that the models obtained from ANN are better than those 

obtained by chance.  

As we can see, our models were validated by calculating different statistical parameters, using external 

test set and finally performing randomization test. 

Table (3.13): Statistical parameters of chance correlation of model 14 with 12 hidden 

nodes. (Part 2) 

Trial 

No. 

nPCs      R_train           PRESS

_train        

R2CV

_train           

R_test          PRESS

_test        

R_val            PRESS

_val         

R2CV_

val            

1 6 -0.019 62.21 -5.066 -0.116 3.189 -0.006 3.688 -22.013 

2 6 0.137 51.255 -3.072 -0.093 2.474 0.157 2.799 -2.102 

3 6 -0.061 69.5 -2.482 -0.042 2.849 -0.263 3.043 -7.338 

4 6 0.122 51.381 -3.347 -0.047 1.384 0.397 1.398 -20.447 

5 6 -0.200 57.773 -8.684 0.249 1.107 -0.036 2.357 -6.273 

6 6 -0.176 71.111 -3.402 -0.191 2.456 -0.258 3.464 -1.861 

7 6 -0.188 80.24 -3.445 -0.165 2.329 -0.154 2.215 -4.958 

8 6 -0.193 58.657 -9.458 0.152 2.347 0.275 2.895 -4.784 

9 6 0.218 51.558 -2.354 -0.147 1.647 0.268 1.54 -2.466 

10 6 0.193 46.683 -4.436 -0.177 1.37 0.288 1.522 -17.426 
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Table (3.14): Statistical parameters of chance correlation of model 15 with 7 hidden 

nodes. (Part 2) 

Tri

-al 

No. 

nP

Cs 

R_train          PRESS

_train       

R2CV_

train          

R_test         PRES

S_test       

R_val          PRESS

_val        

R2CV_v

al           

1 6 -0.028 57.208 -4.349 -0.017 1.273 -0.232 2.308 -11.6 

2 6 0.076 51.222 -5.105 -0.225 2.609 -0.162 2.143 -5.87 

3 6 0.092 110.31 -8.014 -0.112 10.131 -0.043 11.265 -102.793 

4 6 0.149 45.089 -11.099 -0.686 1.727 0.155 1.54 -18.123 

5 6 0.128 45.614 -13.166 -0.225 1.316 -0.144 1.634 -77.889 

6 6 -0.298 57.911 -12.601 -0.228 1.547 0.253 1.652 -34.57 

7 6 -0.166 61.472 -5.667 0.142 1.541 0.142 1.561 -11.975 

8 6 -0.183 62.8 -6.189 -0.196 2.33 0.283 2.121 -5.291 

9 6 -0.102 60.916 -4.952 -0.134 1.407 -0.166 2.858 -20.457 

10 6 0.271 45.575 -2.472 0.151 2.093 0.281 2.435 -9.185 

 

Both the external and cross-validation methods are used to validate the performances of the 

resulting models. Employed randomization test indicates that the models obtained from ANN 

are better than those obtained by chance. 
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Comparison with other QSAR studies: 

In our study, we developed QSAR models for inhibition activity of 121 chemical 

compounds of cyclooxygenase-2 inhibitors with various cores and we divided those 

compounds into two classes tricyclics and non-tricyclics by applying different statistical 

methods as MLR and PC-ANN. These models will be used to design new COX-2 

inhibitors. The numerous QSAR studies in the recent past on COX-2 inhibitors involved 

small data set of a particular class of compounds with different statistical methods, such 

as: 

  (A sit K. Chakraborti, 2003) In this research, the number of samples was 35 compounds 

of 1,3-Diarylisoindole and was analyzed using comparative molecular field analysis 

(CoMFA) and comparative were incorporated to the CoMFA models. The result was (r
2
 cv  

=0.536, r
2
 conv =0.968, SEE=0.222, r=0.6564).

60
 

 

  (S.Prasanna, 2005) In this study, the number of samples was 41 compounds of 2,3-diaryl 

indoles,  in statistically significant linear multiple regression equation with r = 0.942, 

r
2
 = 0.888.

61
 

 

 

 (M.  Khoshneviszadeh, 2008) In this study, the number of samples was 30 compounds 

(n=30) of 2-Sulfonyl-Phenyl-Indol Derivatives for cox-2 inhibitory activity using 

chemical, topological, geometrical, and quantum descriptors. Some statistical techniques 

like stepwise regression, multiple linear regression analysis, and algorithms partial least 

squares analysis was applied to derive the quantitative structure activity relationship 

models. The generated equations were statistically validated using cross validation and 

external test set. The multiple linear regression equation obtained from factor analysis 

(FA-MLR) as the preprocessing step could predict 77.5% of the variance of the 

cyclooxygenase-2 inhibitory activity whereas that derived from genetic algorithms partial 

least squares could predict 84.2% of variances.
62

 

 

  (Shashikant Bhandari, 2009)  In this study, 2D and 3D QSAR of series of 80 molecules 

are containing 4,5 diarylimidazole pharmacophore as selective cyclooxygenase–2 (COX–

2) inhibitors. The 3D QSAR studies were performed using two different methods, 

stepwise variable selection k–nearest neighbor molecular field analysis (SW kNN–MFA) 

and simulated annealing k–nearest neighbor molecular field analysis (SA kNN–MFA) 

methods. The 2D QSAR studies were performed using multiple regression, 3D QSAR 

studies produced cross–validated r
2

cv value of 0.688 and 0.733 and conventional r
2
 value 

of 0.912 and 0.794 values using the models SW kNN–MFA and SA kNN–MFA method 

respectively, whereas the r
2
 value in 2D QSAR studies was found to be 0.8943.
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  (Girish Kumar, 2012) In this study, the number of compounds was 31 for a series of 

molecules belonging to tetrasubstituted pyrazoles as COX-II inhibitors. With a correlation 

coefficient of r
2
=0.958, and the squared predictive correlation coefficient of 0.852 was 

observed between experimental and predicted activity values of test set molecules.
64

 

 

 (Amrita Dwivedi, 2013) The quantitative structure activity relationship (QSAR) study of  

indole shiff bases to understand the structural features that influence the inhibitory activity 

toward the cyclooxygenase-2 (COX-2) enzyme. The calculated QSAR results revealed 

that the drug activity could be modeled by using molecular connectivity indices (
0
v,

1
v,

2
v), 

wiener index (W) and mean wiener index (WA) parameters. The predictive ability of 

models was cross validated by evaluating the low residual activity, appreciable cross 

validated r
2
 values (R

2
 cv) and leave one out (LOO) technique.
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- Chapter Four: 
Conclusion  
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Conclusion: 

In this study, the QSAR models were built by applying different statistical methods as MLR 

and PC-ANN for 121 compounds of Cyclooxygenase-2 enzyme inhibitors , we divided those 

compounds into two parts according to chemical structure as tricyclics (part 1 has 48 chemical 

compounds) and non-tricyclics (part 2 has 73 chemical compounds). 

Each compound was built and optimized by HyperChem software using AM1 semi-empirical 

method. Then we calculated different groups of descriptors, some of descriptors calculated 

using HyperChem and the other descriptors by Dragon software.  

Multiple linear equations with good statistical qualities and predictive power for both parts 

were obtained by SPSS software to correlate the activity of each compound with the 

descriptors. The PC ANN gave better regression models with good prediction ability when we 

used the MLR equations as inputs for PC-ANN model building. The best PC-ANN models 

were used for hidden nodes optimization. 

The optimal two models of part 1 have prediction coefficients of determinations (R
2
) of 0.878 

and 0.854. The lowest PRESS obtained is 3.947 and the optimal two models of part 2 have 

prediction coefficients of determinations (R
2
) of 0.677 and 0.573. the lowest PRESS obtained 

is 4.727. Generally, the models obtained from the ANN analysis are better than those obtained 

by MLR analysis. But in part 2, the MLR models are slightly better than PC-ANN. Both the 

external and cross-validation methods are used to validate the performances of the resulting 

models. Employed randomization test indicates that the models obtained from ANN are better 

than those obtained by chance. 

Part 1 results accepted for publication,
66 

while part 2 results submitted for publication.
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