
Deanship of Graduate Studies
Al-Quds University

Syntactic Sugar Programming Languages' Constructs

Mustafa Sudqi Abed Al-Tamim

M.Sc. Thesis

Jerusalem – Palestine

1432 / 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Al-Quds University Digital Repository

https://core.ac.uk/display/287333528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Deanship of Graduate Studies

Al-Quds University

Syntactic Sugar Programming Languages' Constructs

Prepared By:

Mustafa Sudqi Abed Al-Tamim

B.SC from Bir-Zeit University, Palestine

Supervisor:

Dr. Rashid Jayousi

A thesis Submitted in Partial fulfillment of requirements for the Master

degree of Computer Science from Computer Science department of Al-

Quds University

Jerusalem – Palestine

1432 / 2011

Al-Quds University

Deanship of Graduate Studies

Computer Science Department

Thesis Approval

Syntactic Sugar Programming Languages' Constructs

Prepared By: Mustafa Sudqi Abed Al-Tamim

Registration No: 20714027

Supervisor: Dr. Rashid Jayousi

Master thesis submitted and accepted. Date: / / 2011

The names and signatures of the examining committee members are as follows:

1- Head of Committee: Dr. Rashid Jayousi Signature: ……………..

2- Internal Examiner: Dr. Raid Al-Zaghal Signature: ……………..

3- External Examiner: Dr. Mahmoud Saheb Signature: ……………..

Jerusalem – Palestine

1432 / 2011

Dedication
To my parents, who guided me to success with their wisdom and guidance,

To my wife, the woman who supports and stands beside me,

To my brothers and sisters,

To my colleagues and friends at Al-Quds University

Mustafa Al-Tamim

i

Declaration

I certify that this thesis submitted for the degree of Master is the result of my own

research, except where otherwise acknowledged, and that this thesis (or any part of the

same) has not been submitted for a higher degree to any other university or institution.

Signed

Mustafa Sudqi Abed Al-Tamim

Date: / /2011

ii

Acknowledgement

First of all, Praises and thanks always to Allah, The creator, who gave me

the power to complete this work.

Then, I’m heartily thankful for my supervisor Dr. Rashid Jayousi, without

his guidance, support, and encouragement, this thesis will not have been

possible.

Also, I owe my deepest gratitude to all professors and teachers at Al-Quds

University/Computer Science department for their support. And I want to

thank Dr. Raid Zaghal, Mr. Saeed Salah, and the students for their help in

executing the experiment.

I deeply express my sincere thanks to Professor Younis Amro, president of

Al-Quds Open University, who encouraged and helped me to continue my

study.

It’s my pleasure to thank Dr. Elias Dabit for his help in the questionnaire

design.

And I will not forget my employer “gSoft company” for their cooperation.

Lastly, I express my deepest thanks and blessing for my father, mother,

brothers and sister. Special thanks for my brother Riyad Al-Tamim for his

help. And I will not forget my wife and want to thank her for the inspiration

and patience.

Mustafa Al-Tamim

iii

Abstract

Software application development is a daily task done by developers and code writers

all over the world. A valuable portion of developers‘ time is spent in writing repetitive

keywords, debugging code, trying to understand its semantic, and fixing syntax errors.

These tasks become harder when no integrated development environment (IDE) is

available or developers use remote access terminals like UNIX and simple text editors

for code writing. Syntactic sugar constructs in programming languages are found to

offer simple and easy syntax constructs to make developers' lives easier and smoother.

In this study we propose a new set of syntactic sugar constructs, and try to find if they

really can help developers in reducing syntax errors, make code shorter, more readable,

easier to write, and can help in debugging and semantic understanding.

Our methodology was to construct a new syntactic sugar constructs set extracted from

existing programming languages' syntax in addition to other syntactic enhancements

proposed by us, then we verified the efficiency of the new syntactic sugar constructs set

through executing an exploratory case study with students and professional

programmers.

The exploratory case study results showed positive indicators for using the new

proposed syntactic sugar constructs set to write programs' syntax. They helped in

reducing syntax errors, making the code more readable, easier to write, and to

understand.

iv

 البرمجة لغات في البنائية للجمل النحوية المحسنات

 الملخص
، تطوير البرمجيات التطبيقية ىي ميمة يومية يقوم بيا المطورون والمبرمجون في كافة انحاء العالم

ييدر جزء لا بأس بو من وقت المبرمجين في كتابة كممات مفتاحية بشكل متكرر في الجمل و
 ىذه. البرامج دلالاتمحاولة فيم و خطاء في بناء الجمل التركيبية، التركيبية لمبرامج وتصحيح الأ

للإستخدام، أو عندما يقوم متاحةتطوير متكاممة بيئة إذا لم تكن ىناك تصبح أكثر صعوبة الميام
بكتابة البرامج بإستخدام محررات نصوص بسيطة، وكذلك في حالة تطوير البرامج عن المطورون

 .لاتصال الطرفي كما في نظام التشغيل يونيكس مثلا بعد بإستخدام برمجيات ا

بناء الجمل التركيبية في لغات البرمجة لتقدم تركيبات نصية بسيطة وسيمة محسناتلقد أوجدت
 محسناتفي ىذه الدراسة مجموعة جديدة من نقترح بناءاٌ عمى ذلك، .وجعل حياة المطورين أسيل

تساىم في التقميل من الاخطاء محسناتإذا كانت ىذه ال ونحاول معرفة ما بناء الجمل التركيبية،
اكثر وضوحاا واسيل لمقراءة والكتابة والتتبع ابسط و النصية وجعل تركيب الجمل في لغات البرمجة

 .وفيم دلالات البرامج

بناء الجمل التركيبية محسناتيجاد مجموعة من إمنيجية البحث المتبعة في ىذه الدراسة تقوم عمى
إضافة الى عدد من التحسينات المقترحة، ومن ، تخرجة من بعض لغات البرمجة المستخدمةوالمس

جراء دراسة حالة استكشافية مع عدد من إمن خلل لمحسناتثم محاولة التحقق من فعالية ىذه ا
 .الدارسين والمطورين ذوي الخبرة

بناء الجمل التركيبية سناتمحولقد اظيرت نتائج الدراسة مؤشرات ايجابية واضحة حول استخدام

وجعل تركيب الأخطاء النصية في الحد من محسناتفي كتابة البرمجيات، ولقد ساعدت ىذه ال
 .دلالاتالالجمل في لغات البرمجة اكثر وضوحاا واسيل لمقراءة والكتابة والتتبع وفيم

v

Table of Contents

DEDICATION

DECLARATION ... I

ACKNOWLEDGEMENT ..II

ABSTRACT ... III

TABLE OF CONTENTS ... V

LIST OF TABLES ... VI

LIST OF FIGURES ... VII

LIST OF APPENDICES ... VIII

CHAPTER ONE .. 1

INTRODUCTION ... 1

1.1 MOTIVATION .. 3

1.2 ORGANIZATION ... 4

CHAPTER TWO ... 5

LITERATURE REVIEW ... 5

2.1 INTRODUCTION .. 5

2.2 HISTORY OF PROGRAMMING LANGUAGES ... 5

2.3 SYNTACTIC SUGARS CONSTRUCTS REVIEW .. 16

2.4 SYNTAX ERRORS REDUCTION ... 29

2.5 CONTRIBUTION ... 31

CHAPTER THREE ... 33

CONSTRUCTS SELECTION AND ENHANCEMENTS ... 33

3.1 INTRODUCTION .. 33

3.2 CONSTRUCTS SELECTION METHODOLOGY ... 33

3.3 ABSTRACT CONSTRUCTS SELECTION ... 34

3.4 PROGRAMMING LANGUAGES STUDY AND CONSTRUCTS EXTRACTION 37

3.5 QUESTIONNAIRE DESIGN, DISTRIBUTION, COLLECTION, AND RESULTS 38

3.6 SYNTACTIC SUGAR CONSTRUCTS SET AND ENHANCEMENTS SELECTION 43

CHAPTER FOUR .. 46

EXPLORATORY CASE STUDY .. 46

4.1 INTRODUCTION .. 46

4.2 EXPLORATORY CASE STUDY EXPERIMENT .. 46

4.3 CASE STUDY DESIGN ... 47

4.4 NEW SYNTAX PARSER AND IDE .. 48

4.5 STUDENTS' CASE STUDY TRACK .. 50

4.6 PROFESSIONALS' CASE STUDY TRACK ... 52

4.7 DIFFICULTIES FACED DURING CASE STUDY EXECUTION ... 53

CHAPTER FIVE ... 55

EXPLORATORY CASE STUDY RESULTS ... 55

5.1 INTRODUCTION .. 55

5.2 STUDENTS' INTERVIEW RESULTS ... 55

5.3 STUDENTS PRACTICAL CASE STUDY RESULTS (PROGRAM WRITING) 57

5.4 PROFESSIONALS' SEMANTIC EXTRACTION CASE STUDY RESULTS 60

5.5 PROFESSIONALS' INTERVIEW RESULTS .. 61

5.6 OBSERVATIONS AND NOTES ... 63

CHAPTER SIX .. 65

CONCLUSION AND FUTURE WORK ... 65

6.1 FUTURE WORK .. 66

REFERENCES .. 67

APPENDICES .. 73

APPENDIX 1: PROGRAMMING LANGUAGES' EXTRACTED CONSTRUCTS SHEET 73

APPENDIX 2: THE DESIGNED AND DISTRIBUTED QUESTIONNAIRE 80

APPENDIX 3: SELECTED PROGRAMMING LANGUAGES' BRIEF DESCRIPTION 89

APPENDIX 4: ICT PROFESSIONAL POPULATION CALCULATION ... 91

APPENDIX 5: USERS‘ FEEDBACK INTERVIEW QUESTIONS .. 92

APPENDIX 6: STUDENTS' CASE STUDY EXPERIMENT PROGRAMS 93

APPENDIX 7: PROFESSIONALS' CASE STUDY EXPERIMENT PROGRAMS 94

APPENDIX 8: SELECTED AND ENHANCED CONSTRUCTS SET DETAILED DESCRIPTION 100

vi

List of Tables

Table. No. Table Name Page

Table 2.1: Summary of syntax error reduction strategies ... 31

Table 3.2-A: The selected and enhanced syntactic sugar constructs – part 1 44

Table 3.2-B: The selected and enhanced syntactic sugar constructs – part 2 45

Table 5.3: Students answers on interview questions .. 55

Table 5.4: Semantic extraction results ... 61

Table 5.5: Professionals answers on interview questions .. 62

vii

List of Figures

Fig. No. Figure Name Page

Figure 2.1: Important programming languages summary .. 7

Figure 4.2: New syntax IDE and parser tool .. 50

Figure 5.3: Students interview answers distribution .. 56

Figure 5.4: % of errors generated by using old and new constructs in each program .. 57

Figure 5.5: % of old and new constructs used in each program 58

Figure 5.6: Professionals interview answers distribution .. 62

viii

List of Appendices

Appendix No. Appendix Name Page

Appendix 1: Programming Languages' Extracted Constructs Sheet 73

Appendix 2: The Designed And Distributed Questionnaire .. 80

Appendix 3: Selected Programming Languages' Brief Description 89

Appendix 4: ICT Professional Population Calculation .. 91

Appendix 5: Users‘ Feedback Interview Questions .. 92

Appendix 6: Students' Case Study Experiment Programs ... 93

Appendix 7: Professionals' Case Study Experiment Programs 94

Appendix 8: Selected And Enhanced Constructs Set Detailed Description 100

1

Chapter One

Introduction

Developing and writing software applications is a common daily activity done by

thousands or even hundreds of thousands of developers and programmers as the

demand on software applications is increasing to meet the technical revolution needs,

which is involved in most trends in life.

Enterprise software applications development using programming languages (PL)

requires a lot of code writing. Such applications have a lot of functionality and business

logic for developers to focus on: functions, actions, use cases, and data processing that

form the core of the application which offers the functionality to the users through

application graphical interface or APIs (Application Programming Interfaces)

(Mitchell, 2002). A valuable portion of developers‘ time is spent writing repetitive

keywords and determining classes, methods, and code building blocks‘ scopes that can

be ambiguous for them to follow up on and debug, which also may generate many of

syntax errors that require extra effort to find and fix. Source code reading and semantic

extraction by developers is not an easy task, especially when the code is huge and

moved from one team to another, or is bought from 3
rd

 party providers and the

developers want to continue working on and customizing it.

Students who learn programming languages in universities and schools face similar

issues in code ambiguity and syntax errors (Russell et al., 2009). Their issues with code

sometimes cost them hours to fix certain syntax errors or to find logical ones because

their experience is not mature enough to help them in code debugging and memorizing

syntax keywords and complex structures. This enforces students to spend a portion of

their time on syntax issues which can be saved and used to focus on application

2

functionality and logic as mentioned in (Kummerfeld and Kay, 2002): "Our own

experience and observations of students indicates that students using an unfamiliar or

new programming language waste considerable time correcting syntax errors."

Syntactic sugar enhancements on programming languages' syntax constructs is one of

the approaches used to enhance syntax and help in making it more readable, easier to

write, with less ambiguity. In this research, we study many programming languages

through analyzing their syntax; studying it, and then offering a new suggested syntactic

sugar constructs set where applicable. The set is composed of a mix from existing

constructs obtained from the analyzed programming languages with a set of syntactic

enhancement suggested by us. The purpose of the new syntactic sugar constructs set is

to make programming language users' work easier, smoother, and less ambiguous, with

fewer errors and more focus on application core functionality and less focus on code

syntax and syntactic errors.

The questions we try to answer in this research: Do syntactic sugar constructs help in

development with fewer syntax errors? Do they help with semantic extraction? Can they

make code more readable and easier to write?

The research focuses on programming languages' syntax and how to enhance it by

adding new syntactic sugar constructs for easier coding and compiling these

enhancements to form a set of recommendations for programming language designers to

make use of them while designing programming languages' syntax.

Research results showed positive indicators of using syntactic sugar in writing

application source code.

3

1.1. Motivation

Through our work as software developers, team leaders, and guiding many students in

their projects, we noticed that developers usually write a lot of repetitive keywords in

specific parts of code like packages calling keywords, code segments and building

blocks‘ scopes determination symbols, and many others, for example, the use of the

curly braces ―{ }‖ symbols to determine classes, methods, expressions, and control

statement (IF, FOR, WHILE…etc.) scopes in the same program building block. Using

the same symbols can make it difficult to distinguish the method scope from its internal

control statement scopes, especially in the case of missed opening or closing symbol.

These kinds of repeated keywords and ambiguous scopes consume part of developers‘

efforts and time especially when using a text mode development environment. The most

important is that it can cause many syntax errors and make it hard to debug and

understand the semantic.

This motivated us to search for syntactic constructs that help enhance programming

language syntax to use fewer repetitive keywords, better scope determination symbols,

better exception handling, more readable code with less writing efforts, and many other

properties that make developers' work easier with more focus on business logic

implementation.

Many researches were done and tools created to help generate source code

automatically such as macros, annotations, IDE (Integrated Development

Environments), and reverse engineering. These tools help save syntax writing efforts

and minimize syntactic errors with hints to solve them. These tools eliminate part of the

problem, but it is not useful in development environments that are dependent on text

mode, where no visual user interface is available for the developers and they cannot use

4

IDEs and tools, as the case of the Linux or Unix command-line remote terminals or

SSH command-line tools used for remote access.

We are targeting both novice and professional programming language users with focus

on users who use remote or simple text mode editors, where no advanced IDE and code

wizards are available.

1.2. Organization

Our methodology of finding a new syntactic sugar constructs set is explained in details

throughout this thesis with all theoretical and technical details. An introduction to the

subject and motivation with problem statement was introduced above; the rest of this

thesis is organized as follows:

Chapter two is a literature review for the history of programming languages, and a

review for syntactic sugars and their implementations. Chapter three discusses and

explains our methodology in details, and the work done to obtain the syntactic sugar

constructs set. Details of the exploratory case study done to validate the new constructs

set are explained in chapter four. Chapter five presents and discusses the results

obtained from executing the case study. Finally we conclude and discuss the future

work in chapter six.

5

Chapter Two

Literature Review

2.1 Introduction

This chapter presents a review of the research areas related to the work done in this

thesis.

We outline a historical review for the major and most popular programming languages

development. In section two we present the done work related to syntactic sugars and

form them in simple survey. Section three through light on work done to reduce syntax

errors.

2.2 History of Programming Languages

Programming language is a tool that includes a set of instructions and commands

expressed through a well defined syntax that are programmers familiar with and used to

form programs that can be executed by the computer in logical way producing efficient

work proposed by the written program semantic. In other words, it is a medium of

expression in the world of computer programming (Mitchell, 2002) (Collberg, 2005).

 Each programming language has a syntax that is the form of the program and how it is

written by programmer and parsed by the computer. The syntax is composed of

declarations, expressions, commands, and constructs that are used to compose the

program (Watt and Findlay, 2004) (Collberg, 2005).

The semantic in programming languages is the meaning of the program and the desired

functionality of it when it is executed. Semantic is used to determine the programmer's

desired functionality and how it is understood by the computer at execution time (Watt

and Findlay, 2004) (Collberg, 2005).

6

 Programming language paradigm expresses how the languages is designed to be used

and in which domains. This also affects how programmers design their programs to

solve certain problem. Each programming language can support one or more paradigms.

The most well known paradigms are: 1) Functional paradigm which depends on

functions and their calls as main building construct. 2) Imperative paradigm which uses

procedures, commands and variables. 3) Concurrent paradigm which supports the

concurrent execution of commands and processes. 4) Logical paradigm which depends

on facts and relations. 5) Object oriented paradigm where the object and class concepts

are the core items in this paradigm, in addition to relations such as inheritance,

composition, and aggregation. 6) Scripting paradigm, programming in this paradigm is

simple, complete program is not needed and it uses high level commands, scripts can be

executed and interpreted in simple and primitive environment like UNIX shell, DOS, or

internet browsers (Watt and Findlay, 2004).

In this research, we focus on high level programming languages summarized in Figure

2.2. A high level programming language is a language that its programs are executed

independently from machine. High level programming languages use compilers to

convert programs to machine language or use interpreters (Watt and Findlay, 2004).

In the mean time, we have hundreds of high level programming languages that were

developed over time since the first high level programming language was developed

(Mitchell, 2002). In this chapter we review the most common programming languages

over the last 60 years.

7

Figure 2.3: Important programming languages summary, adapted and updated from Watt and Findlay,

2004

The first popular high level programming language was FORTRAN. FORTRAN was

developed at IBM around 1957 by a John Backus team and help from Peter Sheridan

(Mitchell, 2002) (Sammet, 1996). FORTRAN was the first language used arrays,

ordinal mathematical notation expressions, procedures, symbolic names for variables,

and formatted inputs and outputs (Mitchell, 2002) (Watt and Findlay, 2004). It was

good for mathematical and economical calculations (Nerlove, 2004) (Watt and Findlay,

2004). FORTRAN contains many limitations such as no recursion support, numbers

storing in the memory was weak, and programmer may change a value by mistake if he

was not careful (Mitchell, 2002). FORTRAN considered as imperative language. It was

Scripting
languages

PYTHON

BASIC

SCALA

EIFFEL

Ruby

2010

COBRA FANTOM

GO

FANCY

8

developed over time and many new versions were delivered, for instance FORTRAN77

at 1977, FORTRAN for Microsoft Dos operating system at 1982, and FORTRAN90 at

1990 which support object oriented paradigm (Nerlove, 2004).

In 1960, COBOL was founded by Grace Murray Hopper (Mitchell, 2002). It was used

for business applications and commercial data processing (Mitchell, 2002) (Watt and

Findlay, 2004). The designers tried to make its syntax English like (Mitchell, 2002).

COBOL introduced data description concept that was used to build data types in

successor languages (Watt and Findlay, 2004) and used the record data structure.

COBOL considered to be imperative programming language, it suffered from low level

flow control (Mitchell, 2002) (Watt and Findlay, 2004), and it did not support local

variables, recursion, and dynamic memory allocation (COBOL, n.d.). COBOL gained

many enhancements and improvements over time, the last version was COBOL2002 at

2002 which added support for object oriented features, user' defined functions, pointers,

Boolean support, floating point support, XML manipulation, and many others (COBOL,

n.d.).

The first functional programming language was Lisp; it was developed by the end of

1950s at MIT for artificial intelligence and symbolic computations (Mitchell, 2002).

Lisp is considered as simple and flexible language for expressing logical expressions.

Its main data structure is lists and it support recursive calls. Lisp continued developing

over time and used widely: in 1960 Maclisp was developed at MAC MIT project,

another version was released in 1970s by Guy Steele and Gerald Sussman adding new

features to Lisp. The current Lisp that called common Lisp is a new version that offers

complex object oriented primitives (Mitchell, 2002).

9

The general purpose imperative programming language ALGOL60 was designed by

Alan Perlis, John Backus, and John McCarthy in the period 1958 to 1963 (Mitchell,

2002). ALGOL60 supported functions, recursion, block structure that allow declaring

procedures and variables anywhere in the programs, and it offered better data structures

representations (Mitchell, 2002) (Watt and Findlay, 2004). A new version of ALGOL

was developed at 1968 called ALGOL68; this version supported declaring arrays to be

of type integer, array, or procedure. Procedures in ALGOL68 can accept parameters and

return values of type integer, array, or other procedures (Watt and Findlay, 2004). Many

programming languages were developed on top of ALGOL, ALGOL formed

programming languages family where all successors languages called ALGOL-LIKE

languages (i.e. Pascal, C, ML) (Mitchell, 2002) (Watt and Findlay, 2004).

The simple imperative programming language BASIC was design in 1963 by John G.

Kemeny and Thomas E. Kurtz at Dartmouth College (Nerlove, 2004) to offer simple,

easy, and quick programming language for students. BASIC supported sound playing

and graphics (Nerlove, 2004). Apple II was sold with BASIC support in 1977. BASIC

was used in IBM PC DOS operating system in 1981-1982 and called at that time Quick

BASIC. It was extended and used by Microsoft through Visual Basic (Sureau, 2010).

In 1964, George Radin at IBM, tried to combine ALGOL60, FORTRAN, and COBOL

best features in one general purpose programming language called PL/1 (Nerlove,

2004). PL/1 considered being both imperative and concurrent programming languages.

It introduced new concepts in programming like concurrency and exceptions low level

forms. Because of the combination of many language features and paradigms, PL/1 was

complex, difficult to implement, and huge. It didn‘t success on the long term (Watt and

Findlay, 2004).

10

The first object oriented programming languages was SIMULA67 that design by O.-

J.Dahl and K. Nygaard in 1967 (Mitchell, 2002). SIMULA67 introduced the concepts

of o classes, inheritance, objects, dynamic lookup, and sub typing, SIMULA67 didn't

supported encapsulation and abstraction (Mitchell, 2002) (Watt and Findlay, 2004).

Many object oriented languages were developed depending on SIMULA67 and used its

object oriented conceptual inspiration like C++ and SMALTALK (Mitchell, 2002)

(Watt and Findlay, 2004).

PASCAL, the ALGOL-like imperative programming language, was developed around

1970 as successor for ALGOL60 (Watt and Findlay, 2004). PASCAL was simple and

efficiently implemented and used in system development and programming languages

curricula classes to teach programming languages (Nerlove, 2004). PASCAL offered

rich simple set of control structures, data types (i.e. arrays, recursive types, records,

Booleans, characters, enumerations, files) pointers, and procedures (Watt and Findlay,

2004).

SMALLTALK was developed as the first pure object oriented programming language at

Xerox PARC in the 1970s (Mitchell, 2002). Everything in SMALLTALK was

considered as object (values, control structures such as IF statement, commands) (Watt

and Findlay, 2004). SMALLTALK was successor from SIMULA67, but it added many

new features in object oriented such as message passing to objects, abstraction, access

modifiers (public methods, and private instance variables) (Mitchell, 2002).

The first well-known programming language that design based on logic paradigm was

PROLOG at 1973 by Philippe Roussel (Watt and Findlay, 2004) (Nerlove, 2004)

(Mitchell, 2002). PROLOG at its beginning was weak and inefficient until it was

11

supported with new extra logical features and it still used in logic programming (Watt

and Findlay, 2004).

Between 1972 and 1974, the evolutionary imperative programming language C was

developed by Dennis Ritchie at AT&T Bell Labs (Nerlove, 2004) (Mitchell, 2002). C

was created to be used in writing UNIX operating system (Watt and Findlay, 2004). In

1980, C became famous programming language because of its efficiency, simplicity,

and flexibility, and it was used in developing software applications rather than UNIX

operating system (Nerlove, 2004). C is ALGOL-like language and support blocks,

recursive functions, and local variables declaration. But it is more restricted as it doesn‘t

allow declaration of functions within nested building block; they must be outside the

main program (Mitchell, 2002).

MODULA was developed lately 1970s by Niklaus Wirth as successor for PASCAL

(Mitchell, 2002). MODULA considered as concurrent programming language (Watt

and Findlay, 2004). The main feature MODULA offered over PASCAL was the module

system which used to group related declaration sets in programming units (Mitchell,

2002).

The Meta language ML was designed by Robin Milner as part of developing a Logic for

Computable Functions LCF project by the end of 1970s (Mitchell, 2002). ML mainly is

a functional programming language but it support the imperative paradigm too as its

syntax is ALGOL like (Mitchell, 2002) (Watt and Findlay, 2004). It allows inline

functions creation within expressions, pass them to other functions as parameters and

return them as results (Mitchell, 2002).

12

Another well know PASCAL successor was ADA, it was developed at early 1980s as

an initiative by U.S. Department of Defense (DoD) to standardize their software around

one language that support specific features such as real-time programming and usage of

concurrent programming paradigm (Mitchell, 2002) (Watt and Findlay, 2004). ADA

introduced packages, generic units, high level exceptions, and offered wide variety of

data types (Booleans, characters, enumerands, integers, real numbers, records, arrays,

discriminated records, objects (tagged records), strings, pointers to data, and pointers to

procedures.) (Watt and Findlay, 2004). ADA was known by its reliability, robustness,

and efficiency; it used in the development of critical systems such as aerospace (Watt

and Findlay, 2004). Because of its high compiler cost, it was little used in universities,

research, and civilian software market (Mitchell, 2002). ADA continued in development

and the latest version was ADA95 in 1995 (Watt and Findlay, 2004).

An extension to C was implemented around 1984 by Bjarne Stroustrup at A Bell

Laboratories to offer object oriented support in it, the extension formed new

programming language called C++ and it inherit most of C language features and

shortcomings (Mitchell, 2002) (Nerlove, 2004). C++ considered as imperative and

object oriented language (Watt and Findlay, 2004). C++ became very popular and

widely used language in many platforms applications such as UNIX, Apple MAC, and

Microsoft Windows (Mitchell, 2002).

Eiffel is an object-oriented programming language designed by Bertrand Meyer in 1985

(Sureau, 2010) to produce robust software. Its syntax is keyword-oriented like ALGOL

and Pascal tradition and it is strongly statically typed with automatic memory

management (typically implemented by garbage collection) (Meyer, 2001). Eiffel

13

support programming by contract (usage of pre and post conditions in functions)

(Sureau, 2010).

The pure functional programming language HASKELL was design around early 1990

by a large committee led by Simon Peyton Jones and John Hughes (Watt and Findlay,

2004). HASKELL was affected by ML. And it allows passing functions to other

functions as parameters and returns them as results. It uses polymorphic functions,

support algebraic types and very close to the mathematical disjoint-union notation (Watt

and Findlay, 2004).

PYTHON is well designed and famous scripting languages design in 1991 by Guido

Van Rossum (Sureau, 2010) (Watt and Findlay, 2004). PYTHON can support C

libraries and object oriented feature. It can run within Java JVM (Sureau, 2010). Python

was known as dynamic programming language with very clear readable syntax,

intuitive object orientation, natural expression of procedural code, full modularity,

supporting hierarchical packages, exception-based error handling, very high level

dynamic data types, and extensive standard libraries and third party modules. The

extensions and modules are easily written in C, C++ (or Java for Jython, or .NET

languages for IronPython), and embeddable within applications as a scripting interface

(About Python, n.d.).

Java (its first name was Oak) is a well known object oriented programming language

developed at Sun Microsystems by James Gosling and others between 1990 and 1995

(Mitchell, 2002). Java is also suitable for concurrent programming and distributed

environment. Its power appears in web development and writing applets which are

small programs run within web pages (Watt and Findlay, 2004). Java came to simplify

C++ and solve a number of problems in modern programming practices (Watt and

14

Findlay, 2004) (The Java Language, n.d.). Java Virtual Machine helped it to be platform

independent and Java can run on any operating systems, hardware, and even small,

portable, and imbedded devices (Watt and Findlay, 2004) (Mitchell, 2002). Java offered

many new features to object oriented such as interfaces, abstract classes, and run time

class loading, and it focused on security, efficacy, simplicity, high-performance,

multithreading, and portability in its design (Mitchell, 2002) (The Java Language, n.d.).

The object oriented language C# was developed at 2000 by Microsoft systems; it is

close to Java with minor changes that made it suitable for desktop applications (Watt

and Findlay, 2004). C# is a type-safe, object-oriented language that is simple yet

powerful, allowing programmers to build a breadth of applications. Combined with the

.NET Framework (Getting Started with Visual C#, n.d.), a new version called Visual C#

2008 produced that enabled the creation of Windows applications, Web services,

database tools, components, controls, and more (Getting Started with Visual C#, n.d.).

RUBY is a modern object oriented programming languages design as successor of

PYTHON and PERL (Sureau, 2010) to offer clearer and more object oriented support

(Sureau, 2010). RUBY design started in late 1990s by Yukihiro Matsumoto (Sureau,

2010). Yukihiro Matsumoto blended parts of his favorite languages (Perl, Smalltalk,

Eiffel, Ada, and Lisp) to form a new language that balance functional programming

with imperative and object oriented programming (About Ruby, n.d.).

The New modern programming language SCALA was developed in the programming

methods laboratory at EPFL and released in 2004 (Odersky et al., 2006). SCALA

considered as general purpose programming language that support the common

programming patterns in type safe and elegant way (The Scala Programming Language,

2008). SCALA is JAVA-like languages. The code size produced by SCALA is

15

relatively short but hard to read as it uses a lot of symbols and inline functions

declaration (Odersky et al., 2006). SCALA integrate the features of object oriented and

functional paradigm (The Scala Programming Language, 2008).

In the literature, many programming languages were developed in the period between

2004 and 2010. These languages were not widely used and known. Most of them were

extensions on top of exist languages like Java and Python to form frameworks for

special needs, or create new high level general purpose programming languages to

simplify the previous programming languages and offer new features (Timeline of

programming languages, 2011).

In 2006, the object oriented programming languages COBRA was developed by Chuck

Esterbrook to collect many features from many exist programming languages

(PYTHON, C#, EIFFEL) and offer them in one language to support development by

contract, static and dynamic binding, quality control, runtime performance and quick

coding (Why Cobra, 2010).

The general purpose programming language FANTOM was developed in 2007 by Brian

Frank and Andy Frank (Why Fantom, 2011). FANTOM is influenced by C#, JAVA,

SCALA. It supports functional, concurrent, declarative, and object oriented

programming. FANTOM offers static / dynamic binding, elegant programming APIs,

and runtime portability on both Java and .NET platforms (Why Fantom, 2011).

GO is concurrent programming languages that developed at Google by Robert

Griesemer, Rob Pike, and Ken Thompson in 2009 (The Go Programming Language,

2011). GO main purpose is to develop concurrent programs that make use of multi-core

machines. GO offers runtime reflection and garbage collection in addition to a fast static

16

typing that affect program execution performance (The Go Programming Language,

2011).

In 2010, the work started on designing and developing a new pure object oriented

programming language called FANCY by Christopher Bertels (About Fancy, 2011).

FANCY is still under development and influenced by RUBY, SMALTALK, and others.

Its current versions works under LINUX and MAC-OS, it supports dynamic typing and

garbage collection (About Fancy, 2011).

2.3 Syntactic Sugars Constructs Review

During our work in this thesis, we conducted a review for syntactic sugar construct

previous work, this showed that no dedicated research area or surveys available in this

field. We found out that the work done in this area was discrete efforts related to

enhance certain languages syntax, or mentioning syntactic sugars as minor part of work

done in other researches. In this review, we tried to collect the available related work

done in syntactic sugar constructs and put them in a form of survey.

The term "Syntactic Sugar" was found by the British computer scientist Peter J. Landin

(Mageed, 2010), this term describes making programming languages syntax user

friendly and offer alternative syntactic expressions to language common constructs to be

sweeter and written in simpler way without affecting the semantic (Mageed, 2010)

(Golbreich and Wallace, 2008).

In 1985 Andrew Koenig proposed a new language called "Snocone" as an extension to

the "SNOBOL4" text processing and pattern matching language (Koenig, 1985).

Andrew introduced the new language by adding syntactic sugars to SNOBOL4 in order

to make it easier to implement as SNOBOL4 control structure is old and complex, in

17

addition to the usage of blank character as operator which caused many syntactic

troubles to programmers.

TEX language is unfamiliar formatter programming language that has complex and low

level encoding construct syntax that make it difficult for usage (Laan, 1992), In 1992,

the authors of TEX provided syntactic sugars to make the syntactic constructs about the

loop, switch, array addressing, and keyword parameters closer to high level

programming languages constructs such as Pascal in order to be easier for users.

In 1996, Roberto Ierusalimschy and his team introduced "Lua", the extendable language

that offers ability to build extending application (Ierusalimschy et al., 1996). Extending

applications are application that can be reconfigured and extended in production time.

Lua offered the syntax and application program interface (API) needed for

configuration. Lua provided set of syntactic sugars constructs for users to make code

writing simpler. Examples (Ierusalimschy et al., 1996):

Method definitions using syntactic sugars:

 function object:method (params)

 ...

 End

This is equivalent to the un-sugared syntax:

 function dummy_name (self, params)

 ...

 end

 object.method = dummy_name

Method call sugared constructs written as

 receiver:method(params)

This is equivalent to the un-sugared syntax:

 receiver.method(receiver,params)

18

In (Chiba, 1996), Shigeru Chiba introduced OpenC++ which is C++ extension offers

meta-level program features interpreted by compiler at compile time. OpenC++

provided syntax sugar for matrix manipulation library to define matrix as an array with

initialized values which was not possible in regular C++ (Chiba, 1996). A new kind of

loop statement using "forall" notation to loop over all matrix entries in shorthand way

was introduced too. Examples (Chiba, 1996):

To initialize array with double values, C++ use the following construct:

double tmp[] = { 0.5, -0.86, 0, 0.86, 0.5, 0, 0, 0, 1 };

Matrix r = tmp;

In OpenC++ syntactic sugar construct, it can be:

Matrix r = { 0.5, -0.86, 0, 0.86, 0.5, 0, 0, 0, 1 };

To loop over matrix and initialize its entries, OpenC++ use:

r.forall(e){ e = 0.0; }

While in C++ it must be:

for(int i = 0; i < N; ++i){

double& e = r.element[i];

e = 0.0;

}

Referring to the examples above, the matrix definition and initialization constructs in

OpenC++ are shorter than and C++.

RhoStratego is a programming language developed by Eelco Dolstra in 2001 as part of

his thesis work (Dolstra, 2001). RhoStratego is a language used to implement program

transformation. This language used syntactic sugars to code un-ambiguity as described

in (Dolstra, 2001) by replacing parentheses with angle brackets. Also, it provided

syntactic sugar for congruencies, lists, and tuples. Examples on RhoStratego syntactic

sugars (Dolstra, 2001):

19

Lists and tuples can be defined simply using the following syntactic sugar constructs:

numbers = [1, 2, 3];

stuff = <42, "Foo", C 23>;

The unary tuples unambiguous notation was solved by using angle brackets instead of

parenthesis (Dolstra, 2001). In addition, RhoStratego offered syntactic sugar constructs

for complex expressions and patterns to be written in simpler and shorter way, for

example:

The following construct

foo = C 123 -> "foo";

Is syntactic sugar form for this complex one:

foo = Decomp(x, y) -> (C -> 123 -> "foo") x y;

We can notice how sugars helped making the code shorter, simpler, and clearer.

FC++ is an extension library added to C++ to support functional programming

(McNamara and Smaragdakis, 2003). In 2003, Brian and Yannis added new features to

FC++ related to support lambda sublanguage. The authors used syntactic sugar in

FCC++ to simplify functional notation and lambda calling constructs, for example

(McNamara and Smaragdakis, 2003):

The de-sugared version of code:

 [1,2,3] ‘bind‘ (\x ->

[2,3] ‘bind‘ (\y ->

if not (x<y) then zero

else unit (x+y)))

Can be replaced by the following syntactic sugar:

[x+y | x <- [1,2,3], y <- [2,3], x<y]

-- results in [3,4,5]

20

Usage of syntactic sugar in FC++ made the constructs shorter and simpler for users to

write and read.

In Scott Lystig Fritchie study (at 2003) of the performance of "in memory databases"

implemented using ETS (Fritchie, 2003), and by comparing the results with 4 different

data structures, he explained that a character representation was used as syntactic sugars

to replace the ASCII characters representation to be more readable (Fritchie, 2003). For

example, word "scott" is syntactic sugar representation for the ASCII characters list

[115,99,111,116,116].

In 2004, Steve Freeman, Nat Pryce, Tim Mackinnon, and Joe Walnes in their paper

Freeman et al., 2004, investigated using mock object in test driven development (TDD).

Test driver development is a methodology where programmers define tests for their

code functionality before implementing it, and start development until the test pass

(Freeman et al., 2004). In their research, they used an open source framework called

jMock (Freeman et al., 2004) that provides API for creating mock objects and specify

how to invoke tests and to verify results with pass or fail criteria. jMock API itself

considered as syntactic sugar implementation that can be used to create testing APIs and

make test suite construction simpler. In this paper, the syntactic sugar concept was

applied on framework API level and not only on simple syntactic constructs.

Christian Kirkegaard with his partners in (Kirkegaard et al., 2004) made a trial to make

XML document manipulation easier, high level, and faster based on XPATH, they

introduced new extension to Java called XACT (Kirkegaard et al., 2004). XACT was

equipped with many syntactic sugar constructs that made XML manipulation easier for

people who use XACT in order to use simple functions instead or writing complex

constructs to achieve the same operations (Kirkegaard et al., 2004). The following

21

examples show some of syntactic sugars in XACT where the left operand is the

syntactic sugar form and the right one is the de-sugared code needed to perform the

same operation:

smash(xs) = xs.length>0 ? group(xs,.[false()])[0] : [[]]

x.roots() = x.select(*)

x.text() = smash(x.select(text())).toString()

x.attribute(a) = smash(x.select(@a)).toString()

x.has(p) = x.select(p).length>0

x.size() = x.roots().length

x.delete(p) = x.gapify(p,g)

x.apply(p,f) = x.gapify(p,g).plug(g,[]f(x.select(p)))

The "XQuery" language is used to query XML documents (Hidders et al., 2005). This

language is powerful and its popularity was growing up. It suffered from complex

syntax that made it hard to be used in research and education (Hidders et al., 2005). In

2005, the authors of (Hidders et al., 2005) created a new sub language based on

"XQuery" called "LiXQuery". The new language offered simpler syntax using syntactic

sugar to offer shorter constructs for common and certain expressions (i.e. The Empty

Function, Quanti_ed Formula, FLWOR Expressions, Coercion), and to replace the

complicated syntax in "XQuery" with "LiXQuery" constructs and make it suitable for

research and education.

In Thomas Largillier work in (Largillier, 2005), two new syntactic sugars were added to

C++ to simplify writing efficient and generic code transformers code in LRDE project

(LRDE, n.d.). The transformation expression can be expressed in C++ syntax but they

need clever programmers to be able to write them which costs time and produce

complex, heavy and unnatural code. Because of these issues, Thomas offered new

syntactic sugar constructs to help the developers. The first constructs was the usage of

meta-tags with variables and classes to tell the compiler that values must be calculated

22

at compile time. The other one was virtual "typedefs" used to overwrite the statically

typed variables in sub classes.

The Object Constraint Language (OCL) language used to describe UML rules (Süß,

2006), was extended by J¨orn Guy S¨uß in 2006 to have syntactic sugars as its concrete

syntax is verbose and hard to be read (Süß, 2006). J¨orn extracted the new syntactic

sugars from math and logic depending on positive results he got from using the

syntactic sugars within workshop notes and formalized due to UML 1.4.2 standard

(OMG, 2005). The new syntactic sugars were Unicode and Latex symbols that can be

used within MS-word documents, HTML and other UML representation document

format and tools.

Following is an example shows how collections in OCL are represented using the new

sugar Latex and Unicode syntactic symbols (Süß, 2006):

Example one

Originals OCL Set: Set(X)

Unicode syntactic Sugar: {X}

Latex syntactic sugar: \{/ \}

Example two

Originals OCL Sequence: Sequence (X)

Unicode syntactic Sugar: [X]

Latex syntactic sugar: []

Other examples for other constructs are available in (Süß, 2006).

In 2006, following to their work in (Freeman et al., 2004), Steve Freeman and Nat Pryce

used syntactic sugars in Java based embedded domain specific languages (EDSL) to

implement sugar methods to replace the Java noisy syntax and non domain related code

23

that used to create and set up domain specific objects (Freeman and Pryce, 2006). The

idea was that the authors wanted to embed domain specific language within a general

language to use its implementation, capabilities, and tools and not to build the domain

specific language on top of the language. The authors used syntactic sugars to

implement methods that provide domain specific functionality; these methods hide and

encapsulate the complex general programming language code used to implement the

desired functionality and used within the EDSL code.

In Java like languages (Java, Scala and C#), Philippe Altherr and Vincent Cremet

described in their paper (Altherr and Cremet, 2006) many simple syntactic sugars used

to reduce syntax complexity, make code shorter and cleaner such as omitting empty

type parameters list in classes and methods, omitting empty arguments lists, and using

special identifiers (_) for un-referenced parameters.

Example removing square brackets:

class A { val x: A val y: List[A] }

The above construct is a syntactic sugar for the following:

class A[] { val x: A[] val y: List[A[]] }

In (Fruhwirth, 2007), Clemens Fruhwirth introduced Liskell, a new syntax for Haskell

that provides programmers with a set of syntactic sugars to eases programming (Simple

List, The Dispatcher Namespace, syntax sugar for defining macros "defmacro" and

others). Using syntactic sugars provided, the code was shorted and became more

readable. The following example shows how syntactic sugars affected the syntax

complexity to be simpler (Fruhwirth, 2007):

The following un-sugared block:

(SList ([] (SSym "if ")guard action (trf - cond rest)))

24

Can be written in Liskell syntactic sugars as follows:

(if ,guard ,action ,(trf-cond rest))

The same for macro definition, it can be done using a simple construct in Liskell:

(defmacro (macro-name pts) body)

Thaís Batista and Maurício Vieira used syntactic sugars in their work (Batista and

Vieira, 2007) within Aspect Oriented Programming language called RE-AspectLua, a

new version of AspectLua. Syntactic sugar constructs were used to reduce number of

code lines needed to define aspect interface and associating it with aspect points in the

code, and make interface definition simpler (Batista and Vieira, 2007). Example shows

how code becomes shorter:

aspectA = Aspect:new({name = "Aspect A"})

aspectB = Aspect:new({name = "Aspect B"})

ai1 = AspectInterface:new()

ai1:refinement({name = 'interface1'},

{refine = 'abstractpointA',

action = advice1})

ai2 = AspectInterface:new()

ai2:refinement({name = 'interface2'},

{refine = 'abstractpointB',

action = advice2})

aspectA:interface(ai1)

aspectA:interface(ai2)

aspectB:interface(ai1)

The above code using new syntactic sugars aspect interfaces will be as follows:

ai1 = AspectInterface:new_refinement({name = 'interface1'},

{refine = 'abstractPointA',action = advice1})

ai2 = AspectInterface:new_refinement({name = 'interface2'},

{refine = 'abstractPointB',action = advice2})

aspectA = aspect ({ai1, ai2})

25

In (Liu et al., 2007), the bidirectional transformation language Bi-X was used in

bidirectional input and output data transformations and synchronization. Bi-X can be

used to define new functional languages with syntactic sugars for ease of use (Liu et al.,

2007). For example, the usage of curly-braces "{}" is optional in some constructs like

Boolean-value functions, the programmer can omit them. The syntax of any new

language based on Bi-X is composed of set of core Bi-X syntax constructs and

functions, the new language syntax is a simplified form of constructs that make it easy

for user to define transformation rules using simpler and shorter constructs than using

only Bi-X core functions.

Java programming language adds new features in each release to make programmers

life easier (Kominetz, 2007). In Java 5, John Kominetz explained that Java offered the

"FOR-EACH" looping construct that is useful to iterate over lists and collections instead

of "ITERATE-WHILE" loop constructs. The "FOR-EACH" loop is much simpler and

shorter than the traditional loop construct (Kominetz, 2007). According to Raja

Kannappan, the latest release from Java "Java7" offered new set of features such as

multi exception catch (Kannappan, 2010). The new constructs help programmers to

write one catch block for many exception types like:

The old multi-catch form (Kannappan, 2010):

try {

// Say some file parser code here...

} catch (IOException ex) {

// log and rethrow exception

} catch (ParseException ex) {

// log and rethrow exception

} catch (ClassNotFoundException ex) {

// log and rethrow exception

}

26

Can be replaced by:

try {

// Say some file parser code here...

} catch (IOException ex | ParseException ex |

ClassNotFoundException ex) {

// log and rethrow exception

}

Many other features were added such as supporting strings in selection statement cases,

allow underscores in telephone numbers, credit cards, and social number, the ability to

parse binary number from string, in addition to many other features mentioned in

(Kannappan, 2010).

The W3C Web Ontology Language (OWL) is used by applications to process document

data and present it for human benefit and readability (Golbreich and Wallace, 2008).

OWL was extended with a new set of features provided in a new release called OWL 2

(Golbreich and Wallace, 2008). Two of the new features in OWL 2 were extra syntactic

sugar added to make the common DisjointUnion and DisjointClasses patterns in OWL

easier to write (Golbreich and Wallace, 2008). The usage of new syntactic sugar

patterns DisjointUnion and DisjointClasses hides the complex DisjointWith patterns

used to perform the same functionality.

Chieri and Atsushi work in (Saito and Igarashi, 2008) was to solve the problem of

recursive classes-subclasses as they lost referencing and type safety because they

referenced by name in the object tree. They solved the problem by proposing new

lightweight polymorphism that support type safe recursive classes and added this

solution to JAVA 5 as extension called Featherweight Java (.FJ). FJ extension related to

nested classes, family-polymorphic methods, and relative path types were considered as

syntactic sugars added to Java 5.

27

In (Haskell syntactic sugar, 2010), Haskell functional language used syntactic sugars for

simplifying expressions and making syntax more readable and shorter. Example: For

functions used in numbers manipulations, Haskell offered the following syntactic sugar

constructs:

The original form: \x -> x + 2

The sugared from: (+2)

For lists:

The original form: 1:2:3:[]

The sugared from: [1,2,3]

List comprehensions original form:
let ok (x,y) = if x < 2 then [x] else [] in concatMap ok foos

The sugared from:
[x | (x,y) <- foos, x < 2]

Many other examples are available in (Haskell syntactic sugar, 2010). The syntactic

sugar constructs used changed HASKELL constructs to be more readable, easier to

write, shorter, and well-formed.

In (Mageed, 2010), C# 3.0 was provided with new features to support LINQ functional

paradigm. These features were classified as syntactic sugars that help in cutting down

the repetitive code tediousness. The authors explained the new syntactic sugar features

exist in C# 3.0 and how they can help supporting LINQ. The explained syntactic sugar

features were implicitly typed local variables, automatic properties, object and

collection initializing, anonymous types, extension methods, and lambda expressions

(Mageed, 2010). These new syntactic sugar constructs aimed to make code length and

objects initializing constructs shorter. The following examples shown in (Mageed,

2010):

In order to define a class called Person and create instance from it, the old C# code to

achieve this is:

28

Using new C # 3.0 syntactic sugars, this can be done as follows:

Another example, to fill a list with instances of Person class using old C# syntax, user

need to do the following:

29

While in new C# 3.0 syntactic sugar, this can be done as follows:

C# 3.0 constructs are shorter than old one but they appear harder to read and understand

(Mageed, 2010). Other examples exist in (Mageed, 2010).

2.4 Syntax Errors Reduction

Efforts to reduce and eliminate syntax errors were considered in many researches. The

majority of these researches focused on students and novice programmers.

Teitelbaum and McIlrow in (Teitelbaum and McIlrow, 1981), proposed The "Cornell

Program Synthesizer" text editor to help in reducing syntax errors through providing

programmers with syntax templates for the constructs they want to write using

command code. After the editor print the desired template (i.e. IF statement template),

programmer has to fill the template with values and complementary statements (i.e.

conditions and body statements). The programmer has to memorize the command codes

for all constructs.

Sarah K. Kummerfeld and Judy Kay work in (Kummerfeld and Kay, 2002) offer simple

way to help students in solving syntax compile-time errors in C/C++. They build a

simple web based guide reference that explains the common compiler syntax errors with

details on error description, expected reason, code examples, and how to correct it using

an example. The authors validate this approach though preliminary experiment with

simple size of students. They asked students to correct syntax errors in certain written

programs. The results showed that the online reference guide helped novice

30

programmers in solving their errors more than experienced one. The same results were

noticed for experienced programmers when they face errors they were not familiar with.

Another trend the authors in (Kelleher et al., 2002) followed to reduce syntax errors for

novice programming students was by offering 3D visual programming language called

"Alice2". The main propose of this language was to help learners to focus on program

logic and execution and not on syntax writing, errors, and to minimize the set of syntax

they need to memorize. Learners can easily build their programs using drag and drop

tiles, objects, and relation, then execute the program and check results. They don't need

to write the underlying code, it will be generated by Alice2 in the background.

The study done in (Chinchani et al., 2003) show that the popular programming

languages syntactic features may cause logical errors and security breaches in program

execution while the program syntax grammar is written correctly. For example, the

usage of semicolon as complete statement in C can cause FOR loop to complete

successfully but will not affect the loop body and cause logical error:

int x;

For(int i=0; i<100; 1++); // the ";" will prevent x from

 x = x + i; // increment and cause wrong value

For(int i=0; i<100; 1++) // this is the correct code form

 x = x + i;

Another example is the usage of symbolic operators in expression:

int i , j, v ;

v = i > j ? i : j; // v will have int value which is correct

v = i > j ; i : j; // v will has Boolean value and cause program

 // fault because "?" is replaced with ";"

In Languages design, the authors advice to avoid ambiguous syntax constructs that

depend on symbolic operators, short expression statements, week typing, similar

31

variable names with case sensitive, the similar or close key words and white spaces as

they can cause logical errors and security breaches.

The following table summarizes approaches used to reduce syntax errors:

Table 2.1: Summary of syntax error reduction strategies

Reference Strategy Description

(Teitelbaum and

McIlrow, 1981)

Syntax Template Provide programmers with syntax templates to fill. "Cornell

Program Synthesizer" text editor is used.

(Kummerfeld

and Kay, 2002)

Web based guide

reference

Offer web based guide reference for errors in C/C++ with

description for reasons and how to fix with examples

(Kelleher et al.,

2002)

Visual Programming Use 3D visual programming language called "Alice2" to

build programs using drag/drop of program building blocks

(objects). No code is written by programmers.

(Chinchani et al.,

2003)

Ambiguous Syntax Avoiding ambiguous syntax constructs like symbolic

operators, close keywords, short expression statements and

others

2.5 Contribution

By referring to programming languages review in section 2.2 (Figure 2.4); we noticed

that the mainly common programming languages paradigm used were the object

oriented and imperative paradigms. Most of the modern programming languages focus

on object oriented. Based on this we decided to focus on these two paradigms in our

study.

All the related work described in syntactic sugars review (section 2.3) was focusing on

enhancing certain syntax constructs partially in order to add support for specific

concepts such as functional paradigm support in object oriented programming language,

methods shorthand, interfaces, decrease code verbose and un-ambiguity, and adding

new functionality or domain support to a programming language "DSL" (Altherr and

Cremet, 2006) (Freeman et al., 2004). There was no proposal or work done to enhance

the general programming languages common abstract syntax constructs using syntactic

32

sugars, and we didn‘t find previous study to measure syntactic sugars efficiency and if

they achieve their proposed goals.

The trends used to reduce syntax errors focused on novice programmers. These trends

provided code templates and error guide references (Kummerfeld and Kay, 2002)

(Teitelbaum and McIlrow, 1981) to help in reducing the errors. Other trends changed

the programming paradigm and offered 3D visual programming environment (Kelleher

et al., 2002) to solve the problem, but 3D visual programming prevent programmers

from practicing the real life programming experience and paradigms. In addition, most

of the proposed trends used to reduce syntax errors don‘t work in simple and remote

development environments, for example, the code template need IDE or rich editor to

insert templates it in the code, the Web reference need internet connection, and the

visual 3D need visualized environment and rich IDE to manipulate the objects, while

syntax sugars can be useful and work in simple text and pure command line

environment.

In our work, we tried to make enhancements using syntactic sugars on general level for

the most common abstract constructs that are used in both object oriented and

imperative programming languages. We propose using syntactic sugar to reduce syntax

errors, reduction of repetitive keywords, better semantic extraction, code debugging,

and make text based and remote development and development using simple editor

easier for novice and expert programmers, which was not discussed previously. And we

conducted an exploratory case study to measure the proposed syntactic sugar construct

efficiency.

33

Chapter Three

Constructs Selection and Enhancements

3.1. Introduction

This chapter explains the technical and practical methodology we used to select and

enhance the set of syntactic sugar constructs.

 Constructs selection methodology depends on two factors: usability frequency and

object oriented programming (OOP) Relevance. We determined the common abstract

programming constructs (Mosses, 2005) that are classified under these factors. The

abstract constructs are supported by set of actual syntactic constructs we extracted from

5 programming languages (PL).

We used a questionnaire designed using the extracted constructs to validate and select

the syntactic constructs. Questionnaire results helped us in realizing new facts and

improving our methodology to achieve our goals.

The following sections explain all of these steps in details.

3.2. Constructs Selection Methodology

This section explains the factors used in our methodology to select the constructs

included within the research and to determine which of them to study, these factors are:

 Usability frequency: by usability frequency we mean how much these

constructs are used in writing programs. We tried to focus and select the most

common and frequently used constructs which most programs, even simple

programs with few lines, will use a set of them, for example control constructs

(IF and SELECTION constructs), looping, methods, functions…etc.

34

 OOP Relevance: OOP paradigm is now one of the common programming

paradigms used by real application developers and in most university

curriculums. This research aspired to cover the most common OOP abstract

constructs: inheritance, collection iteration, modules and packaging, access

modifiers, method overloading and riding, object instantiation and initialization,

message passing, and exception handling.

We tried to cover the more common and most widely used programming languages

constructs used by both professionals and students. This range of users makes the

benefit of the research reach most programming language users. The final effect is most

beneficial for programmers based on their professional level.

3.3. Abstract Constructs Selection

Programming syntactic constructs are built based on abstract constructs that are

common between the majority of programming languages, but differ in their syntax and

implementation as each programming language has its own different syntactic

constructs which are obtained based on the abstract constructs.

For example, in any program, we need control constructs (conditional branching,

looping…etc.). Looping and conditional branching show the abstract constructs as

abstracted representation, while their implementation is different between PLs and

expressed using syntactic constructs like the IF statement, FOR loop, WHILE loop and

many others.

Below, we show the abstract constructs categories we selected for each concept

depending on construct selection methodology factors described in the previous section:

35

Usability frequency constructs:

1. Method (function) definition construct: this construct study shows the way of

defining a method, parameters, return type and value, and scope determination.

2. Looping construct: this construct study describes the definition of looping

control construct over a range of numbers or array entries, and how to determine

looping block scope in a better way.

3. Selection construct: this construct study describes the selection construct over a

set of values.

4. Exception handling variables scope construct: this construct study describes the

scope of variables defined within exception handling block and tries to enhance

it. This construct is semantic-related and has nothing to do with syntax.

5. Building blocks scopes determination: this covers more than one construct, in

this area we tried to enhance the syntax scope determination for many constructs

like looping, methods, and others to make the code more readable, less

ambiguous, and easier for semantic understanding.

Object oriented programming constructs:

We studied the main constructs used in OOP development especially constructs that

represent the main OOP concepts like inheritance, encapsulation, polymorphism…etc.,

as described below:

1. Class: In this construct we studied the main class building blocks that are

explained in the other constructs below. We focused on attributes (states) and

method (behavior) definitions, access modifiers, constructor replacement, class

definition constructs. As a result, many class building blocks are affected by this

study.

36

2. Inheritance: in this construct we studied the inheritance relation syntactic

writing form.

3. Methods as Constructors: in this construct we studied how to use any method as

a constructor to be executed at instance creation.

4. Libraries and packages: here we studied the syntax used to call certain libraries

or modules and how we enhanced them.

5. Attributes access modifiers: this construct shows how to define attribute-access

modifiers and enhancements we've suggested.

6. Methods access modifiers: this construct shows how to define method-access

modifiers and enhancements we've suggested.

7. Iteration: in this construct we studied how to iterate over object lists in easier

and more readable way.

8. Object instantiation: here we studied how objects are instantiated from classes

and how to make them easier.

9. Object / Method messages passing (calling) format: in this construct we

investigated the syntax used in calling object-instance methods, pass messages

(values) to them, and how to enhance it wherever possible.

From the abstract construct categories mentioned above, the study covered the

following common OOP properties in a direct or indirect way as follows:

1. Inheritance: the inheritance construct is affected directly by considering the

syntax used to express inheritance relation and enhancing it.

2. Polymorphism: there is no direct construct to represent polymorphism; it is a set

of concepts more than direct syntactic construct.

37

Polymorphism can be achieved through method definition (overloading,

overriding), method invoking and message passing.

3. Encapsulation: This concept is achieved in an indirect way through using the

construct mentioned previously: attribute-access modifiers, method definitions,

and access modifier.

4. Relations (Is A, Kind off…etc. Association and aggregation): no direct construct

for these relations, this can be achieved using inheritance and/or the class

attributes definition and access modifiers.

3.4. Programming Languages Study and Constructs Extraction

Depending on the previous section output, we had the abstract constructs set which we

used to extract the actual syntactic constructs from a set of programming languages as

described in this section.

Constructs included in this study were obtained from two main sources: the first by

extracting the actual syntactic constructs that represent the abstract constructs explained

in section (3.3) through studying a set of programming languages, and the second

source by brain storming we did to suggest a set of syntactic sugar enhancements on the

abstract and syntactic constructs.

The final result was a mix of syntactic constructs extracted from programming

languages, which are considered to be widely used, in addition to a set of enhancements

we suggested.

We selected 5 programming languages to extract the syntactic constructs. The PL

selection criteria were based on:

1. Language usage and spreading.

38

2. Language families and development; we focused on languages based on their

families.

We tried to select programming languages that are widely used previously and

currently, and considered selecting languages that are developed on top of other

languages or languages whose syntax is a mix of other older languages. This is to create

balance between old and new programming languages, in addition to covering a large

set of syntactic constructs that are used in a large set of programming languages

(Lévénez, 2009).

Selected programming languages are: Eiffel, Python, Java, C#, and Ruby. A brief

overview about each language can be found in Appendix 3.

After studying these programming languages, we started analyzing the syntax that exists

in them and extracted all syntactic constructs that match our abstract constructs and

filled them in a matrix (sheet) of constructs showing how they syntactically exist in

each of the 5 languages. The matrix is shown in Appendix 1.

To determine which syntactic constructs from the extracted set are suitable and meet our

goals, we need to get the opinion of people who use programming languages which we

did in the following section.

3.5. Questionnaire Design, Distribution, Collection, and Results

To select and form the new syntax constructs set from the extracted and enhanced

constructs, we followed a questionnaire approach to get the opinion of people who use

programming languages (programmers, developers, students, tutors), and get their

recommendation for which constructs are better based on their experience and

expectations.

39

The questionnaire was designed on top of the extracted constructs sheet introduced in

Appendix 1 which includes 23 different constructs for each of the 5 languages as

follows: class definitions symbols, class scope, method signature definition, method

scope symbols, inheritance construct, constructor definition, super / parent class calling,

package / module definition, libraries and packages calls construct, libraries and

packages repetition, attribute access modifiers, method access modifiers, methods and

attributes organization in class, object instantiation, object message / method calling,

exception handling constructs used, exception handling variables scope, control

statements scope symbols, object collections iteration, FOR loop, WHILE loop, IF

statement, and SWITCH / CASE statement.

The questionnaire design process and questions‘ construction was based on standard

scientific guidelines (Clarke, 2001) (Cheah, 2005) (Borgatti, 1996) (Quick MBA, n.d.)

(Arsham,1994) (Survey Design, n.d.) (Galloway, 1997). We consulted with a statistical

expert in the design process who verified the questionnaire and questions whether they

are measurable and achieve desired goals.

A pilot version of the questionnaire with 36 questions in 20 pages was reviewed by the

statistical expert and distributed on 3 different developers in 2 companies to test its

validity and questions‘ correctness. The feedback obtained from the pilot version

showed that the questions were clear and understandable with measurable answers, but

the questionnaire was too long and took a long time to be answered, which can cause a

problem in collecting answers as people usually don't like spending a lot of time

answering questionnaires, especially if they are long. To solve the length problem, we—

including the research supervisor and the statistical expert—discussed minimizing the

size of the questionnaire and including the key questions that represent the most

40

important constructs and cover similar or less important constructs. After deep

brainstorming and review for constructs and their usage, we were able to minimize the

questionnaire to include 19 questions in 9 pages.

This also affected the covered construct to be as follows:

 Constructor definition

 Method signature definition

 Method scope symbols

 Inheritance construct

 Libraries and packages calls construct

 Libraries and packages repetition

 Attributes access modifiers

 Methods access modifiers

 Methods and attributes organization in class

 Object instantiation

 Object message / method calling

 Exception handling variables scope

 Object Collections iteration

 FOR loop

 IF statement

 SWITCH / CASE statement

The excluded constructs were:

 Class definitions symbols: these constructs are not as vital as most languages use

similar constructs for class definition

41

 Class scope: most languages use similar constructs for class definition; we

considered the most common form that uses ({}).

 Super / Parent class calling: not common case in all selected languages,

preferred to go with the C# or Java construct as it is the simplest and most

similar to other languages.

 Package / module definition: not a major construct for students and they rarely

use it; we preferred to go with the Java construct as we deduced that it is the

simplest.

 Exception handling constructs used: we selected the simplest and most common

construct that is used in many other languages (C#, Python, and Java)

 Control statement scope symbols: this construct is covered implicitly when

enhancements suggested over some constructs described in section 3.6.

 WHILE loop: similar to FOR loop in concept.

The final version of the questionnaire is in Appendix 2.

We distributed the questionnaire to programming professionals and students in

Palestinian universities and companies in the West Bank, Palestine
1
. The population and

sample size were calculated depending on a report of ICT working forces in Palestine

we got from "Palestinian IT Association of Companies (PITA)" (PITA, 2008). Details

of population size calculation are explained in Appendix 4.

We used confidence interval 10, and confidence level 95%, the sample size was: ICT

Professionals: 77, ICT Students: 93. The number of distributed copies was 600, and the

1 Universities: Al-Najah University, Ber-zeit University, Al-Quds University

ICT Companies: Information and communication technology center at Alquds Open University, Information and

communication technology center at Alquds University, Hulul, Safad, Asal, Exalt, Al-Andalus, NoorSoft, Al-

Watanya Mobile, Jawwal, GSSI, Bisan

42

number of collected copies was 251, distributed as follows: ICT Professionals: 79, ICT

Students: 172

 After analyzing the results obtained from the collected questionnaire, we found that 14

out of 15 construct questions were with Java construct selections, and only 1 construct

was from another language (Ruby), which was the method definition construct. The

results helped us in realizing the fact that people usually prefer what they know while

resisting change (change management); they answered in a way that didn‘t nominate a

new easier constructs set.

We were able to explain the results by referring to PITA working forces report (PITA,

2008). In the report, we found statistics about "Percentage Distribution of ICT

Professionals According to Technical Skills" that shows 48% of people have C++

experience, and 39.2% have Java experience. Both C++ and Java were on the top of the

languages list with which ICT professionals have skilled experience. This lead to a fact

that these 2 languages are the most commonly used programming languages in the

Palestinian companies and universities. In addition, companies have started using C#,

which has the same syntax as Java. As a conclusion, people answered the questionnaire

by selecting constructs they are familiar with, not necessarily what is better.

Results directed us to modify our methodology by nominating a set of syntactic sugar

constructs from the extracted and enhanced set, which we assumed helps in improving

code and program writing, minimizing syntax errors and ambiguity, create clearer

semantic, and achieve all the objectives we try to approve. Then we request people

practice them, and give their feedback as explained in the coming sections and chapters.

43

3.6. Syntactic Sugar Constructs Set and Enhancements Selection

Based on the modification done in the methodology, we took the responsibility to select

and nominate a set of syntactic constructs from the extracted programming languages'

constructs, in addition to a set of syntactic sugar enhancements added to these

constructs to produce new syntax for programming languages' common constructs.

The criteria we followed in selecting the new constructs and formulating enhancements

was as follows:

1. Reduce repetitive keywords: that is to not repeat the same keyword many times

if it can be replaced with one keyword, whenever possible.

2. Shorter constructs: try to make constructs shorter to write where possible, like

looping constructs when looping is sequential, whereas in such cases conditions

are not needed.

3. Close to natural language: try to select constructs and modify them to be closer

to natural language like the selection statement.

4. Make constructs closer to standards: make some constructs derived from well

known standards for developers as the case of inheritance constructs: the symbol

used is derived from UML inheritance relation symbol.

5. Offer many alternatives for the same construct: in some constructs, try to offer

the same semantic through many syntax alternatives like method calling.

6. Enhance constructs scope identifiers: make code more readable and less

ambiguous by modifying some constructs scope identifiers like loop constructs

and methods.

44

The selected constructs and syntactic sugar enhancements, suggested based on the

described criteria, are supposed to make the code shorter, less error-prone, semantically

clearer, easier to write, and more readable.

The following table summarizes all selected and enhanced constructs, their description,

and gives a simple example for each one. A detailed description for these constructs is

available in Appendix 8.

Table 3.2-A: The selected and enhanced syntactic sugar constructs – part 1

Enhanced Constructs Suggested Syntax Comments

Class Inheritance

Construct
class ChildClass -> ParentClass // UML notation

class ChildClass:ParentClass

Offers code reusability,

shorthand, and

maintenance

Class Instantiation

Construct
myInstance = MyClass(); Keyword reduction

Method Definition

Construct
def methodName(int size, Object obj)

 int x = 5 + size;

 return x;

endef

Used simple construct

to define a method

where the return type is

not needed.

Method Calling

Construct

instanceName.methodName; // calling method

without parenthesis

instanceName.methodName(); // calling method

with parenthesis

instanceName.methodName2(5, objInst); //calling

method with parameters and parenthesis

instanceName.methodName2 5, objInst; //calling
method with parameters and without parenthesis

Many alternatives to

call a method from

class instance and

message passing

Method Execution on

Class Construction

Construct

class MyClass create executeMeMethod{

 def executeMeMethod()

 system.out.println("I'm executed on instance");

 endef

}

Used to execute a

method on class

instantiation without

using constructors or if

no constructors /

defaults constructor is

available.

Looping Construct 5:times do ref // loop 5 times

 System.out.println("Val: "+ref+" in: "+arr[ref-1]);

end

Used to Loop a block of

statements or array

entries number of times

in simple way. "ref" is

optional.

45

Table 3.2-B: The selected and enhanced syntactic sugar construct – part 2

Enhanced Constructs Suggested Syntax Comments

Object Collection

Iteration Construct
myCollection:each do ref // iterate myCollection

 System.out.println("Hi, I'm looping…"+ref);

endEach

Iterates over collection

of objects or any type

derived from collection

type in easy way

Selection Construct choose(a){

 case 1: System.out.println("One…");

}

The keyword used to be

more close to human

natural language

Packages / Modules

Calling Construct
import: java.io.*; // write import only once for all

 java.util.*;

 java.lang.*;

This to reduce

repetitive "import"

keywords

Variables Access

Modifier
class ClassName{

 private: // private attributes

 int a = 1;

 String b;

 public: // public attributes

 File file = new File();

 double length;

// the same for other access modifier

}

An enhancement to

define many attributes

with the same access

modifier. Close to

C++.

Method‘s Access

Modifier
def __privateMeth()//2 underscores : private

def _protectedMeth() //1 underscores: protected

def publicMeth() //no underscores: public method

The access modifiers

for methods are

specified in simple way

by using underscore(s)

"_" at the beginning of

method name to define

it access modifier.

Exception Handling

Variables Scope

try{

 int nm = Integer.parseInt(br1.readLine());

}

catch(Exception e){

 System.out.println("num="+nm);//nm is

accessible

}

System.out.println("num="+nm);//num is

accessible

We modified the scope

(accessibility) of

variables defined within

the exception try block

to be accessible outside

the try block

The output of this phase was a new syntax constructs set that we assume will achieve

our goals. This assumption of the new syntax set needs verification. The verification

was done through designing and executing an exploratory case study on these constructs

as described in chapters 4 and 5.

46

Chapter Four

Exploratory Case Study

4.1. Introduction

This chapter describes the exploratory case study used to verify the assumption of the

suggested syntactic constructs set obtained based on methodology modification.

In this case study, we implemented the new constructs on top of Java 1.5 syntax parser

with simple IDE to be used within the experiment where participants use the parser to

write programs using the new syntax constructs set.

The case study is done with a small sample of computer science students and

professional developers in order to get feedback from different programming language

users with different experience levels.

The following sections explain the experiment design, how it is executed, and types of

data collected.

4.2. Exploratory Case Study Experiment

We conducted an exploratory case study with a small sample size as we used this

experiment as an indicator to know if our assumption regarding the new constructs set

was valid.

The work we did was an indicator and represented a start for more advanced research.

We don't claim that the results in this research are final, they are indicators. In future

work, we need to extend the constructs set and increase the experiment sample size, and

perform the experiment within a longer timeline, for instance teaching the constructs in

a university course for multiple semesters.

47

We were unable to make the experiment with a large set of users due to many

difficulties and issues explained in section 4.7.

4.3. Case Study Design

In this section, we describe the methodology used in the case study design and

execution. Questions we need to answer through the case study are:

 Do syntactic sugars help in development with fewer errors?

 Do syntactic sugars help in semantic extraction?

 Do syntactic sugars make code more readable, easier to write?

 What is its effect on students and professionals?

Answers to these questions can judge and validate whether the new syntactic sugar

constructs set achieved the desired goals.

The way to measure the constructs' efficiency is to let users practice them, especially the

novice users like students. The chance for errors and difficulty in writing programs with

students is much higher than with experienced professional users as their skills help

them.

Semantic extraction and debugging are core tasks the professionals do throughout their

work in the case of huge programs and logical error debugging. We need to verify

whether or not the new constructs can help in semantic extraction and debugging. We

covered this area through the case study we did with professionals.

The case study was designed into two tracks in order to achieve what is described

above: The first track was with students. We introduced the new constructs to them, got

feedback of their initial impression through an interview, then asked them to write

programs using the new constructs set. The other track was with programming

48

professionals. We gave them a set of programs written using the new constructs and

asked them to debug and extract their semantic. Then we introduced the new constructs

set to them, and did an interview to get their feedback. Details of these two tracks and

how they were executed is explained in details in the following sections (4.5, 4.6).

We prepared the material needed in the case study which: detailed tutorial contains all

details for the new constructs including sample programs written using these constructs,

a summarized presentation including the constructs set presented for users, and a parser

used in writing the code and checking syntax error as described in section 4.4. All

material and resources were prepared on CDs and distributed on the case study

participants.

Finally, a set of questions in interview form were prepared to get feedback from

participants. Details of the interview questions are in Appendix 5.

4.4. New Syntax Parser and IDE

Syntax parser was implemented to validate programs written within the case study for

any syntax errors including the new syntactic sugar constructs set.

The new constructs set we proposed is not a complete programming language. It is a

new subset of syntactic sugar constructs and not enough to write complete programs.

We used existing programming language syntax and added the new constructs set to it.

We used Java 1.5 syntax grammar and modified its grammar rules (BNF) by adding the

new syntactic constructs set without eliminating any of Java 1.5 syntax. This way, users

can still write code and programs' using the existing Java 1.5 code in addition to the new

constructs set. It matches the concept of syntactic sugars constructs as they added to an

49

existing language, and the syntax became more user-friendly, requires less writing

efforts, and is easier while users can still use the old syntax.

We implemented the parser using parser generator tool called JavaCC (JavaCC, 2010)

in addition to a very simple integrated development environment (IDE) that offer users

with a very simple text editor to write their programs and a simple set of visual

commands to manipulate source files and invoke the parser on the written syntax. The

IDE shows all syntactic errors that have occurred in the code.

Having a very simple IDE without any kind of wizards or tools that help users, such as

code completion or suggestions, was done intentionally to make the experiment real and

force users to write their code completely on their own. This was to match the

environment we want to study and to identify the effect of syntactic sugar constructs

where users usually don't have a rich IDE and need to write code in command line mode

using simple tools.

We must clarify that the IDE and parser are only used to write and parse syntax. No

compiler or program execution was done as we focused on the syntax writing and

correctness. Complier can be done in future work.

The IDE tracks and logs user syntactic errors generated during writing any program. It

saves all errors, their line numbers, and timestamp for each error, in addition to the

program itself. This kind of logged data helped us to determine the count of errors

occurred, the source of such errors (old syntax, new syntax), and the time consumed in

writing the program. All of this data will be explained with results analysis in chapter 5.

50

Figure 4.2: New syntax IDE and parser tool

4.5. Students' Case Study Track

Students who learn programming languages usually face a lot of syntax errors in their

code, and can become lost while tracking and debugging the code, especially when

syntax and/or logical errors occur. It is not easy for them to remember the syntax

keywords and deal with long constructs. We thought that this kind of user is a good

candidate to verify the new syntactic sugar constructs with them as they are suffering

from most of the issues we've tried to solve using the new syntactic sugar constructs

(Kummerfeld and Kay, 2002).

The case study was done with 6 volunteer students with the cooperation and support of

the computer science department in Al-Quds University.

We had a short meeting with the students and explained to them the idea, what we were

trying to do, and their role in the experiment.

In the second meeting, we did a presentation for them explaining the new constructs,

their objective, what benefit we expect to get, and presented some examples that were

Code Writing Area

Parsing Results

Area

51

written using the new syntax. After the presentation, we did a quick interview with them

in order to answer the interview questions, which reflected their impression regarding

the new constructs. By the end of the meeting, students got a CD that contains the

presentation material, a detailed tutorial of the constructs, and an executable version of

the parser. The purpose of this CD was to give students the ability to read more about

the new constructs and practice them using the parser in their free time at home, and

before executing the practical part.

In the third (final) meeting, we prepared the PCs in lab with Java and the parser IDE

and provided students with a description of 4 programs to write using the new syntax.

These programs included: a program to find the sum of numbers, a second program to

find the minimum and maximum numbers in an array, a third to demonstrate bubble

sort, and a final program to extend the Java String class with methods to return tokens in

a string and their count. Details of these programs are in Appendix 6.

We designed and choose these programs on purpose by taking into consideration the

need for student to practice the new syntax using simple programs and then use them in

harder ones. The first program is very simple so that they can practice the new syntax

and the parser. The second and third programs were from courses they've learned and

already understood well with increasing difficulty level. This helped to check the effect

of new constructs in writing such programs, especially students who practiced them in

other languages, and what kind of differences they noticed when using the new syntax.

The last program was new and the most difficult one. We wanted to know if new

constructs help them in solving new problems efficiently with less effort and fewer

errors.

52

At the end, log files, saved data, and programs were collected to be used in results

analysis.

4.6. Professionals' Case Study Track

The second track of the case study was set out to check the new syntactic sugar

constructs set with professional programming language users (programmers and

developers) and to verify whether or not the new syntactic sugar constructs set helped in

reducing errors, debugging, and with semantic extraction.

Professional programmers were the participants in this track, as their experience allows

them to judge whether or not the new syntax helped in program debugging and

semantic. They worked on many cases to debug certain code or to continue working on

others' code where they have to understand its semantic.

This track was done with 6 professional volunteer programmers from 2 companies.

The first phase was that we gave programmers 10 programs divided into two groups: 5

of them written in ordinal Java code, the other 5 using the new constructs. We shuffled

them all in a document while taking into consideration that those programs should be

similar in concept and difficulty in order to be fair and unbiased. Supervisor

consultation and review is done before distributing them to the participant. Details of

these programs are in Appendix 7.

The aim of distributing these programs was to see whether users can extract and

understand the semantic of programs written using the new syntax without knowing it

previously, compared to their ability to do the same with programs written in ordinal

Java syntax, which they were already familiar with. Programs were distributed and

answers collected.

53

Next step, we did a presentation for the same programmers explaining the new

constructs set with examples, and then got their impression and feedback by answering

interview questions.

All data and answers were collected and analyzed as described in chapter 5.

4.7. Difficulties Faced During Case Study Execution

We faced many difficulties and limitations during the case study that prevented us from

extending the sample size. These difficulties were summarized as follows:

 Students didn't show interest in participating in such types of research and

experiments. We posted an announcement leaflet for students to register in order

to participate in the experiment. The announcement included some kind of

encouraging rewards (small amount of money) that will have been given for

participating and committed students. The result was no students registered at

all.

 As students were not interested, we decided to talked to them in classes and

encourage them to participate. As a result, we were able to register 6 students

only.

 Students' time and availability: we were forced to change the time of the meeting

many times because of students' special circumstances or because they were

busy with exams. This caused some latency and we attended some meetings

without getting any output.

 Students' self learning: most students who participated in the experiment didn't

read the full tutorial nor practice the code during their free time. This required

them to spend some time before the experiment to review the constructs,

effecting the experiment time negatively.

54

 We faced similar issues with programmers and developers in companies, such

kinds of users don‘t prefer to spend time doing work outside of their paid tasks.

Most of the time they were stressed and busy carrying out their duties. In

addition, they need management permission to participate in such kinds of

activities which made things difficult sometimes as they considered it a minor

activity along with the fact that employees must focus on work and delivering on

time. Based on this, we worked with a small set of developers (6) whom we

were able to get permission from their employers.

 Professional developers' availability: it was hard to manage meetings with

participating developers as they were busy most of the time in their tasks. And

when some of they were available, the rest were in meetings, outside the

company, at a customer site, or on vacation. It was hard to gather them all at

once.

 Financial issues: work with a large set of users who will be reward formed a

slight financial load we couldn't afford.

55

Chapter Five

Exploratory Case Study Results

5.1. Introduction

This chapter shows and analyzes the results of the exploratory case study done to check

the suggested syntactic constructs set validity.

Results were related to the interviews with students and professionals, the practical

work done by students through writing programs using the new constructs set, and the

work done by professionals in extracting the semantic from set of programs.

Analyzing the data collected in all mentioned areas showed encouraging results that

support our assumptions as explained in the following sections.

5.2. Students' Interview Results

Students' answers on interview questions showed a positive indicator for new syntactic

sugar constructs set validity. Results are summarized in the following table
1
:

Table 5.3: Students answers on interview questions

Question Result

1- Do you believe that using the new constructs will save efforts in writing code especially

in case of repetitive keywords (import, access modifiers…etc.) and shorter looping

constructs?

Agree

2- Do you think that using new constructs will help in decreasing syntax errors as result

from saving repetitive keywords and distinguish scope using different identifiers?
Totally Agree

3- Do you agree that using new constructs will make the code debugging easier? Agree

4- Do you think that the code will be more readable using the new constructs? Totally Agree

5- Are the new constructs can help in extracting the program semantic from just reading it

with minimal execution efforts and without the need for executing it many times and

debug it to understand its functionality?

Agree with

Reservation

6- Is it true that the new construct can help in producing programs with less number of

code lines (shorter syntax)?
Totally Agree

1 (Answering scale: Totally Agree, Agree, Agree with Reservation, No Answer, Poor, Disagree, Totally Disagree)

56

The distributions of students' answers are shown in the following chart:

Figure 5.3: Students interview answers distribution

Answers distribution in Figure 5.3 showed that there were no negative answers. This

means the new syntax constructs set indicates an enhancement in programming style

and students were able to understand these constructs and their effect on syntax.

Summarized answers showed that the new syntax constructs set effect on reducing the

syntactic errors and making the code more readable and shorter is high. They help in a

reasonable way in saving code writing efforts, using less repetitive keywords, and

making code debugging easier.

Students believe that new constructs set helps in semantic extraction with reservation.

This result was the lowest. We expect the reason for this is: usually in students'

assignments and work, they write programs more than debug, and their need to

understand written code and extract its semantic is less than professionals. They write

their own programs from scratch (which are mostly short programs) and don't need to

57

continue on somebody else's code as in the case of professional developers when huge

code is moved from one developer to another.

5.3. Students Practical Case Study Results (Program Writing)

We collected the log data generated by the parser IDE which recorded errors that

occurred while students were writing the syntax of the programs.

From the log data, we extracted errors that occurred in each program for each student.

We classified these errors into two types: errors that occurred in old existing Java

syntax, and the errors that occurred in the new suggested constructs. The objective of

this classification was to measure the percentage of errors that occurred by each type

and to check if there was any improvement achieved using the new constructs.

The following chart shows the percentage of errors that occurred by each construct type

in each program (average summary for all students):

Figure 5.4: % of errors generated by using old and new constructs in each program

58

Prior to analyzing the results in Figure 5.4, we counted the number of each construct

type used in each program and summarized them. This was done in order to check if the

ratio of generated errors from each type was reasonable to the number of constructs

used, and to make sure that there was no gap between the number of used constructs

from each type and number of errors (i.e. it is not reasonable to say that new constructs

caused no errors when it was used only 1 time in a program).

The following chart shows the percentage of old and new constructs used in each

program (average for all students in all programs):

Figure 5.5: % of old and new constructs used in each program

Using the 2 previous charts, we observed that the number of errors occurred by old

constructs was much higher than the number of errors occurred because of the new

constructs set. By referring to Figure 5.5, and if we look at bubble sort program, for

example, we notice that the used new constructs form 39% of the whole program

constructs while old constructs form 61%, however if we looked at the percentage of

59

errors in Figure 5.4, we find that new constructs caused 8% of total errors in this

program while the old constructs caused 92%. The same observation can be noticed for

the other programs.

It was noticed that whenever the program becomes longer (number of syntax lines is

higher), new constructs are used more and in higher percentage within the syntax. This

can be observed from Figure 5.5, when we move to right on the program's axis, the

percentage of the new used constructs increases as programs become longer and more

complicated. New constructs usage percentage starts with 29% in the Sum program and

ends with 40% in the String program.

This leads to another observation: the new constructs were used in higher percentage in

longer programs while they generated fewer errors, meaning the total error count in the

programs decreased due to new constructs usage. Figure 5.4 shows that the error

percentage generated by new constructs decreased starting from MinMax program

which had 11% of errors to the String program, which had 7% only. If we match this to

the new constructs usage percentage in Figure 5.5, then it is clear that new constructs

will decrease the errors as their usage becomes higher and generates fewer errors. This

will cause the total error count in the whole program to decrease.

Results in Figure 5.4 show another indicator for error reduction: while students practice

the new constructs more and more and become familiar with them through writing more

programs, the errors generated by these constructs become less. This is clear from the

generated error percentage in the last 3 programs (MinMax, BubbleSort, and String),

that the errors started from 11% and decreased to only 7%.

Students were able to understand and use the new constructs in a short period time (1

week). These new constructs helped them reduce syntax errors in their programs

60

compared to their previous basic, but familiar knowledge in Java syntax, which they

used in many classes but which generated a higher error percentage for them.

The final result from this part of the case study was that new constructs helped in

reducing syntax errors in program writing.

5.4. Professionals' Semantic Extraction Case Study Results

In the part of semantic extraction executed within the professionals‘ case study set out

to measure the new constructs set efficiency in semantic extraction, answers are

collected and graded on a scale from one to three (1-3). One means the extracted

semantic is far from the correct answer, three means the semantic is correct and

accurate, values in this range vary based on answer accuracy.

We calculated the average answer grade for each program for all answers using the

following equation:

A avg. = (∑ A(1...n))/n

Where

A: The professional answer grade

n: number of participant professionals

To measure how accurate the answers are, we calculated the ―Accuracy Ratio‖. This

ratio was used to show how close the Aavg. for each program was to the complete

accurate answer grade, which is 3. The equation used:

Accuracy Ratio = A avg. / 3

The following table shows the results and accuracy ratio for each program (data is

sorted based on program syntax construct type and accuracy ratio):

61

Table 5.4: Semantic extraction results

Programs Constructs Type A avg. Accuracy Ratio

P8 Old Syntax 1.6 53%

P9 Old Syntax 2.5 83%

P3 Old Syntax 2.5 83%

P1 Old Syntax 2.6 87%

P5 Old Syntax 2.8 93%

P10 New Syntax 2.5 83%

P7 New Syntax 2.6 87%

P6 New Syntax 2.8 93%

P2 New Syntax 2.8 93%

P5 New Syntax 3 100%

From the results in Table 5.4, we concluded that the new constructs helped in extracting

a more accurate program semantic than the old constructs. The new constructs results

show the lowest accuracy ratio was 83%, and the highest was 100% with two programs

having an accuracy of 93%. In the old constructs‘ program results, the lowest accuracy

was 53%, which is much less than the lowest new constructs accuracy result, and the

highest was 93%, not 100% as with the new construct highest accuracy.

It is important to note that in this part of the case study, professionals asked to extract

the semantic of programs without any previous knowledge or overview about the new

constructs while they had enough knowledge about the old constructs as all participants

where Java developers. This is considered as a positive indicator for the effect of new

constructs in semantic extraction, code understanding, and making the code more

readable and less ambiguous.

5.5. Professionals' Interview Results

Results obtained from interview with professionals were a positive indicator that

supported assumptions regarding the new syntactic constructs set proposed.

Results are summarized in the following table
1
:

1
 (Answering scale: Totally Agree, Agree, Agree with Reservation, No Answer, Poor, Disagree, Totally Disagree)

62

Table 5.5: Professionals answers on interview questions

Question Result

1- Do you believe that using the new constructs will save efforts in writing code

especially in case of repetitive keywords (import, access modifiers…etc.) and shorter

looping constructs?

Agree

2- Do you think that using new constructs will help in decreasing syntax errors as result

from saving repetitive keywords and distinguish scope using different identifiers?
Agree

3- Do you agree that using new constructs will make the code debugging easier? Totally Agree

4- Do you think that the code will be more readable using the new constructs? Totally Agree

5- Are the new constructs can help in extracting the program semantic from just reading

it with minimal execution efforts and without the need for executing it many times and

debug it to understand its functionality?

Agree

6- Is it true that the new construct can help in producing programs with less number of

code lines (shorter syntax)?
Totally Agree

The distributions of professionals' answers are shown in the following chart:

Figure 5.6: Professionals interview answers distribution

Results show that professionals expect that the new constructs set will help in making

the code easier to debug, more readable, and with a fewer number of lines in a very high

percentage.

63

In addition, the new constructs will help in a reasonable way in saving code writing

efforts by reducing repetitive keywords, decreasing syntax errors, and extracting the

program semantic in an easier and faster way.

5.6. Observations and Notes

Through the case study execution and results analysis, we concluded the following

observations and notes:

 Using different scope determination symbols for each construct will help in

reducing errors and making code more readable and less ambiguous. This

observation was obtained from the results and from reviewing student errors,

many of which were in scope determination symbols used in old syntax ({}, ()).

 The effect of new syntactic sugar constructs on semantic extraction was higher

from professionals' perspectives as they usually focus on semantic extraction

more than students do.

 The new syntactic sugar constructs can be used to teach novice students how to

write programs as these constructs help in reducing errors and code lines, and

help students focus on the program's semantic and logic.

 The new syntactic sugar constructs help in making the constructs memorable

and closer to natural language. They help in avoiding symbolic operators that

can cause code ambiguity and errors.

 All participants recommended extending the new constructs set to include

additional constructs.

 Feedback from participants on two of the new constructs raised issues that we

answer below:

64

o Looping Construct "times do … end": participants commented that there

is no condition to exit the loop. As we explained, the purpose of this new

loop constructs was to use it when the number of looping times is known

and starts from 1, or looping over array entries. In other cases, the old for

loop constructs can be used were it has a loop condition.

o Object instantiation construct "myInstance = MyClass();": the feedback

remark was that using this construct may cause mixing and ambiguity

with the constructs used to call methods that return a value. Also, this

construct will not work in the case of polymorphism (interface instance

instantiated from implementing class) as the user cannot specify the

parent interface. This point is correct and valid; we will try to enhance it

to avoid these negative notes in future work. Users can still use the old

constructs, especially in case of objects instantiation with polymorphism.

The conclusion from all results: using the new constructs set including syntactic sugar

constructs in programming languages syntax can help in producing fewer syntactic

errors and repetitive keywords, and in producing more readable, shorter (less number of

code lines), easier to write and to debug code, with clearer code scope determination,

and better semantic extraction and understanding. The new constructs set can be applied

to any object oriented or imperative programming language even if it is general or

domain specific. We recommend considering these results in the design of new

programming languages' syntax as all results were positive indicators for enhancing

syntax and code development.

65

Chapter Six

Conclusion and Future Work

Syntactic sugars were used in many programming languages to help programmers by

offering coding simplicity and avoiding ambiguity, but were limited in specific areas

and special needs in programming languages as obtained from the literature review. The

approaches that followed to reduce syntax errors didn't consider using syntactic sugars

for this purpose; instead they offered some kind of coding helpers and templates.

Our research was based on the idea of constructing new syntactic sugar constructs set

and checking whether or not it is efficient in reducing syntax errors, reducing repetitive

keywords, making the code more readable, easier to write and debug, and more

understandable. The research focused on measuring the new set efficiency in simple and

remote development environments where no IDE or coding helpers like templates and

auto complete are available for both novice (students) and professionals programmers.

The methodology we used in this work based on forming a new syntactic sugar

constructs set for the common abstract constructs. The set was extracted from the syntax

of some well known programming languages in addition to a set of enhancements and

constructs proposed by us. We conducted an exploratory case study with students and

professional programmers to measure the efficiency of the new constructs set. The case

study included program writing, semantic extraction, and interviews.

The results collected and analyzed from the case study demonstrated that the new

constructs set with syntactic sugar showed positive, encouraging indicators that can help

in reducing syntactic errors and repetitive keywords, making more readable, shorter,

easier to write, easier to debug, and clear code, in addition to a better scope

66

determination, and more accurate semantic understanding. We recommend considering

these results in the design of new programming languages' syntax.

6.1 Future Work

This work is an exploratory case study used to measure syntactic sugars' efficiency in

code simplicity and error reduction. It can be considered as a starting point for more

advanced research. In future work, we need to extend the set of analyzed programming

languages and the constructs set to include new constructs because the current set is not

enough to form complete programming language syntax. The enhancements can be

applied on constructs other than the common abstracted constructs. This work can be

extended to develop a completely new programming language with new syntax and a

compiler based on results obtained from this work.

We need to improve the case study and make it more accurate and realistic, we need to

increase experiment sample size to be larger and for a longer period of time. One way

we intend to do this is to teach the constructs during a university course for several

semesters in order to get more representative evaluation.

67

References

1. About Fancy, 2011, "About Fancy." (2011). Retrieved from Python official site:

https://github.com/bakkdoor/fancy/wiki

2. About Python, n.d.: "About Python." (n.d.). Retrieved from Python official site:

http://www.python.org/about/

3. About Ruby, n.d.: "About Ruby." (n.d.). Retrieved from Ruby official site:

http://www.ruby-lang.org/en/about/

4. Altherr and Cremet, 2006: Altherr, P. & Cremet, V. (2006). "Abstract Type

Constructors for Java-like Languages", Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.90.6424&type=ab

5. Arsham, 1994: Arsham, H. (1994). "Questionnaire Design and Surveys

Sampling," Retrieved from http://home.ubalt.edu/ntsbarsh/stat-data/Surveys.htm

6. Batista and Vieira, 2007: Batista, T. & Vieira, M. (2007). "RE-AspectLua -

Achieving Reuse in AspectLua," Journal of Universal Computer Science, 13 (6),

786-805, 2007.

7. Bezault, 1999: Bezault, E. (1999). "Eiffel: The Syntax," Retrieved from

http://www.gobosoft.com/eiffel/syntax/

8. Bolton, n.d.: Bolton, D. (n.d.). "All about the C# Programming Language,"

Retrieved from:

http://cplus.about.com/od/introductiontoprogramming/p/profileofcsh.htm

9. Borgatti, 1996: Borgatti, S. P. (1996). "Principles of Questionnaire

Construction," Retrieved from http://www.analytictech.com/mb313/principl.htm

10. Collberg, 2005: Collberg, C. (2005). Chapter one: Introduction. "Principles of

Programming Languages," University of Arizona.

11. COBOL, n.d.: "COBOL". (n.d.). Retrieved January, 7, 2011 from

http://en.wikipedia.org/wiki/COBOL

12. Cheah, 2005: Cheah, A. J. (2005). "Snapshot of the State of Adoption of IT in the

Profession," Retrieved from:

http://www.pam.org.my/library/pam_it_questionnaire.pdf

13. Chiba, 1996: Chiba, C. (1996). "OpenC++ Programmer’s Guide for Version 2,‖

Xerox PARC Technical Report.

14. Chinchani et al., 2003: Chinchani, R., Iyer, A., Jayaraman, B., & Upadhyaya, S.

(2003). "Insecure Programming: How Culpable is a Language's Syntax,"

68

Proceedings of the 2003 IEEE Workshop on Information Assurance and

Security, United States Military Academy, West Point, NY, 158-163.

15. Clarke, 2001: Clarke, S. (2001)."Evaluating a new programming language," In

13
th

 Workshop of the Psychology of Programming Interest Group, 275–289.

16. Dolstra, 2001: Dolstra, E. (2001). "First Class Rules and Generic Traversals for

Program Transformation Languages," Thesis, Utrecht University, 2001.

17. Eiffel Programming Language, n.d., a:

(http://www.computernostalgia.net/articles/EiffelProgrammingLanguage.htm)

18. Freeman and Pryce, 2006: Freeman, S. & Pryce, N. (2006). "Evolving an

Embedded Domain-Specific Language in Java," OOPSLA '06 Companion to the

21st ACM SIGPLAN symposium on Object-oriented programming systems,

languages, and applications.

19. Freeman et al., 2004: Freeman, S., Pryce, N., Mackinnon, T., & Walnes, J.

(2004). "Mock Roles, not Objects," Companion to the 19th annual ACM

SIGPLAN conference on Object-oriented programming systems, languages, and

applications, October 24-28, 2004, Vancouver, BC, CANADA. doi:

10.1145/1028664.1028765

20. Fritchie, 2003: Fritchie, S. L., (2003). "A Study of Erlang ETS Table

Implementations and Performance," Proceedings of the 2003 ACM SIGPLAN

workshop on Erlang, 43-55, August 29-29, 2003, Uppsala, Sweden.

doi:10.1145/940880.940887

21. Fruhwirth, 2007: Fruhwirth, C. (2007). "Liskell Haskell

Semantics with Lisp Syntax", Unpublished research, Retrieved

from http://clemens.endorphin.org/ILC07-Liskell-draft.pdf.

22. Galloway, 1997: Galloway, A. (1997). "Questionnaire Design & Analysis,"

Retrieved from http://www.tardis.ed.ac.uk/~kate/qmcweb/qcont.htm

23. Getting Started with Visual C#, n.d.: "Getting Started with Visual C#." (n.d.).

Retrieved January, 7, 2011 from Microsoft official website:

http://msdn.microsoft.com/en-us/vcsharp/dd919145.aspx

24. Golbreich and Wallace, 2008: Golbreich, C. & Wallace, E. K. (2008). "OWL 2

Web Ontology Language: New Features and Rationale," W3C Working Draft.

25. Haskell syntactic sugar, 2010, a:

(http://en.wikibooks.org/wiki/Haskell/Syntactic_sugar)

69

26. Hidders et al., 2005: Hidders, J., Michiels, P., Paredaens, J., & Vercammen, R.

(2005). "LiXQuery: A Formal Foundation for XQuery Research", SIGMOD

Record, 34 (4), 2005.

27. Ierusalimschy et al., 1996: Ierusalimschy, R., Figueiredo L. H. D., & Filho, W.

C. (1996). "Lua - an extensible extension language," Journal of Practice &

Experience, 26 (6), 635–652.

28. JavaCC, 2010: JavaCC (2010). Parser/scanner generator for java, a:

(https://javacc.dev.java.net)

29. Kannappan, 2010: Kannappan, R. (2010). "New Features in Java 7 (Dolphin),"

[Web Log Post]. Retrieved from:

http://rajakannappan.blogspot.com/2010/05/new-features-in-java-7-dolphin.html

30. Kelleher et al., 2002: Kelleher, C., Cosgrove, D., Culyba, D., Forlines, C., Pratt,

J., & Pausch, R. (2002). "Alice2: Programming without Syntax Errors," in

Proceedings of the 15th Annual Symposium on the User Interface Software and

Technology, Paris, France, October 2002.

31. Kirkegaard et al., 2004: Kirkegaard, C., Møller, A., & Schwartzbach, M. I.

(2004). "Static Analysis of XML Transformations in Java," IEEE Transactions

on Software Engineering, 30 (3), 181–192.

32. Koenig, 1985: Koenig, A. (1985). "The Snocone Programming Language," This

paper originally appeared in the proceedings of the USENIX conference in

Portland, Oregon in June 1985. Published in UNIX Vol. II.

33. Kominetz, 2007: Kominetz, J. (2007). "Java 1.5: Gimme Some Syntactic Sugar,

Baby!," Retrieved from http://kominetz.com/2007/09/13/java-15-gimme-some-

syntactic-sugar-baby/

34. Kummerfeld and Kay, 2002: Kummerfeld, S. K., & Kay, J. (2002) "The

neglected battle fields of Syntax Errors," ACE '03 Proceedings of the fifth

Australasian conference on Computing education, 20, 2003.

35. Laan, 1992: Laan, K. V. D. (1992). "Syntactic Sugar," Dutch TEX Users Group

(NTG), AJ Schagen, the Netherlands.

36. Largillier, 2005: Largillier, T. (2005). "Syntactic Sugar Support for Advanced

C++ Constructs," Technical Report (no0515).

37. Lévénez, 2009: Lévénez, E. (2009). "Computer Languages History," Retrieved

from http://www.levenez.com/lang/lang_a4.pdf

70

38. Liu et al., 2007: Liu, D., Nakano, K., Hayashi, Y., Hu, Z., Takeichi, M.,

Morihata, A. & Xiong, Y. (2007). "Bi-X Core: A General-Purpose Bidirectional

Transformation Language," Proceedings of the 24th JSSST Conference, No. 2C-

3, Nara, Japan, September 2007.

39. LRDE, n.d.: LRDE.VAUCANSON. (n.d.), a: (http://vaucanson.lrde.epita.fr/)

40. Mageed, 2010: Mageed, A. E. (2010). "The Evolution of the C# Language: The

Impact of Syntactic Sugar and Language Integrated Query on Performance," A

thesis submitted to the Graduate Faculty of Auburn University, Auburn,

Alabama.

41. McNamara and Smaragdakis, 2003: McNamara, B. & Smaragdakis, Y. (2003).

"Syntax sugar for FC++: lambda, infix, monads, and more," Draft Proceedings

of the Workshop on Declarative Programming in the Context of Object-Oriented

Languages (DP-COOL‘03).

42. Meyer, 2001: Meyer, B. (2001). "An Eiffel Tutorial." Retrieved March, 18, 2009

from Eiffel software Site:

http://archive.eiffel.com/doc/online/eiffel50/intro/language/tutorial.pdf

43. Mitchell, 2002: Mitchell, J. C. (2002). "Concepts in Programming Languages,"

1
st
 Ed., New York, NY: Cambridge University Press.

44. Mosses, 2005: Mosses, P. D. (2005). "A Constructive Approach to Language

Definition", Journal of Universal Computer Science, 11(7), 1117-1134.

45. Nerlove, 2004: Nerlove, M. (2004). "Programming Languages: A Short History

for Economists," The Journal of Economic and Social Measurement, 29, 189-

203.

46. Odersky et al., 2006: Odersky, M., Altherr, P., Cremet, V., Dragos, L.,

Dubochet, G., Emir, B., McDirmid, S., Micheloud, S., Mihaylov, N., Schinz, M.,

Stenman, E., Spoon, L., & Zenger, M. (2006). "An Overview of the Scala

Programming Language," (Technical Report LAMP-REPORT-2006-001).

Retrieved from http://www.scala-lang.org/docu/files/ScalaOverview.pdf

47. OMG, 2005: Object Management Group (OMG) (2005). "Unified Modeling

Language Specification Version 1.4.2," Retrieved from http://www.omg.org/cgi-

bin/doc?formal/05-04-01.pdf

48. PITA, 2008: The Palestinian IT Association of Companies (PITA) (2008),

"Assessment of the Palestinian ICT Workforce," Retrieved from

http://www.pita.ps/newweb/pdfs/local_2008.pdf

71

49. Quick MBA, n.d.: Quick MBA (n.d.). "Questionnaire Design," Retrieved from

http://www.quickmba.com/marketing/research/qdesign/

50. Russell et al., 2009: Russell, J., Russell, B., Pollacia, L., & Tastle, W. (2009). "A

Study of the Programming Languages Used in Information Systems and in

Computer Science Curricula," Proceedings of The Information Systems

Education Conference (ISECON), 26, Washington DC.

51. Ruby from Other Languages, n.d., a:

(http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/)

52. Saito and Igarashi, 2008: Saito, C. & Igarashi, A. (2008). "The Essence of

Lightweight Family Polymorphism," Journal of Object Technology, 7(5), 67-99.

53. Sammet, 1996: Sammet, J. E., (1996). "From HOPL to HOPL-II (1978 - 1993)

51 Years of Programming Language Development, in History of Programming

Languages," Bergin, T. J., Gibson, R. G. (Eds), ACM Press, New York, NY, 16-

23.

54. Süß, 2006: Süß, J. G. (2006). "Sugar for OCL," Proceedings of the 6th OCL

Workshop at the UML/- MoDELS Conference, 240–251.

55. Sureau, 2010: Sureau, D. (2010). "History of Programming

Languages and Their Evolution". Retrieved December, 17, 2010

from http://www.scriptol.com/programming/history.php

56. Survey Design, n.d., a: (http://www.surveysystem.com/sdesign.htm)

57. Teitelbaum and McIlrow, 1981: Teitelbaum, T. & McIlrow, M. (1981). ―The

Cornell Program Synthesizer: A Syntax-Directed Programming Environment,‖

Communications of the ACM, 24(9), 563-573, 1981.

58. The Go Programming Language, 2011, a: (http://golang.org/)

59. The Java Language, n.d.: "The Java Language: An Overview."

(n.d.). Retrieved January, 7, 2011 from Java official website:

http://java.sun.com/docs/overviews/java/java-overview-1.html

60. The Scala Programming Language, 2008: "The Scala Programming Language."

(2008). Retrieved from Scala official site: http://www.scala-lang.org/node/25

61. Timeline of programming languages, 2011, a:

(http://en.wikipedia.org/wiki/Timeline_of_programming_languages)

62. Watt and Findlay, 2004: Watt, D. A., & Findlay, W. (2004). "Programming

Languages Design Concepts," 1
st
 Ed., England: John Wiley & Sons Ltd.

63. Why Cobra, 2010, a: (http://cobra-language.com/docs/why/)

72

64. Why Fantom, 2011, a: (http://fantom.org/doc/docIntro/WhyFantom.html)

73

Appendices

Appendix 1: Programming languages' extracted constructs sheet.

Construct /

language

Ruby Eiffel Java Python C#

Class definitions

symbols

class className class className

 // other features speciall

in Eiffel for class

definition is discard

accessModifier class

className

class ClassName: accessModifier class

className

Class scope class className

 ….

end

class className

 ….

end

class className

{

}

No Symbols used to

determine the scope,

instead it depend on

indenteding of class

methods and variables,

it must be indented

like:

class ClassName:

 <statement-1>

 .

 <statement-N>

class className

{

}

Method

signature

definitions

def

methodName[([attri

bute[s]])]

feature

[[(]attribute/s:Type[)]]

methodName

[:returnType] is

accessModifier [static]

returnType

methodName([attribut

e[s]])

[throwException]

def

methodName([attribut

e[s]]):

[accessModifier]

[static] returnType

methodName([attribut

e[s]])

Method scope

symbols

def

methodName[([attri

bute[s]])]

 …..

end

feature

[[(]attribute/s:Type[)]]

methodName

[:returnType] is

do

 ….

end

accessModifier [static]

returnType

methodName([attribut

e[s]])

[throwException]

{...

}

No Symbols used to

determine the method

scope, instead it

depends on indenting

of method body, it must

be indented, to start

new method, it go back

the indent and repeat

the same for the new

method like:

def

methodName([attribut

e[s]]):

 <statement-1>

 .

 <statement-N>

def

methodName2([attribu

te[s]]):

 <statement-1>

 .

 <statement-N>

[accessModifier]

[static] returnType

methodName([attribut

e[s]])

{...

}

Inheritance

construct

class className <

parentClassName

class className inherit

parentClassA

[parentClassB]

// multiple inheritance

possible

class className

extends

parentClassName

class

className(parentClass

Name):

class className :

parentClassName

Constructor

definition

In Ruby constructors

are defined using a

method called

initialize, it is used

to initialize the

instance instead of

construction it:

def

initialize[([attribute

[s]])]

class classNameHELLO

create methodName

feature

 methodName is

 do

 …

 end

end

accessModifier

className([attribute[s

]])

def

__init__(self[attributes,

...]):

accessModifier

className([attribute[s

]]) [:base()]

Super / Parent

class calling

def

initialize[([attribute

[s]])]

super([attribute[s]]);

 …..

End

precursor([attribute[s]]) accessModifier

className([attribute[s

]])

{

 super([attribute[s]]);

 …..

}

super()[.method([attri

bute[s]])]

accessModifier

className([attribute[s

]])

 :base([attribute[s]])

{

 ….

}

74

Package /

module

definition

No direct package

definition in classes,

instead it depends on

file system folder

and packages and

libraries defined

externally. It used

modules which

declare all the

classes in one

module depending

on namespaces. This

could be a problem

as all classes will be

in one single file

module P ... end.

You can use modules

and save them in file

with .rb extension,

and you can call

them using require

construct, also if the

files are in directory

structure, then the

structure become

part of package or

module name.

There are no package

declaration or calling in

Eiffel, It depends on

multiple inheritance to get

access to other classes

that form libraries and

packages

package

pack.age.name;

The module name

automatically depend

on the file name

contains the module

and code. If you have a

file called mod1.py,

the module name is

mod1.

 For packages it is the

same but it uses nested

hierarchal directory

structure like:

/pack1/spack1/sub1/m

od.py

The package is

pack1.spack1.sub1

and module is mod

each directory must

have an empty file

called __init__.py

namespace

userDefinedNamespace

{

 full class[es] body

goes here

}

Libraries and

packages calls

construct

require 'filename' Using same multiple

inheritance construct

import pack.age.name; Load certain module:

import

pack.age.name.modul

e

Load set of module

from the same package:

from pack.age.name

import module1,

module2

Load all modules from

the same package:

from pack.age.name

import *

using pack.age.name;

Libraries and

packages

repetition

require 'filename.rb'

require ' ././

extensionName‘

require

'extensionName'

Multiple inheritance

construct

import

pack.age.name1;

import

pack.age.name2;

import

pack.age.name3;

Load set of modules

from the same package:

from pack.age.name

import module1,

module2

Repeat to load from

different packages

import

pack.age.name1.modu

le1

import

pack.age.name2.modu

le2

using pack.age.name1;

using pack.age.name2;

using pack.age.name3;

Attributes access

modifiers

• A local variable

(declared within an

object) name

consists of a

lowercase letter (or

an underscore)

followed by name

characters (sunil, _z,

hit_and_run).

• An instance

variable (declared

within an object

always "belongs to"

whatever object self

refers to) name starts

with sign (''@'')

followed by an

upper- or lowercase

letter, optionally

followed by name

characters (@sign,

@_, @Counter).

• A class variable

(declared within a

class) name starts

with two signs

For methods, you can

define a parameter to be

local in that method by

adding local key word in

method declaration like

feature deposit(sum:

INTEGER) is

-- Add sum to account.

local

new: AMOUNT

do

private type attName;

public type attName;

protected type

attName;

Everything in Python is

public by default and

accessible anywhere.

To make and attribute

or variable private user

two underscores ―__‖

before the varName.

No protected access

modifier in python.

Example:

def __attName

public Access is not

restricted.

protected Access is

limited to the

containing class or

types derived from the

containing class.

internal Access is

limited to the current

assembly.

protected internal

Access is limited to the

current assembly or

types derived from the

containing class.

private Access is

limited to the

containing type.

private type attName;

public type attName;

protected type

attName; internal type

attName;

protected internal

type attName

75

(''@@'') followed by

an upper- or

lowercase letter,

optionally followed

by name characters

(@@sign, @@_,

@@Counter). A

class variable is

shared among all

objects of a class.

• A Global

variables start with a

dollar sign (''$'')

followed by name

characters. A global

variable name can be

formed using ''$-''

followed by any

single character

($counter,

$COUNTER, $-x).

Ruby defines a

number of global

variables that include

other punctuation

characters, such as

$_ and $-K

Methods access

modifiers

By default, all

methods in Ruby

classes are public -

accessible by

anyone.

If desired, this access

can be restricted by

public, private,

protected object

methods. It is

interesting that these

are not actually

keywords, but actual

methods that operate

on the class,

dynamically altering

the visibility of the

methods.

As a result of that

fact these 'keywords'

influence the

visibility of all

following

declarations until a

new visibility is set

or the end of the

declaration-body is

reached.

Private can be in

three ways:

1-

private/protected:

all methods that

follow will be made

private: not

accessible for

outside objects

class className

 def m1 # this

method is public

 end

 protected

 def m2 # this

method is protected

 end

 private

 def m3 # this

method is private

 end

end

2- assign a method to

be private after

declaration (private

keyword with an

argument):

N/A private [static]

returnType

methodName

public [static]

returnType

methodName

protected [static]

returnType

methodName

Methods are the same

as attributes, default is

public and private

defined using ―__‖ like:

def

__methodName([attrib

ute[s]]):

private [static]

returnType

methodName

public [static]

returnType

methodName

protected [static]

returnType

methodName

internal [static]

returnType

methodName

protected internal

[static] returnType

methodName

76

 class Example

 def methodA #

public by default

 end

 def methodP

 end

 def m2

 end

 def m3

 end

 protected :m2,

m3 # this method

now is proteted

 private :methodP

 end

now methodP

became private

3- Note for class

methods (those that

are declared using

def

ClassName.method

_name), you need to

use another

function:

private_class_meth

od:

private_class_metho

d :new

Set new to private

Protected:

Private methods in

Ruby are accessible

from children (like

protected in Java and

C++).

You can't have truly

private methods in

Ruby; you can't

completely hide a

method (no actual

protected)

Methods and

attributes

organization in

class

Methods can be

organized in section

of access modifiers

specially for private

level, when you set

private and follow it

with a set of

methods, then all of

these methods will

be private until

another modifier is

declared or end of

class (this is option,

you can declare on

method level).

Attributes are not

included in this. See

previous constructs

 any organization any organization any organization

Object

instantiation

[instanceName =]

className.new[([att

ributes])]

These attributes in

initliaze method of

exist

objInstName:

ObjectName

create

objInstName.make([attr

ibute[s]])

ObjectType

objInstanceName =

new

ObjectType([attribute

[s]])

objInstanceName =

ClassName([attribute[

s]])

ObjectType

objInstanceName =

new

ObjectType([attribute

[s]])

Object message /

method calling

Parentheses are

usually optional with

a method call. These

calls are all valid:

instanceName.metho

dName

instanceName.metho

dName[()]

instanceName.metho

dName

[[(]attribute[s][)]]

instanceName.metho

dName attribute[s]

objInstanceName.method

Name[([attribute[s]])] //

paranthese are removed

on no attributes

avaliable

objInstanceName.meth

odName([attribute[s]]

)

objInstanceName.meth

odName([attribute[s]]

)

objInstanceName.meth

odName([attribute[s]]

)

77

Exception

handling

constructs used

begin

 ….

rescue

OneTypeOfExceptio

n

….

 [

rescue

AnotherTypeOfExce

ption

….

else

 ….

]

[

ensure

]

end

The code in an else

clause is executed if

the code in the body

of the begin

statement runs to

completion without

exceptions. If an

exception occurs,

then the else clause

will obviously not be

executed.

If you need the

guarantee that some

processing is done at

the end of a block of

code, regardless of

whether an exception

was raised then the

ensure clause can be

used. ensure goes

after the last rescue

clause and contains a

chunk of code that

will always be

executed as the block

terminates. The

ensure block will

always run.

Exception handling done

via using rescue keyword

without exception type

specification, it usually

added at the end of

method or other places, A

retry instruction is only

permitted in a rescue

clause; its effect is to start

again the execution of the

routine, without repeating

the initialization of local

entities

rescue

…. Exception handling

statements

retry

try

{

 ……

}

catch(ExceptionType

excepAlias)

{

 …..

}

[more catches]

[finally

{

 …..

}]

try:

 …statements

except ExceptionType:

 …handling

statements

[more except block

for different

exceptions types]

[else: // executed when

no exception happen

 …statements

]

[finally: //always

executed

…statements]

try

{

 ……

}

catch(ExceptionType

excepAlias)

{

 …..

}

[more catches]

[finally

{

 …..

}]

Exception

handling

variables scope

The variable are

accessible in any

scope even the were

decaled within the

 begin rescue end

block, they will be

accessible in

rescure, else, ensure

and after end

blocks.

Slove Java problem

In rescue: all method

attributed defined before

are accessible in rescue

block

In catch and finally

blocks, attributes

defined in try block are

not accessible

Attributes defined in

the try are accessible in

except, else and finally

sections

In try: all method and

class predefined

attributes, in catch and

finally attributes

defined in try block are

not accessible

Control

statements scope

symbols

controlStatementK

eySignature (if,

for,…)

…

end

in case of each, upto,

times... loops:

The Ruby standard is

to use braces for

single-line blocks

and do- end for

multi-line blocks.

Keep in mind that

the braces syntax has

a higher precedence

than the do..end

syntax

controlStatementSignat

ure

...

end

where

controlStatementSignat

ure

in { if, loop, ... }

{

 ……

}

No Symbols used to

determine the scope,

instead it depend on

indenteding of

statements and

variables

controlStatementSign

ature {

 ……

}

78

Object

Collections

iteration

Using do..end:

method_call do [`|'

expr...`|'] expr...end

using Carle braces:

method_call `{' [`|'

expr...`|'] expr...`}'

method_call: list

name with .each

construct,

integerVAL.times,

integerVal.upto(int

egerVal)

construct or any

iteration construct

used from the object

defined

Iteration in Eiffel depend

on agents:

listName.do_all (agent

(variableName: TYPE)

do

do_something_with

variableName

 end)

Iterator object with

while loop and casting:

Iterator iter =

list.iterator();

while(iter.hasNext())

{

 ObjectType obj =

ObjectType

iter.next();

}

OR

Generics for loop:

List<ObjectType>

objects =

inst.getObjects();

for(ObjectType obj :

objects)

{

 ……

}

for objRef in

ObjectList:

...

Using for loop:

for (IEnumerator

ienInstName =

((CollectionType)colle

ctionName).GetEnume

rator();ienInstName.M

oveNext();)

{

 ienInstName.Current;

// current object in list

}

Using while loop:

IEnumerator

ienInstName =

((CollectionType)colle

ctionName).GetEnume

rator();

while

(ienInstName.MoveNe

xt)

{

 ObjectType objVar =

ienInstName.Current;

}

Using foreach:

foreach (ObjectType

objVar in

collectionName)

{

 …

}

For loop Looping can be done

in many types:

For loop:

for var in collection

 # var refers to an

element of the

collection

 …

end

for num in (4..6)

 puts num

end

Upto:

0.upto(10) do |i|

 ...

end

integerVal.times:

10.times do |i|

 ...

end

from

 initialization

until

 exit

[invariant

 inv

variant

 var]

loop

 body

end

for ({initialization};

{exit condition};

{control variable})

{

 ….

}

for varName in

[range(10, 0, -1)] |

[list]

 ………

for ({initialization};

{exit condition};

{control variable})

{

 ….

}

While loop while expr [do]

 ...

end

 while (condition)

{

 …..

}

OR

do

{

 …..

}

while (condition);

while

conditionalExpression:

 ...

while (condition)

{

 …..

}

OR

do

{

 …..

}

while (condition);

If statement if expr [then]

 expr...

 [elsif expr [then]

 expr...]...

 [else

 expr...]

 end

You can use unless

which is the opposite

of if (!if)

if condition then

….

[else

...]

end

if condition then

...

[elseif condition2

then

if

(conditionalExpressio

n)

{

}

[else [if

(conditionalExpressio

n)]

{

}]

if

conditionalExpression:

 …

[elif

conditionalExpression:

 …

else:

 …]

if

(conditionalExpressio

n)

{

}

[else [if

(conditionalExpressio

n)]

{

}]

79

unless expr [then]

 expr...

 [else

 expr...]

 end

...

else

...]

end

swatch / case

statement

case expr

 [when expr [,

expr]...[then]

 expr..]..

 [else

 expr..]

 end

The case expressions

are also for

conditional

execution.

Comparisons are

done by operator

===. Thus:

 case expr0

 when expr1, expr2

 stmt1

 when expr3, expr4

 stmt2

 else

 stmt3

 end

inspect

exp

when v1 then

inst1

when v2, v3 then

inst2

...

else

inst0

end

switch (expression)

{

case cond1:

code_block_1 [break];

...

case condn:

code_block_n [break];

default:

code_block_default;

}

No switch statement

exist in python, you can

use some kind of

dictionary data type for

go around it

switch (variable)

{

case val1:

code_block_1 [break];

...

case valn:

code_block_n [break];

default:

code_block_default;

}

80

Appendix 2: The designed and distributed questionnaire

Objective statement:

The purpose of this questionnaire is to find the best set of specific syntax constructs widely used

in object oriented programming languages which developer consider easier to write and use in writing

their programs and applications. Determining this set of constructs will offer syntactic constructs for

programming languages designers and developers who use programming languages to reduce code

writing syntax errors, and make the code more readable and less ambiguous which will lead to improve

developers productivity.

So, we appreciate your cooperation in completing this questionnaire to help us in determining the best

constructs set.

IMPORTANT: Please read the following notes before start answering the questionnaire:

 All your answers will be treated with confidentiality and used for research purpose only.

 This questionnaire consists of 19 questions distributed over 7 groups in 9 pages.

 Your answers will help us in our research and getting accurate results so please try to answer all

questions carefully.

 Please read each question carefully and select the answer you see suitable.

 Each question can have only one single answer.

 It is preferable to be familiar with object oriented programming.

 Code syntax keywords and symbols used in the questionnaire are identified by bold font like ―class‖ or

―{‖.

 Italic phrases like ―className‖ are variables that can be any thing

 The ―…...‖ or ―<statement-N>‖ means any set of code syntax statements and constructs.

 The ―[([attribute[s]])]‖ constructs and its similarities are used to express if any method / constructor can

have attribute(s) or not.

 Constructs between ―[…]‖ are optional.

 accessModifier: means specifying class/ method/ attribute access level as public, private, protected …

etc.

Group 1: Experience and skill

1.a) What is your gender?

□ Male □ Female

1.b) What is your current profession?

□ Student □ Member of academic staff □ Employee

1.c) What is your current resident location in Palestine?

□ North □ Middle □ South

1.d) How long in years have you been in your profession?

□ Less than 1 year □ 1 to 2 years □ 2 to 3 years □ 3 to 4 years

□ 4 to 5 years □ 5 years or more

81

Group 2: Class inheritance and instantiation:

2.a) Which of the following constructs you think is easier to write and more clear to express the

single inheritance between two classes?

□ class className < parentClassName

□ class className inherit parentClassName

□ class className extends parentClassName

□ class className(parentClassName):

□ class className : parentClassName

2.b) Suppose you want to define a constructor for a class, which syntax construct you prefer to used

if all the following are available for you?

□ Always use a method called initialize like:

initialize[([attribute[s]])]

□ Select any method from the class to be the constructor by assigning its name (―methodName‖) at the

beginning of the class after create keyword like:

 class className create methodName

□ Use method with the same class name without return type:

accessModifier className([attribute[s]])

□ Use a method in the following fixed format:

def __init__(self[attributes, ...]):

2.c) From your point of view, what is the best way to write object instantiation statement in order to

create new class instance?

□ [objectInstanceName =] className.new[([attributes])]

□ objectInstanceName: className create objectInstanceName.make([attribute[s]])

□ objectInstanceName = className([attribute[s]])

□ className objectInstanceName = new className([attribute[s]])

Group 3: Methods definition, and calling (object messages):

3.a) Which one of the following constructs you think is easier to write method signature?

□ def methodName([attribute[s]]):

 Note: def is reserved word here to declare the method

□ def methodName[([attribute[s]])]

□ feature [[(]attribute/s:Type[)]] methodName[:returnType] is

 Note: feature is reserved word here to declare the method

□ accessModifier [static] returnType methodName([attribute[s]])

□ [accessModifier] [static] returnType methodName([attribute[s]])

 [throwException]

82

3.b) What is the easier and simpler construct for you to call a method (send message to object) from

the following?

□ objectInstanceName.methodName

 Note: here no parameters / attributes are passed to the method

□ objectInstanceName.methodName[()]

 Note: here no parameters / attributes are passed to the method and

 parentheses are optional.

□ objectInstanceName.methodName [(]attribute[s][)]

 Note: here parameters / attributes are passed to the method and

 parentheses are optional.

□ objectInstanceName.methodName attribute[s]

 Note: here parameters / attributes are passed to the method and

 NO parentheses are used at all

□ objectInstanceName.methodName([attribute[s]])

Note: here parameters / attributes are passed as optional to the method

 but the parentheses are always exist

Group 4: Control statements (if, for, iteration,…etc.) :

(* NOTE *): Following is explanation to some words and expressions that you will notice through

questions in this group:

1-) conditionalExpression: the expression that hold for a condition like the one used in if statements, i.e.:

(a >= 5)

2-) var: is any variable hold a value.

3-) collection: is a collection (list) of numbers, characters, objects…etc.

4-) initialization: loop control variable initialization like (i=0).

5-) exit condition: the condition ends the loop (i<10).

6-) control variable: the variable used to control the loop (like i, or j) and its adjustment (like i=i+1, or

i=i-2).

7-) […]… means that statements are optional and can be repeated as needed

4.a) Suppose you want to write FOR LOOP in your code, which of the following you think is easier

for you to write?

□ Using:

 for var in collection

 <statement-1>

 …

 <statement-N>

 end

□ Using:

from initialization until exit condition

loop

 <statement-1>

 …

 <statement-N>

end

□ Using Upto construct with the start number

directly:

1.upto(10) do

 <statement-1>

 …

 <statement-N>

end

□ Using ranges:

for i in (1..10)

 <statement-1>

 …

 <statement-N>

end

□ Using a number directly with times construct:

□ Using:

for (initialization; exit condition; control

83

10.times do

 <statement-1>

 …

 <statement-N>

end

variable)

{

 <statement-1>

 …

 <statement-N>

}

4.b) The easiest way to write IF statement is?

□ if conditionalExpression [then]

 <statement-1>

 …

 <statement-N>

 [elsif conditionalExpression [then]

 <statement-1>

 …

 <statement-N>

]...

 [else

 <statement-1>

 …

 <statement-N>]

 end

// then is optional

□ if conditionalExpression then

 <statement-1>

 …

 <statement-N>

 [elseif conditionalExpression then

 <statement-1>

 …

 <statement-N>]…

[else

 <statement-1>

 …

 <statement-N>]

end

□ if conditionalExpression:

 <statement-1>

 …

 <statement-N>

[elif conditionalExpression:

 <statement-1>

 …

 <statement-N>]…

[else:

 <statement-1>

 …

 <statement-N>]

□ if (conditionalExpression)

{

 <statement-1>

 …

 <statement-N>

}

[else [if (conditionalExpression)]

{

 <statement-1>

 …

 <statement-N>

}]

4.c) The simplest construct that can be used to write selection (switch, case…etc.) statement is ?

□ case var □ inspect var □ switch (var)

4.d) To iterate over a collection with objects in it, which construct you prefer to write in your code?

□ Using .each…do…end:

collectionName.each do |colItem|

 <statement-1>

 …

 <statement-N>

end

// collectionName is the name of collection,

□ Using agents:

collectionName.do_all

(agent (colItem: TYPE) do

 <statement-1>

 …

 <statement-N>

 end)

84

while colItem is the variable that will hold the

current collection item in the iteration to access

it.

□ Using Iterator object with while loop and

casting:

Iterator iter = collectionName.iterator();

while(iter.hasNext())

{

 ObjectType colItem = (ObjectType)

iter.next();

 <statement-1>

 …

 <statement-N>

}

□ Using for… loop

for(ObjectType colItem: collectionName)

{

 <statement-1>

 …

 <statement-N>

}

□ Using for…in construct:

for colItem in collectionName:

 <statement-1>

 …

 <statement-N>

□ Using for…Enumerator construct:

for (IEnumerator ienInstName =

((CollectionType)collectionName)

.GetEnumerator();ienInstName.MoveNext();)

{

 ObjectType objVar = ienInstName.Current;

 <statement-1>

 …

 <statement-N>

}

□ Using while…Enumerator construct:

IEnumerator ienInstName =

((CollectionType) collectionName)

.GetEnumerator();

while (ienInstName.MoveNext)

{

 ObjectType objVar =

ienInstName.Current;

 <statement-1>

 …

 <statement-N>

}

□ Using foreach construct:

foreach (ObjectType colItem in collectionName)

{

 <statement-1>

 …

 <statement-N>

}

Group 5: Exception handling and variables scopes:

5.a) In some object oriented languages, when a programmer define an attribute or variable within

the rescued block (try, begin, or what ever block), these variable remain accessible in the exception

handling blocks (catch, rescue…etc.) and even after the whole exception handling block while other

languages prevent accessing these variables outside the rescue block even in the handling blocks

(catch, rescue…etc.), to have a access to these variables you have to define them before the whole

exception handling block, so which form of these you prefer to use?

85

□ Variables accessible any where:

begin

 int a = 5

 print(a) // a is accessible

rescue OneTypeOfException

 print(a) // a is accessible

[rescue AnotherTypeOfException

 print(a) / a is / accessible

[else

 print(a) // a is accessible]…

[ensure

 print(a) // a is accessible]

end

print(a) // a is accessible

□ Variables access limited by exception handling

block:

try

{

 int a = 5; //

 print(a) // a is accessible

}

catch(OneTypeOfException excepAlias)

{

 print(a) //ERROR: a is not accessible

}

[finally

{

 print(a) //ERROR: a is not accessible

}]

print(a) //ERROR: a is not accessible

// you must declare a before try block to be

accessible like this:

int a = 5;

try

{

 <statement-N>

}

….

Group 6: Packing, modules calling:

In many of object oriented programming languages, classes can be grouped together in some

kind of namespaces or packages where these classes can be reused or form a library to be used in other

applications through calling and instantiating classes in theses packages and libraries. Depending on this,

try to answer the following questions.

6.a) What is the best and simplest way to write package / module calling construct in a class?

□ Using a keyword like import, using, or require before package name like:

require ‗moduleNameSpace‘

import my.package.name;

using my.package.name;

□ Using phrase: from my.package.name import *

□ Use multiple inheritance: class myClass inherit classA, classB

6.b) In case you want to load a set of different classes from different packages / namespaces, what is

the simplest construct to use?

 Suppose you want to call “classA” from package “my.package.name1” and ―classB, classC‖ from

my.package.name2

86

□ Using the same keyword (import, using, or require) in front of each package and repeat whenever new

package is called like using import:

import my.package.name1;

import my.package.name2;

□ Using one of import/using/require construct with repeating packages‘ names only without repeating

the keyword:

 Suppose we used import then:

import:

my.package.name1;

my.package.name2;

□ Using “from…import” selective constructs:

from my.package.name1 import classA

from my.package.name2 import classB, classC

OR

 from my.package.name2 import *; // load all classes in this package

Group 7: Methods and attributes (variables) access modifier definition:

In this section we try to investigate the way to define access modifier for attributes (variables)

and methods in a class. We mean by access modifier that how attributes and methods in a certain class are

reachable from other classes and modules. Access modifier can be private where only accessible within

the same class, or protected so each class in the same package or inherits this class can access them, or it

can be public where other classes (even classes not in the same package and without inheritance relation)

can access them.

* Attributes and variables:

7.a) To define an attribute / variable access modifier (“private”, “protected”, “public”), which of

the following is the easiest way to do that?

□ Depending on the programming language default when no access modifier keyword is specified before

the attribute / variable name (i.e. no keyword means private), other access modifiers rather than the

default must be specified using their keywords.

□ Depending on attribute / variable name letters and special characters:

 varName lowercase letters means private

_varName start with one or two underscore means private

$varName start with dollar sign means public

$-varName start with dollar sign followed by ―-―means public

□ Depending on specifying the access modifier keyword before the attribute / variable name like:

local varName means private

private varName means private

protected varName means protected

public varName means public

7.b) Suppose you want to define many attributes / variables with the same access modifier type like

“private”, which of the following is the easiest way write these constructs?

□ Through repeating the access modifier key word with each attribute / variable:

 private integer varName

87

 private double varName2

private string varName3

□ Or using only one access modifier key word followed by all attributes / variables:

 private:

integer varName

 double varName2

string varName3

* Methods:

7.c) To assign method access modifier (“private”, “protected”, “public”), which of the following is

the easiest way to do that?

□ Depending on the programming language default when no access modifier keyword is specified before

the method name (i.e. no keyword means private), other access modifiers rather than the default must be

specified using their keywords.

□ If method name start with special characters that define it access modifier like:

__methodName([attribute[s]]) two under score means private

_methodName([attribute[s]]) one under score means protected

methodName([attribute[s]]) nothing means public

□ Using access modifier keyword before method signature:

private methodName

protected methodName

public methodName

□ At the end of the class, specify which methods to be private, protected, public:

 class Example

 def methodA

 end

 def methodB

 end

 def methodC

 end

 // here define methods access modifier

 private: methodA

protected: methodB

public: methodC

 end

□ Through dividing the class into zones for access modifiers where any method declared within that zone

then it will have its access level:

class Example

// this is public zone so any method follow is considered as public until

 another zone start or end of class reached

 def methodAPublic

 end

 // now public zone end and protected start, any method follow is considered protected

88

 protected:

 def methodCProtected

 end

// now protected zone end and private start, any method follow is considered private

private:

 def methodEPrivate

 end

 end

- Thank You -

89

Appendix 3: Selected programming languages brief description

Following is a brief overview about the programming languages choose to extract syntax constructs

from. Historical overview is available in chapter 2. In this appendix we try to focus on languages

syntax, its origin, and features:

1- Eiffel:

Eiffel is an object-oriented programming language which emphasizes the production of robust

software. Its syntax is keyword-oriented in the ALGOL and Pascal tradition. Eiffel is strongly

statically typed, with automatic memory management (typically implemented by garbage collection).

With roots dating back to 1985, Eiffel is a mature language with development systems available from

multiple suppliers. Despite this maturity and a generally excellent reputation among those who are

familiar with it, Eiffel has failed to gain as large a following as some other object-oriented languages.

The reasons for this lack of interest are unclear, and are a topic of frequent discussion within the Eiffel

community (Meyer, 2001) (Bezault, 1999) (Eiffel Programming Language, n.d.).

2- Python:

Python is a remarkably powerful dynamic programming language that is used in a wide variety of

application domains. Python is often compared to Tcl, Perl, Ruby, Scheme or Java. Some of its key

distinguishing features include:

 very clear, readable syntax

 strong introspection capabilities

 intuitive object orientation

 natural expression of procedural code

 full modularity, supporting hierarchical packages

 exception-based error handling

 very high level dynamic data types

 extensive standard libraries and third party modules for virtually every task

 extensions and modules easily written in C, C++ (or Java for Jython, or .NET languages for

IronPython)

 embeddable within applications as a scripting interface

Python lets you write the code you need, quickly. And, thanks to a highly optimized byte compiler and

support libraries, Python code runs more than fast enough for most applications (About Python, n.d.).

3- Java:

The Java programming language and environment is designed to solve a number of problems in

modern programming practice. Java started as a part of a larger project to develop advanced software

for consumer electronics. These devices are small, reliable, portable, distributed, real-time embedded

systems. When the project started, the authors of Java intended to use C++, but encountered a number

of problems. Initially these were just compiler technology problems, but as time passed more problems

emerged that were best solved by changing the language.

Java is simple, object-oriented, network-savvy, interpreted, robust, secure, architecture neutral,

portable, high-performance, multithreaded, dynamic language (The Java Language, n.d.).

Java syntax is mostly derived from C++, so we consider Java in the study to cover this PL family.

4- C#:

C# is a type-safe, object-oriented language that is simple yet powerful, allowing programmers to build

a breadth of applications. Combined with the .NET Framework, Visual C# 2008 enables the creation

90

of Windows applications, web services, database tools, components, controls, and more (Getting

Started with Visual C#, n.d.).

C# has a lot in common with java syntax, but it is much younger than Java and C++, in addition to

many added new features and its star is rising quickly and starts to beat other famous languages like

Java (Bolton, n.d.).

5- Ruby:

Ruby is a language of careful balance. Its creator, Yukihiro ―matz‖ Matsumoto, blended parts of his

favorite languages (Perl, Smalltalk, Eiffel, Ada, and Lisp) to form a new language that balanced

functional programming with imperative programming. He has often said that he is ―trying to make

Ruby natural, not simple,‖ in a way that mirrors life.

Building on this, he adds:

"Ruby is simple in appearance, but is very complex inside, just like our human

body" (About Ruby, n.d.)

When you first look at some Ruby code, it will likely remind you of other programming languages

you‘ve used. This is on purpose. Much of the syntax is familiar to users of Perl, Python, and Java

(among other languages), so if you‘ve used those, learning Ruby will be a piece of cake (Ruby from

Other Languages, n.d.).

91

Appendix 4: ICT professional population Calculation

(Work forces in Both PITA and non PITA companies)

Total ICT professionals = 3600

ICT professionals at PITA Companies = 633

ICT professionals at Non-PITA Companies = 3600 – 633 = 2967

50.7% ICT professionals at PITA Companies work at software companies

50.7% X 633 = 320.9 professionals at PITA Companies (This include not only programmer but other SW

related jobs)

2.4% ICT professionals at Non-PITA Companies work at software companies

2.4% X 2967= 71.2 professionals at Non-PITA Companies (This include not only programmer but other

SW related jobs)

 Total population = 320.9 + 71.2 = 392.131 (including nonprogrammers and Gaza which means larger

population)

ICT Students Analysis from the Palestinian Higher Education System

In 2006/2007 the total number of bachelor's students enrolled in the traditional universities was 88,707

students, among them 5,678 students in the ICT field. (NOT Including Al-Quds Open University)

of ICT students in Gaza Universities = 1600

We will focus on students in west bank as we cannot reach Gaza:

 Population = 5678 – 1600 = 4078 student.

If we excluded Electrical engineering students (871 students) in west bank universities as they are not our

target:

 Population = 4078 – 871 = 3207 students (in all ICT programs except electrical engineering).

92

Appendix 5: Users’ feedback interview questions.

1- Do you believe that using the new constructs will save efforts in writing code especially in case of

repetitive keywords (import, access modifiers…etc.) and shorter looping constructs?

□ Totally Agree □ Agree □ Agree with Reservation □ No Answer

□ Poor □ Disagree □ Totally Disagree

2- Do you think that using new constructs will help in decreasing syntax errors as result from saving

repetitive keywords and distinguish scope using different identifiers?

□ Totally Agree □ Agree □ Agree with Reservation □ No Answer

□ Poor □ Disagree □ Totally Disagree

3- Do you agree that using new constructs will make the code debugging easier?

□ Totally Agree □ Agree □ Agree with Reservation □ No Answer

□ Poor □ Disagree □ Totally Disagree

4- Do you think that the code will be more readable using the new constructs?

□ Totally Agree □ Agree □ Agree with Reservation □ No Answer

□ Poor □ Disagree □ Totally Disagree

5- Are the new constructs can help in extracting the program semantic from just reading it with minimal

execution efforts and without the need for executing it many times and debug it to understand its

functionality?

□ Totally Agree □ Agree □ Agree with Reservation □ No Answer

□ Poor □ Disagree □ Totally Disagree

6- Is it true that the new construct can help in producing programs with less number of code lines (shorter

syntax)?

□ Totally Agree □ Agree □ Agree with Reservation □ No Answer

□ Poor □ Disagree □ Totally Disagree

93

Appendix 6: Students' case study experiment programs.

1. Write a program to find the sum of numbers between 1 and 100, try to use new looping construct and

new method definition if want to use different method.

2. Write a program that accept an array of integers in the constructor and do the following:

a. A method to find minimum number in this array.

b. A method to find maximum number in the array.

c. Save the array, minimum, maximum, and array in private class attributes.

d. Add 2 methods to return the minimum and maximum (encapsulation).

e. Try to use the new construct in looping, methods, attributes definition.

3. Write a program for Bubble sorting (swapping) where you have:

a. Main method that initialize the array with unsorted data, print it before sorting, call the

sorting method, then print the results.

b. Method called bubbleSort that implement the sorting algorithm.

c. Private method that is used for swapping only.

d. Try to use new method and looping constructs.

4. The String in Java doesn't contain methods that return a list or tokens, print them, and show their

count. So you are asked to extend the String object in new class and add the following:

a. A method get and parse the tokens from the string and save them in Arraylist of string.

b. A method to print the arraylist contains the tokens.

c. A method to print the count of tokens.

d. Notes: Use new inheritance construct, use new "each" construct to print the list of tokens.

Use new method definitions, define the tokens list and the count as private attributes in the

class. You can also use the try – catch construct with extended variable scope.

94

Appendix 7: Professionals’ case study experiment programs.

Please read the following 10 short programs and try to conclude what they are doing

(their semantic and functionality) and write your conclusion on the lines below each program.

1.

public class MainClass {

 public static void main(String[] arg) {

 int j = 10;

 int s = 0;

 int i = 1;

 for (; i <= j;) {

 s += i++;

 }

 System.out.println(s);

 }

}

__

__

__

2.

import java.util.ArrayList;

public class ExampleClass {

 public static void main(String[] args) {

 ArrayList vls = new ArrayList();

 3:times do i

 vls.add(i);

 end

 vls:each do x

 choose(x)

 {

 case 0:

 System.out.println("i is 0");

 break;

 case 1:

 System.out.println("i is 1");

 break;

 case 2:

 System.out.println("i is 2");

 break;

 default:

 System.out.println("i grater than 2");

 }

 endEach

 }

}

__

__

__

3.

class A {

 char doh(char c) {

 System.out.println("doh(char)");

 return 'd';

 }

 float doh(float f) {

95

 System.out.println("doh(float)");

 return 1.0f;

 }

}

class B {}

class C extends A {

 void doh(B m) {

 System.out.println("doh(B)");

 }

}

public class DriverClass {

 public static void main(String[] args) {

 C b = new C();

 b.doh(1);

 b.doh('x');

 b.doh(1.0f);

 b.doh(new B());

 }}

__

__

__

4.

class A

{

 private:

 String tp;

 public A(String aTp)

 {

 tp = aTp;

 }

 def myMethod()

 return "This is a " + tp;

 endef

}

class D -> A {

 private:

 String nm;

 String brd;

 public D (String aNm, String aBrd)

 {

 super("D");

 name = aNe;

 brd = aBrd;

 }

 def myMethod()

 return "It's " + nm + " the " + brd;

 endef

}

class MainDriver {

 public static void main(String args)

 {

 d = D("Pop","Hop");

 System.out.println("The data in d: "+ dInst.myMethod());

 }

}

96

__

__

__

5.

public class Main {

 private final int UL = 10000;

 public void executeMe() {

 int i = 0;

 int pnc = 0;

 while (++i <= UL) {

 int i1 = (int) Math.ceil(Math.sqrt(i));

 boolean isP = false;

 while (i1 > 1) {

 if ((i != i1) && (i % i1 == 0)) {

 isP = false;

 break;

 } else if (!isP) {

 isP = true;

 }

 --i1;

 }

 if (isP) {

 System.out.println(i);

 ++pnc;

 }

 }

 System.out.println("occurrences: " + pnc);

 }

 public static void main(String[] args) {

 new Main().executeMe();

 }

}

__

__

__

6.

class NewExample{

 public static void main(String[] args) {

 int arr[][]= {{1,3,5},{2,4,6}};

 System.out.println("size= " + arr.length);

 System.out.println("another size = " + arr[1].length);

 theMethod(arr);

 }

 def theMethod(int[][] inArr)

 int rs = inArr.length;

 int cs = inArr[0].length;

 1:times do i

97

 System.out.print("[");

 2:times do j

 System.out.print(" " + inArr[i][j]);

 end

 System.out.println("]");

 end

 System.out.println();

 endef

}

__

__

__

7.

public class MainClass {

 public static void main(String[] arg) {

 int s = 0;

 10:times do i

 s += i;

 end

 System.out.println(s);

 }

}

__

__

__

8.

import java.util.*;

public class ClassB {

 public void executionMethod() {

 long a1 = System.currentTimeMillis();

 ArrayList vls = new ArrayList();

 for (int i = 0; i < 10; i++) {

 vls.add(i);

 }

 for (Integer vl : vls) {

 try {

 Thread.sleep(60);

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 }

 long a2 = System.currentTimeMillis();

 float ts = (a2 - a1) / 1000F;

 System.out.println("Result: "+ Float.toString(ts));

 }

 public static void main(String[] args) {

 new ClassB().executionMethod();

 }

}

98

__

__

__

9.

class ClassA{

 public static void main(String[] args) {

 int arr[][]= {{4,5,6},{6,8,9}};

 int arr2[][]= {{5,4,6},{5,6,7}};

 System.out.println("Size 1= " + arr.length);

 System.out.println("Size 2= " + arr[1].length);

 int l= arr.length;

 System.out.println("Data 1 : ");

 for(int i = 0; i < l; i++) {

 for(int j = 0; j <= l; j++) {

 System.out.print(" "+ arr[i][j]);

 }

 System.out.println();

 }

 int m= arr2.length;

 System.out.println("Data 2 : ");

 for(int i = 0; i < m; i++) {

 for(int j = 0; j <= m; j++) {

 System.out.print(" "+arr2[i][j]);

 }

 System.out.println();

 }

 System.out.println("Operation Result: ");

 for(int i = 0; i < m; i++) {

 for(int j = 0; j <= m; j++) {

 System.out.print(" "+(arr[i][j]+arr2[i][j]));

 }

 System.out.println();

 }

 }

}

__

__

10.

import:

 java.io.BufferedReader;

 java.io.IOException;

 java.io.InputStreamReader;

public class WConMain create start{

def start()

 boolean inputOk = false;

 BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

 double pnd = 0;

 while (!inputOk) {

 System.out.println("Enter Value:");

 try {

 pnd = Double.parseDouble(reader.readLine().trim());

 inputOk = true;

 } catch (NumberFormatException e) {

99

 System.out.println("Invalid, try again.");

 }

 }

 System.out.println(pnd+" equals "+getPndToK(pnd)+" k & " + getPndToGr(pnd) + " gr");

 inputOk = false;

 double on = 0;

 while (!inputOk) {

 System.out.println("Enter Value:");

 try {

 on = Double.parseDouble(reader.readLine().trim());

 inputOk = true;

 } catch (NumberFormatException e) {

 System.out.println("Invalid, try again.");

 }

 }

 System.out.println(on + " equals " + getOToK(on) + " k & " + getOToGr(on) + " gr");

 endef

 def getPToK(double pnd)

 double k = pnd * 0.45359237;

 return (int)Math.floor(k);

 endef

 def getPndToGr(double pnd)

 double k = pnd * 0.45359237;

 return (k - getPndToK(pnd)) * 1000;

 endef

 def getOToK(double on)

 double k = on * 0.0283495231;

 return (int)Math.floor(k);

 endef

 def getOToGr(double on)

 double k = on * 0.0283495231;

 return (k - getOToK(on)) * 1000;

 endef

 public static void main(String[] args) {

 try

 {

 wcon = WConMain();

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

}

__

__

__

100

Appendix 8: Selected and enhanced constructs set detailed description.

1. Class Inheritance Construct:

Inheritance is main concept in objects oriented and forms a power full mechanism used to enable

reusability between classes when they share the same properties or behaviors.

Inheritance works on linking classes and let a class get his properties from the parent class it inherit. This

offer code reusability and maintenance.

Inheritance occurs between parent / child classes. The parent class is inherited by the child. If we have a

class called "ParentClass" contains some attributes and methods is inherited by child class called

"ChildClass", all the attributes and methods exist in ParentClass will be available in ChildClass (except

private attributes and methods).

In our research we tried to express the inheritance relation between classes in simple constructs that is

derived from UML notation used to.

We used the "->" expression to define the inheritance between two classes

class ChildClass -> ParentClass

In this construct, ChildClass will inherit ParentClass. The user can write it another simpler way using the

colon ":" like:

class ChildClass:ParentClass

The original java inheritance construct still available:

class ChildClass extends ParentClass

2. Class Instantiation Construct:

To create an instance of a class and use it, we considered Python convention. The user can do it using

simple construct without the need to specify the object type before the instance variable and no need to

use "new" keyword.

Suppose we have a class called "MyClass" and want to create an instance from it called "myInstance",

this can be done using the following construct:

myInstance = MyClass();

This is equivalent to Java construct:

MyClass myInstance = new MyClass();

3. Method Definition Construct:

Method definition within a class can be done using simple constructs that help in making the method

definition, signature, and scope (block) determination much simpler and shorter.

To define a method use "def …endef" construct:

def methodName()

 methodBody…….

endef

If method has arguments to be passed then they added after the method name surrounded by parentheses:

 def methodName(int size, Object obj)

 methodBody…….

Endef

User doesn't have to specify the return type (if method return value) in the method signature, just add

return statement at the end of the method body:

101

def methodName(int size, Object obj)

 int x = 5;

 return x;

endef

Method's access modifier is assigned using method's name as described in (2.12).

Using the "def …endef" construct makes the code more clear and easier to track, debug, and less

ambiguous the developer as he can determine the scope of method inner block easier when find endef

keyword. The developer can determine and distinguish methods block from each other, their internal

blocks, and class block scope because the class and other building block (if, for, while…etc) use curly

braces "{ }" to determine their scopes. Using the "def …endef" construct let methods' scope be more

visible and distinguishable easily and help in determining missed curly braces "{ }" of class inner

building blocks:

class ClassName

{

 def methodName()

 int a = 0;

 if(a == 0)

 {

 system.out.println("a is 0");

}

else

{

 system.out.println("a is not 0");

}

endef

def methodName2(int size, Object obj)

 if(size != 0)

{

 for(int i=0; i<size; i++)

{

system.out.println("Object: "+ obj.toString());

}

}

endef

}

We obtained this construct from Ruby and Python. We enhanced it by using "endef" for closing the

method scope to make it unique, better scope determination, and distinguish it from other constructs like

if statement, loops…etc. We ignored the return type of method body to be dynamically specified at

runtime if return keyword is used.

4. Method Calling Construct (message passing):

Using the new enhancements, calling a method from class instance is done in many fixable ways. If the

class "ClassName" defined in previous section (3) is instantiated and the user wants to call its methods to

pass some message to the object and the method has no parameters, then he can call it directly from

object instance name with or without parenthesis (parenthesis are optional):

instanceName = ClassName();

instanceName.methodName; // calling the method without parenthesis

instanceName.methodName(); // calling the method with parenthesis

102

But if the method has attributes or parameters to be passed, then the user can do it in two ways: with or

without parenthesis (i.e. list parameters after method name).

Using the same example mentioned previously, calling method "methodName2" with two passed

parameters ("5" and "objInst") can be as follows:

instanceName = ClassName();

instanceName.methodName2(5, objInst); // calling the method with parenthesis

instanceName.methodName2 5, objInst; // calling the method without parenthesis

This flexibility is obtained from Eiffel and Ruby.

5. Method Execution on Class Construction Construct (Constructor Like):

Constructors are usually executed when an instance is created from a class. They are used to initialize the

object instance. In case the user wants to execute another class method on object instantiation without

using constructors, no constructors/defaults constructors are available or not accessible as the case of

singleton pattern, he can use the "create methodName" construct. The user add the keyword "create"

followed by the name of the method he want to execute at the end of class definition signature (after

inheritance and interface implementation constructs if they are exist), the executed method must be

defined within the class or inherited from parent class and it will be executed just when the instance is

created the method must has no parameters).

Suppose we have class called "MyClass" inherits another class called "ParentClass", and want to

execute method called "executeMeMethod" defined in the class when instance is created, then:

class MyClass -> ParentClass create executeMeMethod

{

 def methodName(int a)

 if(a == 0)

 {

 system.out.println("a is 0");

}

endef

def executeMeMethod()

 system.out.println("I'm executed when instance is create");

endef

}

This construct is obtained from Eiffel.

6. Looping Construct:

Looping a block of statements number of times is common programming procedure that is extensively

used. To loop block of statements, array index, or code block, a simple construct is proposed that reduce

the looping variable declaration and help in specifying the loop construct scope (begin …end) which

make the code more readable and less ambiguous.

This constructs is "times do end", to iterate a set of statements for 5 times then just write:

 5:times do

 System.out.println("Hi, I'm looping…");

 end

103

If the user interested in getting the current loop index to refer for an array entry or use the index in code

block, then just set an alias for the index after "do" keyword and refer to it within loop body:

5:times do x

 System.out.println("Value "+x+" in the array is: "+arr[x-1]);

 end

Here "x" is the loop index that is used to get an entry in the array of integers "arr".

If user have the array and want to loop over it without knowing its length or getting it in a variable, he do

this directly from array instance name followed by times construct. To loop over the integers array called

intArr then:

 int[] intArr = new int[]{1,11,111,1111,11111,111111};

 intArr:times do i

 System.out.println(arr[i]);

 End

The user can use a predefined variable for looping. Suppose a method has attribute called "size" and

wants to use it for loop, then:

def methodName2(int size)

size:times do

 System.out.println("Hi, I'm looping…");

 end

endef

Notice that using "times do end" construct help in better scope determination of code building blocks as

it doesn't use curly braces "{ }" which help is debugging, minimizing curly braces matching error, and

clearer code.

The basic idea of this construct is obtained from Ruby. And we enhanced on it by offering ability to loop

over array entries directly use the array name in the loop.

7. Objects Collection Iteration:

To iterate over a collection of objects (list, map, set…etc.), we offered new construct that minimize

writing the iteration block with options to for reference the current object in the collection. This construct

is "each do endEach" construct.

To iterate over a collection called "myCollection" passed to a method we use the following construct:

collectionInstancename:each do collectionCurrentReferencedItem

 iteration body

endEach

Where:

 collectionInstancename: is the collection instance name to be iterated.

 :each do: reserved construct follow the collection name.

 collectionCurrentReferencedItem: a reference variable points to the current object in the

collection.

 endEach: the iteration block closing phrase.

def showCollection(Collection myCollection)

myCollection:each do ref

 System.out.println("Hi, I'm looping…"+ref);

104

 endEach

endef

Using "each do endEach" construct help in better scope determination of code building blocks as it

doesn't use curly braces "{ }" which help is debugging, minimizing curly braces matching error, and

clearer code.

This construct is not obtained from other languages; it is suggested as enhancement to make code more

readable and close to natural language.

8. If Construct:

"if" statement is exactly the same as construct exist in Java, C#, or C++ without changes.

9. Selection Construct:

The new selection construct we propose is the same as Java "switch" construct with one simple change

that is using the phrase "choose" instead of "switch" to make the code more understandable and closer to

natural language.

choose(a)

{

 case 1:

 System.out.println("One…");

 break;

 case 2:

 System.out.println("Two…");

 break;

 case 3:

 System.out.println("Three…");

 break;

 default:

 System.out.println("No Number…");

}

10. Multiple Packages / Modules Calling Construct:

Developers use predefined package in their code as reusable libraries using packing techniques and

collect their classes in certain name spaces for future reusability as predefined packages and modules.

To call a package make is available within the application, the developer call it using certain construct, in

Java this is done using "import" construct followed by package name needed. Each time the developer

wants to load new package, he has to repeat the "import" keyword with each package. As enhancement,

we redefine the import construct with ability to write the import keyword only once with a colon

"import:" followed by all packages' names:

import: java.io.*;

 java.util.*;

 java.lang.*;

OR

import: java.awt.*; java.awt.event.*;

No need to repeat the import keyword in front of each package name as before:

import java.io.*;

import java.util.*;

import java.lang.*;

105

This enhancement helps in not repeating the keyword to load a package and it format the code in clear

block or section. It will save efforts to retype the same key word each time new package is needed and

make code shorter.

11. Multiple Variables Access Modifiers Construct:

Access modifiers determine the visibility and accessibility of class instance variables and methods within

the class, package, and other classes.

Access modifiers are defined in the following table:

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

The developer can define the access modifier of each class member by setting the access modifier

keyword in front of the attribute definition name (object or primitive types):

class ClassName

{

 private int a;

 private String b;

 public File file = new File();

public double length;

}

This requires the developer to repeat the same access modifier keyword in front of each attribute. And if

there are many attributes with the same access modifier, then keyword must be repeated in front of each

one.

A new enhancement proposed to define many attributes with the same access modifier without the need

to repeat the access modifier keyword. The developer just has to define the access modifier keyword

followed by colon and list all attributes belong to this access modifier:

class ClassName

{

 private:

 int a = 1;

 String b;

 public:

 File file = new File();

 double length;

 protected:

Object obj;

float value = 0;

}

This enhancement helps in not repeating the keyword to define attributes' access modifiers and it format

the code in clear block or section. It will save efforts to retype the same key word each time new package

is needed and make code shorter. This is close to what exist in C++.

12. Methods Access Modifiers Constructs:

Methods access modifiers are used with the same conventions described in the previous section (11) and

they in front of the method signature:

106

public void methodName()

private int methodName2()

This exists in Java C# and others.

By referring to new method definition construct we presented in section 3 "def ..endef", the access

modifiers are specified in different and simple way through adding underscore(s) "_" at the beginning of

method name to define its access modifier:

Modifier Number of underscores"_" in method name

public None

protected 1

private 2

Examples:

def __privateMeth() //private method

endef

def _protectedMeth() //protected method

endef

def publicMeth() //public method

endef

This reduces coding efforts. And the method access modifier can be determined from its name without the

need to go the defining class and check its definition construct to know the access modifier.

The basic idea of this enhancement is obtained from Python for private methods, and we extend it

protected and public methods' access modifiers.

13. Exception Handling Variables Scope Construct

No change on the exception handling construct (try … catch) syntax is done. We modified the logic and

scope (accessibility) of the attributes and variables defined within the try block. Modern languages like

C# and Java prevent variable defined within try block to be accessible or reachable in the catch block(s),

finally block or any code below the try catch construct as shown below:

try

{

 int num = Integer.parseInt(br1.readLine());

}

catch(Exception e)

{

 System.out.println("num ="+num);// will not work and cause error

}

System.out.println("num ="+num); // will not work and cause error

In the previous example, the two print statements in catch block and after it will cause errors because the

variable "num" is not accessible in them. To fix this in C# or Java, user has to define "num" before the

try block as follows:

int num;

try

{

 num = Integer.parseInt(br1.readLine());

}

catch(Exception e)

{

 System.out.println("num ="+num);// will work now

107

}

System.out.println("num ="+num); // will work Now

This costs new line before the try block and coder awareness. Our proposed enhancement modifies this so

the variable defined within try block will be accessible within try, catch, finally, and the following code

blocks. No need to define the variable outside try block to access it later as follows:

try

{

 int num = Integer.parseInt(br1.readLine());

}

catch(Exception e)

{

 System.out.println("num ="+num);// will work now

}

 System.out.println("num ="+num); // will work Now

This enhancement has nothing to do with syntax; it affects the semantic of exception handling variables

scope. The variables become accessible anywhere which removes the constraints on attributes

definitions. Eiffel and Python offer something similar.

