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Abstract

This thesis is concerned with the oscillation of solutions of a class of n-
th order nonlinear neutral delay differential equations. The general form
of this class of equations contains two delayed arguments.

The thesis presents main concepts and basic definitions of neutral
differential equations and oscillation. Also, it presents a practical model
for the applications of neutral delay differential equations in distributed
networks containing loss less transmission lines.

The thesis contains several recent results in the oscillation theory of
that class of n-th order nonlinear neutral delay differential equations. It
also contains our own results in the subject. And several examples are
given to illustrate the main theorems in the thesis.

Our own results involve some improvements and modifications to
previous results, besides our new criteria for oscillation of bounded
solutions of that class of n-th order neutral delay differential equations

with oscillating coefficients.
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Introduction

Differential equations with deviating arguments (DEWDA) are among
the most important equations in applied mathematics. This importance
occurs because they provide mathematical models for many real-life
systems, in which the rate of change of the system depends not only on its
present state but also on one or more past, or future states.

DEWDA, initially introduced in the eighteenth century by Laplace and
Condorcet [8]. Bernoulli (1728) while studying the problem of sound
vibrating in a tube with finite size, investigated the properties of solutions
of the first order of DEWDA, and was the first to work in this area [29].
But the systematic study of such type of differential equations has begun
in the twentieth century, in connection with the needs of the applied
science and technology [15].

In the late thirties and early forties Minorsky in his study of ship
stabilization and automatic steering pointed out very clearly the
importance of the consideration of the delay in the feedback mechanism
[25]. The great interest in the theory of automatic control and dynamics
systems, during these and later years, has certainly contributed
significantly to the rapid development of the theory of delay differential
equations [8,15,25,].

Myshkis in his book (1950) introduced a general class of equations

with delayed arguments [14, 25, 26]. In 1958 G. A. Kamenskii [29]
1



proposed a classification method for a general class of DEWDA, he
classified such type of equations into three types, they are: retarded type,
neutral type, and advanced type.

Later many specialized books appeared in the subject, such as:
El’sgoltz and Norkin (1963), Bellman and Cooke (1963), El’sgoltz
(1964)[15], Myskis (1972), Driver (1977), and Hale (1977)[25], (see [24]
page 1).

Oscillatory behavior of solutions of DEWDA is one of the most
important properties of such type of equations, besides existence of
positive solutions, and asymptotic behavior of solutions. This importance
comes from the viewpoint of applications. Where these properties provide
a qualitative description of solutions of DEWDA.

Since 1950 the oscillation theory of DEWDA has received the attention
of several mathematicians as well as other scientists around the world.
However, the theory of oscillation of DEWDA has been extensively
developed in the last 30 years.

In 1987 Ladde, Lakshmikantham, and Zhang, in their nice book [29],
introduced the first systematic treatment of oscillation and non-oscillation
theory of DEWDA. In 1991 Gyori, and Ladas introduced one of the most
important books in the oscillation theory of DEWDA [24]. The last book
Is also a good reference for the theory of DEWDA, and it contains several

applications. Recently several books appeared that are specialized in the



subject of oscillation, such as Bainov and Mishev (1991), and Agarwal
(2000). (See references of [5, 31, 37])

In parallel, during the second half of the twentieth century the area of
applications of DEWDA has greatly expanded. And now such equations
find numerous applications in physics, control theory, power systems
engineering, material science, robotics, neural networks, ecology,
physiology, immunology, public health, and economics [2, 3, 24, 25, 34,
37].

The simplest type of past dependence in a differential equation is that
in which the past dependence is through the state variable and not the
derivative of the state variable, the so-called retarded functional
differential equations or delay differential equations [25].

When the delayed argument occurs in the derivative of the state
variable as well as in the independent variable, the so-called neutral
differential equations [25].

Although the oscillatory theory of non-neutral differential equations
has been extensively developed during the last three decades, only in the
last 10 or 15 years much effort has been devoted to the study of
oscillatory behavior of neutral delay differential equations (NDDE). The
study of oscillatory behavior of solutions of NDDE, as other types of
DEWDA, besides its theoretical interest, is important from the viewpoint

of applications. Where NDDE have many applications in natural science,



technology, and economics. As examples, NDDE appear in the following
problems:

1) Study of vibrating masses attached to an elastic bar [24,

25].

2) Study of distributed networks containing loss less
transmission lines [24, 25]. More details are involved in
section (1.7) of the research.

3) Problems of economics where the demand depends on
current price but supply depends on the price at an earlier
time [37].

4) To describe the Flip-Flop circuit, which is the basic
element in a digital electronics [34].

However, in the last few years, there has been a growing interest in
oscillation of n-th order NDDE. Among numerous papers dealing with
the subject we refer in particular to [5, 7, 11, 12, 13, 19,20, 28, 31, 32, 35,
39,40].

In fact, the appearance of neutral term in differential equations can
cause or destroy oscillation of its solutions. Moreover, in general the
theory of neutral differential equations presents complications, which are
unfamiliar for non-neutral differential equations. Most of authors
obtained sufficient, rather than necessary, conditions for oscillation of
higher orders NDDE. However, the conditions assumed differ from

authors to authors due to the different techniques they use and different
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forms of equations they consider. Also, it is interesting to note that the
conditions assumed by different authors for similar form of equations are
often not comparable [32].
In our research we study the oscillation of a certain class of n-th order
NDDE, we consider the nonlinear n-th order NDDE of the form:
[x@®) + pOX( )] + & (¢ x(1), X(o (1)) = h(t) (1)
where, s=+1, bp(t),h(t),z(t),c(t) eC([t;,©)R), t, =0, z(t)<t, ot)<t,

lim z(t) = lim o(t) = o, and f(t,x,y)is continuous on [0,.0)xRxR.

During the last decade an extensive amount of study has been devoted
to obtain sufficient conditions for oscillation of solutions of equation (1),
in particular we refer the reader to [11, 12, 18, 19, 20, 31, 39, 40]. For
very recent papers we refer to [5, 28, 37]. The conditions assumed by
authors differ from authors to authors. This is due to different restrictions
assumed by authors on parameters of equation (1), and due to different
techniques used by authors.

This research consists of five chapters:
Chapter one: contains the main concepts, definitions, and preliminary
material that are essential for the rest of the research. Also it contains a
practical example from the electrical engineering on the application of
NDDE.
Chapter two: is devoted to the oscillation theory of equation (1), when the

function f(t,x(t),x(c(t))) is separable, and depends on t and x(o(t))



i.e. when f(t,x(t),x(a(t))) = q(t) f (x(o(t))), where q(t) e C([t,,«)[0,0)), and
f eC(R,R).

Chapter three: is devoted to the bounded oscillation of equation (1),
when  f(t, x(t), x(o(t)) = qt) f (x(o(t))), Where q(t) e C([t,,«),[0,0)), and
f eC(R,R)

Chapter four: is devoted to the oscillatory behavior of equation (1) when
the function f(t,x(t),x(c(t))) depends on t and x(o(t)). i.e. when
f(t,x(0), x(a(t))) = T (t,x(a(1))) .

In Chapter five: we study oscillation of equation (1), with great attention
to Zafer’s results [39]. Also in this chapter, we introduce our results.
Where we improve some results of Zafer [39] for oscillation of equation
(1) when o(t)=t-o, o>0. Also we establish sufficient conditions for
bounded oscillation of equation (1) when the coefficient p(t) is an

oscillating function with property lim p(t) =0.

Prologue to the reader
The main results in this research are variously labeled theorem, lemma,
corollary, and remark.
Theorem: contains main results on the oscillation theory.
Lemma: contains helpful results, that are needed or utilizes the proofs of
theorems
Corollary: contains consequently results from theorems

Remark: contains notes, or refers to particular cases.
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We refer to each one of theorems, lemmas, corollaries, remarks,
definitions and examples by triple (A.B.C). Where
A: refers to the chapter number
B: refers to the section number
C: refers to the number of theorem, lemma, corollary, remark, definition,
or example. Each category of theorems, lemmas, corollaries, remarks,
definitions, or examples has its own sequence of numbering in each
section.

Also we refer to most of equations and inequalities by triple (A.B.C).
Where (A, and B) as above, and (C) refers to the number equation or
inequality. Equations and inequalities have one sequence of numbering in
each section.

We refer to equations and inequalities in appendices by (N.M), where
N: refers to the appendix number
M: refers to the number of equation or inequality.

Each proof in the research begins with the word ‘Proof:” and ends with
the symbol ‘[1’.

Throughout the research we let R, =[0,).
Throughout the research we call [x(t)+ pt)x(z(t))]"” the derivative part of

equation (1). And & (t, x(t),x(c(t))) the non-derivative part of equation (1).



Chapter One

Preliminaries

1.0 Introduction

This chapter contains some basic definitions, and results which are
essential for the rest of the research. Sections 1.1 and 1.2, introduce the
definition of DEWDA, their classification, and definition of NDDE.
Section 1.3, gives what is the meaning of solution of NDDE. Sections 1.4
and 1.5, introduce the definition of oscillation and some oscillatory
phenomena caused by deviating arguments. Section 1.6, contains basic
lemmas related to the subject. Finally in section 1.7 we give a practical
example, in details, on the applications of NDDE.

1.1 Differential equations with deviating arguments (DEWDA)

Differential equations with deviating arguments are differential
equations in which the unknown function appears with various values of
the argument. They are classified into three types; these types are
enumerated in the following discussion:

I.  Differential equations with retarded argument:

Differential equation with retarded argument is a differential equation
with deviating argument in which the highest-order derivative of the
unknown function appears for just one value of the argument, and this
argument is not less than the remaining arguments of the unknown

function and its derivatives appearing in the equation.



ii.  Differential equations with advanced argument:

Differential equation with advanced argument is a differential equation
with deviating argument in which the highest-order derivative of the
unknown function appears for just one value of the argument, and this
argument is not larger than the remaining arguments of the unknown
function and its derivatives appearing in the equation.

ii.  Differential equations of neutral type:

Neutral differential equation is a differential equation in which the
highest-order derivative of the unknown function is evaluated both with
the present state, and at one or more past or future states.

Example 1.1.1:
1) x(t) = f(t,x(t), x(t — z(t)))

2) X"(t) = f(t, x(t), X' (t), x(t — (1)), X' (t — z(1)))
3) X(t) = f(t,x(gxx'(%),x(t),x'(t))

4) x'(1) = f(t,x(), X' (), x((1)), X (z (1))
5) X'(t) = f(t.x(t), x(t—7), X't~ 7))
6) x"(t) = f(t, (1), x'(t), x(t - 7(t)), X" (t — 7(t)))
Equations (1), (2), (3), and (4) are equations with retarded argument if
rt)>0in(1)and (2), t>=01in(3),and z(t)<t in (4).
Equations (1), (2), (3), and (4) are equations with advanced argument if
rt)<0 in(1)and (2), t<o0in(3),and z(t)>t in (4).

Equations (5) and (6) are equations of neutral type.

9



1.2 Neutral delay differential equations (NDDE)

A neutral delay differential equation is a differential equation in which
the highest-order derivative of unknown function appears in the equation
both with and without delays (retarded arguments).

Example 1.2.1:
1) x'(t)= f(t,x(),x(t-7),x'({t-71)), >0, is afirst order NDDE.
2) x"(t) = f(t, x(t), X'(t), x(t — 7(t)), X' (t — (), X"(t — (1)) , =(t) > O, i
second order NDDE

Example 1.2.2:

1) [x®)+pe)xt-2)] +a@xt-0)=0,

Where p(t),q(t) € C([0,0),R), and 7,6 €[0,:0). It is a second order

NDDE.

2) [x@®)+p®x®)]” + f t.x@), x(@ () = h(t)

Where, p(t),h(t) € C([0,:0),R), z(t),o(t) € C([0,0),R,), z(t) <t,o(t) <t.
It is an n-th order NDDE.

In general, the behavior of solutions of neutral type equations may be
quite different than that of non neutral-equations, and results, which are
true for non-neutral equations, may not be true for neutral equations. For
example Snow (1965) has shown that even though the characteristic roots
of a neutral differential equation may all have negative real parts, it is still

possible for some solutions to be unbounded [23, 24].
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1.3 Solution of NDDE
Consider n-th order NDDE of the form:

[(X@) + pOX(z@)]" + & (&, x(t), X(o (1)) = 5(t) (1.31)
where, 5§ =+1, p(t),s(t) e C(ft;,«),R), z(t),o(t) e C({t,,©)R,) t, >0, z(t) <t,
and o(t) <t.

By solution of equation (1.3.1) we mean a real-valued continuous
function x on [t,,«) for some t, >t,, such that x(t) + p(t)x(z(t)) is n-times
continuously differentiable and (1.3.1) is satisfied for t e[t , ).

In this research we will consider only such solution that satisfies
sup{x(t)|:t>T}>0, for any T >t,. In other words, |x(t)| #00on any infinite
interval [T,«). Such a solution sometimes is said to be a regular solution.

1.4 Definition of oscillation

There are various definitions for the oscillation of solutions of ordinary
differential equations (with or without deviating arguments). In this
section we give two different forms of definitions of the oscillation.
These forms are most frequently used in literature.

Definition 1.4.1: A non-trivial solution x(t)is said to be oscillatory if it
has arbitrarily large zeros for t >t,, that is there exists a sequence of zeros

{t } (x(t,)=0), of x(t)such that limt, =+, otherwise x(t)is said to be

n—oo

non-oscillatory.

11



For non-oscillatory solutions there exists a t, such that x(t) =0, for all
t>t.

Definition 1.4.2: A nontrivial solution x(t)is said to be oscillatory if it
changes sign on (T,«), where T is any number.

As the solution x(t)is continuous, if it is non-oscillatory it must be
eventually positive or eventually negative. That is there exists a T, eR
such that x(t) is positive for all t > T, or is negative for all t>T,.
Example 1.4.1: The equation

X'(t) + X(t —%) =0 (1.4.1)
has oscillatory solutions x,(t) =sint, and x,(t) = cost .
Example 1.4.2: The equation

X' (t)—e’x(t-3)=0 (1.4.2)
has a non-oscillatory solution x(t) =¢'.

Example 1.4.3: The equation
X'(t) + 4x(% ~t)=0 (1.4.3)
has an oscillatory solution x(t)=sin2t, and a non-oscillatory solution

X,(t) =e* —e" %,

Example 1.4.4: Consider the equation

x"’(t)—%x(t—%)+%x(t—37ﬂ):O, t>0 (1.4.4)

12



whose solution x(t) =1+cost, it is oscillatory according to Definition1.4.1,
and non-oscillatory according to Definition1.4.2. In fact, Definitionl1.4.1
iIs more general than Definition1.4.2, and is the most used in literature.
Also, it is the one used in this research..

Example 1.4.5: Consider the equation
X" (t) —%x'(t) +4t°x(t) =0 (1.4.5)

whose solution x(t) =sint*, this solution is not periodic but has an

oscillatory property.

Example 1.4.6: Consider the NDDE

!

[x(t)—%x(t—Z;r)} —%x(t—%z) =0 (1.4.6)

It has an oscillatory solution x(t) =sint .

Example 1.4.7: Consider the NDDE
n 82t
[x(t) - e'x(t-1)] + (-1 =0 (1.4.7)

It has a non-oscillatory solution x(t) =e™, but x(t) >0 as t — oo.
1.5 Effects of deviating arguments on oscillation

The oscillation theory of DEWDA presents some new problems, which
are not presented in the theory of corresponding ordinary differential
equations (ODE). And the known results for oscillation of differential

equations may not be true for DEWDA.
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In this section we consider some oscillatory and non-oscillatory
phenomena caused by deviating arguments, through the discussion of the
following examples.

Example 1.5.1: Consider the equation
x’(t)+ﬂx(t—§) ~0, BeR\{0} (1.5.1)

It has oscillatory solutions x,(t) =sin A, and x,(t) = cos At.
While the equation
X(t)+ x(t) =0, BeR\{0} (1.5.2)
has non-oscillatory solution x(t) =e ™.
This example shows that first order DEWDA can have oscillatory
solution. While, as known, the first order scalar ODE do not possess
oscillatory solution.

Example 1.5.2: Consider the equation
X"(t) — OX(t —%) =0 (1.5.4)

It has oscillatory solution x,(t) =sin3t, and x,(t) = cos3t. But the equation
X"(t) —9x(t) =0 (1.5.5)
has non-oscillatory solutions x(t) =e*, and x,(t) =e™
It is obvious that the nature of solution changes completely after the
appearance of deviating argument in the equation.
Example 1.5.3: Consider the equation

X"(t) + x(27 —t) =0 (1.5.6)

14



It has an oscillatory solution x(t) =cost, and non-oscillatory solution
X,(t) =e' —e*".

Here, in second order DEWDA one solution is oscillatory, but the other
Is non-oscillatory. And this case can never occur in second order linear
ODE, where either all solutions are oscillatory or all solutions are non-
oscillatory.

1.6 Some basic lemmas
This section contains basic lemmas that are needed later in the research.
First two lemmas are due to Kiguradze.
Lemma 1.6.1: ([29, 40]).
Let yeC"([0,«0),R)be of constant sign, let y™(t) be of constant sign and
not identically equal to zero in any interval [t,»), t,>0, and
y(t)y™(t) <0. Then:
I. there exists a t, >t, such that y*“(t), k=1...,n-1, is of
constant sign on [t,, ),
Ii. there exists an integer I, 0<I<n-1, which is even if
nis odd and is odd if nis even (i.e. n—I is odd) , such
that:
y®)y“ @) >0, k=01..1, t>t, (1.6.1)

)" y@)y® @) >0, k=I+1..,n-1, t>t and (1.6.2)

15



(t-t)"

SO oy

y(ﬂ—l) (2n—l—1t)‘ , t Z tl

(1.6.3)
Depending on this lemma we have Definition 1.6.1, which is used later.
Definition 1.6.1: The function y(t) satisfying (1.6.1), (1.6.2), and (1.6.3)
Is said to be a function of degree 1.
Lemma 1.6.2: (]29, 40])
Assume that the function y together with its derivatives of order up to
n—1is absolutely continuous and of constant sign on the interval (t,,«).
Moreover,
y* )y =0
Then either
yO)yt) >0 k=01..n-1 (1.6.4)
Or one can find a number 1, 0<I<n-2, which is even when n is even
and odd when n is odd (i.e. n—1 is even), such that:
yt)y® (@) >0, k=01,...,1 (1.6.5)
)" y)y®@) >0, k=1+1..,n-1 (1.6.6)
and inequality (1.6.3) is satisfied.
Lemma 1.6.3: ([5, 29])
Assume that the hypotheses of Lemma 1.6.1 (or Lemma 1.6.2) hold.

Assume further that y satisfies the following relation:

y(n—1) (t) y(”) (t) <0 forall t> ti’

16



Then for every 1, 0< <1, there exists constants M >0, and M, >0,

such that

|y(at) = Mt"?

y" )| forall large t

Y/ (At = Mt"?

y" ()| forall large t

Lemma 1.6.4: ([29])

Ifyisasinlemma 1.6.1, and for some k =01,..,n—-2,
!i_r)gy“’(t) =c ceR

Then
lim y*“(t)=0

Lemma 1.6.5: ([32])

(1.6.7)

(1.6.8)

(1.6.9)

(1.6.10)

Let n>3 be an odd integer, a(t)eC([0,%)[0,%), O<a(t)<ea,, and

y € C"([0,:0),R) such that (-1) y”(t) >0, 0<i<n-1,and y™(t)<0. Then

(@®) o
y(t—a(t) > 22— o —1)l y (1) for t>q,.

Proof: By Taylor’s expansion we have

(= a(t))

yt—a(t) = ytO) + (a@®)y' ) + —=—=y"() +...

L a®)™ yo

(a(t)) (n)(t
(n-1!

)+
where 0< x<1. Thus

(@®) o
y(t-a a»>( _D,‘ (1)

17
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for t > ¢, since nis an odd integer. Hence the lemma is proved. [J

1.7 Mathematical model by using NDDE for a particular problem
As mentioned previously, NDDE find numerous applications in natural

science, and technology. For instance, they are frequently used for the

study of distributed networks containing lossless transmission lines. In
this section we discuss, in details, a certain example of lossless
transmission lines connected to a nonlinear elements. This example is due
to Brayton [6, 25]. For more about theory of transmission lines see [9].
Treatment of transmission lines is more complicated than that of
ordinary networks. Whereas the physical dimensions of electric networks
are very much smaller than the operating wavelength. But transmission
lines are usually a considerable fraction of a wavelength and may even be
many wavelengths long. The circuit elements in ordinary electric
networks can be considered discrete, and they described by lumped
parameters. But transmission line is a distributed-parameter network, and
must be described by circuit parameters that are distributed through its
length. However this situation is the case in long transmission lines (as in
power systems engineering) [9], also the case in small channels under
very high frequency (as in high speed computers where the lossless

transmission lines are used to interconnect switching circuits) [23, 24].
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Consider lossless transmission line connected between lumped

elements as shown in fig.1.1

av)| ¥ cis

fig.1.1

The length of the line can be normalized to unity without loss of
generality. Where g(v) is a nonlinear function of voltage v and gives the
current in the indicated box in the direction shown. And the behavior in
the line can be described by the following pair of partial differential

equations:

L—= C—= O<x<l1l, t>0

a_ . cxv_ a (1.7.1)
ot OX ot OX

Where i(x,t), v(x,t) are the current in the line and the voltage to ground

respectively at the point xand at time t. And L, C are, respectively, the
inductance and capacitance of the line per unit length.

Since the elements at the two sides of the transmission line are lumped
elements, we can introduce the following boundary conditions:

E—v(0,t)—Ri(0,t) =0, C, d"ét't) —i(Lt) - g(v(LD) (1.7.2)
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It is clear that the problem modeled by system of partial differential
equations with certain boundary conditions. Also we can write the system

of equations using matrices.

a o 1o 0

ot L || ox |—

Sl v { ], O<x<l1l, t>0 (1.7.3)
ANV = o 0

ot C OX

The general solution of this system is:

i(x,0) = ﬁ{qﬁ(x—%)—wmﬁ)} (1.7.4)
v(x,t) = ¢(X—ﬁ)+l//(><+ﬁ) (1.7.5)
Put s:%, and z:\/g, then
24(X —st) = v(x,t) + zi(x,1) (1.7.6)
2w (X + st) = v(x,t) — zi(x,1) (1.7.7)
This implies:
2¢(—st) =v(1,t+%)+ zi(1,t+%) (1.7.8)
2y(st) =v(1,t—%)—zi(1,t—%) (1.7.9)

Using these expressions in the general solution and using first boundary

condition at t—l we obtain:
S

(L) —KiLt - 2) = 2 — v ) - Xyt - 2) (1.7.10)
S z z S
Where k = Z-R L= 2E
Z+R Z+R
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Inserting second boundary condition and let x(t) =v(1,t), we obtain the
equation:
2 2
X'(t) —kx'(t — §) = f(x(t),x(t - g)) (1.7.11)
Where

(x(t), x(t - 2)) :i{a—lx(t)lx(t—g)—g(x(t»+ g(x(t—z»} (1.7.12)
S C Z Z S S

Let r:§:r>o,we get:
[X(t) —kx(t—2)] = f (x(t), X(t — 7)) (1.7.13)
It is a first order NDDE, where x(t) represents the voltage as function of

time at destination elements, i.e. at the elements that the power

transferred to.

21



Chapter Two
Oscillation of n-th Order NDDE When the Non-Derivative

Part is Separable
2.0 Introduction

In this chapter we consider the oscillation of n-th order NDDE when
the non-derivative part is separable, i.e. we consider an equation of the
form:

[(x® + pOXEEN]” +a) f (x(o 1) =0 (2.0.1)
where, p(t),q(t),z(t),o(t) e C([t,,©)R), t, =0, z(t) and o(t) are delayed
arguments, and f € C(R,R).

NDDE of form (2.0.1) is the most familiar form that appears in
literature, and so many results are known for the oscillation of this form
of equations. Our aim in this chapter is to present some of the oscillation
results that recently have been obtained for this form of equations under
different restrictions.

In section 2.1 we introduce sufficient conditions for the oscillation of
equation (2.0.1) with constant delays i.e. when z(t)=t—7 and o(t) =t-o.
In Section 2.2 we study some oscillation results when the delayed

arguments are commute, i.e. z(o(t)) = o(z(t)). Finally, in section 2.3 we
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present oscillation criteria for the solutions of equation (2.0.1) with

variable delays.

2.1 Oscillation of n-th order NDDE with constant delays
Consider the equation
[x(® - p®)x(t - )] +a®) f (x(t - 0)) = 0 (2.1.1)
where, n>1 be an odd integer, p(t),q(t) € C({t;, )R, ), t, >0, 7,0 (0,0),
f e C(R,R)such that xf(x) >0 for x=0, and f is nondecreasing.

The results of this section are contained in Theorems 2.1.1 and 2.1.2,
each theorem presents its own sufficient conditions for the oscillation of
solutions of equation (2.1.1).

Theorem 2.1.1: Suppose that 0< p(t) <1. If f satisfies the sub-linearity

condition

ta

ds
If(s) <o forany a>0 (2.1.2)

0

and [a(s)ds =0 (2.1.3)

Then every solution of equation (2.1.1) is oscillatory.

Proof: On the contrary, assume that x(t)is a non-oscillatory solution of
equation (2.1.1), without loss of generality, we assume that x(t) >0 for
t>t >t,. (The proof is similar for x(t) <0). Set

z(t) = x(t) — p(t)x(t—17) (2.1.4)

From (2.1.1), and (2.1.4) we have
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zV(t)=—qt)f(x(t-o)) <0 fort>t, +o (2.1.5)

That is z"(t)<o0, for t>t +o. It follows that zP@){j=01...n-1} is
strictly monotone and of constant sign eventually. Hence z(t)<0 or
z(t)>0 from large t, say for t>t,>t +o. Let us consider these two

cases:.

Casel: Suppose that z(t) <0, for t>t, . Since n is odd, z(t) <0implies
that z'(t) < 0from a certain point on, say for t>t, >t, (see Lemma 1.6.2).

Consequently: lim z(t) =4 <0, and so lim inf x(t) #0. Let &>o0such that

x(t) > efort>t, >t,.
Using the facts that x(t) > for t>t,, and fis nondecreasing, it follows
from (2.1.1) that for large t

ZM(t) +q(t) f () <0 (2.1.6)
Integrating (2.1.6) from t,to t and using condition (2.1.3), then we have
2"I(t) > -0 as t—ow, Which implies that z({t)—>-o as t—owo.
Consequently, x(t) is unbounded. But z(t) <0 for t>t,, it follows from
(2.1.4) that x(t) < p(t)x(t—7) <x(t—7), SO x(t) is bounded, which is a
contradiction.
Case2: Suppose that z(t)>o0, for t>t,. From (2.1.4) it follows that
z(t) < x(t), for t>t,.Using this fact and the fact that f is nondecreasing.

Then from (2.1.1) we have:
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ZOM) +q) f(z(t—o)) <0 (2.1.7)
If z'(t)>0 eventually, z(t) is increasing , then integrating inequality
(2.1.7) from t,to t and letting t > we get z""(t) > - as t — oo,
which implies that z(t) » - as t -, but this contradicts the fact that
z(t)>0 . Hence z'(t) <0for t>t,.
Since z(t) >0, it satisfies conditions of lemma 1.6.1. And since z'(t) <0,
then the number Iin lemma 1.6.1 must be zero (1=0). Therefore by
Lemma 1.6.1 we have

-D'z%t) >0, 0<i<n,fort>t, >t, (2.1.8)
Since n is odd, and (2.1.8) holds, follows that z(t) satisfies the hypotheses

of lemma 1.6.5. By result of lemma 1.6.5, we obtain:

2(t—o0)>Bz" (@), t>T >t, (2.1.9)
where B = (::)I . Hence from (2.1.1) and (2.1.9) we get
zM @) +q(t) f(Bz" (1)) < 2™ (1) + q(t) f (z(t — 0)) (2.1.10)

<z™)+qt) f(xt—c)) =0, t=T
Dividing (2.1.10) by f(Bz""(t)), and integrating the resulting inequality
from T to t we obtain

Bz ("D (T
1% .0 ds

t
_= ——+|q(s)ds<0 2.1.11
B Bz(n.[l) (t) f(S) :I"- ( )

Letting t — « in (2.1.11) and using conditions (2.1.2) and (2.1.3) leads to

a contradiction. Hence the theorem is proved. [
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Example 2.1.1: Consider the equation

!

I:X(t)—%X(t—Zﬂ')} +gsin2t(x(t—%)}3 =0 (2.1.12)
Here n=1, p(t)=%, q(t)=§sin2t, f(x) =x3, z(t) =t — 27, and a(t)=t—%.

f (x) satisfies the sub-linear condtion (2.1.2), q(t) satisfies condtion
(2.1.3), so we see that all condtions of Theorem 2.1.1 are fulfilled.
Therefore every solution of equation (2.1.12) is oscillatory. In fact,
x(t) = sin®t is such solution.

Theorem 2.1.2: Suppose that p(t)=pe(01). If f satisfies the

generalized linear condition

lim inf¥ _M < (0,%0), (2.1.13)

x—0

f(xy) = f(x)f(y) for any two continuous functions xand vy, and

im sup [ a)f (%}ds >1 (2.1.14)

to
Then every solution of equation (2.1.1) is oscillatory.
Proof: On the contrary, assume that x(t) is a non-oscillatory solution of
(2.1.1). Without any loss of generality, assume that x(t) >0 for t>t, >t,.
Set z(t) asin (2.1.4), since p(t) = p is constant ,then (2.1.4) will be

z(t) = x(t) — px(t —17) (2.1.15)
From (2.1.1), and (2.1.15) we have:

zV(t)=—q(t)f (x(t-o)) <0 fort>t, +o (2.1.16)
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That is z™t)<0 for t>t +o. It follows that zP@t){j=041..,n-1} is
strictly monotone and of constant sign eventually. Hence z(t)<0 or
2(t) >0 for large t, say for t >t, >t, + o . Let us consider these two cases:

Casel: Suppose that z(t) <0, for t>t, . Since n is odd, z(t) <0implies
that z'(t) <ofrom a certain point on, say for t>t, >t, (see Lemma 1.6.2).

Therefore we have:

lim z(t) =4 <0 (2.1.17)

toow

From (2.1.15), it follows that  px(t — ) = x(t) — z(t) and hence
. A
liminf x(t) > 5 >0 (2.1.18)

Integrating both sides of (2.1.16) from t,to tand letting t —« with the
use of (2.1.18) we have z"”(t) >-w as t-—ow, wWhich implies that
z2(t) > —o as t —oo. Consequently, x(t) is unbounded. Hence there exists
a sequence of real numbers {s,} such that s, >x , x(s,) > as
n—oand x(s) < x(s,) for s<s, . Now

2(s,) = X(s,) — PX(s, —7) > (1— p)X(s,)
and hence z(s,) > as s, — o, Which is a contradiction to our earlier
conclusion. So z(t) <0 for t>t, is impossible.
Case2: Suppose that z(t)>0 for t>t,. Then either z'(t)<0 or z'(t)>0
eventually. If z'(t)>0, t>t,>t, the contradiction is as follows. In this

case
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limz(t)= x>0. Consequently, from (2.1.15) it follows that

liminf x(t)= liminf (z(t)+ px(t—7)) >0 (2.1.19)
Integrating (2.1.16) from t,to t, with the use of (2.1.19), then we see that
20" (t) > —0 as t — oo, Which implies that z(t) - - as t —, but this
contradicts the fact that z(t) >0 eventually. Next, assume that z'(t) <0,
t>t,. By use of lemma 1.6.1, and since z'(t) <0, the number Iin lemma
1.6.1 must be zero (1 =0). Hence, we conclude that

-D'z9t)>0,0<i<n,fort>T >t, (2.1.20)
Since n is odd and (2.1.20) holds then we can apply Lemma 1.6.5, for

2(s), and t>s, by result of Lemma 1.6.5, we have:

2(s) = z(t - (t—s)) > % 2 (t)

From the fact that x(t) > z(t) we have:

X(s) > z(s) > % 20D (t) (2.1.21)

Replacing tand sby t—cand s—o respectively in inequality (2.1.21) we
get

X(s— o) > %ZM (t-o) (2.1.22)

Then, from (2.1.15) it follows that
2" (s)+q(s) f (x(s—o)) =0 (2.1.23)
With the use of (2.1.22) and (2.1.23) and the fact that f is nondecreasing

we obtain
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(s—t)"*

(n)
2 (s)+q(s)f( "

2007 (¢ -a)j <0 (2.1.24)

Now using the fact that f(xy)=f(x)f(y) for any two continuous
functions xand y. Then from (2.1.24) we have

(s—t)"*

(n)
2 (s)+q<s)f( e

jf(z(”l)(t—a))s 0 (2.1.25)

Integrating both sides of (2.1.25) with respect to sfrom t—oto twe get

2V - 2"Vt -o)+ tLq(s) f (%)f (209t - a))ds <0,

Consequently,

7D (t)— 7(n-1) (t—o)+ f (Z(n—l) (t— O_))t:';q(s) f (%}ds <0, (2.1.26)

Dividing both sides of (2.1.26) by z""(t—-o) and using the fact that

2" (t) > 0{see (2.1.20)}, we obtain

7(-D) t) ~ f (Z(n—l) (t— 0)) t (s— t)n_l
Z(n—l)(t —(7) 1+ Z(n—l)(t —U) t:';q(s)f( (n _1)| jds <0 (2127)

Further from (2.1.20), we conclude that z"?(t)is negative, increasing,

and concave down, so lim z29(t) =c e R, and from lemma 1.6.4 we have:

lim 2" (t) = 0 (2.1.28)

tow

Taking limit superior of both sides of (2.1.27) and using (2.1.28), we see

that

. i (s—t)"* 1
Ilrlswup tLq(s) f (Wjds < IV
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which is a contradiction to the condition (2.1.14). Hence the proof is
completed. []

Example 2.1.2: Consider the equation

!

[x(t)—%x(t—%)} +3x(t—%) -0 (2.1.29)

All conditions of Theorem 2.1.2 are satisfied. Therefore every solution of
equation (2.1.29) is oscillatory. Indeed, x(t)=sin2tis an oscillatory
solution of this equation.

Note that equation (2.1.29) satisfies all conditions of Theorem 2.1.1,
except the condition of sub-linearity, hence if we use Theorem 2.1.1 we
have no conclusion about the oscillatory of equation (2.1.29).

Remark 2.1.1: Theorem 2.1.1 is due to Das [11], which is an extension
of Theorem 4 of Graef [16]. Theorem 2.1.2 is due to Das and Mishra
[12].

2.2 Oscillation of n-th order NDDE with commute delayed arguments

In this section we study the oscillatory behavior of NDDE when the

delayed arguments are commute, i.e. r(c(t)) = o(z(t)) for t >t, >0.
Consider the NDDE, with commute delayed arguments, of the form:
x® + pOXxEO)]" +a®) f (x(o (1)) =0 (2.2.1)
where, p(t),q(t),z(t),o(t) € C(lt,,©)R,), t, >0, q(t)=00n any half line

[t.), z®) <t, o) <t, lim 7(t) =0, lim o(t) =e0, and f e C(R,R)such that

xf (x) >0 for x=0.
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Further the following assumptions are made for their use in this section:

(1) fu+v)< fu)+ ), if uv>0
(2) fu+v)= fu)+ (), ifuv<o0
(3) f(ku) <kf(u), if k>0and u>0, foreachkek,

where K ={k: p(t) =k for some te|t,,)}.
(4) f(ku)=kf(u), if k>0and u<0, foreach kekK

(5) f(u)is bounded away from zero if uis bounded away from zero
(6) [a(s)ds =0

(7) z(t) e C*([t,,0),R ) and z'(t) >b, where b is positive constant.
(8) There exists a positive constant M such that p(c(t))q(t) < Mg(z(t))
The main results in this section are contained in the following theorems:
Theorem 2.2.1: Assume that conditions (1)-(8) hold. Then
I. If n iseven, every solution of equation (2.2.1) is oscillatory
ii. If n is odd, any solution of equation (2.2.1) is either
oscillatory or tends to zero as t — .

Proof: Suppose that equation (2.2.1) has a non-oscillatory solution x(t).
Without loss of generality, assume that x(t) is eventually positive (The
proof is similar when x(t) is eventually negative). That is x(t) >0,
x(z(t)) > 0, x(a(t)) > 0, and x(z(o(t))) > 0for t >t for some t, >t,.
Set

2(t) = x(t) + p(t)x(z(1)) - (2.2.2)
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Since p(t)is nonnegative then z(t)>o0for t>t. Using the fact that
7(o(t)) = o(z(t)) for t >t,, then from (1), and (3) we have:

f(z(o(®)) = f(x(o®) + ple®)X(z(a (1))

< F(x(e®)) + p(a(®) f (x(a(z(1))), (2.2.3)

Using (2.2.1) and (2.2.2) we obtain

z(t) = —q(t) f (x(e (1)) (2.2.4)
From (2.2.3) and (2.2.4) we have:

2”@ +at) f (2(a®)) < 2™ (1) +a®)(f (x(e®) + p(a®) f (x(a (= (1))

Hence

2(t) +a) f (2(a (1)) < () pla(®) f (X(o (= (1)) (2.2.9)
Since x(o(t))>0 for t>t, z"@t)<0 and so z®(t)is monotonic for
i=01,..n-1. Therefore, z""@®t)>0 or z"9@t)<0 eventually. If
20V (t) <0 then from the facts that z”(t) <0 and q(t) #0, lead that z(t) <0
eventually, so a contradiction. Hence there exists t,>t such that
29 (t) >0 for t>t,.
From (2.2.1), and the fact that z/(t) >b > 0, we have:

2 (z()7' (1) + (=) f (X(e (2(©))7'(1) =0 (2.2.6)

Let t, >t,such that z"(z(t)) >0for t>t,. Then integrate (2.2.6) from t,

to «, we get:
[a@E) f (o (@E)))7(s)ds = 2P (z(ts)) - L -

where L = lim z"(t). Since z"?(t) > 0 eventually, we show that:

towo
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:IOQ(T(S)) f(x(o(z(s))))7'(s)ds < o (2.2.7)
Using (2.2.7), with (7), and (8), follows that

tTQ(S) p(a(s)) f (x(o(z(s))))ds < oo (2.2.8)
Integrating (2.2.5) , and using (2.2.8) , we show that:

o) el s < (2.29)

Since (5) and (6) hold, then (2.2.9) implies that liminf z(t) = 0. But z(t) is

positive and monotonic, so z(t) >0 as t —»o. SO z(t) IS decreasing,
implies that z'(t) <0 eventually. For n>1, z/(t) >0 as t — oo Since z'(t)is
monotonic and z(t) >0 (z(t) is concave up) (you can see lemma 1.6.4).
Hence z'(t) is increasing, implies that z'(t)>0. For n>2, Zz'(t)is
eventually positive and satisfies  z'(t) »>0as t-—>o since z'(t) is
monotonic and negative. Continuing in this manner we have:

2Otz @t) <0, fori=041,..,n-1 (2.2.10)
with strict inequality holding for i <n—1. If n iseven, using (2.2.10) and
the fact that z™(t) <0 we reach to z(t) <0, and this contradicts z(t) >0. If
n is odd, then x(t) < z(t) - 0 as t — «, and this completes the proof. [

Example 2.2.1: Consider the NDDE

1

[X(t) + (2 +cost)x(t —27)] +(3+cost)x(t —4z) =0 (2.2.11)
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Here n=2, p()=2+cost, q(t)=3+cost, f(x)=x, z({t)=t-27, and
o(t)=t—4z. The delayed arguments (t)and o(t) aere commute i.e.
7(o(t)) = o(z(t)) =t —67, function f(x) satisfies condtions (1)-(5), and
q(t) satisfies the divergent integral in condtion (6). Also condtions (7) and

(8) are satisfied by (2.2.11). Thus all condtions of Theorem 2.2.1 (i) are

satisfied. Therefore we can conclude that every solution of equation

(2.2.11) is oscillatory. In fact, Xl(t)zsiocssst’ and XZ(t):?;j—i(r:](;St are
oscillatory solutions of (2.2.11).
Example 2.2.2: The NDDE
T
[x@) + pex(t—)]" +2v2(p-1)e * x(t - 77”) =0, (2.2.12)

where p>1, satisfies the conditions of Theorem 2.2.1 (ii). So every
solution of (2.2.12) is either oscillatory or tends to zero as t — «. In fact,
(2.2.12) has an oscillatory solution x(t) =e™sint.

Example 2.2.3: Consider the NDDE

[x(@®) + px(t—In2)[" + F:#}x(t -2)=0 (2.2.13)

where n is odd, and p=>0. All conditions of Theorem 2.2.1 (ii) are
satisfied. So every solution of (2.2.13) is either oscillatory or tends to
zero as t—oo. Indeed, (2.2.13) has the non-oscillatory solution
X(t)=e' >0as t—>oo.

Theorem 2.2.2: Suppose that n>2 is even, and conditions (1), (2), (7)

hold. Moreover, if the following conditions are satisfied:
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(9) f(x) is nondecreasing on R

(10) p(t) < p, p >0 isaconstant

(11) There exists a continuous and nonnegative function Q(t) such that
A = QM)+ Q)

where z7'(t) is the inverse function of r(t). If
TQ(t)dt =0 (2.2.14)

Then every solution of equation (2.2.1) oscillates.
Proof: Without loss of generality ,Suppose that (2.2.1) has an eventually
positive solution x(t), say x(t) >0, x(z(t)) >0, and x(c(t)) >0, for t >t for
some t, > t,.
Set z(t) = x(t) + p(t)x(z(t)). Since p(t) is nonnegative then z(t) >0for t > t,.
By (2.2.1) we have:

zV(t) =—q(t) f (x(c(t)) <0, t>t, (2.2.15)
By lemma 1.6.1, there exists t, >t such that z'(t)>0, z""(t)>0, for
t>t,. Using (1) we have:

F(x®) + f (x(z(0)) 2 £ (x(®) + x(z(1)))

Zf(x(t)ﬂo(t)x(r(t))j:f( 2(t) j (2.2.16)
max{1, p} max{1, p}

Using (11) we have

a®) f (o 1) = [Q®) + Q@) )|f (x(a®))) (2.2.17)
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Integrating (2.2.17) from t, to t, gives that:
Ja®) T (x(a(s))ds = [Q(s) f (x(a(s))ds + [Qr () )f (x(a(s)))ds (2.2.18)

Replace s by z(s) in the second integral of right side of (2.2.18), we get:

()

Ja@ f(x(@eN)ds = [Q() f (x(a(s))ds + [QUS) f (X(o(z(s))7'(S)ds  (2.2.19)

7 (t,)

From (2.2.19), and using condition (7) with (2.2.16) we obtain:

5(1)

[a(s) f (x(o(s))ds = min{L b} [QE)(f(X(a(s))) + f (X(z((s)))))ds

. o 2(c(s))
> min{1, b} J Q(s)f(max{ll p}jds (2.2.20)
where
S(t) =min{t,z ()}, t, = max{t,,7'(t,)} (2.2.21)

Choose t, >t,, such that z(o(t)) > z(t,) for t >t,. Then using (2.2.20), and

the fact that f is nondecreasing, we obtain:

t 5(t)
j q(s)f(x(a(s)))ds2min{1,b}f( 2(t) j j Q(s)ds, t >t,  (2.2.22)
. max{1, p} ) {

Taking t — « in (2.2.22), and using (2.2.14), we have:
Ja®) (Ko@) = (22.23)
But, Integrating (2.2.15) from t, to t, and using z"(t) >0, we have:
jQ(S) f(x(a(s))ds = -2 () + 2" (t,) < 2" (t,) (2.2.24)

t;
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Taking t — o0 In (2.2.24). The result contradicts (2.2.23).Thus the proof
Is completed. [
Example 2.2.4: The NDDE

[x(t) + 51 *x(t — 7)[" + 2006 " x(t—37) =0, t >0 (2.2.25)
satisfies all conditions of Theorem 2.2.2, by setting Q(t) =100e**. So
every solution of (2.2.25) is oscillatory. In fact, x(t)=e™sintis such a

solution.
Theorem 2.2.3: Suppose that n>2 is even, and conditions (1), (2), (7),
and (9) hold. Moreover, if the following conditions are satisfied:

(12) There exists a function g(u) e C([0,x0),[0,x0)) such that
g(u)>0 for u>0
f(uv) <g()f(v) for u>0, v>0
f(uv) > g()f(v) for u>0,v<0
(13)There exists a continuous and nonnegative function Q(t) such that

a®) > Q) + Qe *))a(p(= 1))

If [yt = o (2.2.26)

Then every solution of equation (2.2.1) is oscillatory.
Proof: Without loss of generality, Suppose that (2.2.1) has an eventually
positive solution x(t), say x(t) >0, x(z(t)) >0, and x(c(t)) >0, for t >t for

some t, >t,.
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Set z(t) = x(t) + p(t)x(z(t)). Since p(t) is nonnegative then z(t) >0for t>t,.
From (2.2.1) we have (2.2.15).
By lemma 1.6.1, there exists t, >t, such that z'(t)>0, z"()>0, for
t>t,. Using (1), and (12), we have
F(() +9(p®) f (X 1) = f (x®) + f (POX(z(1)
> f(x(t) + p(t)x(z(t))) = f(z(t)), t=>t, (2.2.27)

Using (13) we have

9O f Xe®) =[O+ O (pE* ) (e®)  (2.2.28)
Integrating (2.2.28) from t, to t, using (2.2.27), with (7), and proceeding

the same as in proof of Theorem 2.2.2. Then we have:
j A(s) f (x(o(s)))ds > j Q(s) f (x(a(s)))ds + j Qe (9))a(p(z(5)F (X(o(s))ds

(1)
—IQ(S)f(X(Cf(S)))ds + jQ(S)g p(s))f (x(o(z(s))))7'(s)ds

“tp)

5(t)

>mingL,b} [Q(s)(f (X((s)) + g(p(s)) f (X(z(o(s)))) s

5(t)

> min{1, b} j Q(s) f (z(o(s)))ds (2.2.29)

where s(t) and t, are defined by (2.2.21).
Choose t,>t,, such that z(c(t))>z(t,) for t>t,. In view of fbe

nondecreasing from (2.2.29) we have:

a(t)

j q(s) f (x(c(s)))ds = min{1,b} f(z(t,)) j Q(s)ds, t >t, (2.2.30)
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Taking t -« in (2.2.30), we obtain:
[a(s) f (x(a(s)))ds = oo
On the other hand, Integrating (2.2.15) from t, to t, we have

jQ(S) f(x(a(s))ds =22 (0) + 2 (t,) < 2" 7(t,)

This is a contradiction. Thus the proof is completed. [

Example 2.2.5: The NDDE

"
4 -1z

l:x(t) 120 2x(t —377[)} + Z(Gt_z + EZ]X“ ‘77”) =050 (2.2.31)

-1z

satisfies all conditions of Theorem 2.2.3, by setting Q(t):%ez, and

g(u) = 2u. So every solution of (2.2.31) is oscillatory. In fact, x(t) =e"sint
Is such a solution.
Note that in Example 2.2.4, equation 2.2.25 also satisfies the

conditions of Theorem 2.2.3, but equation (2.2.31) does not satisfy

3z

conditions of Theorem 2.2.2, since p(t)=2e 2 is not bounded. And note
that conditions of Theorem 2.2.1 are not satisfied for equation (2.2.31)
since the condition (8) failed. If you return to Example 2.2.1, you can see
that equation (2.2.11) satisfies the condition of Theorem 2.2.3 by using
Q(t)=1, and g(u)=u. From advantages of Theorem 2.1.1, that it
considers odd and even orders. From drawbacks of Theorem 2.2.3, that it

needs extra work to find function g(u).
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Remark 2.2.1: Theorem 2.2.1 is due to Graef and Spikes [19], Theorems
2.2.2 and 2.2.3 are special cases of Theorems 3 and 4 of Li [31]. Where
Li in [31] consider equation 2.2.1 when the derivative part has several
delays. Also, his results are true for neutral equations rather than NDDE.
So the results of Theorems 2.2.2, and 2.2.3 are still true if conditions
r(t) <t, and o(t) <t are omitted.
2.3 Oscillation of n-th order NDDE with variable delays.

This section establishes sufficient conditions for oscillation of the
solutions of NDDE

[x® + pOXEO)]” +a®) f ((c®) =0, n=2 (2.3.1)

The main results are contained in Theorems 2.3.1, 2.3.2, and 2.3.3.
Throughout theorems 2.3.1, and 2.3.2, the following conditions are
assumed to be hold:

(1) p(®),q(t) e C(t,, )R ), t, >0, such that 0 < p(t) <1, and q(t) > 0.
(2) «(t) e C([ty,0)R ), z(t)<t, and lim 7(t) = oo
3) o(t) eCY(t;, )R ), o’(t) >0, o(t) <t, and lim o (t) = oo

(4) f eC(RR), xf(x)>0 for x=0, f(x)sonx=p¥", a=1, B>0.

The following lemma will be required in this section

Lemma 2.3.1: Let z(t) be a positive function of degree 1 (As in Definition
1.6.1), 1>2. Then

S)I 2

TR (2.3.2)

Z'(t) = J'z("(s)

40



Proof: We did the proof in Appendix A. [J
For notational purposes we assume that:
a,,(t) = L p(o(t)) a(t) (2.3.3)

andfor n>4 and all 1 e{1,2,...,n -3},

a,(t) = Iﬂl P(o(s))) a(s )E i 2)lds (2.3.4)

Note: All inequalities presented below are assumed to hold eventually.

Theorem 2.3.1: Assume that «>1 and for all | {12,...,n-1}such that

n+1 is odd

00

j(a' Ma,(t) - M, ﬂJdt = forsome M, >0 (2.3.5),
o(t)

Further assume that for n odd p(t) < p<1, and for neven
Ja(s)(s—t)ds = o (2.3.6)

Then

I. If n is even, every solution of equation (2.3.1) is oscillatory.

ii. If n is odd, any solution of equation (2.3.1) is either

oscillatory or tends to zero as t — .
Proof: Assume that x(t) is a non-oscillatory solution of equation (2.3.1).
Without loss of generality, we may assume that x(t) >0. (The proof is
similar for x(t) <0).
Set
z(t) = x(t) + p(t)x(z(t)) (2.3.7)
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Thus z(t) >0 eventually. From (2.3.1), and (2.3.7) we have:

2 (t) =—a@) f (x(o(t))) <0 (2.3.8)
That is z™(t) <0, and consequently z(t){j=0.1..,n—1}are monotonic
and of constant signs eventually. By Lemma 1.6.1 there exists an integer
| €{0]1,...,n—1}, such that n+1is odd, and:

2t)>0, O0<i<lI (2.3.9)

()29 >0, l+1<i<n-1 (2.3.10)
Now we consider the following two cases:
Case 1: Let 1 >1. Follows from (2.3.9) that z'(t) > 0. So z(t) is increasing.
Using this fact and from (2.3.7) we have:

X(t) = z(t) - p(O)x(z(1) = z(t) — p()z(z(1)) = A— p(t)z(t) ,

x(t) = - p(1))z(t), (2.3.11)
Since x(o(t)) >0 and from condition (4), and (2.3.11) we have:

f(x(e(®) 2 Bx(a®)) 2 f-pla®)) 2% (a(t)), (2.3.12)
Using (2.3.8), and (2.3.12) we have:

20 (1) + - p(o(®)f at)z* (a(t) <0, (2.3.13)
If 1 <n-3 then by integrating (2.3.13) from t t0 « (n-1-1) times, in
view of (2.3.9) and (2.3.10), we get (2.3.14), (We show this process in
Appendix B),

(S _ t)n—|—2

o (2.3.14)

29 () < [ A2 (0(s) - plo())

Using notation in (2.3.4), with the fact that z(t) is increasing we obtain:
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20 (t) + 3, (t) 2 (o (t)) < 0 (2.3.15)

Note, from (2.3.13), and notation (2.3.3), the inequality (2.3.15) holds for

| =n-1.
Define
o 200
w () =o (t)—za o) (2.3.16)
From (2.3.9) z"(t) >0, then w,(t) >0 and further
1 20 iy 2000
W (t) =o' (t)o'(t t)——~
W=l 070 oy 7 Vo)
oz (t)z” l(G(t))
~o'(t t))o'(t 2.3.17
o' (t) 22 (o(1)) Z'(o(t)o’(t) ( )
Using Lemma 2.3.1 for n> 2, we have:
2(t) > j =9 0 (s)ds (2.3.18)

(1-2)!
The inequality (2.3.10) implies that z'*(t) <0, so z"(t) is decreasing.
Therefore, for t>s implies that z"(t)<z"(s). Using this fact and

inequality (2.3.18), we obtain:

(t S)IZ | e (& to)Il
Z'(t) > j(l_ ol z<>(s)o|s>z<>(t)W (2.3.19)

Hence (2.3.19) implies that for any 4, >1,

' 1 1-1,(1) ;
z(t)Z—MI_l)!t zO(t), for large time (2.3.20)

Also (2.3.20) is satisfied for n=2. In this case 1 =1 and 4 =1. Then from

(2.3.20), and the fact that z"(t) is decreasing, we have:

43



i 1 1-1 | 1 1-1 |

Use inequalities (2.3.15), and (2.3.21), with equation (2.3.17) we get:

20 (t)

o) o (H)a (t)

wi(t) <lo" (D)o (1)

_ aaz"l(t)a'(t)za_l(d(t)){ (1) } (2.3.22)
2,1 =1)! 2%(o(t)

Now Let us consider the following two sub-cases:

Case 1.1: If z(t)is bounded eventually. Since z(t) >0, z'(t) >0, implies
that z'(t) <0 (otherwise z(t) is unbounded), and this case is possible only
if 1 =1. Since z(t) >0, Z'(t) >0, z'(t) <0, follows that there exists:

lim z(t) =c>0 (2.3.23)

Since | =1 in this case, (2.3.15) will be:
2"(t) +a,(t)z* (o(t)) <0 (2.3.24)

Integrating (2.3.24) from t to «, and using (2.3.23), we have:
L—2z'(t) < —Tal(s)z“(a(s))ds (2.3.25)

Where L = lim Z'(t). Since Zz'(t) >0 eventually, (2.3.25) implies that:

-7'(t) < —]zal(s)z“ (o(s))ds (2.3.26)
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Integrate (2.3.26) from t, to «, (t, >t), and taking into account (2.3.23)
and monotonicity of z“(o(t)), (we show this in Appendix C), The result

IS:
zt)<c— z“(a(t))Tai(s)(s—ti)ds (2.3.27)

But being z(t) is bounded and 1=1, this is possible only if n is even.
Therefore, combining condition (2.3.6) with inequality (2.3.27) lead to a
contradiction to positivity of z(t). Thus, this sub-case is impossible, and
z(t) must be unbounded.
Case 1.2: If z(t) is unbounded. Then for every K >0, and all
sufficiently large t:
2% Yo(t) > K (2.3.28)

2171 -1)!
4oM,

Take K =

Combining (2.3.22) and (2.3.28) leads to

120 =D’ (t)

w(t) < —o (Ha(t) + 4oKo(t)

_aKO'Z'l(t)o"(t)[ 20 (t) _ﬁﬂ(l-l)!}2

A (-1 2%(o(t)) 2aKo'(t)
o A1 -Dlo'(t)
<—o'(t)a(t) + 4o () (2.3.29)
Hence,
W) < —o' Oa ) + M, T (2.3.30)
o(t)
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Integrating (2.3.30) from t, to t we get

w (1) <w(t) - j{a' (s)a,(s) - M, &}ds (2.3.31)
Y o(s)

Letting t »>o in (2.3.31), and with use of condition (2.3.5), we get
w,(t) = —o. This contradicts to positivity of w,(t) and we conclude that

this sub-case is also impossible. Hence, Casel is impossible.
Case 2: Let 1=0. This case is possible only when n is odd. Therefore,
for n even the proof of our theorem is complete, (so part (i) of the

theorem is proved). To complete the proof we shall show that lim x(t) =0.
Since z(t) > x(t) > 0, it is sufficient to verify that lim z(t) =0.

Since | =0, from (2.3.9), and (2.3.10), we have
(-1)z@) >0, 0<i<n (2.3.32)

Thus z'(t)<0, and z'(t)>0.This implies that lim z(t) exists and is
nonnegative and finite. Assume that lim z(t) =c, > 0. Then z(t)>c,
eventually. Choose 0< ¢ < Cll—Tp_ Obviously, z(z(t)) <c, +<for all large t.
Then from (2.3.7) we have:

C +e&

[c, - p(c, +&)]

X(t) > z(t) - p(t)z(z (1)) > ¢, - p(c, + &) >

C +e&

X(t) > (¢, +£)c, > c,z(t) (2.3.33)

where 0<c, = 2= PG*€) ysing inequality (2.3.33) with (2.3.8) and (4)

C +¢

we have
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2™ (t) + ¢, A(t)z% (o(t)) < 0 (2.3.34)
Integrating an equality z™(t) = z™(t) from t to « (n-1) times, from t, to

o« once and using (2.3.32) , we get: (See details in Appendix D)

2(t,) > j (Lé 3)' 2 (U)du (2.3.35)

Substituting (2.3.34) into (2.3.35) and using z(o(t)) > ¢, we obtain

a.a OO(U_tl)rH
z(t) >c,c, ﬂtJ: 1) q(u)du (2.3.36)
which implies
Jurta(uydu <o (2.3.37)

4

But in view of (2.3.5),.; we have
o= [o"(u) L~ po(u))) au)du < [ A" q(u)du (2:3.38)

which contradicts (2.3.37). Consequently, lim z(t)=0. And the proof is

completed. ]

Corollary 2.3.1: Assume that n=2, « >1 for some M, >0,

o0

8 o)y,
| [a(t)ﬂ(l— Pe)) al)-M, ]dt =,

and
[ 8- p(e(s)) d(s) (s —t)ds = 0

Then equation (2.3.1) {of second order}is oscillatory.
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Corollary 2.3.2: Assume that n=3, a>1, pt)<p<1 and for some

M, >0,

o0

| ( o* (O A p((®)) aO) - M, “'(“)’Jdt — o,

o(t

Then any solution of equation (2.3.1) {of third order} is either oscillatory
or tends to zero as t — oo.

Example 2.3.1: Consider the equation
1 ” ) ;
(x(t)+fx(t—1)j e 20, ta1 (2.3.39)

By corollary 2.3.1, equation (2.3.39) is oscillatory .

Example 2.3.2: Consider the equation

(x®) +ext—In2)f” +5e' (x(v1))* =0, t=1 (2.3.40)
By corollary 2.3.2, every non-oscillatory solution of equation (2.3.40)
tends to zero as t — .
Theorem 2.3.2: Assume that o =1, for all 1 e{1,2,....,n—1}such that n+1 is

odd

T[a' (a, (t)—MZ(L_zial(t)]dt = forsome 4 >1 (2.3.41),
O

and for n odd p(t) < p<1. Then

I. If niseven, every solution of equation (2.3.1) is oscillatory.
ii. If n is odd, any solution of equation (2.3.1) is either

oscillatory or tends to zero as t — .
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Proof: We proceed the same as in proof of Theorem 2.3.1. Follow the

same steps until (2.3.22). Substitute « =1, in (2.3.22), we have:

" 2015y s Oy TP
w(t) < |a"1(t)a’(t)zz(a—8) ~o'Mat) - 2 (ftﬁ)ft) { zz(ag;)}

=—o' (t)a (t) +

AP(1-Dio't) 0'2"1(t)a'(t)[ 20 Al —1)!}2

4o(t) A0=-D! | z(c@t) 20'(t)
, A12(1-1o'(t)
<-o'(t)a (t) + 4o (2.3.42)
Integrating from t, to t, we get:
WO <) | {a' (s)a,(s) ('4;2’)("‘5) }ds (2.3.43)

Letting t > we get w,(t) > —. This contradicts to positivity of w(t)

and we conclude that Case 1 is impossible. The rest of the proof is the
same as that in the proof of Theorem 2.3.1. [

Remark 2.3.1: We obtain the constant 2, in condition (2.3.41), from
(2.3.20). Note that the constant M, in condition (2.3.5), is arbitrary.
In next theorem, Theorem 2.3.3, we assume that the following
conditions hold:
(1) p(),q(t) eC(lty,©)R,), t, 20, 0< p(t) <1, f eC(R,R), xf(x) >0 for
x =0 and f(x)is nondecreasing on R.

(2) «(t),o(t) € Clit,, )R ), (t) <t, o(t) <t, lim z(t) = jy o) =

Theorem 2.3.3: Assume that n>2 is an even integer. If
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[as) f([L- p(o(s)k)ds = (2.3.44)

Tq(s) f(=[1- p(a(s))fc)ds = —0 (2.3.45)

hold for every ¢ >0, then every solution of equation (2.3.1) is oscillatory.
Proof: Without loss of generality, Suppose that (2.3.1) has an eventually
positive solution x(t), say x(t) >0, x(z(t)) >0, and x(c(t)) >0, for t >t for
some t, >t,.(The proof is similar for x(t) being eventually negative).
Set
2(t) = x(t) + p(t)x(z(t)) (2.3.46)
Since p(t) is nonnegative then z(t) >o0for t > t,.
From (2.3.1), and (2.3.46) we have:
2™ (t) = —q(t) f (x(o(t))) <0, for t >, (2.3.47)
By lemma 1.6.1, there exists t, >t,_such that z(t) >0, z'(t) >0, z"""(t) >0,
and z™(t) <0 for t >t,. Thus z(t) is increasing.
Choose t, >t, such that z(t) >t, for t>t,. Then from (2.3.46) and the fact
that z(t) is increasing, we have:
x(t) = z(t) — p(®)x(z(1))
> z(t) — p(t) z(z(t))
> (1-p())z(t), t>t, (2.3.48)
Let t,>t, such that o(t)>t, for t>t,. Since f(x)is nondecreasing,

combining (2.3.47) with (2.3.48) we have:
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2"t +q(t) f([L— p(a®)]z(a(t)) <0, t>t, (2.3.49)
Since z(t) is increasing, z(o(t)) > z(t,) for t >t,. Therefore we have:
2@ +qt) f([1- ple®)]z(t;))<0,  t=t, (2.3.50)

Integrating (2.3.50) from t, to t, we obtain
[a@s) f (- plo(s)](t))ds < 2P () +2"P(t,), t=t, (2.3.51)
But z"(t)>0 for t>t,. Then (2.3.51) implies that:

jq(s) fL-plo)lt)ds <z2"V(,), t=>t, (2.3.52)

ty

This contradicts (2.3.44), and the proof is completed. [

Example 2.3.2: Consider the NDDE

1 ) 1
{x(t)+5x(t—7r)} +(1—ij(t—27z) =0, (2.3.53)

where p>1. It satisfies all conditions of Theorem 2.3.3. Thus every
solution of equation (2.3.53) is oscillatory. For example, x(t)=—cost is
such a solution.

Remark 2.3.2: Theorems 2.3.1 and 2.3.2 are due to Lackova [28], they
are extensions of Dzurina results [13]. Theorem 2.3.3 is a special case of
Theorem 1 of Li [31]. Where Li in [31]establish sufficient conditions for
oscillation of equation (2.3.1) when the derivative part contains several
delays. Also the results of Theorem 2.3.3 still hold if the condition

o(t) <t 1S omitted.
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Chapter Three
Bounded Oscillation of n-th Order NDDE When the Non-

Derivative Part is Separable

3.0 Introduction

In this chapter we interested in the bounded oscillation of n-th order
NDDE when the non-derivative part is separable, i.e. we consider an
equation of the form:

[x® + pOXE)]" + &M f (x(o®)) = h(t) (3.0.1)
where, 5§ =+1, p(t),q(t),z(t),o(t),h(t) e C(t;,©)R), t, =0 ,z(t) and o(t)are
delayed arguments, and f € C(R,R).

Many results are known for the oscillation of bounded solutions of
equation (3.0.1). It seems that most of these results consider cases
whenpt)=peR and p()>o0(or p()<0). And few results are known
when the coefficient p(t) is oscillatory. In this chapter we present some
recent results for bounded oscillation of equation (3.0.1) for several cases
of the coefficient p(t).

In section 3.1 we introduce some results of oscillation of bounded
solutions of equation (3.0.1), when the equation has positive or negative
coefficients. In section 3.2 we study the oscillation of bounded solutions
when the coefficient is nonnegative and delayed arguments are commute.
Finally, In section 3.3 we present oscillation of bounded solutions when

the equation has oscillating coefficients.
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3.1 Bounded oscillation of n-th order NDDE with positive or negative
coefficients

Consider the following NDDE:
(x®) - pOXE@)]” + @) f (x(o (1)) = h(t) (3.1.1)
(x® + PO + @) f (x(o(1)) = h(t) (3.1.2)
Where s =+1, and the following conditions are made for their use:
(1) p®).9®) «C(t,0)R,) , ;20
(2) q(t) is not identically zero on any half-line of the form [t.,0) for
any t.>t,,
(3) z(t),o(t) e C([ty,©) R, ), z(t) < t, o(t) <t, lim z(t) = lim o (t) =, and z(t)
IS monotone.
(4) f eC(R,R)such that xf (x) >0 for x=0.
(5) h(t),r(t) € C([t,,0),R), and r(t)is an oscillating function such that:

lim r(t) =0 and r™(t) =h(t).

(6) J.s”‘lq(s)ds =

In this section we present necessary and sufficient conditions under
which solutions of equations (3.1.1) and (3.1.2) are either oscillatory or

else satisfy lim x(t) =0.

The following Lemma will be needed in this section

Lemma 3.1.1:(see lemma 1 in [37], and lemma 3 in [40])
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Let z(t) be a continuous monotone function with lim 7(t) =co. Set

2(t) = x(t) + p(t)x(z(t)) (3.1.3)
If x(t) is eventually positive, lim inf x(t) =0 and lim z(t) =L eR exists.
Then L=0 provided that for some real numbers p,, p,, p,, and p, the
function p(t) is in one of the following ranges:
. p,<pt)<0
. 0<p@t)<p, <1
. 1<p,<pt)<p,
Proof: By (3.1.3) we have
2(z7 (1) — 2(t) = X(z (1) + P(z " (O)X(t) — X (1) - pA)X(z(1))
Therefore,
lim {x(z () + Pz O)X() - x(1) - pM)X(z(1))} =0 (3.14)
Let {t,} be a sequence of real numbers such that

limt,=c and lim x(t,) =0 (3.1.5)
From (3.1.4) and (3.1.5) we obtain

lim (e (t,)) - pt)X(z(t,)} =0 (3.1.6)
Since x(t)is eventually positive, x(z*(t,)) >0.
If (i) holds, then — p(t,)x(z(t,)) > 0, and it follows from (3.1.6) that:

lim x(c(t,)) =0 (3.1.7)

And so from (3.1.3), and (3.1.7)
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L=lim 2(z7(t,)) = lim (@) + p( € )x(t,) =0
In the case of (ii) by replacing t by (t) in (3.1.4) and using (3.1.5), we
have:

lim {{p(t,) ~1x(z(t,)) — Pt )X(z(z(t,))} =0 (3.1.8)
As [p(t,) -1x(z(t,)) <0, and — p(z(t,))x(z(z(t,))) < 0, it follows that:

lim x(z(t,)) =0 (3.1.9)
Then

L=lim z(t,) = lim {x(t,)+ p(t,)x(z(t,))} =0

Finally , if (iii) holds, then by replacing t by «7(t)in (3.1.4) we obtain

lim (7 (@) + [P (6 -1k (1,))}= 0
implies that

lim x(z™(t,)) =0 (3.1.10)
Then

L=1im 2(:7(t,) = X)) + PG 6 )X(E,) =0

Thus the proof is complete. []

Theorem 3.1.1: Let (1)—(6) be satisfied, and inf[t —z(t)]> 0.If there exist

t>t,

positive numbers p, and psuch that p(t) satisfies 1< p < p(t) < p, <.

Then
I. every bounded solution x(t) of equation (3.1.1) is either

oscillatory or lim x(t) =0, when (-1)"s =1
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ii. every bounded solution x(t) of equation (3.1.1) is
oscillatory, when (-1)"s = -1
Proof: Let x(t) be a non-oscillatory bounded solution of equation
(3.1.1). Without loss of generality, we may assume that x(t) is
eventually positive (The proof is similar when x(t) is eventually
negative). Set
2(t) = x(t) - pO)x(z()) - r (1) (3.1.11)
From (3.1.1) and (3.1.11) we have
2™ (t) =—(t) f (x(a (1)) (3.1.12)
Therefore z™(t) is of constant sign eventually. Hence, z(t) must be
monotonic and of constant sign eventually, that is z(t)>0 or z(t)<0
eventually. If z(t)>0. By (3.1.11)  x(t) - p(t)x(z(t)) > r(t). Therefore
x(t) — pt)x(z(t)) >0 (otherwise contradicts r(t) being oscillatory). Hence
x(t) > p(t)x(z(t)), But p(t) > p. Follows that
X(t) > p(O)x(z(t)) > px(z(t)) = px(t—(t—z(1))) (3.1.13)
Assume that A(t) =t—z(t), then
Let g, = |tntf B(t) = !ntf [t—z(t)]>0, then from (3.1.13) we have:
X(t) > px(t - 3,) (3.1.14)
X(t—15) > px(t—245)
Using (3.1.14), we have:

X(t) > p*x(t-24,)
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So for every positive integer n, we obtain:
X(t) > p"x(t—ng,), oOr
X(t+ng,) > p"x(t) (3.1.15)

By using the fact that 4, = inf [t—z(t)]> 0, inequality (3.1.15) implies that

x(t) - o as t — oo, and this contradicts that x(t) being bounded. Hence
z(t) <0. Moreover, z(t) is bounded; since x(t), and p(t) are bounded,
and lim r(t) =0.
From (3.1.12), we have

g™ (t) = —q(t) f (x(co(t)) <0 (3.1.16)
Thus & (t) is decreasing function for t >t , for some t, >t, , and so we
can have:

x>0 for t>t (3.1.17)

a2ty <0 for t=T, >t (3.1.18)
suppose that (3.1.18) holds. Then

a2 <& PT)<0 for t>T, (3.1.19)
Integrating (3.1.19) from T, to t, we get

x"A({t) > -0 as t—>o (3.1.20)
Therefore, (3.1.16), (3.1.18), and (3.1.20) lead to &(t) > -0 as t— oo,

But this contradicts to z(t) being bounded, and so (3.1.17) hold.
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If 5=1, then (3.1.16), and (3.1.17) implies that z™(t)<0, and
2" P(t) >0. By Lemma 1.6.2, there exists a t, and a number | € {0,1} with
n—1 is even, such that for all t >,

29(t) <0, i=01..,1, (3.1.21)

(-1)"'z9t) <0, i=l,.,n-1. (3.1.22)
Note that 1{01}. If n is even 1=0; (otherwise 1>2, so z(t)<0,
7'(t) <0, and z'(t) <0, this implies that z(t) is unbounded). If n is odd
| =1; (otherwise | >3, s0 z(t) <0, z'(t) <0, and z"(t) <0, this implies that
z(t) is unbounded).
If 5=-1, then z”(t)>0, by Lemma 1.6.1, there exists a t, and a
number 1 {01} (otherwise z(t) is unbounded) ,with n—-1 is odd, such
that for all t >t, (3.1.21), and (3.1.22) are satisfied.
So, in general, there exists t, and number | e{0,3} with

-D"'s=1 (3.1.23)
such that (3.1.21), and (3.1.22) are satisfied for t>t,.

Now integrate equation (3.1.16) from t to « and see that:

L - () + Tq(s) f (X(o(s))ds =0 (3.1.24)
where L = lim 2" (). From (3.1.17) L >0, S0
—o" () + Tq(s) f (x(o(s))ds <0 (3.1.25)

Now by (3.1.21), and (3.1.22) (see Lemma 1.6.4), we have
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lim 2t)=0 for i=12..,n-2 (3.1.26)
Now, if we integrate (3.1.25) (n-2) times from t to «,we get

1
(n=2)!

(D" ez’ (t) + Tq(s)(s —1)"? f (x(o(s))ds < 0 (3.1.27)

Let L, = lim z(t) and integrating (3.1.27) from T to «, we obtain

1
(n=1)!

[a@®)E-T) f(o@)ds < (-1"6[L, -2(T)]  (3.1.28)

Note that we evaluate the integrals (3.1.27), and (3.1.28) using
integration by parts in view of (3.1.26). (This is similar to work in
Appendix B).

In view of (6) and the fact that z(t) is bounded, from (3.1.28) we

conclude that lim inf £ (x(t)) =0, or

lim inf x(t) = 0 (3.1.29)

t—>w

Let (-1)"s =1. We shall now proceed to show that lim x(t) =0

From (3.1.23) 1=0.So (3.1.21), and (3.1.22) implies that z'(t) >0, and
2"(t) <0. Hence, z(t) approaches to a finite limit as t tends infinity.
Hence, by Lemma 3.1.1 lim z(t) =1, =0. Since z(t)<0 and z(t) >0 as
t — o0, given ¢ >0 there exists a T. such that

z(t)>—-¢, forall t>T..
So, X(t) — pt)x(z(t)) > — +r(t)

Since lim r(t) =0, there exists A < (0,) such that
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Ax(®) - p)x(z(t))) > —, SO
X(t) — pOX(z(t)) > —% , Let %: i, Then

pP()X(z(t)) < e+ X(t), use g(t) =t—rz(t), then
pO)X(t — £,) < e+ Xx(t), use p()=p, so
pX(t) < s+ X(t+ )

PX() < e+ pu+X(t+2/5,),

P"X(t) < g+ pu+..+ p"u+xX(t+nga,) (3.1.30)
Letting M be a bound of x(t) and simplifying (3.1.30), we obtain that

p_ _1+Mp—n=£ p_ -1
1-p A1-p

X(t) < u

+Mp™ (3.1.31)

Because p™ goes to zero as n tends to infinity, and ¢ is arbitrary, from
(3.1.31) we have x(t) -0 as t — o as desired.
Suppose that (-1)"s =-1. From (3.1.23) |1 =1, Because z(t) is bounded

and 1=1, lim z(t) exists. In view of (3.1.29), it follows from Lemma 3.1.1

that z(t) >0 as t — . But this contradicts the fact that z(t) is negative
and decreasing, and hence proves that x(t) is oscillatory.[]

Example 3.1.1: Consider the equation

X(t—7)

[x(t) ~(BG-e)x(t- 27:)]' +2(3+cos 2t) T (- = 2e 'sint (3.1.32)
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X

Here n=2, 6=+1 p(t)=5-e", q(t)=2(3+cos2t), f(x):1 =,
+X

) =t-27, o(t)=t—~, and h()=2e"'sint. See that 4<p(t)<5,

itr>1tf[t—r(t)]= 27 >0. And it is easy to see that all conditions of Theorem

3.1.1 (i) are fulfilled, so every bounded solution of equation (3.1.32) is

either oscillatory or satisfies lim x(t)=0. Indeed, x(t)=cost iS an

tow

oscillatory solution of the equation.

Example 3.1.2: Consider the equation

2t

2e’

T (t—Int)=0 (3.1.33)

[x(t) - g X(t—In 8)} —

it satisfies all conditions of Theorem 3.1.1 (i), so every bounded solution

of equation (3.1.33) is either oscillatory or satisfies lim x(t) =0. For

t
example, x(t)=e * is a solution of the equation, which tends to zero as

t —> 0.

Example 3.1.3: Consider the equation

’ V4
x(t _Z)

[x(t) —ex(t— %)} + (L+€)(3+ cos 4t) =0 (3.1.34)

1+ X3 -"
+X°( 4)
it satisfies all conditions of Theorem 3.1.1 (ii), so every bounded solution

of equation (3.1.34) is oscillatory. Indeed, x(t) =sin2t is such a solution of

the equation.

Theorem 3.1.2: Let (1)-(6) be satisfied. And assume that 0< p(t) < p, <1

or 1< p, < p(t) < p, for some real numbers p,, p, and p,.
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Then

I. every bounded solution x(t) of equation (3.1.2) is
oscillatory, when (-1)"s =1
ii. every bounded solution x(t) of equation (3.1.2) is either

oscillatory or lim x(t) =0 when (-1)"s =-1

Proof: Let x(t) be a non-oscillatory bounded solution of equation
(3.1.2). Without any loss of generality we may assume that x(t) is
eventually positive. (The proof is similar when x() is eventually
negative). Set
2(t) = x(t) + pE)x(z(t)) - r(t) (3.1.39)
From (3.1.2) and (3.1.35) we have:
2™ (t) =-(t) f (x(a (1)) (3.1.36)
Therefore z™(t) is of constant sign eventually. Hence, z(t) must be
monotonic and of constant sign eventually. If z(t)<o0. By (3.1.35)
x(t) + p(t)x(z(t)) < r(t). Implies that, r(t)>0, and this contradicts r(t)
being oscillatory. Therefore z(t) >0. Moreover, z(t) is bounded; since
x(t), and p(t) are bounded, and lim r(t) =0.
If we proceed in a similar way to that in proof of Theorem 3.1.1, (with
use of Lemmas 1.6.1, and 1.6.2). Then we conclude that there exists a t,
and a number I € {0,3} with

-D"'s=-1 (3.1.37)
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such that for all t>t,.
29(t) >0, i=01..,1, (3.1.38)
(-1)"z%@) >0, i=l,..,n-1. (3.1.39)
Now by (3.1.38), and (3.1.39) (see Lemma 1.6.4), we have:

limzPt)=0 for i=12..,n-2 (3.1.40)

Integrate equation (3.1.36) from t to « and see that:

L - &)+ Tq(s) f (x(o(s))ds =0 (3.1.41)

where L = lim a2 (0). From (3.1.39) L >0, SO

—" () + Tq(s) f (x(o(s))ds <0 (3.1.42)

Then, in view of (3.1.40), by integrating equation (3.1.42) (n—2) times

from t to «,we get

o0

[as)s—t) f (x(o(s))ds <0 (3.1.43)

(~)™' (1) + T

Let L, = lim z(t) and integrating (3.1.43) from T to «, we obtain

ﬁTMs)(s—T)“f(x(a(s»ds < (-1)"5[L, — 2(T)] (3.1.44)

Note that: we get integrals (3.1.43), and (3.1.44) using integration by
parts. (This is similar to the work in appendix B).
In view of (6) and the fact that z(t) is bounded, follows from(3.1.44) that

lim inf f ((t)) =0, or
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lim inf x(t) = 0 (3.1.45)

Let (-1)"s =-1. We shall now proceed to show that lim x(t) =0

t—>w©

From (3.1.37) 1=0. So (3.1.38), and (3.1.39) implies thatz'(t) <0, and
2"(t) > 0. Hence, z(t) approaches to a finite limit as t tends infinity. By

Lemma 3.1.1, lim z(t) = L, =0. From (3.1.35), x(t)+ p(t)x(z(t)) = z(t) +r(t)
and since lim r(t) = lim z(t) =0, then lim x(t) =0.
Let (-1)"5 =1, From (3.1.37) 1 =1. So (3.1.38), and (3.1.39) implies

thatz'(t) >0, and z’(t)<0. Since z(t) is bounded , lim z(t) exists. it

follows from Lemma 3.1.1 that z(t) >0 as t — . But this contradicts
the fact that z(t) is positive and increasing, and hence proves that x(t) is

Oscillatory. L]

Example 3.1.4: Consider the equation

S ' . X(t—7)
[x(t) + (6+ e )x(t - )] +5(L+sin v

= 2e' cost (3.1.46)
it satisfies all conditions of Theorem 3.1.2 (i), so every bounded solution
of equation (3.1.46) is oscillatory. Indeed, x(t)=sint is an oscillatory

solution of the equation.

Example 3.1.5: Consider the equation

2, (t-5m3)| e Int) =0 3.1.47
[x(t)+§x(t— n )} + om X (t—Int) = (3.1.47)
it satisfies all conditions of Theorem 3.1.2 (ii), so every bounded solution

of equation (3.1.47) is either oscillatory or satisfies lim x(t) = 0.For
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t

example, x(t)=e 5 is a solution of the equation, which tends to zero as
t —> 0.

Example 3.1.6: Consider the equation

. ¢ o » X(E)
[x(t)+(5+25|nt)x(5—z)} +5(1L+sin t)—2:0 (3.1.48)
1+ X (E)

it satisfies all conditions of Theorem 3.1.2 (ii), so every bounded solution

of equation (3.1.48) is oscillatory or satisfies lim x(t) =0. In fact,

x(t) =sin2t is such a solution of the equation.

In the next theorem, Theorem 3.1.3, we present the conditions under
which equations (3.1.1), and (3.1.2) have non-oscillatory solutions.

The following conditions are made to be used:

(7) Ts“‘1|h(s)|ds <o

(8) Ts”lq(s)ds <o

Theorem 3.1.3: Let (1), (3), (7) and (8) be satisfied, and assume that the

function f satisfies the Lipschitz condition with a constant L on an
interval [a,b], where a and b are positive real numbers which depend on
the range of p(t) and may chosen as follows:

1-p
1-p

. %< , When 1< p <p(t) < p, inequation (3.1.1)

I. %<1— p,, When 0< p(t) < p, <1, inequation (3.1.2)
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E< pa_l
b p,—-1

iii. , when 1< p, < p(t) < p,, In equation (3.1.2)

where p,p, ,p,, ps,and p, are real numbers.

Then equations (3.1.1), and (3.1.2) have bounded positive solutions.
Proof: see [37]. U

Example 3.1.7: Consider the equation

t " 2X(;)
{x(t) +(4+ eZ‘)x(E)} —16e(2+2e " + e"")—2 =-12¢™* (3.1.49)
1+x (E)

p(t)y=4+e™, take p,=4 and p,=5 then (iii) will be satisfied when
4a <3b. Choose a=1 and b=2. Then Theorem 3.1.3 implies that there is
a positive solution x(t) [1,2]. Note that x(t) =1+e™ is a solution of the
equation.

Finally, In view of Theorem 3.1.3, we obtain the following necessary

and sufficient conditions for oscillation of equations (3.1.1), and (3.1.2).
Theorem 3.1.4: Let (1)-(5), and (7) be satisfied. If f satisfies the
Lipschitz condition on an interval [a,b], where a and bare as in
Theorem 3.1.3. Then the conclusions of Theorems 3.1.1 and 3.1.2 hold if
and only if (6) is satisfied.
Remark 3.1.1: All theorems in this section are due to Zafer and Dahiya
[40], and Yilmaz and Zafer [37]. We collect several theorems from [3],

and [37] in two main theorems (Theorems 3.1.1, and 3.1.2).

66



3.2 Bounded Oscillation of n-th order NDDE with nonnegative
coefficient and commuting delayed arguments

In this section we assume that the delayed arguments are commute, i.e.
7(o(t)) = o(z(1)).
Consider the following equation:
[(x® + pOXEO)” ~a) f (x(o (1)) =0 (3.2.1)
where, p(t),q(t),z(t),o(t) e C(ft,,©) R, ), t, =0, q(t) = 0on any half line [t.,«)
for any t.>t, <c(t)<t, ot)<t, lim z(t) =0, lim o(t) =, and
f e C(R,R)such that xf (x) >0 for x=0.
Further, assume that the following assumptions are to be hold:
(1) fu+v)< fu)+ ), if uv>o0,
(2) fu+v)= f(u)+ V), if uv<o,
(3) f(ku)<kf(u), if k>0and u>0, and
f (ku) > kf(u), if k>0and u<o0, for each k e K
where K ={k: p(t) =k for some t e|t,,«}}.
(4) f(u)is bounded away from zero if uis bounded away from zero

(5) p(t)is bounded
(6) [a(e)ds = =

(7) z(t) e C'([t,,0),R,) and 7/(t) > b, where b is positive constant.

(8) There exists a positive constant M such that p(c(t))q(t) < Mg(z(t))
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Theorem 3.2.1: Suppose that conditions (1)-(8) hold. Then:
I. If nis even, any bounded solution of (3.2.1) is either
oscillatory or tends to zero as t — o
ii. If nisodd, every bounded solution of (3.2.1) is oscillatory.

Proof: Suppose that x(t) is a bounded and non-oscillatory solution of
equation (3.2.1). Without loss of generality, we may assume that x(t) is
eventually positive, (The proof is similar when x(t) is eventually
negative), say x(t) >0, x(z(t)) >0, x(a(t)) >0, and x(z(o(t))) > 0for t >t for
some t, >t,. Set

2(t) = x(t) + pt)x(z(t)) (3.2.2)
Since p(t) is nonnegative then z(t) >0for t>t. And since x(t), and p(t)
are bounded, then z(t) is also bounded From (3.2.1) and (3.2.2) we have

2 (t) = q(t) f (x(a (1)) (3.2.3)
That is z™”(t) >0, implies that z®(t) is monotonic and of constant sign
eventually for i=01,..,n-1.

Using the fact that z(c(t)) = o(z(t)) for t>t, and from (1), and (3) we

have:
f(z(o(®)) = f(x(o®) + ple®)X(z(a (1))
< F(x(e®)) + p(a(®) f (x(a(z(1))), (3.2.4)
Hence
q(t) f (z(a(®)) < a(t) f (x(a())) +a®) p(a(®) f (x(o(z(1)))) (3.2.5)

Now, using (3.2.3), and (3.2.5) with (8) we obtain the following:
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q(®) f z(e(®)) < 2 (1) + Ma(z(©)) f (x(o (= (1)) (3.2.6)
If n>2, then z""(t) <0eventually, say for t>t,>t; since z""()>0,
z"(t)>0 and q(t) #0imply that z(t) >« as t -, and this contradicts
z(t) being bounded.
Replace t by (t) in (3.2.3), and multiply by 7'(t), we have:

2™ ()7’ (®) - q(z() f (X(e(z(D))7'(t) =0 (3.2.7)
Let t, >t,such that z"(z(t)) <0for t>t,. Then integrate (3.2.7) from t,

to o, we get:
IQ(r(S)) f(x(a(z(s)))7'(s)ds = L - 2" (t,).

where L = lim 20" P(t). Since z"(t) <0 eventually, we show that:

jQ(T(S)) f(x(a(z(s))))7'(s)ds < o (3.2.8)
Using (3.2.8), with (7), and (8), follows that

M IOI(T(S)) f(x(o(z(s))))ds < o (3.2.9)
Integrate (3.2.6) , and use (3.2.9) we show that

Ja®) f 2(oEM)ds < (3:210)

Since (4) and (6) hold, then (3.2.10) implies that liminf z(t) = 0. And since

z(t) IS monotonic, z(t) >0 as t —»>o. SO z(t) is decreasing, implies that
Z'(t) <0 eventually. For n>1, z/(t) >0 as t - Since z'(t)is monotonic

and z(t) >0 (z(t) concave up) (you can see lemma 1.6.4). Hence z'(t) is

69



increasing, implies that z"(t) > 0. For n>2, z’(t) is eventually positive and
satisfies z’(t) >0 as t—o since z/(t) is monotonic and negative.
Continuing in this manner we have:

Y0z <o, fori=01..,n-1 (3.2.11)
If nis even, then x(t) < z(t) >0 as t - and (i) is proved. If n>3 is odd,
then (3.2.11) and the fact that z(t) > 0contradicts z(t) >0. If n=1, i.e.
z"(t) = Z'(t) >0 so there exists ¢ >0 and T >t, such that z(o(t)) > ¢ for
t>T. From (7), and equation (3.2.1) we have

Z'(z(1))7'(t) = ba(z(t)) f (x(o(=(1)))) (3.2.12)

Integrating (3.2.12) and using that fact that z(t) is bounded, we have:
TTQ(T(S)) f(x(o(z(s))))ds < o (3.2.13)
Then, by integration of (3.2.6) we obtain
z2(t)+M jQ(r(S)) f(x(o(z(s))))ds = 2(T ) + EjQ(S)dS (3.2.14)

Let t > in (3.2.14) . The left side of (3.2.14) in view of (3.2.13) and

boundedness of z(t) must be finite. But from (6) the right side of (3.2.14)

tends to infinity. which is a contradiction. Thus the proof is complete []

Example 3.2.1: The NDDE

[x(t) +3x(t — )" —2x(t - gz) =0 (3.2.15)
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satisfies the conditions of Theorem 3.2.1 (ii). So every bounded solution
of (3.2.15) is oscillatory. Indeed, (3.2.15) has oscillatory solutions
X, (t) =sint, x,(t) =cost

Example 3.2.2: The NDDE

"

{x(t)+2x(t—%)} —4x(t—-7)=0 (3.2.16)

satisfies the conditions of Theorem 3.2.1 (i). So every bounded solution
of (3.2.16) is either oscillatory or tends to zero as t — «. In fact, (3.2.16)
has oscillatory solutions x,(t) =sin2t, x,(t) = cos2t

Example 3.2.3: The NDDE

[x(®) + px(t—In2)[" - {%}x(t ~In3)=0 (3.2.17)

where nis even, p>0. All conditions of Theorem 3.2.1 (i) are satisfied.
So every solution of (3.2.17) is either oscillatory or tends to zero as
t —>o. In fact, (3.2.17) has the non-oscillatory solution x(t)=e™ —o0as
{ —oo0.

The following example shows that the condition of boundedness cannot
be dropped.

Example 3.2.4: The NDDE

[x(t) + 2x -] — e +2)e?" x3(t—-1) =0 (3.2.18)
has unbounded solution x(t) =e', which is non-oscillatory.

Remark 3.2.1: Theorem 3.2.1 is due to Graef and Spikes [19].
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3.3 Bounded oscillation of n-th order NDDE with oscillating
coefficients

In this section we shall study the oscillatory behavior of bounded
solutions of NDDE of the form

[x® + pOXEW)]” +a®) f ((e®)) = h(t) (3.3.1)

where n>2, and the following conditions are assumed to hold:
(1) p®.a®.z().h@®) € C(fty,0)R), t, 20
(2) p(t)and h(t) are oscillating functions
(3) q(t) is nonnegative

(4) o(t) Cl([to,oo), R), o'(t) >0, o(t) <t, z(t)<t, and tlm z(t) = !Lru o(t)=w

(5) f eC(R,R), is nondecreasing function, and xf (x) >0 for x=0.
(6) There exists an oscillating function r(t) e C"([t,,«),R), such that:
r®(t) = h(t)
Theorem 3.3.1: Assume that n is odd, conditions (1)-(6) hold, and so do
the following conditions:

(7) lim p(t) =lim r(t) =0
(8) .[Sn_l(:I(S)dS =0

Then every bounded solution of equation (3.3.1) is either oscillatory or
tends to zeroas t — .

Proof: Suppose that x(t) is a bounded non-oscillatory solution of
equation (3.3.1). Further, assume that x(t) does not tend to zero as t — oo
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Without loss of generality, let x(t) be eventually positive (the proof is
similar when x(t) is eventually negative). Say x(t) >0, x(z(t))>0, and
x(o(t)) >0 for t>t forsome t >t,.
Set

2(t) = X(t) + pOX(z (1) ~ r () (33.2)
By (3.3.1) and (3.3.2) we have

2V (t) = —q(t) f (x(o(t))) <0 for t>t (3.3.3)
Thus z™(t) <0. It follows that z®(t) (i=04,...,n—-1) is monotonic and of
constant sign eventually. Since p(t) and r(t) are oscillating functions,
there exists a t, >t, such that z(t) >0 for t>t,. From (3.3.2), by using (7),
and the fact that x(t) is bounded there exists a t, >t,, such that z(t) is
also bounded for t>t,. Applying Lemma 1.6.1, there exists t, >t,, such
that, for t>t,,

z0(t) >0 for i=04..,1 (3.3.4)

(-1)"'z2%@t)>0 for i=I1+1..,n-1 (3.3.5)
Because n is odd and z(t)is bounded, then 1 =0 ( otherwise z(t) is not
bounded). Therefore, from (3.3.4), and (3.3.5) for t >t, we have:

D'zt >0 fori=01..n-1 (3.3.6)
Thus z'(t)<0 for t>t,, so z(t) is decreasing. Hence, we may write

lim z(t)=L (0<L <o), Let L >0, then there exists a constant ¢ >0 and

t. >t,, such that z(t)>c>o0, for t>t,.
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Since x(t)is bounded by (7) lim pt)x(z(t)) = 0. Using this fact with

facts that Ilim r(t)=0 and z(t) >c >0, imply that there exists a constant

¢, >0, such that x(t)=z(t)— pt)x(z(t))+rt)>c, >0 for t>t, for some
t, >t.. Choose t, >t,, such that x(c(t)) >c, >0 for t>t,. From (3.3.3),
and the fact that f(x) is nondecreasing function, we have

2"t <—qt)f(c)<0 for t>t, (3.3.7)

Multiplying (3.3.7) by t"* and integrating it from t, to t, we have:

tIs”‘lz(”)(s)ds <—f (cl)j.s"‘lq(s)ds (3.3.8)

t; t;

Let
1(s) = j sz (s)ds (3.3.9)

by using integration by parts repeatedly, (we show this in Appendix E)
we have:
Q) =t - (n-Dt" 2" 2O + (1 -(n -2t 2"V (1) -
co.—(n=D(n-2)(n-3)...3.2tZ'(t) + (n—=D(n—2)(n—3)...3.2z(t)

Therefore, from (3.3.8) we obtain:

It)-1(t,) < —f(q)js”lq(s)ds (3.3.10)
In view of (3.3.6), I(t) >0 for t>t,. Follows from (3.3.10) that:

—I(t,) <-f (cl)js”lq(s)ds
By (8) we obtain
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—I(t,) < - f (cl)Ts”‘lq(s)ds = —ow

t;
This is a contradiction. Hence, L >0 is impossible. Therefore, L =0 is the

only possible case. That is, lim z(t) =0. Since x(t) is bounded, by (7), and
from (3.3.2) we obtain

lim x(t) = lim z(t) - lim p(t)x(z(t)) +lim r(t) =0
So, lim x(t) =0. Thus the proof is complete. [

Example 3.3.1: Consider the NDDE

t oz i Ui

KO+e e TSI 0] | e x(tm) =etcost (3.3.10)

t+7

Here n=3, p(t):e_zsin(%), qt=e”, F(x)=x, r(t):t_T”, ot)=t—r,

and h(t)=e"cost. It is easy to see that all conditions of Theorem 3.3.1.
are satisfied. So every solution of (3.3.11) is either oscillatory or tends to
zero as t — oo.In fact, x(t) =e'sint is oscillatory solution of (3.3.11).
Theorem 3.3.2: Assume that n is even, conditions (1)-(7) hold, and so do
the following conditions:

(9) There is a function g(t), such that ¢(t) € C'[t,,),
lim sup [ p(s)a(s)ds = oo

to

and
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j.{ ¢ (S) }ds < o
o L p(s)a'(s)a"*(s)

for the function ¢(t).
Then every bounded solution of equation (3.3.1) is oscillatory.

Proof: Suppose that x(t) is a bounded non-oscillatory solution of
equation (3.3.1). Without loss of generality, let x(t) be eventually
positive (the proof is similar when x(t) is eventually negative). That is, let
x(t) >0, x(z(t))>0, and x(c(t)) >0 for t>t >t,.

Set z(t) asin (3.3.2). Then, by (3.3.1) and (3.3.2) we have (3.3.3)

Thus z™(t) <0, follows that z®(t) (i=0.1..,n—1) is monotonic and of
constant sign eventually. Since p(t) and r(t) are oscillating functions,
there exists a t, > t, such that z(t) >0 for t>t,. From (3.3.2), by using (7),
and the fact that x(t) is bounded there exists a t, >t,, such that z(t) is
also bounded for t>t,.

Applying Lemma 1.6.1, there exists t, >t,, such that, for t>t, (3.3.4),
and (3.3.5) are satisfied.

Because n is even and z(t)is bounded I1=1 (otherwise z(t) is not

bounded). Therefore from (3.3.4) and (3.3.5) we have:

D" z9t) >0 fori=12,..,n-1, for t>t, (3.3.12)
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Thus z'(t) >0 for t>t,, S0 z(t) is increasing. Since x(t) is bounded, by (7)

lim p(t)x(z(t)) = 0. Then, by (3.3.2), there exists a t, >t, and an integer u
(u>1), such that

X(t) = z(t) = pOX(z(®)) +r(t) > iz(t) >0, for t>t
Choose t, >t., such that

X(o(t)) >%Z(O'(t)) >0, for t>t, (3.3.13)

From (3.3.3), (3.3.13), and from the fact that f is nondecreasing

function, we have

Lo

(aew)
zM(t) < —q(t)f(i Z(a(t))j - g2 (), for t>t, (3.3.14)
U 2(o(t))

Since z(t) is bounded and increasing, lim z(t)=L (0<L<wx). By the

continuity of f, we have

f [1 Z(U(t))J f (L]
# RV VANY)

lim
o= z(o(t)) L

Hence, there exists t, > t,, such that:

f (1 z(a(t))J f (Lj
m —% > M _ g0 for t>t, (3.3.15)
e 7(o(t)) 2L

By (3.3.14), and (3.3.15), we have:
2V (t) < —oq(t)z(o(t)), for t>t, (3.3.16)

Assume that
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wit) = 2O (3.3.17)
Z(; o(t))

From (3.3.12), there exists t, >t,, such that w(t) >0 for t>t,. Since z(t)
IS increasing, there exists t, >t,, such that z(o(t)) > Z(la(t)) >0 for t>t,.
MU

From (3.3.17), we obtain:

(o)) -2 o)z )
w(t) = H U

2L o)
Y7,

1
. (o)
_ 2 () —lw(t)’f—a’(t) (3.3.18)

Loy # 2toq)
H M

From (3.3.12) we have z/(t) >0, and z" V() >0 for t>t,. Since o)<t

and o&'(t)>0. By Lemma 1.6.3, there exists M, >0 and a t,>t, for

2=t (2 as in Lemma 1.6.3),such that:
y7]

7o) > Mo 02" (o(1) = Mo 02" (1) > Mo 2 (0)e (1) 2" 1)
Y7

for t>t,.

Hence

Z’(la(t))zMla”’z(t)a'(t)z(”’l)(t) for t>t, (3.3.19)
U

Therefore, combining (3.3.16), (3.3.18) and (3.3.19) we have:

W(t)s—aq(t)—%wz(t)a"—z(t)a'(t) for t>t, (3.3.20)
U
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From (3.3.20), we have

aq(t)S—W’(t)—%Wz(t)a"’z(t)a’(t) for t>t, (3.3.21)
U

Multiplying (3.3.21) by ¢(t) and integrating it from t,, to t, we obtain

o [p(5)a(s)ds <~ [ &)W (S)ds - 2 [ p(s)wP (s)o" 2 () (5)ds

tio to 10

= —p(OW() + (t)W(t) + [P OW(S)ds — 2 [ p(s)w*(s)0"(8)or (s)ds

tio 10

S ottt " Jols)o™ @) w5 MO

tio

ulo'(s)f
o AM,p(s)o"*(s)a'(s)

ulo'(s)F
4M,p(s)o"*(s)a’(S)

< p(to)W(tyo) + |

tio

Therefore, by (9)

t
% = alim sup [ ¢(s)q(s)ds

tio

T [P )
< (D(tio)W(tlo) + 4M1 !HI]O Sup I w(s)an—z (S)G’(S)

tio

This is a contradiction. Hence the proof is complete. [l

Example 3.3.2: The NDDE

"
t s
t

X(t) +e % 2 sin(z)x(é - V2o i x(- 57”) =-e'sint (3399

79



satisfies all conditions of Theorem 3.3.2. By choosing ¢(t) =1. So every
solution of (3.3.22) is oscillatory. In fact, x(t) =e™"sintis such a solution.

Remark 3.3.1: Theorems 3.3.1 and 3.3.2 are special cases of the results
of Bolat and Akin [5]. Where, the results of [5] are also applicable when

the non-derivative part has several delays.
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Chapter Four
Oscillation of n-th Order NDDE When the Non-Derivative
Part is Dependent on the Independent Variable and the

Unknown Function with Delayed Argument

4.0 Introduction

In this chapter we consider the oscillation of n-th order NDDE when
the non-derivative part is a function of independent variable, and
unknown function with delayed argument, i.e. we consider an equation of
the form

[x() + pO)XEA)]” + & (t.x(c (1)) = 0 (4.0.1)

Where, 6 =+1, p(t),z(t),o(t) € C(|t,, ), R), t, >0, z(t) and o(t)are delayed
arguments, and f :[t,,0)xR — R iS continuous

Many results are known for the case when the non-derivative part is
separable, as in chapters 2, and 3. But when the non-derivative part is in
more general form as in equation (4.0.1), it seems that few authors only
deal with the subject. And so this case still needs a lot of work. However,
it is clear that the cases of chapters 2, and 3, are special cases of equation
(4.0.2).

In section 4.1 we study the oscillation of equation (4.0.1) when the

coefficient p(t) is non-negative. In section 4.2 we discuss the oscillation

of equation (4.0.1) when the coefficient p(t) is non-positive.
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4.1 Oscillation of n-th order NDDE with non-negative coefficient

Consider the NDDE

[x® + pOXEW)]” + & (t.x(o (1)) =0 (4.1.1)
where s =+1, and the following conditions are assumed to be hold:
(1) pt) € C(fty, ) R), t, >0

(2) z(t),o(t) eC([t,, @) R,), z(t)<t,o()<t, and lim z(t) = lim o(t) = o0
(3) f:[t,,0)xR — R is continuous, uf (t,u)>0 for u=0 and t >t,, and
f(t,u)£0 on [t.,c0)xR\{0} for every t. >t,

(4) If u(t) >0(u(t) <0) is a continuous with lim influ(t)| > 0, then

T f(s,u(s))ds = oo(—o0)

For notational purposes, we let
2(t) = x(t) + p(t)x(z(t)) (4.1.2)
The main results of this section are introduced in Theorem 4.1.1.
Firstly, we introduce the following Lemmas, which are useful in the proof
of Theorem 4.1.1, and in proving of results of the next section.
Lemma 4.1.1: (see [18], [20])
Suppose that s =+1. If (1)-(4) hold and x(t) is an eventually positive
(negative) solution of equation (4.1.1). Then:
i.  z"P@) is eventually decreasing (increasing) and satisfies
20 P(t) > L<oo(>—0) aS t —> oo,
. If L>—oo(< ), then lim inf|x(t)| = 0.
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li. If z(t) >0 as t » wo, then z¥(t) is monotonic and
z9(t) >0 as t -, and zV)z*t)<0 for i=01..n-1 (4.1.3)
Iv. Letz(t) >0 ast—oo.If niseven,then z(t)<0 (z(t)>0) for
x(t)>0 (x(@)<0).If n is odd, then z(t)>0 (z(t)<o0)for
x(t) >0 (x(t) <0).
Proof: Suppose that equation (4.1.1) has an eventually positive
solutionx(t). (The proof is similar when x(t) is eventually negative).
That is x(t) >0, x(z(t)) >0 and x(o(t)) >0 for t>t, for some t >t,. By
equation (4.1.1):
V() =—f(t,x(c(t) <0, t>t (4.1.4)
Using (3), then (4.1.4) implies that z""(t) is decreasing and tends to
L <o as t —oo. Thus (i) holds.
If L>-oo, then integrating equation (4.1.1) from t, to t, and then letting

t — oo, We have

T f(s,x(c(s)))ds = 2" (t) - L <o (4.1.5)

Therefore, condition (4) implies that lim inf x(t) =0, SO (ii) holds.
Now, to prove (iii), suppose that z(t) -0 as t — . From part (i) z"(t)
is decreasing and z"V(t) > L < as t — . Let us consider the following

cases:
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Casel: If z"P(t) > L<0 as t — o, then there exists L, <0 and t, >t, such
that z"“@t)<L for t>t,. This with z"(t)<0, leads to z(t) > -« as
t — oo. Which is a contradiction to the assumption z(t) -0 ast — oo,
Case2: If z" () >L>0 as t >, then z" ) >L for t >t, which also,
in view of z™™(t) <0,contradicts z(t) >0 as t — .

So, from Casesl, and 2, we conclude that z" () >0 as t » . Since
2" (t) is decreasing, z"V(t) >0 for t >t,. Hence, if n>2, then z"?(t) is

increasing and so z"?(t) > L, >-w as t—>ow. If L, <0, then z"2(t) <L,

for t >t contradicting z(t) -0 as t »>oo. If L, >0, then there exist L, >0

and t, >t, such that z"?(t) > L, for t > t,, again this contradicts z(t) -»0 as
t —>oo. Therefore, z"?(t) >0 as t »«. Since z"?(t) is increasing, we
have z"?(t) <0 for t >t. Continuing in this manner we obtain (4.1.3).
To prove part (iv), if n is even, then from (4.1.3), and from the fact that
z™(t) <0, it follows that z(t) <0. If n is odd, then from (4.1.3), and from
the fact that z™(t) <0, it follows that z(t) >0. [
Lemma 4.1.2: (see [18], [20])
Suppose that s =-1. If (1)-(4) hold and x(t) is an eventually positive
(negative) solution of equation (4.1.1). Then:

i.  z"P() is eventually increasing (decreasing) and satisfies

20 (t) > L > —oo(<o0) @St —> 0.

ii. If L<oo(>-),then lim inf|x(t)| = 0.
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ii. If zt)—>0 as t—ow, then z¥t) is monotonic for
i=01..n-1,and (4.1.3) holds.
Iv. Letz(t) >0 ast—oo.If niseven,then z(t)>0 (z(t)<0) for
x(t)>0 (x(@)<0).If n is odd, then z(t)<0 (z(t)>o0)for
x(t) >0 (x(t) <0).
Proof: Suppose that equation (4.1.1) has an eventually positive solution
x(t).(The proof is similar when x(t) is eventually negative). Then there
exists t, >t,such that x(t)>0,x(z(t))>0 and x(c(t))>0 for t>t. By
equation (4.1.1), z™(t) = f(t,x(c(t))) =0, so z"P(t) is increasing and tends
to L > -0 as t—o0. Thus (i) holds.
If L<oo, then integrating equation (4.1.1) from t, to t, and then letting

t —> oo, We have

T f(s,x(c(s)))ds = L—z"P(t,) < 0 (4.1.6)

condition (4), with (4.1.6) imply that lim inf x(t) =0, SO (i) holds.

Now, to prove (iii), suppose that z(t) -0 as t — . Part (i) implies that
2" (t) is increasing and z" P (t) > L > - as t — o. We have two cases:
Casel: If z"P(t) >L>0 as t—o, then there exists L, >0 and t, >t,
such that z" () > L, for t>t,. This contradicts the fact that z(t) >0 as
{ > oo0.

Case2: If z"P(t) >L<0as t—ow,then z" ()<L for t >t,, which also

contradicts z(t) >0 as t — oo.
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So, from Casesl and 2, we conclude that z" () -0 as t » . Since
2" (t) is increasing, z"P(t) <0 for t >t,. Hence, if n>2, then z""?(t) is

decreasing and so z"?(t) > L, <o as t >w. If L, >0, then z"2(t)> L,

for t >t contradicting z(t) -0 as t > . If L, <0, then there exist L, >0

and t, >t such that z"?(t) < L,for t>t,, again this contradicts z(t) >0
as t — . Therefore, z"?({t) -0 as t > . Since z"?(t) is decreasing,
we have z"?(t)>0 for t >t, . Continuing in this manner we obtain
(4.1.3).

Then to prove (iv), if n is even, then from (4.1.3), and from the fact that

z™(t) >0, it follows that z(t) >0. If n is odd, then from (4.1.3), and from
the fact that z™(t) > 0, it follows that z(t) <0. ]

Theorem 4.1.1: Suppose that conditions (1)-(4) hold. If there exists a
constant p, >0 such that
O<pt)<p<1 (4.1.7)
Then
I. If s§=+1 and n is even, then equation (4.1.1) is oscillatory,
while if n is odd, then any solution x(t) of equation (4.1.1)
is either oscillatory or x(t) -0 as t — .
ii. If §=-1 and n is even, then either x(t) is oscillatory,

|X(t)] > o0, Or x(t) >0 as t — o, While if n is odd, then either

x(t) is oscillatory or |x(t)] - as t — .
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Proof: Suppose that equation (4.1.1) has an eventually positive solution
x(t). (The proof is similar when x(t) is eventually negative). Say x(t) >0,
x(z(t)) >0, and x(o(t)) >0 for t >t for some t, >t,.

Proof of part (i): by Lemma 4.1.1(i) we have that z""(t) is eventually

decreasing and converges to L>-« as t » . If L<0, then this implies

that z(t) is eventually negative, which contradicts x(t)>0 for t>t,.

Hence, L >0, follows from Lemma 4.1.1(ii), that lim inf x(t) = 0.

Now, since z™(t) <0, then z"(t) is monotonic for i =0.1,....,n—1. Thus z(t)
IS monotonic, so z(t) > M as t—>ow. If M <0 implies that x(t) <0, so
M >0. Suppose that M > 0, then we have two possible cases:
Casel: if z(t) is increasing. From (4.1.2), and since p(t) is non-negative,
we have x(t) < z(t). Using this fact with (4.1.7) we have:
z(t) = x(t) + p(O)x(z(t)) < x(t) + p(t)z(z(t)) < x(t) + p,z(t), SO
(L p] < x(t)

Since 0< p, <1, we get a contradiction to lim inf x(t) = 0.

Case2: If z(t) is decreasing, let £ =1—p, >0. Then
z(t) = x(®) + p(t)x(z(t)) < x(t) + p()z(z(1)) < x(t) + p,z(z(t)), SO
Z(t) < x(t) + p,z(z (1)) (4.1.8)

Dividing (4.1.8) by z(z(t)), we get

z(t) < X(t) N

2:0) 2 M)

Since M >0, and z(t) is decreasing, we have:
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) _xO

TR P, (4.1.9)

Since lim z(t) =0, and p, +g <1, there exists t, > t, such that

_z® pl+§ for t>t, (4.1.10)

From (4.1.9), and (4.1.10), we have:

x(t)z% for t>t, (4.1.11)
Which again contradicts lim inf x(t) = 0. Hence, we have z(t)—>0 as

t — o0, SO by Lemma 4.1.1(iii), the (4.1.3) holds. To complete the proof,

note that Lemma 4.1.1(iv) implies that z(t) <0 for n even and z(t) >0 for
n odd. But z(t) <0 contradicts x(t) >0. While, in the case of z(t)>0,
follows x(t) <z(t) >0 ast — .

Proof of part (ii): from Lemma 4.1.2(i) z"V(t) is eventually increasing

and satisfies z"Y({t) >L>-o as t—w. If L<0, then this leads to

z(t) <0 eventually, which contradicts x(t)>0. Thus L>0. See the

following cases:

Casel: If L=, then this leads to z(t) -« as t —«. From (4.1.2), and
(4.1.7) we have:
2(t) = x(t) + pOx(z(1)) < x(¥) + p,z(z(1)) < x(V) + pz(t) (4.1.12)
S0 (- p] < x(®)

Therefore, x(t) > o ast —» o
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Case2: If 0<L<o, then Lemma 4.1.2(ii) implies that lim inf x(t) = 0.

Since z(t) is monotonic and positive, z(t) >K >0 as t »oo. If z(t) IS
increasing, then K >0and (4.1.12) holds, then it follows from (4.1.12)

that z@®)[1- p,]< x(t), contradicting to lim inf x(t) = 0. If z(t) is decreasing

and K >0, then K is finite, and since lim z(t) = «, we have % —1 as
> Z(r
t >o. Let ¢ =1-p, >0. Then there exists t, >t, such that
2O 1-F for s, (4.1.13)
2(z(t)) 2
Then, from (4.1.7), and (4.1.13) we have:
K <z(t) < x(t) + px(z(t)) < x(t) + p,z(z(t))
p.z(t) 2p,z(t)
<xt)+ ———=x(t) + ———=
® 1-% © d+p)
2
Then we have,
2p d-p)
X(t) >|1-—2— |z(t) = | 22 |z(t 4.1.14
® [ (1+p1)}() {(1+p1)}” (4119
Since £ =1-p,, and 1+ p, < 2, then from (4.1.14) we obtain:
x(t) > [w}(t) gl , and so
1+ p) 2
X(t) > % (4.1.15)

And this contradicts lim inf x(t) = 0. Thus for 0<L<w, z(t) >0 aS t »> o,

then x(t)<z(t) >0 as t —> . Therefore, from Cases 1, and 2, we have

that either x(t) - « or x(t) - 0 for n even or n odd.
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To complete the proof, note that if x(t) -0 as t -, then z(t) -0 as
t >, and for n odd, Lemma 4.1.2(iv) implies that z(t) <0, which is

impossible in view of (4.1.7). Thus the proof is complete. [

Example 4.1.1: Consider the NDDE

1 (n) 3 1 |X(t_2)|+e—(t—2) ~
[x(t)+zx(t—ln2)} +£x(t—2)exp{t_zln{ 5 =0, t>2

(4.1.16)

1 _ 3 1 | |u+e®? L
Here p(t)_z, f(t,u)_zeuexp{t_zln{ 5 }}, r(t)=t-In2,
o(t)=t-2, f(t,u) satisfies the divergent integral in condtion (4). And all
conditions of Theorem 4.1.1(i) are satisfied. If n is odd, then x(t)=e™ is

a solution of (4.1.16) such that x(t) >0 as t — .

Example 4.1.2: The NDDE

L (n)

x+Sxa-2)| - —2)exp{t - |n[|x(t‘22)| ”T} _0,t>2 (4.1.17)

satisfies all conditions of Theorem 4.1.1(ii). If n is either even or odd,

then x(t) =e' is a solution of (4.1.17) such that x(t) >« as t —»«. Also,
note that x(t) = —e' is a solution and satisfies that |x(t)] — o as t — .
Example 4.1.3: Consider the NDDE

[x(@) + px(t — 272) [ + (<) (p+D)x(t —27) =0 (4.1.18)
Where 0<p<1. If k is odd, then (4.1.18) satisfies conditions of

Theorem 4.1.1(i) , and so it may have oscillatory solutions. Indeed,
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x(t) =sint 1S such a solution. If k is even, then (4.1.18) satisfies

conditions of Theorem 4.1.1(ii), and so it may have oscillatory solutions.

In fact, x(t) =sint is such a solution.

Example 4.1.4: Consider the NDDE
[x(®) + px(t — 272)[* ™ + (<1 (p +Dx(t ‘%) =0 (4.1.19)

Where 0<p<1. If k is odd, then (4.1.19) satisfies conditions of
Theorem 4.1.1(i) , and so it may have oscillatory solutions. Indeed,
x(t) =sint 1S such a solution. If k is even, then (4.1.19) satisfies
conditions of Theorem 4.1.1(ii), and so it may have oscillatory solution.
In fact, x(t) =sint is such a solution.

Now, let us consider the following equation, which is a special case of
equation (4.1.1)

[x® + pOxE@)]” +a® f (x(o(t) =0 (4.1.20)
where s =+1, and the following conditions are assumed to be hold:
(H1) p(t).q(t) eC([t,,©)R,), t, =0, , and q(t) =0on any half line [t.,),
forevery t. >t

(H2) z(t),o(t) e C([t,, ) R,), z(t)<t,o(t)<t, and !m 7(t) = tlLﬁ; o(t) = o

(H3) f eC(R,R), such that uf (u)>0 for u=0
(H4) f(u) is bounded away from zero if uis bounded away from zero,

and
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Tq(s)ds =0

Remark 4.1.1: If conditions (H1)-(H4) hold, and (4.1.7) is satisfied, then
the results of Theorem 4.1.1 are true for equation (4.1.20). To prove this
fact, we can proceed the same as in proof of Theorem 4.1.1. Note that
conditions (H1)-(H4) are special case of conditions (1)-(4). Hence, we
can apply Theorem 4.1.1 directly for equation (4.1.20), which is a special
case of equation (4.1.1).
Remark 4.1.2: Theorem 4.1.1 is due to Graef and Spikes, it is theorem 2
at [20], which is also generalizes Theorems 4 and 20 in [18]. Where
Theorems 4, and 20 of [18] consider equation of form like equation
(4.1.20). However, Remark 4.1.1 collect together the results of Theorems
4, and 20 of [18], for equation (4.1.20).
4.2 Oscillation of n-th order NDDE with non-positive coefficient
Consider the NDDE

[x(t) - pOXE®)]” + & (t.x(c (1)) =0 (4.2.)
where § =+1, and the following conditions are assumed to be hold:
(1) pt) eC(lt,,)R,), t, >0, such that 0< p(t) < p, <1, for some real

number p,.

(2) z(t),o(t) eC([ty, @) R,), z(t)<t,o()<t, and lim z(t) = lim o(t) = 0
(3) f :[t,,0)xR — R is continuous, uf (t,u)>0 for u=0 and t >t,, and

f(t,u)#0 oOn [t.,0)x R\ {0} for every t. >t,
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(4) If u(t) >0(u(t) <0) is a continuous with lim influ(t) >0, then

T f(s,u(s))ds = oo(—o0)

(5) z(t) is increasing.
For notational purposes, we let

2(t) = x(t) - p(t)x(z(t)) (4.2.2)
Also, let

) =7"(t), and 7, (t)=7,_,(c7(t) for k=23,.. (4.2.3)

The main results of this section are introduced in Theorem 4.2.1, but at

beginning, we introduce Lemmas 4.2.1, and 4.2.2, to utilize the proof of
the Theorem 4.2.1. Also it is important to see the following remark.
Remark 4.2.1: The results of Lemmas 4.1.1, and 4.1.2 are also true in
this section since conditions (2)-(4) in this section are the same as
conditions (2)-(4) in section 4.1.1, and condition (1) in this section is a
special case of condition (1) in section 4.1.1, so it is obvious that Lemmas
4.1.1, and 4.1.2 are also can be used in this section.
Lemma 4.2.1: (see [20])
Suppose that s =+1, If (1)-(4) hold and x(t) is an eventually positive
(negative) solution of (4.2.1), then z(t) >0 as t — .
Proof: Suppose that x(t) is an eventually positive solution of equation

(4.2.1). Then there exists t >t,such that x(t)>0, x(z(t))>0 and

x(o(t)) >0 for t>t,. From Lemma 4.1.1, parts (i), and (ii) we have that
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20" P(t) is eventually decreasing and satisfies z" () > L<ow as t— oo,

and if L > —oo, then lim inf x(t) = 0. Let us consider the following cases:

Casel: If L=-o0, by successive integration of equation (4.2.1), we get

that z(t) » - as t — . So exists t, >t,, such that z(t) <0 for t>t,. Then
z(t) = x(t) — p()x(z(t)) <0 for t>t,, implies that x(t) < p(t)x(z(t)), and
since p(t) <1, we have,

X(t) < pOx(z(t)) < x(z(t)) = x(t) < x(z(1)) (4.2.4)
From (4.2.4), it follows that x(t) is bounded, and this contradicts the fact
that z(t) —» — as t — .
Case2: If —wo<L<0, then there exists L <0, such that z@t)<L
eventually. Since p(t) < p,, SO p(t)x(z(t)) < p,x(z(t)), then

Ly = z(t) = x(t) - p(t)x(z (1)) = x(t) — p.x(z(1)) > —p,x(z(t))

implies that L, > —p,x(z(t)), and this contradicts lim inf x(t) = 0.

tow

Case 3: If L >0, then, we eventually have x(t) > z(t) > L, for some L, >0,

and this contradicts lim inf x(t) =0.

So, from Cases 1,2, and 3, we conclude that L=0, i.e. z"?(t)—>0 as
t >o. Since z"P(t) is decreasing, we have z""(t)>0 eventually. So
z"2(t) is increasing. If z"2(t) is eventually positive, then, this gives
that z(t) has a positive lower bound, and since x(t) > z(t), this contradicts

lim inf x(t)=0. So eventually z"?@t)<0 If z"?(t)>L <0 as t—oo,

t—>w

then z(t)<L, for some L,<0, and this contradicts lim inf x(t) = 0.
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Therefore, z"?(t)is increasing and tends to zero as t — «. Continuing
this process we get z(t) >0 as t—o. The proof when x(t) is an
eventually negative is similar, so it is omitted. [

Lemma 4.2.2: (see [20])

Suppose that s =-1, If (1)-(4) hold and x(t) is an eventually positive
(negative) solution of (4.2.1), then either |x(t)] > as t —» o, or zO(t) is
monotonic and (4.1.3) holds.

Proof: Suppose that x(t) is an eventually positive solution of equation
(4.2.1). Then there exists t >t, such that x(t)>0, x(z(t)>0 and
x(o(t)) >0 for t>t,. From Lemma 4.1.2, parts (i), and (ii) we have that
z"D(t) is  eventually increasing and satisfies z"?(t) > L<o as t —» o,

and if L <o, then lim inf x(t) = 0. Let us consider the following cases:

Casel: If L=, follows that z(t) —» «, as t - «. Hence, z(t) < x(t) —» « as
t —> 0.
Case2: If L<o0, then eventually zt)<L for some L <0. But

2(t) > — p(t)x(z(t)) = —p,x(z(t)), SO this contradicts !'ﬂl inf x(t)=0.

Case 3: If L>0, then eventually x(t) > z(t) > L, for some L, >0, and this
contradicts lim inf x(t) = 0.

If L<w, then we conclude that L=0, i.e. z"”({t) >0 as t —> . Since
2" (t) is increasing, then z"V(t) <0 eventually. So z""?(t) is decreasing.

If z"?(t) is eventually negative then, this give that z(t) has a negative
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upper bound, and this contradicts lim inf x(t) =0. So eventually

22ty >0. If z"?@t) > L, >0 as t >, then z(t) > L, for some L, >0,
and this again contradicts lim inf x(t) = 0. Therefore, z"?(t) is decreasing
and tends to zero as t — . Continuing this process we obtain (4.1.3).
The proof when x(t) is an eventually negative is similar. [l

Theorem 4.2.1: Suppose that conditions (1)-(5) hold. Then:
I. If 6=+1, then any solution x(t) of equation (4.2.1) is either
oscillatory or satisfies x(t) -0 as t — .
ii. If 5§ =-1, then either x(t) is oscillatory, x(t) >0 as t — o, Or
|X(t) > as t —>oo.
Proof: Suppose that equation (4.2.1) has an eventually positive solution
x(t). (The proof is similar when x(t) is eventually negative). Say x(t) >0,
x(z(t)) >0, and x(o(t)) >0 for t >t for some t, >t,.
Proof of part (i): by Lemma 4.2.1, z(t) >0 as t —»«. Then by Lemma
4.1.1(iii) it follows that (4.1.3) holds. We have the following cases:
Casel: If n is even, then from Lemma 4.1.1(iv) we have z(t)<0. This
with (4.2.2) imply that:
X(t) < pt)x(z(t)) < p,x(z(t)) fort>t. (4.2.5)
Substitute ¢*(t) instead of t and use notation (4.2.3), we get

x(z,(t)) < p,x(t), then use (4.2.5), we have x(z,(t)) < (p,) x(z(t)) . Follow this
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process, and using notation (4.2.3), we have x(z,(t)) < (p,) " x(z(t)) for any
positive integer k. This implies x(t) -0 ast — o, Since 0< p, <1.
Case2: If n is odd, then from Lemma 4.1.1(iv) we have z(t) >0. Using
the fact that z(t) -0 as t -, we conclude that 0< z(t) <K, for some
constant K,>0, from which with (4.22) we have that
0 < X(t) = pt)x(z(1)) + z(t) < px(z(t))+ K,. If x(t) is unbounded, then there
exists an increasing sequence {s } with s >t, s, > and x(s,) >« as
k — o0, and x(s,) = max{x(t):s, <t <s,}. For each k,
X(s,) < p,x(z(s)) + K, < p,x(s,) + K, SO we have

(- p,)X(s) < K (4.2.6)
But 0<p,<1, so (4.2.6) leads to a contradiction. Therefore, x(t) is
bounded and if x(t)-»0 as t-—>o, there exists K,>0 such that
lim supx(t) = K,. So, there exists an increasing sequence {r.} with r,>t,
r. - oo and x(r,) —» K, as k — . From (1), and (4.2.2), it follows that

pX(z(r)) = x(r) — z(r,) (4.2.7)
Since K, >0, there exists ¢>0 such that (1+p,)s <(@-p,)K, which
implies that

0< py(K,+&)<K,—¢. (4.2.8)
But for k sufficiently large, x(z(r)) < K, +¢, S0 by (4.2.7), and (4.2.8), we
have

K, —& > p,x(z(r)) = x(r,) — z(r,)
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As k - w0, z(r,) — 0 SO we obtain a contradiction to x(r) - K, as k — .
So x(t) is either oscillatory or x(t) >0 ast —oo.
Proof of part (ii): By Lemma 4.2.2, we have that either x(t) >« as

t — o0, Or (4.1.3) holds. So our goal is to show that if (4.1.3) holds, then

x(t) >0 as t >o. We can consider the following cases, when (4.1.3)
holds:
Casel: If n is odd, by Lemma 4.1.2(iv) z(t) <0, this with (4.2.2) imply
that x(t) < p(t)x(z(t)) < p,x(z(t)), it then follows (as above in part (i)) that
x(z, (1)) < (p, ) " x(z(t)) for each integer k >1. Since 0< p, <1, we have that
X(t) >0 as t —»> .
Case2: If n is even, by Lemma 4.1.2(iv) z(t) >0, and by (4.1.3) we see
that z'(t) <0. So z(t) is decreasing. Therefore, exists constant M >0, such
that 0<z(t)<M, sO we get 0<x(t) < px(z(t))+M . Now, If x() is
unbounded, then there exists an increasing sequence {T,} with T, >t,
T, — o0 and x(T,) > as j— oo, and x(T;) = maxix(t): T, <t <T, . For each
i
X(T;) < pX(z(T;)) + M < px(T))+ M, S0 we have

L-pX(T) <M (4.2.9)

But 0<p,<1, so (4.2.9) leads to a contradiction. Therefore, x(t) is

bounded and if x(t) -0 as t —«, there exists constant N >0 such that
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lim supx(t) = N . So, there exists an increasing sequence s, with s, >1,

S, > and x(S;) > N as j—oo. From (1), and (4.2.2), it follows that
P.X(z(S5)) = X(S;) — 2(S;) (4.2.10)

Since N >0, there exists &£>0 such that (1+p,)e<(@-p,)N which

implies that
0<p(N+s)<N-¢ (4.2.11)

But for j sufficiently large, x(z(S;)) <N +¢, so by (4.2.10), and (4.2.11),

we have
N —& > p,x(z(S;)) = x(S;) - 2(S;)
As j— o, 2(S;) » 0 so we obtain a contradiction to x(S;) >N as j— .

[

Example 4.2.1: The NDDE

1 ™ 1 1 [|x-2)+e 2|
[x(t)—gx(t—ln3)} +£x(t—2)exp{t_zln{ 5 =0, t>2

(4.2.12)
satisfies all conditions of Theorem 4.2.1(i). If n is odd, then x(t)=e™ isa
solution of (4.2.12) such that x(t) -0 as t — .

Example 4.2.2: The NDDE

1 (n) 2n—1 , 1 |X(t_2)|+e—2(t—2) ~
[x(t)—ax(t—l)} + o7 (e —2)x(t—2)exp{t_zln{ 5 =0,t>2

(4.2.13)
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satisfies all conditions of Theorem 4.2.1(i). If n is even, then x(t)=e™ is
a solution of (4.2.13) such that x(t) -0 as t — .

Example 4.2.3: The NDDE

1 (n)

0~ xt —%x(t—S)eXp{ 1 |n{|x(t‘3)|+et3}}=o, t52

t—-3 2

(4.2.14)
satisfies all conditions of Theorem 4.2.1(ii). If n is either even or odd,

then x(t) =e' is a solution of (4.2.14) such that x(t) >« as t — . Also,
note that x(t) =—e' is a solution and satisfies that |x(t)] — o as t —o.
Example 4.2.4: Consider the NDDE

[x() — px(t — 272) [ + (<1)***@- p)x(t—27) =0 (4.2.15)
where 0< p<1. If k isodd, then (4.2.15) satisfies conditions of Theorem
4.2.1(1) , and so it may have oscillatory solutions. Indeed, x(t)=sint is

such a solution. If k is even, then (4.2.15) satisfies conditions of Theorem

4.2.1(ii), and so it may have oscillatory solutions. indeed, x(t) =sint is

such a solution.

Example 4.2.5: Consider the NDDE
[x(t) — px(t — 27) [ + (1) (@A — p)x(t —g) -0 (4.2.16)

where 0< p<1. If k isodd, then (4.2.16) satisfies conditions of Theorem
4.2.1(1) , and so it may have oscillatory solutions. Indeed, x(t)=sint is

such a solution. If k is even, then (4.2.16) satisfies conditions of Theorem
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4.2.1(ii), and so it may have oscillatory solutions. In fact, x(t) =sint IS
such a solution.

Remark 4.2.2: Theorem 4.2.1 is due to Graef and Spikes, it is theorem 3
at [20], which also generalizes, and modifies Theorem 7 in [18]. Where
theorem 7 in [18], is interested in equations of forms like (4.1.20), with

p(t) the same as in (1) ,which is special case of equation (4.2.1).
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Chapter Five
Oscillation of n-th Order NDDE When the Non-Derivative
Part is Dependent on the Independent Variable and the

Unknown Function with and without Delay

5.0 Introduction

In this chapter we consider the oscillation of n-th order NDDE when
the non-derivative part is a function of the independent variable, and the
unknown function with and without delayed argument, i.e. we consider

an equation of the form

[x(®) + pOX(E)]” + £ (&, x(), x(o (1)) = 0 (5.0.1)
Where, p(t),z(t),o(t) e C(ty,©)R), t,>0, z(t) and o(t) are delayed
arguments, and f :[t,,0)xRxR — R is continuous.

This chapter contains results of Zafer [39], and our results for the
oscillation of equation (5.0.1). In section 5.1, we introduce the results of
Zafer, where he established sufficient conditions for oscillation of
equation (5.0.1) when the order is even, and also when the order is odd
for unbounded solutions.

While our results are introduced in sections 5.2, and 5.3. In section 5.2,
we establish sufficient conditions for oscillation of equation (5.0.1) when
oct)=t—-o, o>0. In section 53 we study bounded oscillation of
equation (5.0.1) with oscillating coefficients. In our work, we depend on

the ideas of Zafer [39]. Also we benefit from the following papers, Parhi
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[32], Dahiya and Zafer [10], Bolat and Akin [5], Shen [35], and B. Li
[30].
5.1 Oscillation of n-th order NDDE
Consider the NDDE

[x®) + pOXEEN]” + f (L. x(V), x(o (1)) = 0 (5.1.1)
where n> 2, and the following conditions are always assumed to hold:
(1) p(t) ec([0,),R), such that 0 < p(t) <1

(2) z(t),o(t) € C([O,oo), R), r(t) <t,o(t)<t,and tlm 7(t) = tILFE o(t) =

(3) f:[0,.0)xRxR — R is continuous, and yf (t,x,y) >0 for xy > 0.
This section contains two theorems, each one presents certain sufficient
conditions for oscillation of solutions of equation (5.1.1).

Theorem 5.1.1: Assume that ¢(t) iS a non-negative continuous function

on [0,,0), and that w(t) >0for t>0 is continuous and nondecreasing on

[0,00) with:

[ftx ) ﬂw([l— p(a(Lﬁ][aa)]“j | >.12)

fwii) <w, forevery a>0, (5.1.3)
and

[#t)dt =0 (5.1.4)
Then:
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I. If n is even, every solution x(t) of equation (5.1.1) is

oscillatory.

. If n is odd, every unbounded solution x(t) of equation

(5.1.1) is oscillatory.

Proof: Assume that equation (5.1.1) has a non-oscillatory solution x(t).
Without loss of generality, let x(t) be eventually positive (the proof is
similar when x(t) is eventually negative). Set

z(t) = x(t) + p(t)x(z(t)) (5.1.5)
In view of (1), and (2), x(t) and x(z(t)) become eventually positive, and
S0 z(t) is also eventually positive. From equation (5.1.1), we have

2™ (t) = — f (t.x(t), X(o(t))) < O (5.1.6)
implies that z(t)z"(t) <0 eventually . Now, by applying Lemma 1.6.1

there exists t, >0, and an integer I, 0<I<n-1 with n-lodd, such that

for t>t
z)z®M) >0, k=01,...1, (5.1.7)
(-1 z()z“(t) >0, k =1+1,...,n—1, and (5.1.8)
(=) e
l2(t)] > (n—l)...(n—l)z (2", (5.1.9)

If n is even, the integer | associated with z(t) is greater than or equal
to 1. But if n is odd then 1<{0,2,...,.n—1}, and since the solution x(t) is

unbounded for odd orders, then z(t) is unbounded, and hence 1>2.
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Therefore, either n is odd or even, then I >1. Hence z(t) IS increasing
for t>t,.
From (5.1.5) it is clear that x(t) < z(t), SO x(z(t)) < z(z(t)). Using this fact,
and the fact that z(t) is increasing, it follows that
2(t) = x(®) + pOX(z()) < x(©) + p(H)z(z(t)) < x()+ pM)z(t) for t>t,
Hence,
x(t) >[1- p)]zt) for t>t, (5.1.10)

From (5.1.9), and the fact that z(t) is increasing, we have

2(I—n+1)(n—l)
2 >z(2™") > ——(t-t,)"z2" V@), for t>t, =2"""
) > z( ) (n—l)...(n—l)( 2) ® 2 L

Therefore, by choosing t, > t,, arbitrarily large, we have
z(t) > ct" 2" (), for t>t, (5.1.11)
where ¢ >0 is an appropriate constant dependent upon | and n.

Let t, >t, be such that o(t) >t,, forall t>t,. From (5.1.10), and (5.1.11),

we get

X(o (1)) > ¢z (o (t for t>t 5119
- p(e®)][e®]™ ez (a(t) ’ ( )

using the fact that z"?(t) is decreasing, we have

X(o(t)) > ¢z (¢ for t>t 5113
i reolor & O : (5.1.13)

using (5.1.2), and (5.1.13), then it follows from ( 5.1.6), that
2™ (1) + pt)Wlcz" P (1)) < 0 (5.1.14)

Setting y(t) =cz"(t), we have
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y'(t) +cat)w(y(t)) <0 (5.1.15)
dividing (5.1.15) by w(y(t)), and integrating from t, to t, we obtain

yjp + cj¢(r)dr <0, then

y(ty )

y(ts) dS

c£¢(r)dr < yi)m (5.1.16)

Since y'(t) <0, so y(t) is decreasing. And since y(t) >0, it follows that

lim y(t) =L >0. If L=0, then by (5.1.16) we must have
[o)dt <o (5.1.17)

which contradicts (5.1.4). In the case when L=0, letting t—o in
(5.1.16) and using (5.1.3), we again obtain (5.1.17). Thus the proof is
complete. [

Example 5.1.1: Consider the NDDE
[x(®) + pOX(E@)]” + pE)x(c (1)) sgn(x(a (1)) = 0 (5.1.18)

where 0< g <1, and n is even. Use w(x) =[x, Then, if

[ PP [P pydt =oo

by Theorem 5.1.1, every solution of (5.1.18) is oscillatory.

In the next theorem, Theorem 5.1.2, we have different sufficient
conditions for the oscillation of equation (5.1.1). Firstly, we introduce the
following lemma that is useful in the proof of Theorem 5.1.2

Lemma 5.1.1: (see theorems 2.1.1, and 2.1.3 in [29])
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If q(t),o(t) eC(R,,R,), o(t) <t, and lim o (t) =oo. If either
lim inf j q(s)ds>% (5.1.19)
o(t)

or o(t) is nondecreasing and

lim sup J'q(s)ds >1 (5.1.20)

a(t)
Then the differential inequality
u'(t) + qu(o(t)) <0 (5.1.21)
has no eventually positive solutions.
Theorem 5.1.2: Assume that there exists a continuous nonnegative

function w(t) defined on [0,«0), which is not identically zero on any half-

line of the form [t.,«), such that yf (t,x,y) > w(t)y* forall t>0.

If either

lim inf L[G(S)]"‘l[l— p(o () (s)ds > (“‘1’2;"1)("2) (5.1.22)
or o(t) is nondecreasing and

lim sup ][a(s)]"‘l[l— p(c(s)) (s)ds > (n—1)2 22 (5.1.23)

o(t)
Then

I. If n is even, every solution x(t) of equation (5.1.1) is

oscillatory.

. If n is odd, every unbounded solution x(t) of equation

(5.1.1) is oscillatory.
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Proof: Proceed the same as in the proof of Theorem 5.1.1, until step in

which we get (5.1.12). Use the fact that yf(t,x,y)>w(t)y?, and since
x(o(t)) > 0 eventually, we have

f(t, %, X(o(t))) > wt)x(o(t)) (5.1.24)

From (5.1.12) we have:

x(o () = cz" (e pe@)][e®] ", for t>t, (5.1.25)
2(I—n+1)(n—l) . .
where ¢c=——————, 1e{13..,n- if niseven,and | e{24,..n-1}
(n=2....n=1)

if n is odd.
From (5.1.24), and (5.1.25), we obtain

ftxx(@®)) = cy(t) 2" (e - ple]e®] ™, for t>t, (5.1.26)
Notice that ¢ takes on its smallest value when | =1, and using (5.1.6), and

(5.1.26), we have

(2-n)(n-1)

(n-1)

2 (t) + [e®] - el 2" (o(t) <0 (5.1.27)

Let u(t) = z"V(t) in (5.1.27), we have

(2-n)(n-1)

u'(t) + T

[e® *i— p(e®)l (Hu(o(t)) <0 (5.1.28)

Since (5.1.22) or (5.1.23) is satisfied, by Lemma 5.1.1 inequality (5.1.28)
has no eventually positive solution. But from (5.1.8), u(t)=z""(t) is
eventually positive, so a contradiction. This completes the proof. [

Corollary 5.1.1: If n is odd, then we can deduce Theorem 5.1.2, with
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assumptions weaker than (5.1.22), and (5.1.23). Since in the case of odd

order we assume that the solution x(t) is unbounded, then we can take c

to be smallest at 1 =2 since |1 e{2,4,...,.n—1}. Therefore take smallest ¢ as

c= _2rm , and then assumptions (5.1.22), and (5.1.23) will be
(n=-1(n-2)
lim inf j[a(s)]”l[l— (o)) (s)ds > (=DM =227 (5.1.29)
o(t)
or o(t) is nondecreasing and
lim sup j[G(S)]“[l— p(o(s))l(s)ds > (n—1)(n—2)2" 2 (5.1.30)
o(t)
Corollary 5.1.2: If we consider the linear NDDE
[x® + pOXE®)]” +at)x(c®) =0 (5.1.31)

where p,r,c as stated above, and q(t) is a continuous nonnegative
function defined on [0,0), and not identically zero on any half-line of the
form [t.,«),. Then the results of Theorem 5.1.2, are true if we directly put
w(t) = q(t) in conditions (5.1.22), and (5.1.23).

Example 5.1.2: The NDDE

"
V4 -3z

{x(t)+%x(t—2ﬂ)} +2£e2 +%e2Jx(t—%) =0 (5.1.32)

satisfies the conditions of Theorem 5.1.2. Therefore, every solution of

(5.1.32) is oscillatory. Indeed, x(t) =e'sint is such solution.
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5.2 Oscillation of n-th order NDDE when the non-derivative part has
constant delay

In this section we interested in the oscillation of n-th order NDDE,
when the non-derivative part of the equation contains constant delay. i.e.
we will consider the following equation

[x(@®) + p@)x(z @)™ + (¢, x(t), x(t— o)) =0 (5.2.1)

where n>2, and the following conditions are always assumed to hold:
(1) p(t) ec([0,),R), such that 0 < p(t) <1

(2) z(t) eC([0,0)R,), z(t) <t, !ﬂl 7(t) =0, and ¢ >0

(3) f:[0,.0)xRxR — R is continuous, and yf (t,x,y) >0 for xy > 0.

In this section we will establish sufficient conditions for the oscillation
of equation (5.2.1) by using the ideas used in Theorem 5.1.2. i.e. we
proceed with equation (5.2.1) to get first order delay differential equation,
but instead of using the criteria in Lemma 5.1.1, we use an improved
criteria, and this improves our results.

We need the following Lemmas for our work:

Lemma 5.2.1: (see Theorem 1 in [30])

t+o

If >0, qt)eC(R,,R,), Iq(s)ds>0 for t>t, forsomet, >0, and
t

[a® In[et]aq(s)dsjdt . (5.2.2)

Then (5.2.3) is oscillatory, where

u'(t) +qt)u(t—o) =0 (5.2.3)
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Lemma 5.2.2: (see [24] page 67)
If >0, q(t) e C(R,,R,). Then the differential inequality

u'(t)+qtu(t—-o) <0 (5.2.4)
has an eventually positive solution if and only if equation (5.2.3) has an
eventually positive solution.
Theorem 5.2.1: Assume that there exists a continuous nonnegative

function (t) defined on R_, which is not identically zero on any half-line

of the form [t.,.0), such that yf (t,x,y) > w(t)y? forall t>0. If

+f[s —o|"'l-p(s—o)p(s)ds>0 for t>t, for some t, >0, (5.2.5)

t

and

© t+o

I[t o l-plt—o)(t) In(e Ic[s o 1-p(s- a)]z//(s)ds)dt —o  (5.2.6)

to

(2-n)(n-1)

(n-1)

where c¢=

Then:

I. If n is even, every solution x(t) of equation (5.2.1) is

oscillatory.

. If n is odd, every unbounded solution x(t) of equation

(5.2.1) is oscillatory.

Proof: Proceed the same as in the proof of Theorem 5.1.2, instead of & (t)
use t—o, until step in which we get (5.1.28). Using o(t) =t—o, then

(5.1.28) will be
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(2-n)(n-1)

oop ol B-pt-a)putt-0)<0 (5.2.7)

u't) +

From conditions (5.2.5) and (5.2.6), and by using Lemmas 5.2.1, and
5.2.2, it follows that (5.2.7) has no eventually positive solution. But from
(5.1.8), u(t)=z""(t) is eventually positive, so a contradiction. This
completes the proof. [

Remark 5.2.1: depending on the same technique i.e. by using the results
of oscillation of first order delay differential equations we can establish
many results for oscillation of equations (5.1.1) and (5.2.1). And the
results of Theorems 5.1.2, and 5.2.1 are just some applications of this
observation. Also, it is interesting to note that the problem of establishing
conditions for the oscillation of first order delay differential equations has
been the subject of many investigations. You can see, [14, 30, 26, 36, 38].
However, in Theorem 5.2.1, we get conditions that are improved than that
of Theorem 5.1.2 in the case of o(t)=t-o, o>0. {see example 5.2.1}.
One can get different, and may be more improved, results if he follows
the known results of oscillation of first order delay differential equation.
In this situation, we would like to refer to paper [36], where in this paper
the authors presented a survey for the most known results of oscillation of
first order delay differential equations.

Example 5.2.1: Consider the NDDE

2e0.55int—l

X(t-1)=0,t>1 (5.2.8)

{x(t) + % X(t —1)} +
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ZeO.SSint—l

since equation (5.2.8) is linear we use y(t) = 1

If we check the condition (5.1.22) of Theorem 5.1.2, then

t 0.5sins-1 t
2e

lim inf L I[s ~1] ds = lim inf [e?%1ds < X
t—w 2 A\ S — t—wo o e

Therefore, condition (5.1.22) is not satisfied. Also you can see that
condition (5.1.23) is not satisfied. So by using Theorem 5.1.2, we can not
have a conclusion about the oscillation of equation (5.2.8).

Now let us check the conditions of Theorem 5.2.1,

t+1 0.5sins-1 t+1
2e

%I[s—l] ds = [e°*"**ds >0, for t>1, hence (5.2.5) holds. Then

s-1

check for condition (5.2.6)

100 ZeO.SSint—l et+l Zeo.Ssins—l 0 Seint. t+l Sins.
E![t—l] =) In(Ej[s—l] = ds]dt:‘!‘e05 tlIn(e_t[e05 ldstt

t

using Jensen’s Inequality (see appendix F), then

o t+1 0 t+1
Ieo.Ssint—l In(ejeo'“i”“ds t > J'eO.SSintl( IO.Ssin Sdedt (529)
1 t

t 1

1

© t+1 2
— J‘eo'“‘““{ _!.O.SSin sds]dt = ;—;L‘l[eo'ssmt (cos(t +1) — cost it

_ —_]-J'eO.SSint[COS(t + 1 + 1) — COS(t + 1 _l)jdt
2e 2 2 2 2

Use the following identities

cos(t + 1 + 1) = cos(t + 1) cos1 —sin(t+ E)sin 1
2 2 2 2 2 2

cos(t + 1 1) = cos(t + l) cosl +sin(t+ 1)sin 1
2 2 2 2 2 2
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Then we have:

0 ) t+1 Sinloo ) 1
Ieo'“'”t’l IO.Ssinsds dt :—Zjeo'ss'“tsin(H—)dt
t €1 2

1

siniw _ 1 1
:—Zjeo'“'”t(sintcos—+costsin—jdt (5.2.10)
e 3 2 2

t 2r
Note that jeO-SSi“costdt is bounded, and jeO-S““tsintdt >0, so we conclude
1 0

2e 0.5sins-1

1 0 ZeO.SSint—l e t+o
that = |[|t—1 In| = -1
e n[zg[s )

ds)dt = oo, hence condition (5.2.6)
Is satisfied. Therefore by Theorem 5.2.1 every solution of equation
(5.2.8) is oscillatory.
5.3 Bounded oscillation of n-th order NDDE with oscillating
coefficients
Consider the NDDE

[x®) + pOXEEN]” + f (L. x(V), x(a (1)) = 0 (5.3.1)

where n>2, and the following conditions are always assumed to hold:

(1) p(t) ec([0,0),R) is an oscillatory function, and lim p(t) =0.

(2) z(t),o(t) e C([0,0)R,), z(t)<t,o()<t, and lim z(t) = lim o (t) = o

'+

(3) f:[0,.0)xRxR — R is continuous, and yf (t,x,y) >0 for xy > 0.
The main results of this section are contained in Theorems 5.3.1, and
5.3.2. In the first theorem we present results for bounded oscillation of

even order, while the second theorem deals with case of odd order.
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Theorem 5.3.1: Assume that ¢(t) iS a non-negative continuous function

on R, and that w(t) >o0for t>0 is continuous and nondecreasing on R,

with:
vl )
F(tx,y)| > gt | 5.3.2
) > o W[[aa)]n— (532)
and
< dx
| <w, forevery a>0. (5.3.3)
5 W(X)
If n is even and
[pt)dt = o0 (5.3.4)

Then every bounded solution x(t) of equation (5.3.1) is oscillatory.
Proof: Assume that equation (5.3.1) has a bounded non-oscillatory
solution x(t). Without loss of generality, let x(t) be eventually positive
(the proof is similar when x(t) is eventually negative). That is, let x(t) >0,
x(z(t)) >0, and x(o(t)) >0 for t>t,>0.
Set

z(t) = x(t) + pt)x(z(t)) (5.3.5)
From (5.3.1) and (5.3.5) we have

2™ (t) = — f (t, x(t), x(c())) < 0 (5.3.6)
That is z™(t) <0. It follows that z"(t) (i =0.,...,n—-1) is strictly monotonic
and of constant sign eventually. Since p(t) is an oscillatory function, there
existsa t, >t, such thatas t>t,, z(t) >0 eventually. Since x(t) is bounded,
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and by using the fact that lim p(t) =0, then it follows from (5.3.5) that

thereisa t, >t, such that z(t) is also bounded for t > 1t,.
Now, by applying Lemma 1.6.1, there exists t,>t, , and an integer I,

0<I<n-1 with n-10dd, such that for t>t,

z(t)z(t) >0, k=01...,1, (5.3.7)

(-1 z()z“t) >0, k =1+1,..,n-1, and (5.3.8)
() e

l2(t)| > RN 22|, (5.3.9)

Since n is even, and z(t) is bounded it follows that | =1 (otherwise z(t) is
not bounded). And from (5.3.7) we have z'(t) >0, SO z(t) IS increasing.

Since x(t) is bounded, by (1) it follows that lim p®)x(z(t)) = 0. Then using

this fact and by (5.3.5) there exists a t, > t, such that
x(t) > Az(t) for t>t, (5.3.10)
where 4 is some number in (01).

From (5.3.9), and the fact that z(t) is increasing, we have

(2-n)(n-1)

(n-1)

z(t) > z(2°"t) > (t-t)"z" ), for t>t =2"",

Therefore, by choosing t, > t., arbitrarily large, we have
z(t) > ct" 2" (), for t>t, (5.3.11)
where ¢ >0 is an appropriate constant dependent upon n.
Let t, >t, such that o(t) >t, for all t>t,, then it follows from (5.3.11) that
2(a(t)) = c[e®)] 2" P (a(t) for t>t, (5.3.12)
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Let t, = max{t,,t,} then by (5.3.10), and (5.3.12) we have
x(o(t)) = 2z(o(t)) = Ac[a()] 2"V (o(t)) for txt,
Hence, we have:

XoM) 5 st io(), for tat, (5.3.13)
[o(®)]

using the fact that z""(t) is decreasing, it follows from (5.3.13) that

X(a(t)) (n-1)
O] > 22"V (t), for t=t, (5.3.14)

using (5.3.2), and (5.3.14), then it follows from ( 5.3.6), that

2 (1) + g2z (1)) < 0 (5.3.15)
Setting y(t) = Acz"(t), we have

y'(t) + Acg(t)w(y(t)) < 0 (5.3.16)
dividing (5.3.16) by w(y(t)), and integrating from t, to t, we obtain

(1)
yJ' + ﬂcj;ﬁ(r)dr <0, then

y(ts )

y(tg) dS

@ (5-3.17)
y(t)

/ch¢(r)dr <

Since y'(t) <0, so y(t) is decreasing. And since y(t) >0, it follows that

lim y(t) =L >0. If L=0,then by (5.3.17) we must have

Tgb(t)dt < o0 (5.3.18)
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which contradicts (5.3.4). In the case when L=0, letting t—>o in
(5.3.17) and using (5.3.3), we again obtain (5.3.18). Thus the proof is
complete. [

Example 5.3.1: Consider the NDDE

x®) + pOx)]” +qxe®)’6| T lsnx@my =0  (5.3.19)
[c®]™

where, n is even, pand o as stated above, 0< g <1, q(t) Is a continuous
nonnegative function defined on [0,.0), and not identically zero on any
half-line of the form [t.,«), and G(x) is a continuous function which is
positive and nondecreasing for all xeR.

Use w(x) :|x|ﬂG(x) , then if

0

[ [e®F" P a(tdt =

by Theorem 5.3.1 every bounded solution of equation (5.3.19) is
oscillatory.

In the next theorem, Theorem 5.3.2, besides conditions (1)-(3) we
further assume that:
(4) 0<t-of(t) <o,, Where o, is positive constant
Theorem 5.3.2: Assume that ¢(t) is a non-negative continuous function
on R,, and that w(t) >0for t>0 is continuous and nondecreasing on R,

with:

v
f(txy) > ¢(t)w([t_a o) (5.3.20)
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and

f dx__ w, forevery a>0. (5.3.21)
o W(X)

If n is odd and
[#(t)dt =0 (5.3.22)

Then every bounded solution x(t) of equation (5.3.1) is oscillatory.

Proof: Assume that equation (5.3.1) has a bounded non-oscillatory
solution x(t). Without loss of generality, let x(t) be eventually positive
(the proof is similar when x(t) is eventually negative). That is, let x(t) >0,
x(z(t)) >0, and x(o(t)) >0 for t>t,>0.

Set z(t) as in (5.3.5). Then from (5.3.1) and (5.3.5) we have (5.3.6)

From (5.3.6) z™(t) <0 eventually. It follows that z®(t) (i =041...,n—-1) is
strictly monotonic and of constant sign eventually. Since p(t)is an
oscillatory function, there exists a t >t, such that as t>t, z(t)>0

eventually. Since x(t) is bounded, and by using the fact that lim p(t) =0,

then it follows from (5.3.5) that there is a t, >t, such that z(t) is also
bounded for t >t,.

Now, applying Lemma 1.6.1, there exists t,>t,, and an integer I,
0<I<n-1 with n-lodd, such that for t>t, the (5.3.7), and (5.3.8) are
satisfied. Since n is odd and z(t) is bounded then I=0. Hence from

relations (5.3.7), and (5.3.8) we have
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(-1)z%@) >0, k=01,..,n—1 (5.3.23)
Since n is odd, from (4) and (5.3.23) follows that we can apply Lemma

1.6.5. Using Lemma 1.6.5, we have

_ [t_o-(t)]n_l n-1
z(o(t))—z(t—(t—o-(t)))zwz‘ Ity fort>t,+o,
Hence,
z(a(t))z%z(”‘”(t) for t>t, +o, (5.3.24)

Since x(t) is bounded, by (1) it follows that lim p®)x(z(1)) = 0. Then using

this fact and by (5.3.5) there exists a t, > t, such that

x(t) > Az(t) for t>t, (5.3.25)
where A is some number in (0,1).
Let t, >t, such that o(t)>t, for all t>t., then it follows from (5.3.25)
that

X(o(t)) > Az(o(t)) for t>t, (5.3.26)

Let t, = max{t,,t, + o,}. Then, by (5.3.25) and (5.3.26) we have

x(o(t)) = Az(o(t)) = A= o ) for t>t,
(n=1)!

then we get

X)) | 200

om]" - (o for t>t, (5.3.27)

using (5.3.20), and (5.3.27), then it follows from ( 5.3.6), that

20 (1) + pt)w(2cz" P (1)) < 0 (5.3.28)
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1
(n=1)!

where ¢ =

Setting y(t) = Acz"?(t), we have

y'(t) + Acpt)w(y(t)) < O (5.3.29)
Dividing (5.3.29) by w(y(t)), and integrating from t, to t, we obtain

(t)
yj + /ICJ'¢(r)dr <0, then

y(ts )

[pmars | -2 5.3.30
< 2
2ctj6¢(r) r< y(It)W(S) (5.3.30)

Since y'(t) <0, so y(t) is decreasing. And since y(t) >0, it follows that

lim y(t) =L >0. If L0, then by (5.3.30) we must have

[pt)dt <o (5.3.31)

which contradicts (5.3.22). In the case when L=0, letting t—>o in
(5.3.30) and using (5.3.21), we again obtain (5.3.31). Thus the proof is
complete. [

Example 5.3.2: Consider the NDDE

[X(®) + X)) + q(t)|x(o(t»|ﬁe(%}gn(x(a(t») —0  (53.32)
-o

where, n isodd, pand o as stated above, 0< g <1, q(t) is a continuous
nonnegative function defined on [0,0), and not identically zero on any
half-line of the form [t.,.0), and G(x) is a continuous function which is

positive and nondecreasing for all x e R.
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Use w(x) :|x|ﬂG(x) , then if

o0

[ t-o®F " at)dt ==

by Theorem 5.3.2 every bounded solution of equation (5.3.32) is
oscillatory.

The results of this section can be directly generalized to the non-
homogeneous form with certain conditions on the forcing term. The
following remark shows such conditions for oscillation of non-
homogenous NDDE.

Remark 5.3.1: consider the following non-homogenous NDDE

(x®) + pOXEO)]” + f €. xV), x(a®)) = h(t) (5.3.33)
where h(t) e C([0,0),R). If conditions (1)-(3) are satisfied, condition (4)
holds for odd orders, and there exists an oscillatory function

r(t) e C"([0,:0),R) such that r™(t)=n(t), and lim r(t) =0. Then the results

of Theorems 5.3.1, and 5.3.2 still remain true for equation (5.3.33).
Proof: To prove this remark we proceed the same as in proofs of
Theorems 5.3.1, and 5.3.2. But here we set z(t) = x(t) + p(t)x(z(t)) —r(t) .

All steps of proof of this remark is exactly the same as that in proofs of

Theorems 5.3.1, and 5.3.2. So the proof here is omitted. []
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Appendix A
In this appendix we prove Lemma 2.3.1.

Our aim is to prove that if z(t) is positive function of degree I, 1>2.

Then

7'(t) > _[z(')(s) (( Sz; (A1)

Proof: Since z(t) is positive function of degree |, by Lemma 1.6.1:
9(@t)>0, 0<i<lI (A.2)
In view of (A.2), we prove (A.1) by using the identity:
2V (t) = 2V (1) (A.3)

Integrate (A.3) from t, to t we have:

2P -2 () = jz(” (s)ds (A.4)
From (A.1) z'(t,) >0, so it follows from (A.4) that:

200 > jz(')(s)ds (A.5)
Integrate (A.5) from t, to t, and use z/~?(t,) > 0, we have:

2079t > Jt'Uz(')(s)dstw (A.6)

Integrate the right side of (A.6) by parts. (The formula of integration by

parts is _[udv = uv—jvdu ).

Let u= Iz(')(s)ds = du=z"w)dw. Let dv=dw = v=w, SO

4
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j(fz")(s)dsjdw = {WTZ(I)(S)ds:l —jwz(')(w)dw

=t j 70 (s)ds — j sz(s)ds = j (t—s)z"(s)ds (A7)
t t t

Hence from (A.6) and (A.7) we get:

2079(t) > j.(t -5)z"(s)ds (A.8)

4

Again integrate (A.8) from t, to t, and use z*~¥(t) >0, we have:
209(t) = | [ Jw- s)z("(s)ds]dw (A.9)
Integrate the right side of (A.9) using formula of integration by parts:

Let u= f(w— )z (s)ds = sz(')(s)ds —Tsz(')(s)ds = du= ﬁz“)(s)ds}dw

4 4

Let dv=dw = v=w, then

t\t &1

j[Y(W—S)Z(I)(S)dSJdW={WT(W—S)Z(I)(S)ds:l —j vIvz(')(s)dsjdw

- tj'(t—s)z")(s)ds —j Tz("(s)dsjdw (A.10)

Again use integration of parts for second integration in the right side of

(A.10):

w 2
Let u= Iz")(s)ds = du=z"w)dw. Let dv=wdw = v= W7, then

4

jl tiflvz")(s)ds}iw:{W?Z:[lvz("(s)ds} —jW?Zz("(W)dw

t
1 1
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tt2 | t SZ |
=_|'Ez()(s)ds —I?z“(s)ds (A.11)

4 t

Now, from (A.9), (A.10), and (A.11) we have:

t '[t2 tSZ
2@ > t|(t-5)zV(s)ds — | —z"(s)ds + | —z" (s)ds
0= 1f(t-9)2"(s)ds - [-2°(s) +£2 (s)

4 4

L g2 g2 t(t—S)Z
> [(—==ts+=)z"(s)ds = | —2-z"(s)ds, SO
!(2 5)20() J 5 —20)

209(t)> | (t _23) 20 (s)ds (A.12)
Again integrate (A.12) from t, to t, and use z"**(t,) > 0, we have:

209() > | (j (w 25) z(')(s)dst (A.13)

H\b

Integrate the right side of (A.13) using formula of integration by parts:

= J'( z("(s)ds W _[z‘”(s)ds szz“)(s)ds +J' z(')(s)ds

= du= ﬁ(w— s)z")(s)ds}dw

4

Let dv=dw = v=w, then

J.U(W z‘”(s)ds}dw {WI( z("(s)ds} —j' Y(W—s)z("(s)ds}dw

t, t b

_tj(_—ts+ )z(')(s)ds j j(w s)z("(s)dsjdw (A.14)

4
Then, use integration by parts for second integration in the right side

of(A.14):
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4 4 4

Let u= vIV(W— )z (s)ds = sz(')(s)ds —fsz(')(s)ds = du= Uz“)(s)ds}dw

4

2

Let dv=wdw = v=W?,then

jl E(W—S)Z("(S)dS]dw{Wéf(w—s)z(”(s)dsl —jW?Z(Izm(s)dstw

t t
1 1 1

t

- %jl.(t -5)z"(s)ds —I%Z(Iz("(s)dsjdw (A.15)

b

Also, integrate by parts the second integral in the right side of (A.15), we

have:

t

jW?ZUz“)(s)ds]dw = j%z(')(s)ds - j S—;z(')(s)ds (A.16)

4 4 4 4

From (A.13), (A.14), (A.15), and (A.16) we have:

(1-4) r s* ) t? | ) it ) (s’ 0)
20 >t (— —ts + )2V (s)ds —— | (t =)z (s)ds + | —z" (s)ds — | =z (s)ds
(t) {(2 2) (s) ZtJ:( )27 (s) J:G (s) I6 (s)

4

t

t*—3t’s+3ts° —s° Cr(t=-9)°
ZJ( - 2V (s)ds = JTZ (s)ds, hence
t 3
290> | %z“)(s)ds (A.17)

By following the above process, in view of (A.2), we can show that
209 (t) > tj % 20 (s)ds (A.18)

From (A.5), (A.8), (A.12), (A.17), and (A.18) in general we have:
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1-k (
5 )(t)>J' Y

z(')(s)ds : (A.19)
If 1 -k =1, then (A.19) implies that
(t-9)"7
Z'(t) = j T 2" (s)ds (A.20)

Thus the proof is completed. O
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Appendix B
In this appendix we shall show the inequality (2.3.14), by using inequality
(2.3.13). We do this by integrating (2.3.13) from t t0 « (n—1-1) times,

in view of (2.3.9), (2.3.10), and I <n-3. Let us rewrite these inequalities.

{(2.3.13) is (B.1), (2.3.14) is (B.2), (2.3.9) is (B.3), and (2.3.10) is

(B.4).}

20 (1) + BL- p(o(®)f at)z* (a(t) <0, (B.1)

1+1 i a Vet (S _t)n_l_z

2 (1) < - j AEZ @ENA-PEE)) = (B.2)

() >0, O0<i<I (B.3)

()" z29) >0, I+1<i<n-1 (B.4)
For simplicity suppose that (t) = S(1- p(o(t)) ) q(t)z* (o (t))
Proof: Integrate (B.1) from t t0 «

20 (0) = 20 (1) < —Tw(s)ds (B.5)
From (B.4) z"V(t) > 0, using this fact with (B.5) we have:

—z(t) < —Tw(s)ds (B.6)
Integrate (B.6) from t t0 o,

— 2" (o) + 202 (1) < —Tﬁz/x(s)dsjdw (B.7)

Use integration by parts for the right side of (B.7)

Let u=_[w(s)ds — du=-y(wW)dw. Let dv=dw = v=w,
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o0

T[Tw(s)ds]dw = [WT«//(S)ds} + TW!//(W)dW =T(s —t)w(s)ds (B.8)

If 1<n-3, from (B.4) z""?(t) <0, using this with (B.7), and (B.8) we

have:

20072 (t) < — T(s —t)y(s)ds (B.9)
Again integrate (B.9) from t to «, we have

29 (o) — 209 (1) < - T(T(s - w)w(s)dsjdw (B.10)
If 1 <n-4, From (B.4) z"(t) >0, therefore from (B.10) we obtain

— 7)< - TU(S - W)l//(S)dS]dW (B.11)

Use integration by parts for the right side of (B.11). However, this is
similar to our work in Appendix A, (see A.10-A.11), so we put the result

directly:

9 < [© ‘zt)z w(s)ds (B.12)

Again integrate (B.12) t to «, with use of z"*(t)<0 (If 1<n-5), we

have
29ty < [ (B.13)
In general If I <n-k -1, we have
(k) T 7
K 2000 (t) < ! . 1)| w(s)ds (B.14)

129



If n—k=1+1, i.e. we integrate (B.1) (n—1-1), then we have:

(S _ t)n—|—2

S D L AR (RS _ T
(-1 20t < ! — _2)!1//(s)ds (B.15)
But n—1-1is even, hence:
1+1 i (S _t)n7|72
2 )(t)S—!(n_l_z)!w(s)ds (B.16)

Substitute w(s) = B1- p(a(s))) a(s)z*(o(s)) , we have:

(S _ t)n—|—2

o (B.17)

209(t) < -[ A(8)2° (0()A- p(o(s)))

Thus the proof is completed. O
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Appendix C

In this appendix we will show inequality (2.3.27) from inequality
(2.3.26). Where lim z(t) =c>0. The inequality (2.3.26) is (C.1):
~7(t) <—[a,(s)2(o(s))ds (C.1)

Proof: Integrate (C.1) from t, to o,

— (o) +z(t) < - T[Tal(s)z“(a(s))dstw (C.2)

Use formula of integration by parts for the right side of (C.2)

Let u= Tai(s)z“(a(s))ds = du=-a,(W)z”(o(w))dw.

Let dv=dw = v=w,

0
o0

I [Tal(s)z“ (O'(S))dSJdW = {WTai(s)z“ (a(s))ds}

4

+ Twai(w)z“(a(w))dw

4

- —tljal(s)z“(a(s))ds + J' sa, (s)z” (o (s))ds
= [s-t)a(9)z* (o(s))ds (C.3)
From (C.2), (C.3), with use of lim z(t) = c, we obtain:

2(t) < o~ [ (s—t)a(9)2" (o(s))ds (C.4)
From (C.4) we have

2) < o [(s- LA (e(E)ds 2(t) <c- 2 ()| aE6-t)ds  (C5)
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But z(t) is increasing and t, > t, then (C.5) implies that:
2(t) < c - 2°(o(t) [ ay(s)(s —t)ds (C.6)

Inequality (2.3.27) is (C.6). Thus the proof is completed. [
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Appendix D

In this appendix we will show inequality (2.3.35). {(2.3.35) is (D.1)}

2(t) > —I(S(;—}i)ll 20 (s)ds (D.1)
Where (-1 z(t)>0, 0<i<n (n isodd) (D.2)

For convenience, we use the notation y(w) = lim y(t)

Proof: Consider the equality
() = zM(t) (D.3)

Integrate (D.3) from t t0 o,

20V (0) =z (t ) = Tz("’ (s)ds (D.4)
From (D.2) z"(t) > 0, then (D.4) implies that:

20t ) > —Tz(“) (s)ds (D.5)

Integrate (D.5) from t t0 o,

o0

20 (00) — 2D (t ) > —Iﬁ z™ (s)ds]dw (D.6)

From (D.2) z"?(t) <0, and by using integration by parts for the right side

of (D.6), we have:

—209(t) > —[(s-2(s)ds (D.7)
Integrate (D.7) from t t0 o,

() 4 2t 2 —Tﬁ(s 1)z (s)ds]dw (D.8)
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Again, by using of integration by parts for the integral of right side of
(D.8), with use of z"(t) >0, (We did similar thing in Appendix B), then

we have:

203(t) > ]g z("’ (s)ds (D.9)

t

If we complete in the same manner we obtain, in general, the following:

(1) 29 > | ((k )1)| 20)(5)ds (D.10)

If n—k =1, i.e. we integrate (D.3) (n—-1)times, then we have:

O -T (?n‘_t)zn)! ds (D.11)

If n=k, then we have

z(t) > J'(i _t)l’;l (D.12)

However, if we integrate (D.11) from t to «, we obtain (D.12). Hence,

by integration of (D.11) from t, to «, we obtain:

20)> - (S( }i)l ds (D.13)

Thus the proof is completed. O
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Appendix E
In this appendix we evaluate the integral (3.3.9), which is the following:
I(t) = j £z (t)dt (E.1)
Since t"* can be differentiated repeatedly to become zero, we use
integration by parts repeatedly. And for simplicity we use the tabular
integration method, which is, in fact, a method of organization the
repeatedly integration by parts. (You can see books of calculus).

t""and its derivatives z(t) and its integrals

“ Z(n)(t)
(n—l)t”»} 2" (1)

(n-H(n-2t2° (+) 202 (t)

2—3)'["‘4\’ 209 (¢)

tn—l

(n=1)(n-2)(

(-1 -2)(2—3)..3.2t \ :
\ 40

(n-)(n-2)(2-3)..3.2 (+)
Z(t)
We add the products of the functions connected by the arrows, with
the middle sign changed, to obtain:
Q) =t""2"P0) - (n-Dt" 2" 2O + (1 -(n -2t 2"V (1) -

.= (=D =2)(n-3)..3.2Z'(t) + ("—1)(n - 2)(n—3)...3.22(t) (E.2)
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Appendix F

Jensen’s Inequality

There are several forms for Jensen’s inequality. In this appendix we
choose an easy form to help us in our work in section 5.2.

Theorem F.1 [4]: Let ¢:(-o,00) > (—o0,00) be continuous and convex

downward. If f and gare continuous on [ab] with g(t)>0, and

b
[o(dt>0. Then

q{ [f®amdt/| g(t)dt} < [4(f ®)a®)dt/ [ g(t)dt (F.1)

Example F.1: take ¢(t) = —Int. It is continuous and convex downward on
(0,0). Take f(t)=e""", g(t)=1, and interval [t,t+1]. Apply Theorem

(F.1) we have:

t+1 ) t+1 ) t+1 ) t+1
In[e jeO'SS'” SldsJ = In[ _feo'ss'”sds] > jln(eO'SS'”S): jO.Ssin sds
t t t

t+1 t+1
= In[ejeo'ss"‘“dsj > IO.Ssin sds (F.2)
Therefore from (F.2) we can obtain:

0 t+1 © t+1
Ieo'“‘"” In(e J'eO'SSi”“dstt > _[eo'f’s‘“”[ jO.5sin sds]dt (F.3)
t 1 t

1

(F.3) is the relation (5.3.9).
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