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Homology modeling, molecular dynamics and docking 
simulations of rat A2A receptor: A three-dimensional            
model validation under QSAR studies 

ABSTRACT 
Understanding the three-dimensional structure  
(3-D) of GPCRs (G protein coupled receptors) can 
aid in the design of applicable compounds for the 
treatment of several human disorders. To this end, 
several 3-D models have been obtained in recent 
years. In this work, we have built the rat 
adenosine receptor model (rA2AR) by employing 
computational tools. First, the 3-D rA2AR model 
was built by homology modeling using the human 
adenosine receptor (hA2AR) structure (PDB codes: 
3EML) as a template. Then, the rA2AR model was 
refined by molecular dynamics simulations, in 
which the initial and refined 3-D structures were 
used for molecular docking simulations and 
Quantitative structure-activity relationship (QSAR) 
studies using a set of known experimentally tested 
ligands to validate this rA2AR model. The results 
showed that the hindrance effect caused by ribose 
attached to agonists play an important role in 
activating the receptor via formation of several 
hydrogen bonds. In contrast, the lack of this 
 

moiety allows blocking of the receptor. The 
theoretical affinity estimation shows good 
correlation with reported experimental data. 
Therefore, this work represents a good example 
for getting reliable GPCR models under 
computational procedures. 
 
KEYWORDS: A2A adenosine receptor, homology 
modeling, xanthine, drug development, rat brain, 
Parkinson’s disease 
 
1. INTRODUCTION 
The A2A adenosine receptor (A2AR) is a seven-
transmembrane domain receptor (7TM) that 
belongs to the family A of GPCRs (G protein 
coupled receptors). This receptor has been 
implicated in several physiological functions, 
including some diseases of the central nervous 
system (e.g., Parkinson’s disease) [1]. This 
adenosine receptor can form heteromeric complexes 
with D2-dopamine receptors or with metabotropic 
glutamate receptors, and it is also known that this 
7TM activate proteins involved in intracellular 
signaling [2]. The A2AR can be blocked or 
activated by compounds that share very similar
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mathematical studies on animal tissues [4, 8, 16-
20]. However, some of these ligands have not 
been studied using theoretical methods and 
therefore do not explain the ligand recognition on 
A2AR structure at an atomic level. 
The aim of this study was to generate an 
adenosine receptor model from rat (rA2AR), an 
animal widely used for experimental and 
preclinical studies. We refined and validated this 
model constructed by homology modeling. The 
refinement of this model was through molecular 
dynamics (MD) simulations, whereas the 3-D 
model validation was using molecular docking 
simulations and QSAR studies. 
 
2. Computational procedures 

2.1. Ligand retrieval  
A set of 48 known A2AR ligands, consisting of 15 
antagonists (Table 1) and 33 agonists (Table 2), 
were docked on all A2AR 3-D models (i.e., the 
rA2AR, the native hA2AR 3-D structures as well as 
five snapshots retrieved from MD simulations of 
rA2AR). The minimum ligand structure energies 
were obtained via DFT at the B3LYP/6-31G (d,p) 
level using Gaussian 98 software [21]. 

2.2. Homology modeling of the A2AR 
The amino acid sequence of the rA2AR with 
accession number NP_445746 was retrieved from 
NCBI [22]. The Basic Local Alignment Search 
Tool (BLAST) (http://blast.ncbi.nlm.nih.gov/ 
Blast.cgi) found several homologous human 
proteins with known 3-D structures located in the 
Protein Data Bank (PDB). To obtain the rA2AR 
3-D model, the Swiss Model server [23-25] was 
used to perform the homology modeling 
procedure using the hA2AR 3-D structure as a 
template (PDB code: 3EML) [10]. 
First, all hydrogen atoms on the A2AR model were 
added and then minimized in 500 steps with the 
steepest descendent algorithm, which is employed  
by GROMOS96 43B1 parameters implemented in 
the Swiss-PDB Viewer version 3.7. We used the 
TM-score [26] and TM-align tools [27] (available 
from the Zhang lab at http://zhang.bioinformatics. 
ku.edu) to compare the two 3-D models employed 
in this study. The backbone conformation of  
both A2AR models was evaluated by Psi/Phi 
 

chemical cores (scaffolds). In fact, some xanthine-
containing antagonists are used to decrease the 
motor symptoms in Parkinson’s disease (PD) 
[2, 3]. Additionally, other studies report the use of 
A2AR agonists to treat hypertension, ischemic 
cardiomyopathy, inflammation and atherosclerosis 
[4]. These evidences have provided incentive to 
study and to develop more selective A2AR ligands 
[5]. To reach this goal, it is useful to employ the 
murine models used in drug development for PD 
treatments and for other diseases of the central 
nervous system [4-7].  
Currently, drug development research explores 
the ligand and protein targets at an  atomic level  
by constructing three-dimensional (3-D) models 
of these membrane receptors, whose structures are 
very difficult to crystallize [8, 9]. This difficulty is 
related to the location of these proteins inside the 
lipid bilayer membrane; that is why only few 3-D 
structures have been solved for these proteins 
using X-ray methods. 
Due to the previously mentioned difficulties, 
computational tools are widely used to obtain 3-D 
models of GPCRs, for example by computing 
ab initio calculations, sequence threading and 
homology modeling. The homology modeling 
utilizes experimental data obtained from the 
Protein Data Bank (PDB) named “template”. 
Initially, some reports have used the bovine 
rhodopsin (the first GPCR characterized) as a 
template. However, this template yields poor 
quality structures for the A2AR 3-D models. This 
is due to distant homology relationship between 
bovine rhodopsin and other GPCR targets. Hence, 
bovine receptor would not be an adequate 
template to construct the rA2AR model [4]. As the 
structures of hA2AR bound to antagonist [9] and 
agonist [10] have recently been solved by X-ray 
methods, it is possible to use both structures as 
templates for additional adenosine GPCR models 
to study the molecular recognition properties. 
Currently, several studies support the use of 3-D 
structures of A2AR as experimental and theoretical 
tools for the development and testing of new 
drugs [11-15].  
According to experimental data, there are several 
compounds that act on A2AR receptors [1, 4-7]. 
Some ligand-A2AR interactions and affinities have 
been reported from in vitro experiments and from 
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an area of ~74 Å2 per lipid was reached. This 
value was greater than the experimental value 
of ~66 Å2 because the inflategro script tends 
to overestimate the area per lipid [30]. This 
calculated value, however, was sufficient to 
continue to the equilibration step.  
All systems were equilibrated using simulated 
annealing under an isothermal-isobaric (NPT) 
ensemble for 500 ps. The LINCS method [31] was 
used to restrain all of the heavy atoms in all 
directions, and this method was also used to 
restrain the phosphorus atoms of the lipid head 
groups in the vertical (z) direction, allowing a 2 fs 
integration step. The use of simulated annealing 
under NPT ensemble avoided solvent voids that 
distort the dimensions of the unit cell.  
Following simulated annealing, NPT equilibration 
was performed for 500 ps applying a pressure of 
10 MPa in the transverse direction and 0.1 MPa 
in the vertical direction. Water, lipids and protein 
were coupled separately to a temperature bath at
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ramachandran diagrams using the Rampage 
server [28]. Then, to validate our rA2AR model 
built by HOMOLOGY MODELING, docking 
simulations were performed using a set of known 
ligands (agonists and antagonists). 

2.3. Molecular dynamics simulations 
As rA2AR is one of the principal targets in this 
report, we performed MD simulations to refine 
and to provide evidence of its conformational 
movements. These simulations were performed by 
using the GROMACS software package, 4.5.3 
version [29]. Structural data for a pre-equilibrated 
1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) 
bilayer with 128 lipid molecules were downloaded 
from the Tieleman group (http://moose.bio.ucalgary. 
ca/index.php?page=Structures_and_Topologies). 
The protein was then embedded in the pre-
equilibrated POPC lipid bilayer using the perl 
inflategro script from Tieleman’s group, performing 
several rounds of energy minimization. Furthermore, 
after 23 iterations of scaling down by 0.95,
 
 

Table 1. Experimental and calculated affinity values from docking analyses for antagonist ligands tested. 

Antagonist ligand Experimental a Kd reported           
in literature (nM) 

Calculated affinity values on the  
respective models (nM) 

   hA2AR rA2AR 

KW6002a 2 [8] 463 1080 
XACa 24 [8] 73.3 135 
11adb 14 [20] 1040 2510 
11aeb 17 [20] 771 2260 
11aab 18 [20] 407 1400 
11bdb 21 [20] 729 819 
11abb 22 [20] 422 1010 
11acb 25 [20] 1020 1200 
11bab 29 [20] 276 432 
11afb 30 [20] 868 2320 
11bcb 32 [20] 1320 938 
11bbb 33 [20] 965 932 
DPCPXa 340 [8] 1440 1770 
Theophyllinea 1995.26 [16] 16900 17700 
Caffeinea 2511.89 [16] 30300 36800 

a From rat striatal membranes. [number] = reference 
b From pig membranes. [number] = reference 
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  Table 2. Experimental and calculated affinity values from docking analyses for agonist ligands tested. 

Agonist ligand Experimental a Kd reported in 
the literature (nM) 

Calculated affinities values on the              
respective models (nM) 

   hA2AR rA2AR 

19g 1.23 [17] 300 42.3 
2g 1.43 [17] 25.6 21.6 
23g 1.77 [17] 158 204 
3g 2.38 [17] 72.6 412 
13g 2.41 [17] 32.1 119 
25g 2.42 [17] 51.9 66.3 
9g 2.45 [17] 126 452 
22g 2.75 [17] 252 303 
5g 2.83 [17] 11.8 298 
17g 2.87 [17] 461 19800 
21g 2.90 [17] 19 2240 
11g 2.95 [17] 182 184 
12g 2.96 [17] 112 139 
8g 3.02 [17] 297 75.6 
7g 3.07 [17] 1170 367 
15g 3.20 [17] 148 250 
29g 3.22 [17] 6.65 21.8 
6g 3.25 [17] 270 556 
16g 3.27 [17] 229 114 
4g 3.29 [17] 104 331 
28g 3.37 [17] 5.96 11.6 
20g 3.40 [17] 36.9 89.7 
14g 3.42 [17] 138 377 
10g 3.47 [17] 87.4 484 
1g 3.55 [17] 56.1 24.8 
26g 3.85 [17] 5.66 6.64 
27g 4.69 [17] 7.38 1530 
NECA 20 [17] 1180 1210 
CGS21680 24 [16] 41.7 43.7 
CADO 180 [3] 1120 1310 
RPIA 794 [16] 76.4 83.6 
CPA 794.33 [3] 230 186 
Adenosine 2511.89 [16] 2930 1630 

a From rat striatal membranes, except for CPA (which is from hA2AR expressed in CHO cells).  
[number] = reference 
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all possible routable bonds of the ligands, Kollman 
charges for A2AR atoms and the hydrogen atoms 
located in heteroatoms were added at ~ pH 7.4 
with the AutoDock Tools 1.5.2 [38]. 
A cubic grid box (80 x 80 x 80 Å) with grid points 
separated by 0.375 Å was constructed and 
centered at a midpoint between the coordinates 
corresponding to the amino acids in positions 
Leu85 and Leu249 (3.33 and 6.51, respectively) 
for hA2AR, according to the Ballesteros-Weinstein 
designation [39]. These amino acids are considered 
to be the conserved key positions for ligand-
interactions in other mammalian species [10, 15, 
40]. All docking simulations were performed with 
an initial population of 100 randomly placed 
individuals and a maximum number of energy 
evaluations (1.0 × 107).  
The resulting docked orientations within a RMSD 
of 0.5 Å were clustered together. The lowest 
energy cluster returned by AutoDock for each 
compound was used for further analysis. All other 
parameters were maintained considering the 
default settings. All of the docking result 
visualizations were performed by using the Visual 
Molecular Dynamics (VMD) program version 1.6 
[41]. 

2.5. Molecular descriptors 

The 48 known A2AR ligands (Tables 1, 2 and 
Scheme 1) employed in the docking protocol were 
tested. The ligand structures were structurally 
optimized by DFT at the B3LYP/6-31G,d,p level 
using Gaussian 98 software [21]. Then, the 
Dragon software was used to calculate 1481 
descriptors grouped into 16 groups. In addition, 
the calculated electronic descriptors obtained 
from HyperChem Version 7.0 (Hypercube, USA, 
http://www.hyper.com) were considered as 
another group. Therefore, 17 groups of descriptors 
were used in this study. In each group, the 
calculated descriptors were examined for the 
presence of constant or near constant values for 
all molecules. To decrease redundancy in the 
descriptors data matrix, the correlation among 
descriptors was examined, and the detected 
collinear descriptors (i.e., R2 > 0.95) were removed 
from the data matrix. Accordingly, 589 descriptors 
were calculated. 

300 K with a relaxation time (τT) of 0.2 ps using 
a Berendsen thermostat [32]. Each group 
(protein/cholesterol, lipids, and solvent/ions) was 
coupled to a separate temperature bath. The 
parameters developed by Berger et al. [33] were 
applied to the POPC lipids, and the gromos96 
53a6 parameter set was used to describe the rest 
of the systems (protein, solvent and ions). 
Lennard-Jones interactions were cut off at 1.4 nm, 
and short-range, non-bonded interactions were 
calculated with a twin-range cut off scheme 
(0.9/1.4 nm) updating the neighbor list every five 
simulation step. Electrostatic interactions were 
calculated using the particle mesh Ewald 
algorithm using a fourth-order spline interpolation 
and a Fourier grid spacing of 0.12 nm. This 
treatment of electrostatics has been shown to 
provide an accurate representation of lipid 
properties [34], and it is also commonly used in 
simulations of proteins. Following 1000 ps of 
equilibration, production of this MD simulation 
was conducted using an NPT ensemble. A 
pressure of 0.1 MPa was applied in all directions, 
and all other parameters were the same as those 
used in the NPT equilibration. All position 
restraints were removed prior to the production 
phase. Simulations were conducted using the 
Argentum cluster at the Centro Nacional de 
Supercomputo. Coordinates were saved every 
2 ps for analysis. All analyses were performed 
using tools included in the GROMACS package. 
Subsequently, the dynamic behavior and 
structural changes of the protein were analyzed 
by the calculation of the root mean square 
fluctuations (RMSF) and the root mean square 
deviations (RMSD) values. The refined model 
was evaluated using the ANOLEA [35] and 
ProSA [36] programs. 

2.4. Docking simulations  
The rA2AR and hA2AR 3-D native structures and 
snapshots retrieved from the rA2AR MD simulations 
(taken at 0, 5, 10, 15 and 20 ns) were used to 
perform docking simulations using Autodock 
4.0.1. For this procedure, we used the Lamarckian 
genetic algorithm, which is a combination of the 
genetic algorithm method for global and local 
search to perform energy minimization [37]. 
Before starting the docking evaluations, the partial 
atomic charges (Gasteiger-Marsili formalism), 
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Scheme 1. The set of A2A ligands tested (a = agonist and b = antagonists). * Only the pharmacophore of these 
ligands is depicted. The full structure of this ligand is in references 17 or 20 for 1g-29g and 11aa-af and 11ba-bd. 
Ligands 18g and 24g are not included. 
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of optimal descriptors obtained from the set of 48 
ligands. Furthermore, MLR analysis was carried 
out for the antagonist set (15 ligands) and for the 
agonist set (33 ligands) with the best descriptors 
selected from the original 48 A2AR ligands.  
 
3. RESULTS AND DISCUSSION 

3.1. Homology modeling  
The BLAST results for rA2AR indicated the 
highest sequence identity (82%) with hA2AR 
(NP_000666.2) [27, 34-36], suggesting that hA2AR 
was the most suitable template for HOMOLOGY 
MODELING. Moreover, the high percent identity 
between rA2AR and hA2AR reflects a close 
homology relationship that could help to explain 
the same experimental affinity values obtained 
either from these animal models or from human 
models, particularly with A2AR agonists derived 
from adenosine [43]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.6. QSAR analysis 
For QSAR studies, SPSS Software (version 16.0, 
SPSS, Inc.) was used for the simple multiple 
linear regression (MLR) analysis. QSAR analysis 
of the docking results was performed using MLR 
analysis with stepwise selection and elimination 
of variables. This was performed to model the 
relationships between experimental binding 
affinities (i.e., log Kd values) with a set of 589 
descriptors. This evaluation was performed in a 
similar manner to the procedure that we had used 
in a previous study [42].  
MLR analysis was performed separately for each 
set of the 17 groups of descriptors (G1-G17, see 
Table 3) while accounting for the experimental 
log Kd values. Finally, the best descriptors, chosen 
both by stepwise selection and by elimination of 
variables from each group, were gathered into one 
set. Another MLR was performed on this new set 
 
 

Table 3. Descriptors selected by MLR for each group. 

Groupa Descriptors 

G1 C-042, C-016, H-050, H-051, C-040, O-059 
G2 TI2, VRA1, PJI2, X1A, Ram, IC1, piID 
G3 MWC05, SRW09, MWC10, SRW05 
G4 BEHm7, BELe8, BELm2, BEHe1, BELv1 
G5 JGI10, GGI10, GGI4, JGI4 
G6 MATS3p, MATS8v, GATS4e, MATS4v, MATS5v, MATS3e, MATS2p, ATS1e 
G7 RNCG, RPCG 
G8 AROM, RCI 
G9 SHP2 
G10 FDI, SPAN 
G11 RDF065p, RDF010m, RDF035u, RDF045m, RDF055v 
G12 Mor20u, Mor25u, Mor05u, Mor12u, Mor13m, Mor32m, Mor18u 
G13 G1v, Dv, E2s, E3u 
G14 HATS4u, R5v+, R4m, H3m 
G15 nHAcc, nOHp, n=CHR, nCONR2, nNHRPh, nPhX, nCs, nCONHRPh 
G16 C-042, C-016, H-050, H-051, C-040, O-059 
G17 Ref, HD, ELPH 

aG1: constitutional descriptors, G2: topological descriptors, G3: molecular walk counts, G4: BCUT descriptors,   
G5: Galvez topological charge indices, G6: 2D autocorrelations, G7: charge descriptors, G8: aromaticity index,   
G9: Randic molecular profiles, G10: geometrical descriptors, G11: RDF descriptors, G12: 3D-MoRSE descriptors, 
G13: WHIM descriptors, G14: GETAWAY descriptors, G15: functional groups, G16: atom-centered descriptors, 
G17: electronic descriptors. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Ramachandran plots of hA2AR (PDB code: 
3EML, top panel) and rA2AR (lower panel). The 
residues in disallowed regions are labeled. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

no residues were located in disallowed conformations, 
whereas for rA2AR, only two residues (Arg217 
and Ser218) were found. Additionally, 3-D 
overlapping of the native human and rat A2AR 
models shows great similarity, possibly due to the 
homology modeling procedure (Figure 2). With 
the TM-score and TM-align programs, a value of 
TM-score = 0.4510 was obtained, and an RMSD
of 0.64 Å between hA2AR and rA2AR was found 
[26, 27] yielding a better 3-D model than those 
previously obtained for the rA2AR model (e.g. 
Kim et al.) [44] who reported an RMSD = 1.27 
using rhodopsin as the template. Therefore, our 
rA2AR model can be considered reliable and 
useful for generating meaningful predictions 
[4]. Furthermore, we decided to perform MD 
simulations as performed elsewhere [45]. The long 
MD simulations permit visualization of the active 
or inactive structures that can explain the agonist 
or antagonist conformational movements [46]. In 
this case, we performed MD simulations to 
identify the principal structural changes that occur 
during 20 ns of MD simulations, which is enough 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To evaluate the reliability of A2AR models built 
for docking purposes, we used a Ramachandran 
plot (Figure 1). These methods identify the 
Psi/Phi angle distribution in the 3-D model within 
the allowed or disallowed regions. For hA2AR,
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Figure 2. The superimposed hA2AR (dark) and rA2AR 
(light) 3D models (only the alpha helixes are depicted 
for clarity). The transparent surface shows the amino 
acids that are in contact with the co-crystallized ligand 
(ZM241385) in hA2AR and in same position on rA2AR. 
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3.2. Comparative analysis of experimental vs. 
predicted ligand affinities for the A2AR models  
Once the rA2AR model was obtained by homology 
modeling, a docking study was performed,  
considering ligands whose experimental affinity
data are available (Scheme 1 and Tables 1 and 2). 
After docking simulations, the log Kd values were 
obtained from free energy (ΔG) values resulting 
from the ligand-protein interactions (Eq. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

time to reach convergence according to the RMSD 
and the radius of gyration, (Figure 3). During this 
time, it was clear that there is a greater movement 
in the loops in comparison with the zones that 
belong to the TM domain, which the 3-D model 
indicates is more stable than the loops. Despite the 
notable structural movements, it is not easy to 
show the active or inactive conformations because 
they occur at microsecond time scales [47]. 

Figure 3. MD simulations of rA2AR to test some structure snapshots. Panels indicate the root-mean square deviation 
(RMSD), the radius of gyration (Rg), the root-mean square fluctuation (RMSF) and the 3-D structure alignment for 
all snapshots retrieved from the MD simulations. 

(Eq. 1) 
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simulation (Figure 3) to explore the conformational 
space and to try to explore the local conformational 
changes. Then, we selected these snapshots as 
targets for docking of agonists or antagonists, 
respectively. The results (Figure 5) suggest that 
rA2AR maintains its inactive conformation (based 
on the relationship between the experimental and 
theoretical data). This is because the rA2AR 
maintain the best relationship with the antagonist 
ligands for both the native rA2AR and the 
snapshots retrieved from the rA2AR MD 
simulations [48, 49]. Figure 5 depicts the binding 
pose of the best relationship with the agonist 
(20 ns, R = 0.28) or antagonist (0 ns R = 0.88). 
The figure also depicts adenosine as the best 
example of agonist, which shows interactions with 
His273 (via formation of hydrogen bonds), and 
this arrangement is in agreement with recent 
 
 

where the five ΔG terms on the right-hand side are 
coefficients empirically determined using linear 
regression analysis from a set of protein-ligand
complexes with known binding constants. The 
summations are performed over all pairs of ligand 
atoms, i, and protein atoms, j. The in vacuo 
contributions include three interaction energy terms: 
a Lennard-Jones 12-6 dispersion-repulsion term, a 
directional 12-10 hydrogen bonding term and a 
screened Coulombic electrostatic potential [37]. 
The Kd values from hA2AR and rA2AR were used 
to perform a correlation study (Figure 4 A-C) with 
experimental data and we could identify a good 
relationship for the antagonist ligands (R2 = 0.6712 
and 0.7968, respectively) but not for the agonist 
ligands (Figure 4D-F). On the other hand, as it is 
not reliable to make any assertions based upon 
the initial 3-D structure, we performed a MD 
 

Figure 4. Antagonist ligands A) Correlation between log Kd obtained from hA2AR docking versus experimental 
log Kd values, B) between log Kd obtained from rA2AR docking versus experimental log Kd values, and C) between 
log Kd obtained from rA2AR docking versus log Kd observed from the hA2AR docking values. Agonist ligands, 
D) correlation between log Kd obtained from hA2AR docking versus experimental log Kd values, E) between log Kd 
obtained from rA2AR docking versus experimental log Kd values and F) between log Kd obtained from rA2AR 
docking versus log Kd observed from the hA2AR docking values. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

His250 and His264,) acidic (Glu169) and 
hydrophobic (Leu85, Met177, Leu249, Ile274, 
Leu267, Ala265 and Met270) residues. These 
residues form a pocket capable of recognizing 
ligands (agonists or antagonists) which share five-
six cycle core reported elsewhere. Furthermore, 
these interactions explain why most of the ligands 
tested here recognize this site (Figure 6). In 
addition, one of the most important findings is 
that the ribose moiety is oriented towards His278 
and His273 for both the human and the rat 
adenosine receptors (Figures 6A and C, respectively). 
These results are also in agreement with the 
experimental data published elsewhere [10].  
For the caffeine docking studies, results showed 
that the ligand establishes interactions with the 
side chains of Phe168 and Phe163 by π-π 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
X-ray structure data obtained for hA2AR [10]. For 
the antagonist models, we depicted caffeine, 
which participates in a π-π interaction with 
Phe163, and these interactions are reported in the 
crystal structure of the human adenosine receptor 
A2AR in complex with a high affinity subtype-
selective antagonist bound ZM132485 [9]. 

3.3 Specific interactions of selected ligands on 
A2AR and their biological relationship 
To explore the specific interactions of ligands on 
A2AR, a close view of each ligand in its highest 
affinity conformation obtained by docking was 
analyzed. The hA2AR protein was solved in 
complex with ZM132485 [10]. This complex 
shows that hA2AR recognizes ZM132485 in a 
binding site constituted by aromatic (Phe168, 
Trp246 and Tyr271), basic (Asn253, Asn181, 
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Figure 5. (below) relationship between Kd values (x-axes) and free energy values (ΔG, Kcal/mol), 
(above) adenosine (left) and caffeine (right) docked on the structures that exhibit the best relationship at 
20 ns and 0 ns, respectively. 
 

Antagonists 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Luis C. Jimenez-Botello et al.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the differences between the A2AR binding sites 
and the affinity binding values (Table 2 and 
Figure 6). For example, theophylline has fewer 
hindrance effects than the others, allowing it to 
reach the same site more deeply (Figure 6 and 7) 
interacting with residues in the TMs 2,3,6 and 7 
(Supplementary Figure 1). The major obstacle for 
accessing the binding site is the micro-switch 
formed by the conserved residue at position 
6.48 (Trp246 on hA2AR and Trp241 on rA2AR). 
Conversely, the large conformational changes of 
the Trp residues mentioned during 7TM activation 
permit ligand accessibility [50]. All of the ligands

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

interactions on hA2AR (Figure 6B) and rA2AR 
(Figure 6D), respectively. Similar interactions 
were found for adenosine at the bi-cycle moiety. 
The adenosine purine moiety has a similar spatial 
disposition on hA2AR to that of the purine moiety 
of ZM132485. Indeed, the highest affinities for 
both complexes between r/hA2AR and caffeine or 
adenosine exhibit the same binding site because 
they are overlapped. In general, all of the A2AR 
ligands tested have the same bi-cycle moiety. The 
main differences between them are in the side 
chain of the ligands, and they differ by a ribose 
located in the agonist ligands. These data explain 
 

Figure 6. Adenosine on hA2AR (A) and rA2AR (C) and caffeine on hA2AR (B) and rA2AR (D). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tested showed a similar binding site except for 
theophylline, which reaches a deeper binding site 
due to its small volume. This behavior could be 
associated with the different responses found in 
clinical assays studying the effect of methyl-
xanthines commonly included in diets [17, 51, 53]. 
For instance, Tan et al. [52] found that reduction 
of PD risk varies between green and black tea 
consumption. Yu et al. [53] found greater nervous 
system stimulation by caffeine than by 
theophylline. These differences could also be 
related to the variations in caffeine content found 
in each tea [51, 54]. Additionally, this difference 
could involve other mechanisms of action of 
xanthine compounds, including the inhibitory 
activity on phosphodiesterase [55]. One explanation 
for these different effects could be stimulation at 
different sites on A2AR that play an important role 
in the activation of the receptor. The differences 
could be related to the selectivity given by 
extracellular loop amino acids in A2AR and other 
7TMs [56]. 

3.4. MLR-QSAR results and their implications in 
ligand binding 
Table 3 summarizes the descriptors chosen from 
the MLR of experimental log Kd values with the 
17 groups of descriptors (G1-G17). The final 
regression models obtained from MLR analysis 
and executed on the best sets of descriptors are
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

shown below (See Table 4 for a clarification of 
the descriptors’ names).  

Final MLR regression model for both agonist 
and antagonist ligands 
log Kd = 8.638868 (±2.073478) - 0.37185 
(±0.107628) Mor20u 
- 3.45225 (±0.559607) MATS3p + 0.630345 
(±0.11321) Mor25u 
- 2.09376 (±0.351586) MATS8v + 0.921764 
(±0.142635) C-042 
- 5.2713 (±1.759311) ATS4e - 3.11057 
(±0.76633) AROM 
- 0.63123 (±0.162349) GGI4 + 0.647461 
(±0.286081) BEHm7                             
                                                                            (1) 
N = 49, R = 0.980, R2 = 0.961, R2

A = 0.952,  
S = 0.198, R2

CV = 0.959, RMSE = 0.177. 
Here, N is the number of compounds, R is the 
regression coefficient, R2 is the coefficient of 
determinations, R2

A is the adjusted coefficient of 
determination, R2

CV is the cross validation 
coefficient of determination, and RMSE is the 
root-mean square error.  

MLR regression model for antagonist ligands  
log Kd = 2.471 (±0.187) - 9.481 (±1.182) GGI10 
-1.828 (±0.469) MATS3p                                   (2)

Computational studies on rat A2A 

Figure 7. The hA2AR (a) and rA2AR (b) complexes with adenosine (dark) and two antagonists: caffeine and 
theophylline (light). The amino acids considered key in 7TM receptors by Fatakia et al. [40] are depicted as a 
transparent surface in each case. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N = 16, R = 0.973, R2 = 0.946, R2
A = 0.938, 

S = 0.225, R2
CV = 0.943, RMSE = 0.204. 

MLR regression model for agonist ligands 
 log Kd = 3.551 (±0.490) + 0.812 (±0.204) C-042 
- 0.816 (±0.570) MATS8v  
- 0.686 (±0.150) C-040 - 0.644 (±0.185) C-041 
- 27.475 (±7.193) JGI4                                       
                                                                            (3) 
N = 33, R = 0.977, R2 = 0.954, R2

A= 0.946, S = 
0.193, R2

CV = 0.952, RMSE = 0.175. 
Equation (1) shows that the most significant 
descriptor of the experimental log Kd for both 
agonist and antagonist ligands is the 2D 
autocorrelation descriptor ATS4e, where log Kd is 
inversely proportional to ATS4e. Other significant 
descriptors are MATS3p (2D autocorrelation 
descriptor) and the aromaticity index (AROM), 
which increases as log Kd decreases. 
Equation (2) shows that the most significant 
descriptor for the antagonist ligands is the Galvez 
topological charge index of order 10 (GGI10), 
while equation (3) shows that the most significant 
descriptor for the agonist ligands is the Galvez 
mean topological charge index of order 4. The 
regression models described in equations (1)-(3) 
 
 

have comparable regression and cross validation 
parameters. However, the RMSE for the 
regression model of antagonist ligands (0.204) is 
higher than those for other two models described 
in equations (1) and (3), where the RMSE = 0.177 
and 0.175, respectively. Additionally, for equation 
(2), the value of R2

CV = 0.943 is lower than those 
for equations (1) and (3), where R2

CV = 0.959 and 
0.952, respectively. The cross validation of 
parameters indicates that the regression models 
obtained for the whole data set (consisting of both 
agonist and antagonist ligands) is comparable to 
the regression model obtained for the agonist 
ligands. However, the regression models described 
in equations (1) and (3) are slightly better than the 
model described in equation (2). The predicted 
and observed log Kd for the regression models 
described in equations (1)-(3) are shown in Figure 8. 
As shown in the QSAR results, steric and charge 
factors in ligands are strongly related to the 
experimental calculated affinity for ligands. This 
supports the requirement of singular hindrance 
effects for ligands in A2AR recognition, and also it 
supports the idea that differences could be 
expected between caffeine and ligands with 
smaller hindrance effects. 
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Table 4. Summary of descriptors. 

Descriptor name Description 

Mor20u 3D-MoRSE - signal 20/unweighted 
MATS3p Moran autocorrelation – lag 3/weighted by atomic polarizabilities 
Mor25u 3D-MoRSE - signal 25/unweighted 
C-042  corresponds to X—CH...X (among atom centered fragments descriptors) 

ATS4e Broto-Moreau autocorrelation of a topological structure - lag 4/weighted by atomic 
Sanderson electronegativities 

GGI4 Galvez topological charge index of order 4 
BEHm7 highest eigenvalue n. 7 of Burden matrix/weighted by atomic masses 
AROM Aromaticity 
MATS8v Moran autocorrelation – lag 8/weighted by atomic van der Waals volumes  
GGI10 Galvez topological charge index of order 10 
C-010 atom centered fragment CHX3 
C-041 atom centered fragment X-C(+X)-X 
C-042 atom centered fragment X—CH..X 
JGI4 Galvez mean topological charge index of order 4 
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Figure 8. Predicted versus observed log Kd for (a) both agonist and antagonist ligands, 
(b) agonist ligands and (c) antagonist ligands.  

Supplementary Figure 1. Binding site on (a) hA2AR and (b) rA2AR for theophylline. The core of the adenosine 
molecule is depicted as a black sphere. Transmembrane domains implicated are depicted as a cartoon marking the 
segments with amino acids interacting with theophylline. These amino acids are labeled in bond representation. 
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CONCLUSION 
The theoretical results show that the ligands tested 
have similar binding to hA2AR and rA2AR. 
Additionally, the QSAR results address the 
importance of the xanthine core contained in 
A2AR ligands and the hindrance effect on the 
A2AR affinity. Finally, these findings suggest that 
the rA2AR in its inactive state can be used for 
testing A2AR antagonists, but it cannot be used to 
test agonists despite being summited to MD 
simulations. The rA2AR model exhibits the best 
relationship with antagonists even though the 
adenosine agonist reaches the reported His273 via 
hydrogen bond interactions. 
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