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Fitting Variance ComponentsModel and Fixed
EffectsModel for One-Way Analysis of Variance

to Complex Survey Data

ABDULHAKEEM A. H. EIDEH

Department of Mathematics, Al-Quds University, Palestine, Jerusalem

Under complex survey sampling, in particular when selection probabilities depend
on the response variable (informative sampling), the sample and population
distributions are different, possibly resulting in selection bias. This article is
concerned with this problem by fitting two statistical models, namely: the variance
components model (a two-stage model) and the fixed effects model (a single-stage
model) for one-way analysis of variance, under complex survey design, for example,
two-stage sampling, stratification, and unequal probability of selection, etc. Classical
theory underlying the use of the two-stage model involves simple random sampling
for each of the two stages. In such cases the model in the sample, after sample
selection, is the same as model for the population; before sample selection. When the
selection probabilities are related to the values of the response variable, standard
estimates of the population model parameters may be severely biased, leading
possibly to false inference. The idea behind the approach is to extract the model
holding for the sample data as a function of the model in the population and
of the first order inclusion probabilities. And then fit the sample model, using
analysis of variance, maximum likelihood, and pseudo maximum likelihood methods
of estimation. The main feature of the proposed techniques is related to their
behavior in terms of the informativeness parameter. We also show that the use of the
population model that ignores the informative sampling design, yields biased model
fitting.

Keywords Fixed effects model; Informative sampling; Maximum likelihood
estimation; Pseudo maximum likelihood; Sample distribution; Variance
components model.

1. Introduction

In classifying data in terms of factors and their levels, the feature of interest is the
extent to which different levels of a factor affect the variable of interest. The effects
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Fitting Variance Components Model and Fixed Effects Model 3279

of a factor are always one or other of the two kinds. The first kind is fixed effects,
which is the effects attributable to a finite set of levels of a factor that occur in the
data and exist because the interest in them. Models in which the only effects are
fixed effects are called fixed effects models. The second kind of effects is random
effects. These are attributable to (usually) infinite set of levels of a factor in which
only a random sample are deemed to occur in the data. Models in which the
only effects are random are called random effects models (or variance components
models). For future discussion on the analysis of these models in nonsurvey context,
we refer the reader to Searle et al. (1992).

In survey context, multi-stage, two-stage, and single-stage population models
and the corresponding sampling methods are frequently used in the health and
social sciences for the modeling of hierarchically structured populations. Classical
theory underlying the use of two-stage sampling method involves simple random
sampling for each of the two stages or fixed unequal probabilities of selection at one
or more of the two stages. In such cases, the model in the sample is the same as the
mode for the population. When the selection probabilities are related to the values
of the response variable, the sample design is defined as informative. This may lead
to the model holding for the sample being different from the model holding in the
population, resulting in selection bias. Thus, standard estimates of the population
model parameters may be severely biased, leading possibly to false inference, see
for example, Pfeffermann et al. (1998a). Consider an education study of pupils’
proficiencies with schools as the first stage sampling units and pupils as second
stage sampling units. And in addition, suppose that the schools are selected with
probabilities proportional to their sizes (number of pupils). If the size of the school
is related to the school average of pupils’ proficiencies, say the large schools are
mostly in areas with low proficiencies, and the size of the school is not included
among the model covariates, therefore sample of schools will tend to contain large
schools with low proficiencies, and hence no longer represent the population of
schools.

Pfeffermann et al. (2006) pointed out that “a possible way to deal with
the problem of informative sampling is to include among the model covariates
the design variables that define the selection probabilities at the various levels.”
However, this paradigm is often not practical. Firstly, not all design variables
used for the sample selection may be known or accessible to the analysts, or that
there may be too many of them, making the fitting and validation of such models
formidable. Secondly, by including the design variables among the model covariates,
the resulting model may be no longer of scientific interest. This is not necessarily a
problem if the model is fitted for prediction purposes but is clearly not acceptable
when the purpose of the analysis is to study the structural relationships between
the outcome variable and covariates of interest.” Furthermore, Korn and Graubard
(1999, pp. 179–180) pointed out that “the approach to modeling the sampling design
in the general case is as follows: Start with a model that would be used if a
simple random sample of the population were being analyzed. If the inefficiency
of weighted estimation for the primary parameter of interest is unacceptably large,
then consider augmenting the model with variables used in the construction of the
sample weights. Such survey-design variables are those defining the sampling strata,
the nonresponse weighting cells, and the poststratification adjustment cells. These
survey-design variables are included in the model provided that they do not lessen
the interpretability of the primary parameter.”
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3280 Eideh

Pfeffermann et al. (1998b) considered two approaches to weighting iterative
generalized least squares for multilevel models. The first approach uses the
reciprocals of selection probabilities and follows the broad principles of the pseudo
likelihood approach. The second approach scales the weights, that is it replaces
each weight by, for example, the relative weight (that is divided by the sample
mean of the weights), in order to improve the properties of the estimators and
to simplify computation. Korn and Graubard (2003) proposed new estimators for
variance components, some of which are approximately unbiased regardless of
the sampling design. These estimators require knowledge of the joint inclusion
probabilities of the observations. The small sample properties of the estimators are
studied via simulation for the simple one-way random-effects model. Pfeffermann
et al. (2006) considered a model-dependent approach for multilevel modeling that
accounts for informative probability sampling of first- and lower-level population
units. Their approach proposed consists of first extracting the hierarchical model
holding for the sample data, given the selected sample, as a function of the
corresponding population model and the first- and lower-level sample selection
probabilities. Then followed by fitting the resulting sample model, using Bayesian
methods. An important implication of the use of the model holding for the sample
is that the sample selection probabilities feature in the analysis as additional data
that possibly strengthen the estimators. A simulation experiment, carried out in
order to study the performance of this approach and compare it to the use of
“design-based” methods indicates that both approaches perform in general equally
well in terms of point estimation. However, the model-dependent approach yields
confidence/credibility intervals with better coverage properties. Another simulation
study assesses the impact of misspecification of the models assumed for the sample
selection probabilities. The use of maximum likelihood estimation is also considered.
Jia et al. (2011) considered the performance of random effects model estimators
under complex sampling designs. In particular, they derive analytical formulae
for the bias in random effects ANOVA. Their approach include verifying the
formulae by means of Monte Carlo simulations and use the expressions to examine
the impact of sample size, the size of the intraclass correlation coefficient (ICC),
and the sampling design on the estimators’ performance. They also consider the
controversial issue of scaling and the extension to second-order weights.

None of the above studies consider the fitting of a variance components
model or a fixed effects model for one-way analysis of variance to complex survey
data under an informative probability sampling design. This article is devoted to
the fitting of two statistical models for complex survey data under informative
probability sampling design, namely; the two-stage and single-stage population
models for one-way classification. Depending on the fact that, in this work, the
design variables used for the sample selection are not included in the models.

The research material in this article is structured as follows. In Sec. 2, we
outline the main features of sample likelihood under informative sampling. Section 3
considers the variance component models under informative sampling. Section 4
contains fixed effects models for one-way classification under informative sampling.
Section 5 is devoted to the estimation of variance components and fixed effects
models parameters. In Sec. 6, we present a comparison between different estimators.
Finally, Sec. 7 provides a discussion of the results.
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Fitting Variance Components Model and Fixed Effects Model 3281

2. Sample Likelihood under Informative Sampling

Let U = �1� � � � � N� denote a finite population consisting of N units. Let y be the
study variable of interest and let yi be the value of y for the ith population unit. We
consider the population values y1� � � � � yN as random variables, that are independent
realizations from a distribution with a probability density function (pdf) fp �yi � ��,
indexed by a vector of parameters, �. Let z = �z1� � � � � zN �

′ be the values of known
design variables, used for the sample selection process. In what follows, we consider
a sampling design with selection probabilities �i = Pr�i ∈ s�, and sampling weight
wi = 1/�i; i = 1� � � � � N . In practice, the �i’s may depend on the population values
�y� z�, where y = �y1� � � � � yN �

′. We express this dependence by: �i = Pr�i ∈ s � y� z�
for all units i ∈ U . The sample s consists of the subset of U selected at random by
the sampling scheme with inclusion probabilities �1� � � � � �N � We assume probability
sampling, such that �i = Pr�i ∈ s� are strictly positive for all units i ∈ U� The sample
distribution refers to the superpopulation distribution of the sample measurements
as induced by the population model and the sample selection scheme with the
selected sample of units held fixed.

Before defining the sample distribution mathematically, let us introduce the
following notations: fp and Ep �·� denote the pdf and the mathematical expectation
of the population distribution, respectively, while fs and Es �·� denote the pdf and
the mathematical expectation of the sample distribution, respectively. According to
Pfeffermann et al. (1998a), the sample pdf of yi is defined as:

fs �yi � �� �� = fp �yi � �� i ∈ s�

= Pr�i ∈ s � yi� ��fp�yi � ��
Pr�i ∈ s � �� �� (1)

= Ep ��i � yi� �� fp �yi � ��
Ep ��i � �� ��

�

where

Ep ��i � �� �� =
∫

Ep ��i � yi� �� fp �yi � �� dyi

and � is a parameter, from now on called “informativeness parameter,”
associated to sample measurement yi in the model used to describe the
selection procedure, i.e., in the conditional expectation of the sample inclusion
probabilities, Ep ��i � yi� �� = Pr�i ∈ s � yi� ��. This previously defined parameter is
called informativeness parameter, and if it is equal to zero, it follows that the sample
design is free of yi and then it is not informative.

Note that the sample pdf is different from the superpopulation pdf generating
the finite population values, unless Pr�i ∈ s � yi� �� = Pr�i ∈ s � �� �� for all possible
values of yi, in which case the sampling process is noninformative and can be
ignored for purposes of inference. Also note that the sample distribution is a
function of the population distribution and of the first order sample inclusion
probabilities.

In practice, the conditional expectations of the sample inclusion probabilities
Ep ��i � yi� �� are not known. Assuming that the data available to the analyst is
�yi� wi	 i ∈ s�, which is the case for secondary analysis. The question now that arises
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3282 Eideh

is: how can we identify and estimate Ep ��i � yi� �� based only on the sample data?
The following relationships, due to Pfeffermann and Sverchkov (1999), answer this
question:

Es �wi � yi� �� =
{
Ep ��i � yi� ��

}−1
(2)

Es �wi� =
{
Ep ��i�

}−1
� (3)

Having derived the sample distribution, Pfeffermann et al. (1998a) proved that if
the population measurements yi are independent, then as N → � (with n fixed)
the sample measurements are asymptotically independent. As a result, we can
apply standard inference procedures to complex survey data by using the marginal
sample distribution for each unit. But as mentioned in Pfeffermann et al. (1998a),
when the conditional expectation of the first-order sample selection probabilities is
exponential, for example, Ep��i � yi� = exp��0 + �1yi�, the problem of identifiability
arises. For more explanation, see (Eideh, 2010, Secs. 5 and 8). Also, there are
cases where the number of parameters indexing the sample distribution (the
parameters that index the conditional expectation of the first order sample selection
probabilities and the parameters that characterize the population) is large. In these
cases, based on the sample data �yi� wi	 i ∈ s�, Pfeffermann et al. (1998a) proposed
a two-step estimation method, which can be presented as follows:

Step 1. Estimate the parameter � using Eq. (2). Denoting the resulting estimate
of � by �̂.

Step 2. Substitute �̂ in the sample log-likelihood function, with holding fixed
the estimate of �, and then maximize the resulting sample log-likelihood function
with respect to the population parameters, �:

lrs ��� �̂� = lsrs ���+
n∑

i=1

lnEp ��i � yi� �̂�−
n∑

i=1

lnEp ��i � �� �̂� �

However,
∑n

i=1 lnEp ��i � yi� �̂� does not contain the population parameter, �. Then
using Eq. (3), we have:

lrs ��� �̂� = lsrs ���+
n∑

i=1

lnEs �wi � �� �̂� �

where lrs ��� �̂� is the sample log-likelihood after substituting �̂ in the sample log-
likelihood function and lsrs ��� =

∑n
i=1 log

{
fp �yi � ��

}
is the classical log-likelihood.

For more discussion about the analysis of complex survey data under
informative probability sampling design, see Pfeffermann and Sverchkov (1999,
2003), Eideh (2009), Eideh and Nathan (2009), Chambers and Skinner (2003), and
Skinner (1994).

3. Variance Component Models under Informative Sampling

3.1. Two-Stage Population Model

Let U = �1� � � � � N� be a finite population of N primary sampling units (psu’s), and
Mi	 i = 1� � � � � N be the number of secondary sampling units (ssu’s) in the ith psu.
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Fitting Variance Components Model and Fixed Effects Model 3283

Let yij	 i = 1� � � � � N	 j = 1� � � � �Mi be the value of the response variable y for the ssu
j belonging to the psu i. The two-stage population model that includes a random
intercept effect is given by:

First stage: 
i = 
 + �i	 i = 1� � � � � N�
(4)

Second stage: yij � 
i = 
i + eij	 j = 1� � � � �Mi

where eij and �i are independent, and the population distributions of eij and �i are
N�0� �2

e� and N�0� �2

�, respectively.

This variance components model is proposed by Scott and Smith (1969) as a
superpopulation model for two-stage cluster sampling from a finite population.

For this model we have:

Ep

(
yij

) = 
�

Varp
(
yij

) = �2

 + �2

e
(5)

Covp
(
yij� yik

) = �2

� j �= k�

Covp
(
yij� yrk

) = 0� i �= r�

The purpose of this article is to estimate the population mean 
 and the variance
components, �2


 and �2
e when the sampling design for both of the two stages is

informative.
Under the assumptions of the model given in Eq. (4), we can show that the

population distribution of yi is N
(

1Mi

�Vi

)
where 1Mi

= �1� � � � � 1�′ is a vector of
length Mi, Vi = �2


JMi
+ �2

eIMi
, JMi

is a square matrix of order Mi with every element
equal one, and IMi

is the identity matrix of order Mi. According to Searle et al. (1992,
p. 79), the population pdf of yi =

(
yi1� � � � � yiMi

)′
can be written as:

fp �yi� =
∫

fp
(
yi1� � � � � yiMi

� 
i

)
d
i

=
∫

fp �
i�
Mi∏
j=1

fp
(
yij � 
i

)
d
i

= �2��−0�5Mi
(
�2
e

)−0�5�Mi−1� (
Mi�

2

 + �2

e

)−0�5 ∗ exp
[
− 1
2�2

e

Mi∑
j=1

(
yij − 


)2]

∗ exp
 �2




�2�2
e�

(
Mi�

2

 + �2

e

) [ Mi∑
j=1

(
yij − 


)]2
 � (6)

This form plays an important role in estimation.

3.2. Sample Design

We assume a two-stage cluster sample design with informative sampling for the first
and second stages. Special cases are those in which sampling at only one or neither
of the stages is informative. Let xi and zij	 i = 1� � � � � N	 j = 1� � � � �Mi be design
variables (considered as random), used for the sample selection but not included
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3284 Eideh

in the working model under consideration. At the first stage, a sample sI of size n
psu’s (clusters) is selected with inclusion probabilities: �i = Pr �i ∈ sI � 
i� xi� for all
psu’s i ∈ U . At the second stage a sample, si, of size mi ssu’s is selected from the ith
selected psu with conditional inclusion probabilities: �j � i = Pr

(
j ∈ si � i ∈ s� yij� zij

)
,

for all ssu j belonging to psu i ∈ sI . In the following, we use only the conditional
expectations of the inclusion probabilities Ep ��i � 
i� and Ep

(
�j � i � yij

)
. Conditions

for identification related to the presence of covariates at both the first and second
level were discussed in Pfeffermann et al. (2006) and in Eideh and Nathan (2009).

3.3. Sample Marginal Distributions of Response Measurements

In order to obtain the sample marginal distribution of response measurements, and
consequently the sample likelihood function, we need the sample distribution of the
random effects. In addition, we need the sample distribution of the response variable
given the random effect.

According to Eq. (1), the first stage sample distribution of the random effects 
i is:

fs �
i� =
Ep ��i � 
i�

Ep ��i�
fp�
i��

Note that, for given fp �
i�, fs �
i� is completely determined by specifying Ep ��i � 
i�.
Pfeffermann et al. (1998a) and Skinner (1994) considered two possible models

for the expectations of the first-stage sample inclusion probabilities, namely the
polynomial and exponential models of the response variable. Eideh (2003) and
Nathan and Eideh (2004) also considered the logit and probit models. As an
illustration, in this article we shall consider only the exponential model:

Ep ��i � 
i� = exp�b0 + b1
i�� (7)

where b0 and b1 are unknown parameters, to be estimated from the sample
data, see Sec. 5.1.1., however it is easy to extend the results to the case where
the conditional expectations of the inclusion probabilities are not of exponential
form, for example linear, logit or probit. As pointed out by Skinner (1994), “this
exponential approximation model for first order inclusion probabilities is appealing
in the common situation where the sample selection is carried out in several
stages so that the ultimate inclusion probabilities are the products of the selection
probabilities at the various stages.”

Now, under Eq. (7) and since the population distribution of 
i is N
(

� �2




)
,

we can obtain:

fs �
i� =
Ep ��i � 
i�

Ep ��i�
fp �
i� =

exp�b0 + b1
i�√
2��2


Mp �b1�
exp

(
− 1
2�2




�
i − 
�2
)

=
exp

(
− 1

2�2

�
i − 
�2 + b1
i − b1
 − �2


b
2
1/2

)
√
2��2




=
exp

(
− 1

2�2


[(

2
i − 2
i
 + 
2

)− 2�2



(
b1
i − b1
 − �2


b
2
1/2

)])
√
2��2
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Fitting Variance Components Model and Fixed Effects Model 3285

Completing the square in 
i, we get:

fs �
i� =
(
2��2




)−0�5
exp

(
− 1
2�2




(

i −

(

 + b1�

2



))2)
� (8)

that is, the sample distribution of 
i is N
(

 + b1�

2

� �

2



)
. Hence, the sample and

population models belong to the normal distribution, but the mean of the sample
model shifts by the constant b1�

2

. For more information on sample distribution, see

Pfeffermann et al. (1998a).
Note that if the informativeness parameter b1 = 0, that is, the sampling design

is noninformative, then the sample and population distributions of 
i coincide, and
in such cases, the sampling design is ignorable for statistical inference.

Similar to the sample distribution of random effects, the conditional sample pdf
of yij given 
i is given by:

fs
(
yij � 
i

) = Ep

(
�j � i � 
i� yij

)
Ep

(
�j � i � 
i

) fp
(
yij � 
i

)
�

If the population distribution of yij � 
i is N
(

i� �

2
e

)
and

Ep

(
�j � i � yij� 
i

) = exp
(
d0 + d1yij

)
� (9)

where d0 and d1 are unknown parameter, to be estimated from the sample data, see
Sec. 5.1.1, then similar to the procedure used in obtaining Eq. (8), we have:

fs
(
yij � 
i

) = (
2��2

e

)−0�5
exp

(
− 1
2�2

e

(
yij −

(

i + d1�

2
e

))2)
� (10)

that is, the sample distribution of yij � 
i is N
(

i + d1�

2
e� �

2
e

)
.

Note that if the informativeness parameter d1 = 0, that is, the sampling design
is noninformative, then the sample and population distributions of yij � 
 coincide,
and in such cases, the sampling design is ignorable for statistical inferences.

Thus, based on Eqs. (8) and (10), the two-stage sample model is given by:

First stage: 
i = 
 + b1�
2

 + �i	 i = 1� � � � � n�

(11)
Second stage: yij � 
i = 
i + d1�

2
e + eij	 j = 1� � � � � mi�

where eij and �i are independent, and the sample distributions of eij and �i are
N

(
0� �2

e

)
and N

(
0� �2




)
, respectively.

Now, we are interested in deriving the sample marginal distributions of the ith
sampled cluster, whose sample measurement is yi =

(
yi1� � � � � yimi

)
, when the sample

designs for both the first stage and second stage are informative. The sample model
and moments of yij , under the two-stage sample design, depend on the sample
model of the cluster-specific effects 
i (first stage) and the sample model of yij � 
i

(second stage). Under Eqs. (7) and (9), and since
(
yi1� � � � � yimi

) � 
i	 i = 1� � � � � n are
independent, therefore:

fs
(
yi1� � � � � yimi

) = ∫
fs

(
yi1� � � � � yimi

� 
i

)
d
i

=
∫

fs �
i�
mi∏
j=1

fs
(
yij � 
i

)
d
i
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3286 Eideh

Then, using Eqs. (6), (8), and (10), we can show that:

fs
(
yi1� � � � � yimi

) = �2��−0�5mi
(
�2
e

)−0�5�mi−1� (
mi�

2

 + �2

e

)−0�5

∗ exp
[
− 1
2�2

e

[
mi∑
j=1

{
yij −

(

 + b1�

2

 + d1�

2
e

)}2]]

∗ exp
 �2




�2�2
e�

(
mi�

2

 + �2

e

) [ mi∑
j=1

{
yij −

(

 + b1�

2

 + d1�

2
e

)}]2
 � (12)

This equation can be written in matrix form as:

fs
(
yi1� � � � � yimi

) = exp
(
−0�5

(
yi − 1mI


∗)′ V−1
i

(
yi − 1mI


∗))
�2��0�5mi �Vi�0�5

�

where, the sample distribution of yi =
(
yi1� � � � � yimi

)′
is N

(
1mi


∗�Vi

)
, 
∗ = 
 +

b1�
2

 + d1�

2
e , Vi = �2


Jmi
+ �2

eImi
, 1Mi

= �1� � � � � 1�′ is a vector of length mi, Jmi
is a

square matrix of order mi with every element equal one, and Imi
is the identity

matrix of order mi.
Thus, the population distribution and the sample distribution of the cluster

measurements, yi =
(
yi1� � � � � yimi

)′
, belong to the same family, which is multivariate

normal, but the mean in the sample is shifted by a constant, b1�
2

 + d1�

2
e , which is

a function of the informativeness parameters b1 and d1.
Note that if the informativeness parameters b1 = 0 and d1 = 0, that is, the

sampling design at the both stages is noninformative, then 
∗ = 
, and hence the
two-stage sample and population models are the same.

Equation (12) is used as a basis of maximum likelihood estimation of � =(

� �2


� �
2
e

)
under informative probability sampling design.

4. Fixed Effects Models for One-Way Classifications under
Informative Sampling

4.1. Single-Stage Population Model

Consider the following single-stage population model that includes fixed effects:

yij = 
i + eij	 i = 1� � � � � N	 j = 1� � � � �Mi

or

yij = 
 + i + eij	 i = 1� � � � � N	 j = 1� � � � �Mi	
N∑
i=1

i = 0�

where eij are independent, with population distributions N
(
0� �2

e

)
.

In matrix notation this model can be expressed as:

yi = 
i1Mi
+ ei = �i + ei�

�i = 
i1Mi
�
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Ep �ei� = 0�

Ep �eie
′
i� = Covp �ei� = Vi = �2

eIMi
�

where yi =
(
yi1� � � � � yiMi

)′
, 1Mi

= �1� � � � � 1�′ is a vector of length Mi, IMi
is the

identity matrix of order Mi, and the population distribution of ei =
(
ei1� � � � � eiMi

)′
is

N �0�Vi�. Hence, the population distribution of yi is N
(

i1Mi

�Vi

)
. That is,

fp �yi� =
1

�2��Mi/2
�Vi�1/2 exp

{
−1
2

(
yi − 
i1Mi

)′
V−1

i

(
yi − 
i1Mi

)}

= 1

�2��Mi/2

(
�2
e

)Mi/2 exp

{
−1
2

Mi∑
j=1

(
yij − 
i

)2}
�

4.2. Sample Design and Sample Marginal Distribution

Since the factor effects are fixed, the two-stage sample design is not relevant. Thus,
we assume a single-stage informative sample design. The special case in which
sampling is non informative can be considered trivially. Let zij ; i = 1� � � � � N ; j =
1� � � � �Mi be the design variables (considered as random), used for the sample
selection but not included in the working model under consideration. From each
fixed effect factor of size Mi, a sample si of size mi units is selected from the ith
factor effect with inclusion probabilities: �ij = Pr

(
j ∈ si � yij� zij

)
for all units j =

1� 2� � � � �Mi and all factor effects i = 1� 2� � � � � N . Let wij = 1/�ij be the sampling
weights for i = 1� � � � � N	 j = 1� � � � �Mi. In the following, we use only the conditional
expectation of the inclusion probabilities Ep

(
�ij � yij

) = exp
(
d0 + d1yij

)
. Using the

results obtained in Sec. 4.1 with some modifications, we have:

(a) the conditional sample pdf of yij is given by:

fs
(
yij

∣∣ 
i

) = (
2��2

e

)−0�5
exp

(
− 1
2�2

e

(
yij −

(

i + d1�

2
e

))2)
	 (13)

(b) the sample marginal distribution of the response variable measurements is:

fs
(
yi1� � � � � yimi

∣∣ 
i

) = mi∏
j=1

fs
(
yij

∣∣ 
i

)
= (

2��2
e

)−0�5mi exp

(
− 1
2�2

e

mi∑
j=1

(
yij − 
∗

i

)2)
� (14)

where 
∗
i = 
i + d1�

2
e .

(c) according to Eqs. (13) and (14), the fixed effects sample model is given by:

yi = 
∗
i 1mi

+ ei = �∗
i + ei�


∗
i = 
i + d1�

2
e�

�∗
i = 
∗

i 1mi
(15)

Es �ei� = 0� Es �eie
′
i� = Covs �ei� = Vi = �2

eImi
�
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where 1mi
= �1� � � � � 1�′ is a vector of length mi and the sample distribution of yi

is N ��∗
i �Vi�; i = 1� � � � � N .

5. Estimation of Population Parameters

5.1. Variance Components Models under Informative Sampling

Here, we are interested in estimating the vector of unknown population parameters,
� = (


� �2

� �

2
e

)
, that characterize the population variance components model given

in Eqs. (4) and (5). We consider four different estimating methods: a two-step
maximum likelihood method; an unweighted (exact) maximum likelihood (UWML)
for the case where the sampling design is ignorable; a pseudo maximum likelihood
(PML) method; and ANOVA estimation.

5.1.1. Maximum Likelihood Estimation—Two-Step Method. In this method, we base
the inference on the sample pdf given in Eq. (12).

Step 1. I. Estimation of Ep ��i � 
i� = exp�b0 + b1
i�: based on the relationship
given in Eq. (2), we have, approximately:

ln �wi� = Wi = −b0 − b1
i + ki�

where ki are uncorrelated random variables with E �ki� = 0 and Var �ki� =
�2
k. Assuming ȳi = 
i + hi, where ȳi� = m−1

i

∑mi

j=1 yij , hi are uncorrelated random
variables with E �hi� = 0 and Var �hi� = �2

h/mi. Then by the measurement error
model of Fuller (1987, Sec. 1.2), we obtain:

b̂0 = −
(�W − b̂1ȳ��

)
�

where

ȳ�� = m−1
n∑

i=1

mi∑
j=1

yij� m =
n∑

i=1

mi

and

�W = n−1
n∑

i=1

Wi�

Also, if �2
h is known, then

b̂1 = −
(
mȳȳ −

1
n

n∑
i=1

�2
h

mi

)−1

mȳW (16)

where

mȳȳ = �n− 1�−1
n∑

i=1

�ȳi − ȳ���
2�
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Fitting Variance Components Model and Fixed Effects Model 3289

and

mȳW = �n− 1�−1
n∑

i=1

�ȳi − ȳ���
(
Wi − �W )2

�

If �2
h is unknown we can estimate it by:

�̂2
h =

∑n
i=1

∑mi

j=1

(
yij − ȳi

)2∑n
i=1 �mi − 1�

�

II. Estimation of Ep

(
�j?i � yij� 
i

) = exp
(
d0 + d1yij

)
: based on the relationship given

in Eq. (2), we have, approximately:

ln
(
wj�i

) = −d0 − d1yij + rj�

where rj are uncorrelated random variables with E
(
rj
) = 0 and Var

(
rj
) = �2

r . i =
1� � � � � n; j = 1� � � � � mi. Thus, the least square estimator of d = �d0� d1�

′is given by:

d̂ =
(
d̂0� d̂1

)′ = − �Y′Y �−1 Y′W (17)

where

Y =
[
1 � � � 1 � � � 1 � � � 1
y11 � � � y1m1

� � � yn1 � � � ynmn

]′

W = (
lnw1�1� � � � � lnwmi�1� � � � � lnw1�n� � � � � lnwmn�n

)′
Step 2. Having estimated the informativeness parameters b1 and d1, we plug

the estimates into the sample model given in Eq. (12) and then, in the next step,
use this sample model to estimate the parameters of the population model, given
in Eqs. (4) and (5). This is done by maximizing the following resulting sample
log-likelihood function:

Lrs

(

� �2

e� �
2



) = ln
n∏

i=1

fs
(
yi1� � � � � yimi

) = n∑
i=1

ln fs
(
yi1� � � � � yimi

)
=

n∑
i=1

(−0�5 �mi − 1� log
(
�2
e

)− 0�5 log
(
mi�

2

 + �2

e

))
− 1

2�2
e

n∑
i=1

(
mi∑
j=1

(
yij −

(

 + b̂1�

2

 + d̂1�

2
e

))2
)

+
n∑

i=1

�2



2 ��2
e�

(
mi�

2

 + �2

e

) ( mi∑
j=1

(
yij −

(

 + b̂1�

2

 + d̂1�

2
e

)))2

(18a)

This function can be maximized by numerical methods (e.g., using the nlminb
function in S-PLUS, Statistical Sciences, 1990).

For the variance estimation of �̂ = (

̂� �̂2

e� �̂
2



)
, we consider the use of the inverse

of Fisher information matrix, following Pfeffermann and Sverchkov (1999, 2003).
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We first consider estimating the conditional variance of �̂ = (

̂� �̂2

e� �̂
2



)
, given that

the informativeness parameters �b1� d1� are held fixed at their estimated values. The
conditional Fisher information matrix evaluated at �̂ = (


̂� �̂2
e� �̂

2



)
is given by:

V̂sample

(
�̂
)
=

[
Isample

(
�̂
)]−1 =

{
−1
n

[
�2Lrs ���

��′��

]∣∣∣∣
�=�̂

}−1

�

For instance, under the sample log-likelihood function given in (18a), the entries of
Isample��̂� are easily computed.

In order to estimate the unconditional variance, the unconditional sample
likelihoods must be used; see Eq. (18a) with �b̂1� d̂1� = �b1� d1�. An alternative to
the Fisher information method that can be used is the bootstrap approach for
variance estimation, where first the sampled psu’s are selected with replacement
and then final units are selected from these selected psu’s with replacement. This is
well founded under informative sampling, because as mentioned before, under many
sampling schemes used in practice, such as successive sampling, rejective sampling,
and Sampford’s method, the sample measurements are asymptotically independent
with respect to the sample distribution, see Pfeffermann et al. (1998a). Let �̂ =
�
̂� �̂2

e� �̂
2

� be the sample MLE of � = �
� �2

e� �
2

� obtained based on Eq. (18a)

and �̂q = ��̂� �̂� �̂2
e� �̂

2

� be the ML estimator computed from the bootstrap sample

q = 1� � � � � B, with the same sample size, drawn by simple random sampling with
replacement from the original sample – the sample drawn under informative
sampling design. The bootstrap variance estimator of �̂ = �
̂� �̂2

e� �̂
2

� is defined as:

V̂boot

(
�̂
)
= 1

B

B∑
q=1

(
�̂q − �̂boot

) (
�̂q − �̂boot

)′
�

where

�̂boot =
1
B

B∑
q

�̂q�

As pointed out by Pfeffermann and Sverchkov (2003), “a possible advantage of
the use of bootstrap variance estimator in the present context is that it accounts
in principle for all sources of variation, including that due to the estimation
of the unknown informativeness parameters b1 and d1, so that it estimates the
unconditional variance.”

5.1.2. Unweighted (exact) Maximum Likelihood Estimation. The estimator of � =(

� �2


� �
2
e

)
for the case where the sampling design is ignorable can be obtained by

setting b̂1 = 0 and d̂1 = 0 in Eq. (18a), and also by maximizing:

Lsrs

(

� �2

e� �
2



) = n∑
i=1

(−0�5 �mi − 1� log
(
�2
e

)− 0�5 log
(
mi�

2

 + �2

e

))
− 1

2�2
e

n∑
i=1

mi∑
j=1

(
yij − 


)2 + n∑
i=1

�2



2 ��2
e�

(
mi�

2

 + �2

e

) ( mi∑
j=1

(
yij − 


))2

(18b)

with respect to � = �
� �2

� �

2
e�.
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Fitting Variance Components Model and Fixed Effects Model 3291

5.1.3. Pseudo Maximum Likelihood (PML) Estimation. Next, we extend the idea of
PML (Binder, 1983) to two-stage cluster sampling. According to Sec. 3, the first-
stage inclusion probabilities are denoted by �i; i = 1� � � � � N and the second-stage
inclusion probabilities are denoted by �j�i; j = 1� � � � �Mi. So that the joint inclusion
probabilities are given by �ij = �i�j�i; i = 1� � � � � N ; j = 1� � � � �Mi. Therefore, the
joint sample weights are given by:

wij = wiwj?i� wi = �−1
i � wj�i = �−1

j�i 	 i = 1� � � � � N	 j = 1� � � � �Mi�

Under the conditions of the two-stage population model given in Eqs. (4) and (5),
and using Eq. (6), the census maximum likelihood estimator of � = (


� �2

� �

2
e

)
solves

the census likelihood equations, which in our case are:

U ��� =
N∑
i=1

�LCi
���

��
= 0 = �0� 0� 0�′

where

�LCi
���

��
=

(
�LCi

(

� �2


� �
2
e

)
�


�
�LCi

(

� �2


� �
2
e

)
��2




�
�LCi

(

� �2


� �
2
e

)
��2

e

)′

and

LCi
��� = ln fp �yi� = −0�5 �Mi − 1� log

(
�2
e

)− 0�5 log
(
Mi�

2

 + �2

e

)
− 1

2�2
e

Mi∑
j=1

(
yij − 


)2 + �2



2 ��2
e�

(
Mi�

2

 + �2

e

) ( Mi∑
j=1

(
yij − 


))2

�

The pseudo maximal likelihood (PML) estimator is defined as the solution of
Û ��� = 0 where Û ��� is a sample estimator of the census log-likelihood, U ���.

Now the probability weighted estimator of LCi

(
�p
)
is given by:

L̂Ci
��� = −0�5

(
mi∑
j=1

wj�i − 1

)
log

(
�2
e

)− 0�5 log

((
mi∑
j=1

wj�i

)
�2

 + �2

e

)

− 1
2�2

e

mi∑
j=1

wj�i
(
yij − �
�

)2
+ �2




2 ��2
e�

((∑mi

j=1 wj�i
)
�2

 + �2

e

) ( mi∑
j=1

wj�i
(
yij − �
�

))2

� (18c)

where
∑n

j=1 wj�i is an unbiased estimator of Mi. Thus, the PML estimator is defined
as the solution of following estimating equation:

Û ��� =
n∑

i=1

mi∑
j=1

wij

�L̂Ci
���

��

=
n∑

i=1

wi

�L̂Ci
���

��
= 0�
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5.1.4. Analysis of Variance (ANOVA) Estimation. The ANOVA estimators of �2
e and

�2

 are based on the expected sum of squares under the sample model given in

Eq. (11). The analysis of variance sums of squares, for the unbalanced sample
variance components model given in Eq. (11), based on the sample data are:

SST =
n∑

i=1

mi∑
j=1

(
yij − ȳ��

)2 = n∑
i=1

mi∑
j=1

(
yij

)2 − Ny2��

SSE =
n∑

i=1

mi∑
j=1

(
yij − ȳi�

)2 = n∑
i=1

mi∑
j=1

(
yij

)2 − n∑
i=1

m−1
i y2i�� (19)

SSA =
n∑

i=1

mi∑
j=1

�ȳi� − ȳ���
2 =

n∑
i=1

m−1
i y2i� − Ny2���

SST = SSA+ SSE�

Expected Sums of Squares under the Sample Model given in Eq. (11). Under the
sample model given in Eq. (11), we have the following expectations with respect to
the sample distributions:

Es

(
yij

) = 
 + b1�
2

 + d1�

2
e

Es

(
y2ij

) = (
�2

 + �2

e

)+ (

 + b1�

2

 + d1�

2
e

)2
Es �ȳi�� = 
 + b1�

2

 + d1�

2
e

Es

(
ȳ2i�
) = m−1

i �2
e + �2


 +
(

 + b1�

2

 + d1�

2
e

)2
�

Also, we can show that:

Es �SSE� =
n∑

i=1

(
Es

(
mi∑
j=1

y2ij

)
−miEs

(
ȳ2i�
))

=
n∑

i=1

�mi − 1��2
e

= �m− n� �2
e �

It can be shown that the formula for Es �SSA� is given by:

Es �SSA� = Es

(
n∑

i=1

mi∑
j=1

�ȳi� − ȳ���
2

)

=
n∑

i=1

(
miEs

(
ȳ2i�
))− Es �N ȳ���

= (
�n− 1� �2

e

)+ �2



(
m−m−1

n∑
i=1

m2
i

)
�

ANOVA Estimators of �2
e and �2


. Having derived Es�SSE� and Es�SSA� we use
these expressions to equate sums of squares (or, equivalently, mean squares) to their
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Fitting Variance Components Model and Fixed Effects Model 3293

expected values—the ANOVA method of estimation. The equations are:

SSE = �m− n� �̂2
e

SSA = �n− 1� �̂2
e +

(
m−m−1

n∑
i=1

m2
i

)
�̂2

�

These yield the ANOVA estimators:

�̂2
e =

SSE

�m− n�
= MSE� (20a)

and

�̂2

 =

SSA− �n− 1� �̂2
e(

m−m−1
∑n

i=1 m
2
i

) = �n− 1� �MSA−MSE�(
m−m−1

∑n
i=1 m

2
i

) � (20b)

where MSA = SSA/n− 1.
Note that these ANOVA estimators are the estimators obtained for the

variance components model under noninformative sample design. This is intuitively
reasonable, because under the exponential conditional expectation of first order
inclusion probabilities, see models given in Eqs. (7) and (9), and when the
population distribution is normally distributed, the sample pdf is also normal with
same variance and different mean. That is, informativeness impacts on the mean but
not on the variances. Therefore, as far as the variance components are concerned
and we obtained for ANOVA-type estimators, we can overlook informativeness.
But if the conditional expectation of first-order inclusion probabilities is not of
exponential type, the mean and the variance are changing. For more information
on the effect of modeling Ep ��i � yi� �� on the sample models, see Eideh (2010).

Estimating the Mean 
. According to Eq. (11), our sample model can be
written in matrix form as:

yi = 1mi

∗ + ui� Es �ui� = 0�


∗ = 
 + b1�
2

 + d1�

2
e

Es �uiu
′
i� = Covs �ui� = Vi = �2


Jmi
+ �2

eImi
�

where 1mi
= �1� � � � � 1�′ is a vector of length mi and the sample distribution of yi is

N
(
1mi


∗�Vi

)
Assuming Vi is known, the generalized least squares estimate of 
∗ is the value


̂∗ which minimizes the quadratic form:

q �
∗� =
n∑

i=1

(
yi − 1mi


∗)′V−1
i

(
yi − 1mi


∗) �
Standard matrix manipulations give the explicit result:


̂∗ =
[

n∑
i=1

(
1′mi

V−1
i 1mi

)]−1 [
n∑

i=1

1′mi
V−1

i yi

]
�

=
[

n∑
i=1

vi

]−1 [
n∑

i=1

viȳi�

]
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where

vi =
mi

mi�
2

 + �2

e

=
(
�2

 +

�2
e

mi

)−1

= �Vars �ȳi���
−1 �

Note that 
̂∗ is a weighted average of the cluster means �ȳi�� i = 1� � � � � n� with
weights �vi� i = 1� � � � � n�. If �2

e and �2

are unknown, we replace them by their

ANOVA estimators or by their maximum likelihood estimators (see below). Thus
the generalized least squares estimator of 
 is the solution of the equation:


̂∗ = 
̂ + b̂1�̂
2

 + d̂1�̂

2
e�

which is given by:


̂ = 
̂∗ − b̂1�̂
2

 − d̂1�̂

2
e

=
(

n∑
i=1

vi

)−1 (
n∑

i=1

viȳi�

)
− b̂1�̂

2

 − d̂1�̂

2
e� (21)

where b̂1 and d̂1 are given in Eqs. (16) and (17), respectively. If b1 = d1 = 0,
that is the sample design for both the two stages is noninformative, then 
̂ = 
̂∗,
which is the classical generalized least squares estimator of 
, obtained under a
noninformative sampling mechanism. Also note that the generalized least squares
estimator 
̂∗ is the maximum likelihood estimator under the multivariate normal
assumption.

As clearly indicated by Eq. (21), in particular, if b̂1 > 0 and d̂1 > 0, then the
generalized least squares estimator of 
 is smaller than the generalized least squares
estimator of 
 under noninformative sampling. Thus, the use of the generalized least
squares estimator of 
 that ignores the sampling process yields a biased estimator
in this case.

5.2. Fixed Effects Models for One-Way Classification under Informative Sampling

Here, we are interested in estimating 
i and �2
e . Similar to Sec. 5.1, we consider four

different estimators.

(a) The sample log-likelihood estimators of
(

i� �

2
e

)
are obtained by

maximizing:

Lrs

(

i� �

2
e

) = N∑
i=1

−0�5 �mi − 1� log
(
�2
e

)− 1
2�2

e

mi∑
j=1

(
yij −

(

i + d̂1�

2
e

))2
� (22)

where d̂1 is obtained from (14): d̂ = �d̂0� d̂1�
′ = −�Y′Y�−1Y′W but

Y =
[
1 � � � 1 � � � 1 � � � 1
y11 � � � y1m1

� � � yN1 � � � yNmn

]′
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and

W = (
lnw11� � � � � lnw1m1

� � � � � lnwN1� � � � � lnwNmN

)′
�

(b) The unweighted maximum likelihood estimator of
(

i� �

2
e

)
for the case

where the sampling design is ignorable can obtained by setting d̂1 = 0 in Eq. (22),
and maximizing:

Lsrs

(

i� �

2
e

) = N∑
i=1

−0�5 �mi − 1� log
(
�2
e

)− 1
2�2

e

mi∑
j=1

(
yij − 
i

)2
with respect to

(

i� �

2
e

)
.

(c) The PML estimator of
(

i� �

2
e

)
is defined as the solution of the following

estimating equations:

�L̂CH

(

i� �

2
e

)
�
i

=
N∑
i=1

�L̂CHi

(

i� �

2
e

)
�
i

= 0

�L̂CH

(

i� �

2
e

)
��2

e

=
N∑
i=1

�L̂CHi

(

i� �

2
e

)
��2

e

= 0�

where

L̂CHi

(

i� �

2
e

) = −0�5

(
mi∑
j=1

wij − 1

)
log

(
�2
e

)− 1
2�2

e

mi∑
j=1

wij

(
yij − 
i

)2
and

∑mi

j=1 wij is an unbiased estimator of Mi.

(d) The analysis of variance sums of squares for unbalanced fixed effects
sample model, see Eq. (15), based on the sample data are similar to those of Eq. (19),
but with n replaced by N . Then, we can show that:

Es �SSE� =
N∑
i=1

(
Es

(
mi∑
j=1

y2ij

)
−miEs

(
ȳ2i�
))

=
N∑
i=1

�mi − 1��2
e = �m− N� �2

e �

This yields the ANOVA estimator of �2
e :

�̂2
e =

SSE

�m− N�
= MSE

Estimating the Means 
i. Under the sample model given in Eq. (15), assuming
�2
e is known, we can show that the generalized least squares estimate of 
∗

i is:


̂∗
i = 
̂i + d̂1�

2
e =

[
N∑
i=1

mi

�2
e

]−1 [
N∑
i=1

mi

�2
e

ȳi�

]
=

N∑
i=1

mi

m
ȳi��

where m = ∑N
i=1 mi.
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If �2
e is unknown, we replace it by one of the four estimators (see above). Thus

the generalized least squares estimator of 
i is the solution of the equation: 
̂∗
i =


̂i + d̂1�̂
2
e , which is given by:


̂i = 
̂∗
i − d̂1�̂

2
e =

N∑
i=1

mi

m
ȳi� − d̂1�̂

2
e �

In particular, if d1 = 0, that is the sample design is non informative, then 
̂i = 
̂∗
i ,

which is the classical generalized least squares estimator of 
̂i, obtained under a
noninformative sampling mechanism.

6. Simulation Study

In order to assess the performance of the estimators obtained using sample
likelihood, analysis of variance, and pseudo likelihood procedures under informative
sampling. Then we compare them with the classical estimators obtained under the
assumption of ignorability of the sampling design, a simulation study was carried
out.

6.1. Generation of Population Values

The population values were generated in two steps.

Step 1. We generated independently univariate normal values of the primary
sampling unit-specific-effects, 
i, of size N = 10�000 from: 
i ∼ N

(

� �2




)
, where

i = 1� � � � � N , 
 = 1 and �2

 = 0�36.

Step 2. We generated independently the population values of the secondary
sampling units from: yij = 
 + �i + eij	 j = 1� � � � 100� where eij ∼ N �0� 0�64�.

6.2. Sample Selection

Single-stage samples of size n = 100 primary sampling units were selected by
probability proportional to size systematic sampling, with the size variable defined
by the exponential sampling model: zi = exp�1�2+ 0�9
i�. Under this sampling
scheme, the first stage inclusion probabilities are defined by:

�i = 100
zi
Z

where Z =
10000∑
i=1

zi�

We assume that N is sufficiently large to ensure that �i will not in practice exceed
one.

The population was simulated R = 10� 000 times and for each simulated
population, samples of primary sampling units were independently drawn using
probability proportional to size systematic sampling. Data from these samples were
then used to estimate the informativeness parameters and then the population
parameters using the exact ML, sample ML, pseudo ML, and the ANOVA
procedures described in Sec. 5.
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Table 1
Relative biases (RB) and relative root mean square errors

(RRMSE) of four estimation methods

Parameter Indicators ANOVA ML PML SML


 RB 0.00034 0.00074 0.00122 0.00032
RRMSE 0.01247 0.01181 0.01254 0.01243

�2

 RB 0.05222 0.05118 0.04990 0.05201

RRMSE 0.1501 0.15441 0.17280 0.1511
�2
e RB 0.00311 0.00320 0.00375 0.00301

RRMSE 0.01658 0.01669 0.01854 0.01637

6.3. Results of the Simulation Study

Now we report and discuss the results obtained for the simulation study described
above. The parameters estimated in our study are the components of the vector � =(

� �2


� �
2
e

)
. We consider four different estimators. These estimators are described as

follows:

ML—Unweighted (exact) maximum likelihood (ML) for the case where the sampling
design is ignorable and the estimators are obtained by maximizing Eq. (18b);

PML—The pseudo ML estimator obtained by maximizing Eq. (18c);
SML–The estimator, based on the sample distribution, obtained by maximizing

Eq. (18a);
ANOVA—Analysis of variance estimators given in Eqs. (20a), (20b), and (21).

It should be noted here that, the likelihood functions were maximized using the
nlminb function within S-Plus (Statistical Sciences, 1990).

The results of the simulation study are summarized in Table 1 as averages over
the 10,000 samples selected under the exponential sampling scheme.

The relative bias of �̂ is estimated by:

RB
(
�̂
)
= 1

�

(
1

10000

10000∑
i=1

(
�̂i − �

))
� (23)

The relative root mean square error of �̂ is estimated by:

RRMSE
(
�̂
)
= 1

�

[
1

10000

10000∑
i=1

(
�̂i − �

)2
]0�5

� (24)

Examination of the results in Table 1 shows the following.

1. The ML and PML estimators of 
 are slightly biased. The ANOVA and sample
maximum likelihood (SML), reduce this bias substantially. This result reflects the
effect of selection bias, because in our case—exponential sampling—the mean
under the sample model is different from the mean under the population model,
see Eqs. (12) and (18).

2. The ML estimator of 
 has the smallest RRMSE, while the PML and SML
estimators of 
 have the same RRMSE.
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3. The RB and RRMSE of the estimators of �2

 and �2

e are the same under the
ML, ANOVA, and SML methods. This is because under exponential sampling
the variances and covariances of measurements within primary sampling units do
not change, see Eq. (12).

4. The PML estimators of �2

 and �2

e have higher RRMSE. This RRMSE is reduced
substantially by the other methods of estimation—ML, ANOVA, and SML.

5. The small differences between the performance of the ML, ANOVA, and
SML estimation indicate that the effects of informativeness are very small in
this experiment. This is probably due to the small variation in the first-stage
selection probabilities – S2

� = 0�0004 and small correlation between 
i and �i,
Corr�
i� �i� = 0�091�

In this article we considered only the exponential model for the conditional
expectations of the inclusion probabilities for both stages. Other models can be
used- see the references before Eq. (7). Eideh (2003) and Eideh and Nathan (2006a)
showed that in many situations the sample likelihood method is not sensitive to the
modeling of the conditional expectations of the inclusion probabilities.

7. Conclusions

In recent years there is a growth in the demand for fitting statistical models
to complex survey data. In this article we fit the variance components model
and fixed effects models to complex survey data, taking into account unequal
probabilities of selection and informative sample designs. Also, we considered a new
method of estimating the parameters of the two-stage and single-stage population
models for two-stage and single-stage sampling from a finite population, when the
sample design for the different stages is informative. Also, we extended the pseudo
maximum likelihood estimation to the two-stage population model.

However, the main feature of the estimators presented in this article is their
behaviour in terms of the informativeness parameters. Also, the use of the classical
analysis of variance estimator or classical maximum likelihood estimator of the
population mean obtained under the assumption of ignorability of the sample design
yields biased estimators. Moreover, when the researcher does not have access to the
design variables or decides not to include them in the modelling process, sample-
based likelihood method of estimation is produce better estimators than other
method considered in this article.

One of the advantages of the proposed approach is that, when weighted
estimators are avoided, it is possible to study the finite sample distribution of the
estimators.

Eventhough, the article is mostly mathematical, yet the role of informativeness
of sampling mechanism in adjusting various estimators for bias reduction, can
be found in Pfeffermann and Sverchkov (1999, 2003), and Eideh and Nathan
(2006a,b, 2009) and Eideh (2008). This simulation approach was based on different
population models and different modeling of conditional expectations of first
order inclusion probabilities, given the values of the response variable and of the
covariates. In particular, the properties of variance estimators based on Fisher
information for fitting generalized linear models under informative sampling can be
found in Pfeffermann and Sverchkov (2003).

We are certain that this new mathematical results obtained will encourage
further theoretical, empirical and practical research in these directions.
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