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Abstract

Many basic properties of the Kronecker products and Hadamard products are given , and
many results for positive definite matrices are discussed. Moreover Holdert's inequality
and the arthmetic, geometric mean inequalities are also applied for Kronecker and
Hadamard products .

An analysis of inequalities concerning the spectral radius of Hadamard products of
positive operators as [, space have been done in all details, including some applications
for the Kronecker products in matrix equations and differential matrix equations.
Furthermore we showed that these inequalities can be extended to infinite nonnegative
matrices .

A development of inequalities for Kronecker products and Hadamard products of positive
definite matrices involving Kronecker powers and Hadamard powers of linear combinat-

ion of matrices are given in complete details.
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Introduction

When most people multiply two matrices together, they generally use the conventional
multiplication method.

We consider two types of matrix multiplication, that are very interesting, these multipl-
ication are the Kronecker product and the Hadamard product.

In mathematics, the Kronecker product denoted by ® is an operation on two matrices
of arbitrary sizes resulting in a block matrix. The Kronecker product should not be conf-
used with the usual matrix multiplication which is an entirely different operation.

The Hadamard product denoted by o is a binary operation that takes two matrices of the
same dimensions, and produces another matrix where each ijth element is the product
of the ijth element of the original two matrices.

In chapter one, sections 1,2 and 3, I give some basic concepts from matrix analysis.
In section 4, I give some of the basic properties of the Kronecker Product, and show
The difference between matrix multiplication and Kronecker Products matrices, by
comparing some basic properties, also, we present the Kronecker sum of matrices, the
vec-vector.

At the end of this chapter in section 5, we present some properties of the Hadamard
products of matrices.

In chapter two, we analyze some inequalities for Kronecker products and Hadamard

products of positive definite matrices in all details.

vi



In chapter three, we analyze the Hadamard product of matrices of operators on [,,, and

inequalities for spectral radius of Hadamard products in all details.
Finally, in chapter four we put some applications of the Kronecker product, matrix

equations, and matrix differential equations.

vil



Index of Special Notation

R The set of all real numbers

C The set of all complex numbers

F Usually field (R or C)

M, Square matrix of size n X n

M n Matrix of sizem Xn

det(A) The determinant of the matrix A = [al- j] EM,
AT The transpose matrix of a matrix A

A Conjugate of A € My, ,,

A Conjugate transpose of A € M, ,,

At Inverse of a nonsingular A € M,

1 142
Az Square root of matrix such that (Az ) =A
tr A Trace of A € M,

1
| A| Absolute value [|aij|] or (AA*)z
o(4) Spectrum of A € M,,

p(4) Spectral radius of A € M,

A(a,p) Submatrix of A € My, ,

A(a) Principal submatrix

Vec(A) Vector of stacked columns of A € M, ,,
® Kronecker product

° Hadamard product

@® Kronecker sum

-4 [, norm

[l [, (Euclidean) norm, frobenius
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Nl oo l, (maximum absolute value) norm

-1, L, norm

{o:(A)} Singular value of A € M, ,
A eigenvalue of A

Cond A Condition number

X Column vector

U Unitary matrix

A The Hadamard inverse
Omnlij =1 The Hadamard identity
> Summation

I1 Product

A®¥ The k" Kronecker power
A% The k" Hadamard power
. The Hadamard sum

P, The positive definite matrices
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Chapter one
Preliminaries
1.1 Introduction
The contents of sections 1.1, 1.2, and 1.3 can be found in ref. [11].

Definition 1.1.1 If A = [aij] € My, then AT = [aﬁ] € M,, ,, is Called the transporse

of A and A*=[dji] € M, ,, iscalledthe adjoint transpose of 4, and the trace of A if

A € M,, is defined by trace(A) = ig‘.laii.

Theorem 1.1.1 Let A be an m X n matrix and let B be an n X m matrix then
trace(AB) = trace(BA).

Definition 1.1.2 If A € M,, then

(a) A is called Hermition If A* = A.

(b) A is called normal If A*A = A A™.

(c) A is called unitary If A*A = A A* = I,,, where [,, is an identity matrix of order n.

(d) A is called orthogonal if AT = A™1. Therefore, ATA=AAT =1,.

Remark 1.1.3 All unitany and Hermition matrices are normal.

2 0
0 2

1 -1

Example 1.1.1 IfA = [1 1

] € M, , then A*A = [ ], AA* = ?) (2)], therefore

A*A = AA*, thus A is normal.

Theorem 1.1.2 If A is a Hermition matrix, then its eigenvalues are real number.



Definition 1.1.3 A matrix A € M,, is called idempotent if A2 = A, and is called
nilpotent if A™ = 0 for positive integer n.
Definition 1.1.4 Let A € M,. A non-zero vector x in C" is called an eigenvector
corresponding to a scalar A if Ax = Ax. The scalar A is called an eigenvalue of A4,
the set of all eigenvalues of A is called the spectrum of A and is denoted by o (4).
Definition 1.1.5 The spectral radius of A is the non negative real number

p(A) =max {|A: L€ a(4) }.

Example 1.1.2 Consider the matrix A = [Z _12] € M,, then we have

|7—/1
4

1__ZA| =0, thus (7-1) (1 — 1) + 8 = 0, which gives A = 3,5, therefore
o(A) = {3, 5}, Hence p(4) = 5.

Theorem 1.1.3 Let A € M,,, then trace (A) equals to the sum of the eigenvalues of A
and det (A) equals to the product of the eigenvalues of A.

Theorerm 1.1.4  ( Schurs unitary Triangularization theorem )

Given a matrix A € M,, with eigenvalues 4, , ..., 4, in any prescribed order, then
there is a unitary matrix U € M,, such that U"AU =T where T = [ti, j] € M, is upper
triangular matrix with diagonal entries t;; = 4;, i =1,2,...,n.

Definition 1.1.6 The matrix P € M, is called a permutation matrix if each row and

column has exactly one 1, and zeros elsewhere.



0 0 0 1
100 01 0O
Example1.1.3 Let P=|0 0 1|, Q = 100 0 , P and Q are permutation
0 10 0 010
matrices.
Definition 1.1.8 (a) Let A € M, ,, forindex setsa S {1, ... ,m}andf S {1,

. ,n}, we denote the submatrix that lies in the rows of A indexed by a and the

columns indexed by 8 as A(a, ).

a b c b
Example 1.1.4 [d e f‘({1,3},{1,2,3})=[“ . C.].
g h i 9 !

(b) If m = n and a = f, then the submatrix A(«) is called a principal submatrix of A.

1.2 Norms of vectors and matrices

Definition 1.2.1 Let V be a vector space over a field (R or C).

A function |I. |I: ¥V — R is a vector norm if for all x,y € V, we have:

(M lhxl=0.

)l x =0 ifand only if x = 0.

G)llax = |a| Il x |l for all scalars & € (1.

@Dlx+yl<lxl +0yl.



Definition 1.2.2 Let X be a complex (or real) linear space. Then the function
(.,.) : X X X — C (or R) with the properties

(1) (x,x) 20,

(2) (x,x) =0 ifand only if x =0,

3) (xy) = ,%),

4 (ax + By, z) = alx,z) + (¥, 2),

forall x,y,z € X and a,pB € C (or R) is called an inner product space on X.

Example 1.2.1 ( vector norms)

(a) The Euclidean norm ( or I, norm ) on C™ is
2 2 23 - 2 1/
1 = (ol + gl + -+ 22 = (Z, 10l 2

n
(b) The sum norm (or [; norm ) on C*is || x [l;= |x1| + x| + -+ |xp]| = i§1|xi|.

(¢) The max norm ( or [, Norm ) on C"is || x ll,= max{ |x,|, ... ,|x,|}.

n Yp
(d) The I, Normon C"is Il x ll,= (Ellxilp) for o >P > 1.

Theorem 1.2.1 ( Holders Inequality )

Ifp > 1and g > 1 are real numbers such that % +% =1, then

n n 1/p n 1/q
YA .|p .14 1
eyl < (ZhalP) - (Znl?) 7, thatis lxyll < llelly lyllg



Theorem 1.2.2 ( Cauchy — Schwarz Inequality )

If <., .>isan inner product on a vector space V over field [, then
|<x,y>>?< <x,x><y,y> .Forallx,y €V,equality occurs if and only if
x and y are linearly dependent.

Definition 1.2.3 A function |I. || : M,, — R is said to be a matrix Norm if for all
A, B € M,, it satisfies the Following :

@IAll=0, IAll=0 & A=0.

®O)laAll=|al Il All, forallscalarsa € .

©IA+BI<IAIl +1BI.

@IABI<IAINNBI.

Some important properties of matrix norm are :

(a)IfAEM,, then |A*I<NAI*, k=>1.

G I I=1.

(c) If A € M,, is invertible matrix, then || A™ | = || A I71.

d)If A # 0 € M,, such that A> = A then || A || = 1.
n

n p
Example 1.2.2 Let A € M, , the p-Norm is defined by Il 4 ll,= (ijz=1|ai,-|”)

for 1 < P < oo, some special cases of the p-norm are :



n
(a) The l;-Norm defined for A € M, by [ A 1= X 1|ai j|. The maximum column sum
i,j=

n
matrix norm ||-|l; is defined on M,, by || A |l;= max X |aij|.
1<jsni=1

(b) The [,-Norm defined forA € M,, by || A ll,= max |ai j|. The maximum row sum
<i,jsn

n
matrix norm |||, is defined on M,, by Il A ll,= max X |aij|.
1<isn j=1

(c) In particular , when p=2 then

lAllp= (i,j%1|aij|2)1/2 = (tracelAlz)% = \Jtrace (A*A), is called the Frobenius
norm ( Euclidean norm ).
(d)The spectral Norm is defined by |l 4 Ils,= max { \/Z : L, €Ec (A*A )}.
Definition 1.2.4 Let X and Y be normed spaces andlet A:X — Y be a bounded
linear operator with a bounded inverse A™! : Y — X. Then Cond (A) =l A Il | A~ |,

is called the condition number of A.

For example the n X n invertible matrix A we have

A
Cond,(A) =l A ll, Il At |l,= M.

vV |/1min|
Definition 1.2.5 A matrix norm [|-|| is called unitarily invariant norm if || A || =]l UAV ||

For all A € M,, and all unitary matrices U,V € M,,.



1.3 Positive definite matrices
Definition 1.3.1 A Hermition matrix A € M, is said to be positive definite if
x* A x > 0 for all nonzero x € C*, and it is called a positive semidefinite matrix if

x*Ax >0forallx € C™.

Properties of positive definite (semidefinite) matrices :

(a) Any principal submatrix of a positive definite matrix is positive definite.

(b) The sum of any two positive definite (semidefinite) matrices of the same size is
positive definite (semidefinite).

(c) Each eigenvalue of a positive definite (semidefinite) matrix is a positive
(nonnegative) real number.

(d) For a Hermition matrices 4, B we write A > B if A — B is positive definite, similary
we write A > B if A — B is positive semidefinite.

(e) A Hermation matrix with positive (nonnegative) eigenvalues is positive definite
(semidefinite).

Definition 1.3.2 Let A, B € M,,, then B is a square root of 4, if B? = A.

Example 1.3.1

LetA = [111 111] € M,, be a Hermition matrix.



11-41 1

Then 1 11— 12

=0, thus (11 —2)(11—21) — 1 =0, which gives

A =10,12. The eigenvector for A = 12 is [1

1], and for A = 10 is [_11], so the matrix

of the eigenvectors is [1 11] Finally, we have to convert this matrix into an

1

orthogonal matrix by applying the Gram-Schmidt orthonormalization process on the

1 1
column vectors to give U = \/17 f , which is a unitary matrix. Thus
V2 V2
R 1 1 VI0+V12  V10-V12
A%z UD%U*= 2 V2| [Vv10 0 2 V2| _ 2 2
2 Al izl |2 2 VIo—viZ V10+V1Z|
2 V2 2 V2 2 2

Theorem 1.3.1 Let A € M,, be a positive semidefinite and let r > 1 be a given integer,

then there exists a unique positive semidefinite Hermition matrix B such that B" = A4,

written as B = A%.

Example 1.3.2 (1) If A € B, (positive definite matrix) with eigenvalues A, ,4,,... ,4,
then A = U dig(Ay ,Ay, ... ,Ay) U™, where U is a unitary matrix.

Q) If k=20, then A* = U dig (A} ,25, .. ,A%) U™

(3) The function calculus for A is defined as f(A) = U dig( f{(A,),f(X,), ... ,f(A,) )U".
Definition 1.3.3 A map ¢ : M,, — M,, is unital if ¢p maps unit element to unit eleme-
nt, i.e. ¢(I,) = 1,,,. ¢ is positive if ¢ maps positive element to positive element, i. e.

A>0= ¢(A)=0.



Definition 1.3.4 A map ¢ : P,, X P,, — P, is jointly concave if for any A, B,C,D €

P,andany0 <e <1, Y(eA+(1—¢€)B, eC+(1—¢€)D)

>eP(4,C0)+ (1 —-e)yY(B,D).

Definition 1.3.5 Let A € M, ,,, (m = n). Let the eigenvalues of the m X m symmetric

matrix A*A be denoted by al-z, i=1,2,.. ,n. Where 012 > 022 > 0'32 > ..
> o2 ,then a0y, 0;,... ,0y,are called the singular values of A.
2 1 0 2 0 4 2 0
Example 1.3.3 LetA=[O ) 2], thenA* = [1 2|, thusA’A=[2 5 4.
0 2 0 4 4

The eigenvalues of A*A are 0,4 ,9. Thus the singular values are 0,2, 3.

Theorem 1.3.2 ( Singular value Decomposition )

Let A € M, ,, has rank r and let {0;}{-, be the nonzero singular value of 4, then A can
be represented in the form A = U D V* where U € M,;, and V € M,, are unitary and the
matrix D = [Gi']—] € My, 035 =0 foralli # j, and 071 = 055 = ... =0 =
Ortir+1 = ' = 0gq = 0. where q = min{m,n}, the numbers {o;;} = {0;} are the

singular values of A € M,,, ,,.



Theorem 1.3.3 ( Polar Decomposition )
Let A € M,;, ,, withm < n. Then A may be written in the form A = PU, where

P € M,, is positive semidefinite, rank p = rank A, and U € M,,, ,, has orthonormal

rows (that is UU* = I ). The matrix P is always uniquely determined as P = ( AA*)%,
and U is uniquely determined when A has rank m . If A is real then P and U may be

taken to be real.

1.4 The Kronecker product of matrices

Leopold Kronecker was a German mathematician was born in liegnitz, Prussia ( Dece-
mber 7,1823-December 29,1891 ).

In mathematics, the Kronecker product denoted by ® is an operation on two matrices
of arbitrary size resulting in a block matrix. The Kronecker product should not be conf-
used with the usual matrix multiplication which is an entirely different operation.

Definition 1.4.1 LetA = [aij] € My, ,and B = [bi]-] € M, 4. Then the Kronecker

allB b alnB
product of A and B is defined as the matrix A®B = [ : : ‘ = [ai]-B] €
amlB e amnB
M p,ng, and has mn blocks.
_ 2 4 _ o
Example 1.4.1 Let A = [3 0 1], and B = [3 2], then

10



1 0 2 0 4 O
B 2B 4B _[3 2 6 4 12 8
A®B_[3B 0 B]_3000 1 of
9 6 0 0 3 2
1 2 4 0 0 O
And B®A = [3AA (2)2] = g g 112 (2) 2 g , thus A®B # B®A, in general.
9 0 3 6 0 2
B 0 O 0
0 B O 0
AlsoifA=1,, then AQB=|0 0 B 0|, of size n? X n? where B € M,,.
0 0 0 B
b1 0 bin 0 T
And B®A = , of size n? X n?.
b, 0 bon 0
0 by 0 bnn

We note that if A =1,, ,B = I, , then [,,®1,,, = I,,,,. For example

[1 0 0 0 O 0]
0 1.0 0 0 O
1 0 0
1o lo o100 0
IZ®I3_[0 1]®[8 8 }]_0 0 01 0 Of
[O 0 0 0 1 OJ
0 0 00 01
And if x € C™, y € C", then x®yT = [x1y, %3V, .., xXpyI"

X1Y1 0 X1Yn

XmY1 - XmYn

]=xyT =< x,y > € My,

11



The following theorem states some basic properties of the Kronecker Product :

Theorem 1.4.1.[7] Let A € My, , then :

(@) (@A)®B = a (A®B) = A®(aB) ,foralla € Fand B € M, 4.

(b) (A®B) ® C=A® (B® C),for B € My, , and C € M, .

(c) (A+B)®C = (A®C) + (B®C) for B € M, , and C € M.

(d) A®(B + C) = (A®B) + (A®C) forB,C € M q.

(e) (A®B)" = AT®B" for BEM,,.

(f) (A®B)* = A"®B* for B € M,,,,.

(g) 0®A = A®0 = 0.

i1
Proof:a) (¢A)®B = |a |
dm1

aaq, B

aa, B

aaq B

aa, B

¢) (A®B)" = [a;B]"

a1 B

f) (A®B)" =

a1 B

aa,B

ad,,B

aa,B

aay,, B

a1 B
a .

am B

[anaB

am1aB

= [a;BT] = AT®B.

a,B1

amnB

12

[@B*

a1, B”

Xaq1p
: ] ®B

AAmn

a1 B
= a (A®B)

A B

a,aB
= A®(aB).

Amn0B

a1 B”
= A"®B".

AmnB*



0A - O0A

g) O®A = :
0A -+ 0A

In the following, we will see the difference between AB and A®B, it is known that if
A€My ,B €M, and AB = 0, it is not necessary that A = 0 or B = 0, but the
following corollary shows that if AQB = 0, then either A =0 or B = 0.

Corollary 1.4.2 Let A € M, , and B € M, ;. Then A®B = 0, if and only if either

A=0 orB=0.

a; B a;nB 0O - 0
Proof : if A®B =0, then [a;B]=| i =~ i [=]: =~ i
amlB amnB o - 0

SoB=0ora; =0foralli=1,.. ,mand j=1,.. ,n, thus either A = 0 or

B =0.

Conversely, let either A = 0 or B = 0. Then by theorem (1.4.1 (g) ) then AQB =0.m
Theorem 1.4.3 ( The mixed product rule )

LetA€Mp,,BEM,,,C €M, andD € M then (A®B) (C®D) = (AC ® BD)

p.q’
Proof : (see ref [13]). m
Theorem 1.4.4. [1] IfA € M, and B € M, are normal matrices then,

A®B is normal.

Proof : (A®B) (A®B)* = (A®B) (A*"®B*) ( by theorem 1.4.1 (f))

13



= AA* ® BB* ( by theorem 1.4.3)

= A"A®B'B ('since A and B are normal )

(A*®B*)(A®B) ( by theorem 1.4.3)

- (A®B)" (A®B). m

From the mixed rule product, we have the following corollaries :

Corollary 1.4.5. [7] If A € M,;, and B € M,, are nonsingular, then A®B is also
nonsingular, with ( A®B )'1 =A"l® B~ 1.

Proof: (A®B) ( A'® B™1) = (AA"H)® (BB™!)  (by theorem1.4.3)

=(n ®L,) = Iy,

(A'®B™1)(A®B)=A1A)® BB =, ®1,) = Inn.

Thus A"'® B~! = (A®B ) ! under conventional matrix multiplication , so A®B is
nonsingular. m

Corollary 1.4.6 If A € M,, is similar to B € M, and C € M,, is similar to D € M,, then
A®C is similar to BRD.

Proof : Since A is similar to B and C is similar to D , there exist nonsingular matrices
P, Q such that A= PBP"'and C = QDQ}, so

A®C = (PBP7') ® (QDQ™)

= (P®Q) (BP"1 ®DQ!) ( by mixed product rule )

14



(P®Q(B®D)(P71®Q™1) ( by mixed product rule )

(P®Q)(B®D) (P®Q)~*  (by corollary 1.4.5).m

The following corollaries present the orthogonal and unitary properties of Kronecker
product in the usual sense :
Corollary 1.4.7 1f A € M,, is orthogonal and B € M,;, is orthogonal then A®B is
orthogonal matrix.
Proof : A and B are orthogonal, so AAT = 1,, and BBT =1,
Using theorem (1.4.3), (A®B)(A®B)T = (A®B)(AT®BT) = AAT®BBT
= [,®l, =i
Therefore A®B is orthogonal. m
Corollary 1.4.8 Let U € M,, and V € M, be a unitary matrices , then U®V is a unitary
matrix.
Proof : U and V are unitary implies U™! = U* and V™! = V*. Using corollary (1.4.5)
UeV)1=01Vv!l=U"®V*= (U®V)*. Therefore URV is a unitary matrix.m
Theorem 1.4.9. [7] If A € M, and B € M, , then tr(A®B) = tr(A) tr(B) = tr(B®A).
Proof : tr (A®B) = tr (a;1B) + tr (a;,B) + ...+ tr (a,,B)

=aptrB+axptrB+ -+ ay,trB

=(all+a22+"'+ann)trB

15



=trA trB.

Consequently, tr (A®B) = (tr A)(tr B) = (tr B)(tr A) = tr (B®A). m

Remark 1.4.1 By theorem (1.4.9) tr(A®B) = tr(A) tr(B), if A and B are square

matrices, but if A € M, B € M, then tr(A®B) # tr(B®A) in general as will see

in the following example :

2 4 -1 -2
0 6 0 -3
4 10 -2 -=5f
2 -2 -1 1

Example 1.4.2 LetA=[2 -1], B= , then A®B =

RN O P

2

3

5
-1

2 -1 4 -2
0 0 6 -3
4 -2 10 -5
2 -1 -2 1

And B®A = . Therefore tr (A®B) = 7, and tr (B®A) = 13. m

The mixed product rule can be generalized in two ways as will see in the following

theorem :

Theorem 1.4.10 If A, A,, ...,Ap € M, and By, B,, ..., Bp € M,,, then

(2) (A;®A;® ..®A, ) (B;®B,®..®B, ) = A;B;®A,B,® ... ®A,B,,.

(b) (A;®B;) (A;®B;) ... (A,®B,) = (AA,; .. A, )®(B;B, .. B, ).

Proof : We use mathematical induction to prove (a) and (b).

(a) Let p = 2, so by the mixed product property (A;®A,) (B;®B;) = A;B;®A,B,.

Assume that ( A; ®A,® ... ®A,, ) (B;®B,® ...®B, ) = A;B;®A,B,® .. ®A,B,,.
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Now , ( A;®A;® ... ®A;®Ap41 ) (B1®B® ... @B, ®B41)

= [(A1®A;® ... ®A,) ® Apyq | [(B1®B2® .. ®B; ) ® Byy.4]

= [(A;®A,® ...QA,) (B;®B,® ...®B,)] ® [Anss Bnis]  (by theorem 1.4.3 )

= [A1B1®A;B;® ... ®A;B,]® [Any1 Bpy1] = A1B1®A;B;® ... ®A; B ®Ap 1By

(b) Let p = 2, so by the mixed product property (A;®B;)(A,®B,) = (A;A,)®(B;B,)

Assume that (A1®B1) (A2®B2) (ATL®BH) = (AlAZ ATL )®( BlBZ BTl )

Now (A;®B;) (A,®B3) ...(A,®B;) (Ap+1®Bpyq)

= [A1®B;) (A2®B5) ...(Ay®Bp)] (An11®Bpyq )

= [(A1Az ... Ay )®(B; B, ... B, )] (An11®Bpy1)

=[(A1A, ... A)A+1] ®[(B;B; ...B,, )B,1] ( by mixed product property )

= (A1A; ... ARAL)®(BB; ...ByByyy ). B

Corollary 1.4.11 LetA € M, and B € M, .

(a) if A and B are idempotent then A®B is an idempotent.

(b) If A and B are nilpotent then A®B is nilpotent.

Proof : (a) A and B are idempotent then A> = A, B? = B, so

(A®B)? = (A®B) (A®B) = (AA) ® (BB) = A’®B’ = A®B.

(b) A and B are nilpotent then A™ = 0,B™ = 0. So,

(A®B)" = (A®B)(A®B) ... (A®B) = (AA...A)®(BB..B) = A"®B" = 0® 0 = 0.
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Theorem 1.4.12. [13] Let A € M, and B € M,, , then
(@) (A®D¥ = A®I and (I®B)X = I®BX, k=1,2, ...
(b) For any polynomial p(t) , p(A®I,,) = p(A) ® I, and p(I,®B) =1, ® p(B).
Proof : (a) (A®D* = (A®D(A®]) ... (ARI)
=(AA .. A)® (I .. I) (bytheorem 1.4.10 (b))
= A*Q®L
And (I®B)X = (I®B)(I®B) ... (I®B) = (11 ...D® (BB ...B) = I®BX
(b) Let p(t) = ag + a;t + ayt?+ ..., so

p(A) = apl, + @A+ aA%? + ... = kgOakAk , A =1,.
Now, p(A®ly) = X ax(A®ly) = % ax(A“®ly) (by parta)
= kgo((akAk)@)lm) ( by theorem 1.4.1 (a) )

= (kEO(akAk)> Bl = P(A)® Iy -

Similarly, we can prove that p(I,®B) =1, ® p(B) . =

In the following lemma shows that the Kronecker product of two upper triangular
matrices is also upper triangular.
Lemma 1.4.13.[5] IfA € M, and B € M,,, be upper triangular then A®B is upper

triangular.
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Proof : A and B are upper triangular, then A = [ai]-] where a;; = 0 fori >j and

B= [bpq] where b,; = 0 for p > q. By definition,

a11B b alnB] [allB b alnB

A®B=[ ].So,[aijB]=0 for i > j

ap B -+ ap,B 0 -+ apyB

since aj; = 0 for i > j. Now the block matrices a;;B are upper triangular since

B is upper triangular, hence A®B is upper triangular.m

The following theorem shows the relation between o (A) ,6(B) and o (A®B) :
Theorem 1.4.14.[13] Let A € M,, and B € M, if 1 is an eigenvalue of A with corres-
ponding eigenvector x € F" and if u is an eigenvalue of B with corresponding eigenve-
ctor y € F™, then A u is an eigenvalue of A®B with corresponding eigenvector
x@yeF™ Ife(A)={A4,...,4,3and o(B) ={uy,..., Uy}, then

o (A®B) = {)ti pjii=1,..,n,j=1,.., m} (including algebraic multiplicities).
In particular, 0 (A®B) = o (A) o(B).

Proof : Suppose Ax = Ax and By = uy, for x,y # 0. Now by the mixed

product property

(A®B) (x®y) =(AX)®(By)= x@uy = 1u(x®Yy).

By schurs triangularization theorem, there exist unitary matrices U € M, and V € M,,,,
such that U*AU = T, and V*BV = Tg where T, and Tg are upper triangular matrices

Then by theorems 1.4.1(f) and 1.4.10 (b) (URV)*(A®B)(U®V) = (U*AV)®(V*AV)
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= To®Tg, is

upper triangular and is similar to A®B. The eigenvalues of A, B and A®B are exactly
the main diagonal entries of T4 , Ty and T, ®Tg respectively , and the main diagonal of
T, ®Tg consists of pair wise products of the entries on the main diagonals of T4 and Tg.
Corollary 1.4.15 Let A € M, and B € M,,. Then p(A®B) = p(4) p(B).
Proof : Assume that {4, ,...,4,} and {u;,..., Uy} arethe eigenvalues of A € M,,

and B € M,,,, respectively. Then we have
p(A®B) = rl.na]x{l/li wil} = (ml.ax |2 I) (mjax |uj|) = p(A) p(B). m
Corollary 1.4.16.[7] If A € M,, and B € M, , then det (A®B) = (detA )™ (detB)".

n m m m m
Proof : det (A®B) = 11 11 (2 n;) = (”1”]-91 uj)(x;njgl uj) . (x;ngl uj)

n m
= (I A" (I )™ = (ada e A)™ (Haz - - - )" = (detA)™ (detB)". m

Corollary 1.4.17 If A € M,, and B € M,,, are positive (semi) definite Hermitian matrices
Then A®B is also positive (semi) definite Hermitian .

Proof : (seeref[13] ).m
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In the following theorem prove the relation between ( S.V.D ) of 4, B and A®B :

Theorem 1.4.18. [13] Let A € My, , and B € M,, 4 have singular value decomposition

A = V,D,Wj and B = V,D,W;, where D; = [0;;(A)] € My, D, = [0;;(B)] € M, 4,
and let rank A = r; and rank B = r,. Then AQB = (V; ® V,)(D; ® D,)(W; @ W,)".
The nonzero singular values of A®B are the ryr, positive numbers { 6;(A)c;(B) :
1<i<r;,1<j<r,} (including multiplicites ). Zero is a singular value of AQB
with multiplicity min{mp , nq} - r;r,. In particular, the singular values of A®B are the
same as those of B®A, and rank (A®B) = rank (B®A) = r; r,.

Theorem 1.4.19. [2] IfA € M, and B € M,,,,, . Then for all p-norms || A@B || =
HANNBI.

Proof : ( Case 1) For Frobenius norm, || A@B llg=1l Allg Il B llg.

| A®B ||2= tr[(A®B)(A®B)*] = tr[(A®B) (A*®B*)] (by theorem 1.4.1 (f))

=tr (AA* ® BB*) ( by Theorem 1.4.3)

=tr (AA*)tr (BB*) =tr (A*"A) tr (B*B) ( by theorem 1.4.9)

=lAIZIBIZ= (1A Nl Bllg)?. Therefore | A®B llg=1lAllgll B llg.

Now for the 2-norm ;

IA N 1B llz = YAmax(A) Anax(B) = /2max (A®B) = Il A®B ll,.

(Case 2) The max-norm, || A®B llmax= Il A llmax | B llmax
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na ng mp

| A®B llpax = max = |a,;,B| = max Y

1<jasng ig=1 1<jasng, 1<jpsmp iz=1ig=1

|aiAjAbiBiB |

mp
|alA]A| 1;?_BC§.¥LB leillblB]Bl = " A "max " B "maX.

A
= max X
1<jasng ig=1

(Case 3) The co-norm is similar to the max-norm except the largest absolute row sum is

used rather than the largest absolute column sum, by taking the transpose.

(Case 4) The spectral-Norm || AQB llsp,= max { si(A) s;(B) }
i, J

= (max {5,(a))) (mcjzx {5,(B) }) =1 A llgy Il B llsp. m

Corollary 1.4.20.[2] IfA € M, and B € M,,, are nonsingular, then cond(A ® B)
= cond(A) cond(B).
Proof : cond(A® B) =|| AQB Il | (A®B)~* ||

= A@B Il | A"*®B~ ||  (by corollary 1.4.4)

=l ANNBINATNI B I= cond(A) cond(B). m

The following will concern the Kronecker sum of matrices :
Definition 1.4.2 Let A € M,, and B € M. Then the Kronecker sum of A and B is the
mn-by-mn matrix denoted by (A @ B) and definedas A @B = (I,,®A) + (B®I,).

the following example shows that (A @B) # (B @ A) in general.

1 2 3 -
Example 143 LetA={3 2 1| and B=[> _|.Then
1 1 4 23
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32 3 100

3410 1 o]

— |11 1.6 0 O 1|
lO 2 0 3 5 1|

|-0 0 2 1 1 7J

31 2 0 3 0

[2 4020 3]

— _13 0 4 1 1 0|
B@A—(I3®B)+(A®12)—|O 2 2 5 0 1]
[1 0 1 0 6 lJ

010 1 2 7

We saw the Kronecker product of two matrices A and B has as its eigenvalues all possi-

ble pairwise products of the eigenvalues of A and B. The following theorem shows that

the Kronecker sum of A and B has as its eigenvalues all possible pairwise sums of the

eigenvalues of A and B.

Theorem 1.4.21 Let A € M, andB € M,,. If 2 € 6(A) and x € C" is a correspon-

ding eigenvector of A, and if 4 € 6(B) and y € C™ is a corresponding eigenvector of

B, then A+ u is an eigenvalue of the Kronecker sum (I, ®A) + (B®I,,) and y®x €

C™™ is a corresponding eigenvector of the Kronecker sum. In fact c(A@B) = o(A) +

o(B).

Proof : (seeref[13]).m

Remark 1.4.2. [13] Let A € M, and B € M,,,, then [, ®A commutes with BRI, .

Proof : (I, ® A) B® 1) = (IxB) ®(Al,) =B®A = (Bly,) ® (I, A)
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=BQI,) (Ih®A). =
Theorem 1.4.22 Let A € M,, and B € M,,, be a matrices then tr(A@B) = m tr(A) +
n tr(B).
Proof : tr(A ®B) = tr((I,®A) + (BQI,) )

= tr(I,®A) + tr(B®I,)

= tr(I,) tr(A) + tr(I,) tr(B) ( by theorem 1.4.9)

=mtr(A) + ntr(B).m
Theorem 1.4.23 Let A€ M, and B € M,,. Thenfor 1< p < oo,

IlA®@B Il , < Vn Il A l,+ Vm I B llp-

Proof: | A®@B Il , = Il (I,®A) + (B®I,) ll, < Il [,®A ll,+ | Bl I,

=0l TA N+ 1T B Iy I ( by theorem 1.4.19)

= Vn lAll,+ ¥Ym B, =

We consider members of M,,,,, as vectors by ordering their entries in a conventional way

from left to right , which is given in the following definition :
Definition 1.4.3 Let A = [ai]-] € M,,,, We associate the vector vec A € F™" defined by

_ T
VecA =1[ay; ,.,am1,312,>3mz s =»A1n » > Amnl -
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Remark 1.4.3.[6] LetA,B € M, and o, 8 € F. Then Vec (aA + BB) = aVec(A) +

BVec(B).
xagq + Bbll adqy + Bbln
Proof : Vec (aA + BB) = Vec | X% ‘!‘ﬁbm B -l-ﬁbZn
aam1 + ﬁbml aamn + ﬂbmn

= [@a;; + Bbyg ;e , @Gy + Lbiyy s o » @1y + Bbiy s oo, @Ay + Bbyn 1T
= [@ayq, «vo) Aypy, o) AQygy ooy @] T + [BD11 s ooy BBt » ooes BB1n » woos By ] T

=a[a1q, . Qmis s Qin s s @mnl L+ B D115 oes Pyt s s Pin s woes Pyml T

= aVec(A) + BVec(B). m

The next theorem indicates to the close relationship between the Vec-vector and the
Kronecker Product :

Theorem 1.4.24.[13] Let A € Mp,,, B € Myq and X € Mp;,, then Vec(AXB) =

np:
(BT®A) Vec(X).
Proof : Denote the K-th column of AXB by (AXB)y . Then (AXB)y = A(XB)yx =

X11b1k + Xq2boy + o + lebpk
AXBy. This implies that (AXB), = A4 :
anblk + Xn2b2k + -+ anbpk

le

X1p X11

X12

X11

:A b1k+ b2k++ bpk :blkA ++bpkA

Xn1 Xn2 Xnp Xn1 Xnp

= [b1A , DA, ..., bprA] Vec(X) = (Bf®A) Vec(X) fork =1,2,.. ,q. So,
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BT®A

Vec(AXB) = |B2 ®A Vec(x) = (BT®A) Vec(X). m

Bg ®A

Corollary 1.4.25.[7] Let A€ M, ,B € M, and X € M,,. Then
(a) Vec(AX) = (I,,®A) Vec(X).
(b) Vec(XB) = ( BT®I,,) Vec(X).
(c) Vec(AX + XB) = (A®BT) Vec(X).
Proof : (c) Vec(AX + XB) = Vec(AX) + Vec(XB) (by remark 1.4.3)

= Vec(AXI,,) + Vec(I,XB)

= (I,®A) Vec(X) + ( BT®I,) Vec(X) (by theorem 1.4.24)

= (U,®A) + (BT®,,) ) Vec(X)
= (A®BT) Vec(X) ( by definition 1.4.2 ).m
Corollary 1.4.26.[7] Let A € M,,, and B € My,. Then Vec(AB) = (I,®A) Vec(B) =
(BT®A) Vecl, = (BT®I,,) VecA.
Proof : Vec(AB) = Vec(ABI,) = (IF®A) Vec(B) ( by theorem 1.4.24)

= (I,®A) Vec(B).

Next, AB = Al,B is equivalent to Vec(AB) = (BT®A) VecI,,. Finally AB = 1,,AB

is equivalent to Vec(AB) = (BT®I,,,) VecA. m
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The following lemma describes the relation between VecA and VecAT :

Lemma 1.4.27.[13] Let A € M,,,,,. Then VecAT = P VecA , where P € M,,,, is a perm-
m n

utation matrix this matrix P is given by P = '21 .Zl(Ei j®Ei7;-) where each E;; has entry 1
=1 j=

in position 1,j and all other entries are zero.

The previous lemma leads us to the following theorem :

Theorem 1.4.28. [13] Let A € M, and B € M, . Then A®B = P;(B®A)P, where
Py, P, are permutation matrices such that P, € My, , P, € Myg.

Proof : Let Y = AXBT, where X € Mpq. Then YT = BXTAT. So VecY = (B®A) VecX
And VecYT = (A®B)VecXT ( by theorem 1.4.24).

But VecYT = P,;VecY, where P, € M, is @ permutation matrix, and VecX = P, VecXT

Where P, € M,,, is a permutation matrix. So,

ng
(A®B)VecXT = VecYT = P,VecY = P;,(B®A) VecX, i.e
(A®B)VecXT = P,(B®A) VecX . But VecX = P, VecXT, so
(A®B)VecXT = P,(B®A)P, VecXT, for all XT € Mgn and this implies
A®B = P;(BRA)P,. m

Corollary 1.4.29 Let A € My, and B € Mpq. Then || A®B II=Il B®A |l for any

unitarily invariant norm |||l on Mmp_nq.
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Proof : || A®B |l =1l P,(B®A)P, Il

= | BRA

Since P; , P, are unitary matrices.

1.5 The Hadamard product of matrices

The Hadamard product is a binary operation that takes two matrices of the same size,
and produces another matrix where each element ij is the product of element ij of the
original two matrices.

Definition 1.5.1 The Hadamard product of A = [ai]-] € M,,, and B = [bi]-] € My, is

defined by Ao B = [aj;b;;] € My,

2 3 i -1 9 6
Example 151 If A=|-1 7 9] and B:[Z —5 0. Then
3i 0 =5 -i 1 =2
-2 27 6i
AoB=[—2 -35 0].
3 0 10

The following theorem Shows the set of m X n matrices with nonzero entries form an
abelian group under the Hadamard product :
Theorem 1.5.1 [14] Let A,B € M,,,,. Then Ao B = BoA.

Proof : Let A and B be m X n matrices with entries in C. Then [A o B];; = [ai]-bij]
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=[bl~jal~j] = [BoA ];; and therefore AcB= BoA. m

Definition 1.5.2 The Hadamard identity is the m X n matrix J,,,defined by [J;n];; = 1
foralll<i<m, 1<j<n

Theorem 1.5.2 [14] Let A € M,,,. Then Aoy = Jmn © A = A.

Proof : [A°]mnlij = Umn©Al;j (by theorem 1.5.1)

= []mn]ij [A]ij ( by definition H.P )

(1) [A];; (by definition HID )
= [A];;. Therefore Ao, =A.m

Definition 1.5.3 Let A € M,,,,, and suppose [A];; # O foralll1<i<m , 1<j<n.

Then the Hadamard inverse denoted by A is [K]ij = ([Al;) ' = aiu ,a;; # 0

for 1<i<m,1<j<n

Theorem 1.5.3 [14] Let A € M, such that [A]; # O forall1 <i<m, 1<j<n.
ThenAoA=2AoA =],

Proof: [AcA] =[AcA]  (bytheorem 1.5.1)
= [Z\]U [A];; (by definition H.P )

=([Al;;)" [Al;j = 1= [mnlij-

Therefore AcA=AocA=],,.m
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The following theorem states some basic properties of the Hadamard Product :
Theorem 1.5.4 [14] Suppose A,B,C € Mp,,,, then
(a)a(AeB)=(aA)oB=Ao(aB) , foralla€F.

(b)Ce(A+B)=CoA+ C oB.

() (AoB)T = AT o BT,

Proof : (a) [a (A°B)];; = a[A°B];; = a[A];; [B];j = [ad];; [B];; = [(aA) o B];
So, a (A°B) = (a¢A) o B. And

[a (A°B)];j = a[AoB];; =alAl;; [B]ij = [Al;; a[Bl;j = [Al;jlaB];;

= [A o (aB)];;j. Therefore a(AoB) = Ao (aB).

(b) [C o (A+ B)]y; = [Cly [A+B]y; = [Cly; ( [Al;; + [Bly)

= [C];;[Ali; + [Clij Bl

[C o A];; + [C o BJj;
= [C oA+ C oB];.
Therefore Co(A+B)= C oA+ C oB.
(©) (Ao B)T = [Ao B];l; = [Ao B]ji = [A]ji [B]ji = [A]iTj [B]iTj = A"oB". m
From the previous results, we conclude the following corollary :
Corollary 1.5.5 IfA,B € My, then (Ao B) =A B such that [4];; # 0 and

[Bl;; # 0.
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Proof : [AoB]; [A o ﬁ]ij = ([4];; [B];)) ([K]ij [ﬁ]ij)

- ([A]if [A]ij) ([B]if [E]ij)
= [mnlij Umnlij (by theorem 1.5.3)
1. 1=1=],,.

Therefore, (A oB) = ([A° Bl;)™'= (A°B).m

Remark 1.5.1 Let A,B € M,,, if A and B are diagonal matrices then A o B = AB.

all “ee O b11 oo 0
Proof: AeB=| : I BCH :
0 - ap 0 byn
ai1byq 0
= : =AB.m
0 annbnn

The following theorem gives the relation between diagonal matrices and the matrix
products on the Hadamard multiplication :
Theorem 1.5.6 [14] IfA,B € M,,,,, and if D € M,, and E € M,, are diagonal then

D(A o B)E = (DAE) o B = (DA) o (BE).

Proof : [D(4 © BEL;; = X [Dluc [(4 * B)Ely

m n
= k§1 151 [D]ix [A © Blyy [E]);
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m n
= 2 X [Dli[Ali [Blia [E]; (Dy definition HP )

2 [Dly [Alyg [Bly [Ely; ( [Ely =0 forall 1 # )
— [Dly [Al; [Bl; [E];  ( [Dly=0 foralli %k )
= [Dlyi [Aly [El; [Bj
= D) ( 2, (Al [Ely ) [Bly  ( [El;=0 foralll+ )
= [DI; [AE]; [Bl; ( by theorem entries matrix products )
= (X Dl [AE]g ) [Bl;  ( [Dlyc=0 foralli=k )
= [DAE];; [Bly = [(DAE)oB)]; . Therefore D(A o B)E = (DAE) o B.
Also,
[(DAE) Bl = [DAE];; [Bl; = ( % [DALy [Eli; ) [Bl;
— [DAl;; [E];; [Bly ( [Ely =0 forallk )
= [DA];; [Bly[E];
= (DAl (2, [BlulEle; ). [Elg=0 forallk # .
= [DA];; [BE];j = [(DA) » (BE)];;.

Therefore, D(A o B)E = (DA) o (BE). m
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Definition 1.5.4 Define the diagonal matrix D, € M,, with entries from a vector x € C"

%, if i = j
by [Delyy = '{[o] ifi # j]

Theorem 1.5.7 [13] Let A, B € M,,,, and let x € C™. Then the i th diagonal entry of the
matrix AD, BT coincides with the i th entry of the vector (Ao B)x, i=1, ... ,m.

Proof : If A = [aij], B = [bij] and x = [x;], then

n n
(ADxBT)L'i = ]Elaijijij = ]Elaijbijxj = [(A o B).X']i ) for i = 1, ... ,mn

The following lemma relate the Hadamard product to the Kronecker product by identif-
ying A o B as a submatrix of AQB.

Lemma15.8 [13] If A,B € M,,, then Ao B = (A®B) («,B) in whicha={1,
m+2,2m+3, .. ,m?}and B={1,n+2,2n+3, .. ,n%}. Inparticular if
m =n, Ao B is a principal submatrix of AQB. m

Theorem 1.5.9 If A, B € M,,,, then rank(A o B) < (rank A )(rank B).

Proof : By lemma 1.5.8 the Hadamard product is a submatrix of the Kronecker product,
but the rank of the submatrix is not greater than the rank of the matrix, thus

rank(A o B) < rank(A®B) = (rank A)(rank B).  ( by theorem 1.4.18)
Therefore rank(A o B) < (rank A )(rank B). m

Theorem 1.5.10 [13] LetA,BE M,,, A= 0,and B > 0, then p(4 o B) < p(A) p(B).
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Proof : We have p(A®B) = p(A) p(B), by corollary (1.4.16). But AQB > 0 and
A o B is a principal submatrix of AQB by Lemma (1.5.8),
p(AoB) < p(A®B) = p(A) p(B). Therefore,

p(AoB) < p(A)p(B).m

Based on lemma (1.5.8) we will give the proof of the schur’s product theorem in a new
style as follows :

Theorem 1.5.11 ( schur’s product theorem )

If A, B € M, are positive semidefinite, then A o B is also positive semidefinite.

Proof : A,B = 0 given, it follows that AQB > 0 ( by corollary 1.4.17 ) , but

A o B is a principal submatrix of AQB (bylemma 1.5.8). So, AceB=>0.m

The following theorem compares the determinant of the matrices A,Band Ao B :
Theorem 1.5.12 [12] ( Oppenheins inequality )

If A,B € M, are positive semidefinite, then

n
1) det (A)Hl bii < det (A ° B)
i=

n
2) det (B) 'H1 a;; < det (Ao B).
l=
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Theorem (1.5.12) implies the Hadamard'’s inequality in the usual way as follows :
Theorem 1.5.13 [12] ( Hadamard’s inequality )
n
If A € M, is positive semidefinite , then det(4) < _Hl a;;.
1=

Proof : Let A be any positive semidefinite matrix of size n. Note that I, is positive
semidefinite matrix of size n. Now we have the following

det(A) = [I,]11 - Uplpn det(A) < det(I,,oA) (by theorem 1.5.12)
n
= [A]ll [A]nn = i£[1 a;.m

Corollary 1.5.15 [12] Let A, B € M,, are positive semidefinite . Then
det(A) det (B) < det (A o B).
Proof : det (Ao B) = [A];1 ... [A]., det(B) ( by theorem 1.5.12)

> det(A) det (B) ( by theorem 1.5.14 ). m
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Chapter two
Inequalities for Kronecker products and Hadamard products
of positive definite matrices

In this chapter, we will see some inequalities for Kronecker products and Hadamard
products of positive definite matrices. The contents of this chapter can be found in [10].
2.1 Introduction
The following property involving Kronecker products of matrices can be derived from
The mixed-product property ( 1.4.3).
Theorem 2.1.1 Let A € M,, and B € M,,,, then (A®B)* = A*®B* for any natural num-
ber k.
Proof : (A®B)* = (A®B) (A®B) ... (A®B) (k- times)

=(AA .. A) ® (BB .. B) (bytheorem1.4.3)

= A* ® B*. m
Corollary 2.1.2 Forany A,B € P,, and q € Q, we have (A®B)? = AT®B1.

Proof : A,B € P, so
(A®B) = (A" @ BY/™)", for any positive integer n, so it follows that
(A®B)'/n = AP @ BY/™ Now (A®B)"/n = A™/™ ® B™/" for any positive integer

m, n. Therefore (A®QB)? = A1®B1 for any q = % EQ m
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The following lemma generalizing theorem ( 2.1.1) :
Lemma 2.1.3 Let A € M,, and B € M,,, are positive definite matrices. Then for any
non-zero real number r
(A®B)" = A"®B".

Proof : A, B are positive definite matrices, assures that there exists unitary matrix U
and V, such that
A =UD,U", where U is a unitary matrix and D, = diag (A, ,Ay, ... ,Ay).
B =VDgV*, whereV is a unitary matrix and Dg =diag (Ly , Uz, - , Um)-
Thus, (A®B)" = [(UD,U")®(VDgV)]"

= [(U®V) (D,®Dg) (U*®V*)]" (by theorem 1.4.3)

= UQV) (D,®Dg)" (U'®V*)  (by(2)in example 1.3.2)

= (U®V) (D,"®Ds") (U'®V")

=WUD,U*) ®(V Dg" V") ( by theorem 1.4.3)

= A"®B".m
Remark 2.1.4 Let A € M, and B € M,,, are matrices with polar decomposition (i.e)
A = Up|A] and B = Ug|B| . Then A®B = U, |A| ® Ug|B|

= (Ua®Up) (1Al ® B]) (by theorem 1.4.3 )

= (U,®Up) [(A*A)§®(B*B)§ )] (where |A] = (A*A)%, IB| = (B*B)z )
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= (U,®Up) [(A*A)@(B*B)]% , [(A®B)" = A"®B" for any positive real number r]

= (Ux®Up) [(A'®B") (A®B)]z = (Uy®Up) [(A®B)" (A®B)]: = (U,®Us) |A®B|.

Lemma 2.1.5.[3] A map ¢ defined by $(A,B) = (A1 +B 1)1 for4,B € P, is
jointly concave.

Theorem 2.1.6. [3] The following identity holds for any A,B € P,, and s > 0 :

((s"1A®D ! + (I®B)~1)~* = (A®B1) ((A®B™) + (sI®D)) " (I®B).
Proof : A, B € IP,, and s is positive, take X = sTIA®I, Y = I®B, Z = A®B~! and
P = X + Y. It follows from the mixed-product property of the Kronecker product that
(Z + (s1®D) ((s7HRI) — (s V)P 1(s717))
=Z(s7HURD + (sI®D (s7HR) — Z(s7Y)X+Y) 1(s717)
—GIRDG VX +Y) 1(s717)
=612+ - XX+ () - YX+ YY) H(s712)
= 62D+ - X+VNX+Y)(s712) = Le.
That is
(s~H®I) — (s~1Y)P~1(s71Z) = (Z + (sI®D) .
Again, the mixed-product property yields

Z7N X Y)Y = 2 X X+ )Y )Ty
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=Z7W((YX +Y)"lx)"H ly?

=Z WYX +Y) 1X)r?

=Z X +V)X+Y) X - XX +Y)x]v!
=Z X -X(X+Y)x]y!
=ARBRXYH-UAT®BRXX +Y) XY !
= (s7HU®D - (sT'NX+Y)(s7'D)

= (Zz + (si®D) .

Thus, (X~ + ¥Y~1)71 = Z (Z + (sI®D) "' Y. Which is

((s~'A®D ™! + (I®B)")! = (A®B™1) ((A®B™?) + (sI®D)) ' (I®B). m

2.2 Inequalities for Kronecker products
In this section we drive inequalities for the Kronecker product of positive definite matr-
ices in the form (¢4 + BB) " ®(aC + £D)® and a(A"®C?®) + B(B'®D®) where 4, B, C,

D are positive definite matrices and «, 8, 1, s are positive real numbers such that r + s

Theorem 2.2.1.[10] ForA,B,C,D € P, and a,3,7,s > O such that r+s =1,
(aA + BB)"®(aC + BD)* = a(A"®CS) + B(B*'®D3).

Proof : Let f be a real-valued function defined by f(t) =t" fort > 0and 0 < r < 1.
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Clearly, f is continuous, and f is representation for

th = ds. write Y = I®B and Z = A®B 1. Hence, the functional calculus

sinrm foo sT 1t
0 s+t

T

for AQB 1is f(A®B™1) = (A®B™1)" can be written as

sinrm

fooo(sl@)l)r‘lZ(Z + (SI@I))_ldS. It follows from lemma 2.1.3 that

n
A"T®B'" = (A'D®(B7"B) = (A"®B™")(I®B) = (A®B™")" (I®B).
Hence, by lemma 2.1.6 we obtain
AT@BIT =S [“(RNT1Z(Z + (sI®D) ds Y

= s (€ 5117 (7 4 (sI®D) ds Y

= sinm (€ 5r-17(7 + (sI®D) Y ds

=sinre [P sr1((sT1A®D Tt + Y1)l ds. (by lemma 2.1.6)
Since sT!A®I and I®B are positive definite, by lemma 2.1.5 we have that the map
¢: P2 X P,z — P2 defined by
¢(sT1A®I,I®B) = ((s7A®D ™! + (I®B)~1)! is jointly concave. It is well-known
that the positive linear combination of the jointly concave maps is jointly concave.
Hence, from the viewpoint of the Riemann integral, the integrand is also jointly concave
and sois A"®B'". This means that for any A, B,C,D € IP,, and scalar 0 < € < 1,
(eA+(1—-¢e)B)®(C+ (1—€)D)S = e(A"®C*) + (1 — €)(B"®D®).Fors > 0

andr+s=1. Let e=a/(a+p), thus0 <e <1.
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So, ($A+ (1 —ﬁ)B)r®(ﬁC+ (1 —ﬁ)p)s

:(ﬂ+3_ﬁ)r®(ﬁ+D_ﬂ)s

a+f a+p a+f a+f

_ (aA+aB+[>’B—aB)r® (ac+aD+ﬁD—aD)5
- a+f a+f

1

= (1) @A +BBY®(aC +pD)]

a+p
= (@) [(@ A+ B B)'®(a C + BD)°] (sincer+s=1)
> = (478C) +£{ (B'®D%)
= (ﬁ) [ (A”®CS) + B (B"®DS) |

Therefore (@A + BB) " ®@(aC + BD)° = a(A"®C®) + B(B'®D®). m

From theorem (2.2.1), we obtain the Holder inequality for positive definite matrices

as a special case.

Recall that the real numbers p, q are conjugate exponents if p, q are positive and

Corollary 2.2.2 For A, B, C,D € P, and conjugate exponents p, q, we have
1 1
(A®B) + (C®D) < (AP + CP)P ® (B9 + D9)4 .

Proof itakea =8=1, r= % and s =$ in theorem 2.2.1. Then
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1 1 11 11
(A+B)P®(C+D) = (AP ®CI) + (B? ® D9)

Replacing B with C, Hence

1 1 11 11
(A+C)»® (B+ D)4 > (AP ® B9) + (CP ® D9)

Finally we replace 4, B, C, D with AP, B, CP, D respectively we have

(P +CP)P @ (BT + DOYT 2 ((UP)F @ (B)T) + ((CP)P @ (D7)

Therefore (A®B) + (C®D) < (AP + Cp)% ® (B1+ Dq)% .|
Remarks 2.2.1 The Cauchy-Schwarz inequality is obtained from corollary (2.2.2) by
taking p = 2, since (A®B) + (C®D) < (4% + Cz)% ® (B? + DZ)%.
Corollary 2.2.3 For A, B € P,, and conjugate exponents p, q, we have

1 1
A®B < (AP +D)r ® (B1+ D).
Proof : Let B = C = I. By corollary (2.2.2) we get
(A®I) + (I®D) < (47 + Ip)% ® (17 + Dq)%. Now let D = B then

1 1

(A®ID + (I®B) < (AP +1P)» ® (19 + BT)a

1 1
Hence A®B < (AP +1)»® (BT +1)a (since [P =19=1).m

ForA,B,C,D € P, and a, 8,7, s > 0 such that r + s = 1. Pattrawut Chansangiam,

Patcharin Hemchote, Praiboon Pantaragphong in[10], developed the following results :
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(1) (aA + BB)"®(aA + BB)° = a(A"®A%) + B(B'®B°®).
Proof : Take C = A, D = B in theorem 2.2.1, we get the inequality
(@A + BB)"®(aA + [B)° = a(A"®A%) + B(B"®B?®).
(2) (aA+ BB)"®(BA + aB)’ = a(A"®B®) + B(B"®A3).
Proof : Let aC = BA, D = aB in theorem 2.2.1 then we get the inequality

(¢A+ BB)"®(BA + aB)® = a(A"®B?%) + B(B"®A3).

3) ((ah + BBY®(C + BD))? > a(ABC): + B(BODY.

Proof : Letr = s in theorem (2.2.1) we get

1 1 1 1 1 1
(aA + BB)2®(aC + BD)2 = « <A2®C2> + B(B2®D2>.
Then by corollary (2.1.2), we get the inequality

((eA + BB)®(aC + BD))% > a(A®C)? + B(BOD)Z.

(4) (A+B)" ® (C+D)* > (A7®C*) + (B"®D).

Proof : Take § = « in theorem 2.2.1 we get to

(@A + aB)" ®(aC + aD)* = a(A"®CS) + a(B'®DS), then

a” (A+B)" ®a* (C+D)° = a[(A"®CS) + (B'®DS)], then

a™s [(A+B)" ® (C+D)] = a [(AT®CS) + (B"'®DS)], ( by theorem 1.4.1 (a) )
Then a [(A+B)" ® (C+D)*] = a [(A"®CS) + (B"®DS)], (sincer +s=1)

Hence (A+B)” ® (C+ D)’ = (A"®C%) + (B"®D%).
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5) (4 + BY®(C +D))? > (A®C): + (BODY:.

Proof : Let r = s in result (4) then
1 1 11 11
(A+B)2 ® (C+D): 2 (42®C?) + (B@D?), but (ARB)” = A'®B", hence

((4+B)®(C + D))% > (A®C): + (B®D):.

(6) (A+B)" ® (A+B)* = (A"®4°) + (B"®B?).

Proof : Let § = a in result (1) we get to

(aA+aB)"®@(aA + aB)® = a(A"®A%) + a(B*'®B*®), then

a™ [(A+B)®(A+B)°] > a[(A"®A%) + (BT®B%)], then
a[(A+B)"®(A+B)°] = al[(A"®A®) + (B"®BS)], (sincer+s=1)
Hence (A+B)" ® (A+B)* > (A"®4°) + (B"®B?).

(M (A+B)" ® (A+B)* = (A"®B%) + (B"®A4%).

Proof : Let § = « in result (2), then we get the inequality

(A+B)" ® (A+B)S > (A"®B%) + (B"®A4°).

8) (a4 + BBY®(BA + aB))? > a(A®B): + B(B®A)?

Proof : Letr = s inresult (2) and by (A®B)" = A"®B" then we get the inequality

1
(@A + BBY®(BA + aB))? > a(A®B)? + B(BOA)Z.
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Definition 2.2.1 Let A € M, ,. The k" Kronecker power A®¥ is defined inductively
for all positive integer k by A®! = A and A®% = AQA®*D fork = 2,3,.. (i.e)
A®* = A ®A ® .. ®A (k-times). This definition implies that A € M, ., the
matrix A®¥ € M.k .

Theorem 2.2.4 For any A € IP,,, positive integer k, and real number 7, then
(A®K)T = (ATY®,

Proof : Let p(k) be the statement (A®%)" = (4")®X, If k = 2, then

(A®%)" = (A®A)" = AT®A", which is true. Therefore p(2) is satisfies.

Assume that p(t) is satisfies, (4%)" = (47)®%. Now

(A®(t+1))r — (A®t®A)r — (A®t)r®Ar — (Ar)®t®Ar — (Ar)®(t+1).

Thus, p(t + 1) is true, thus p(k) is true for all k. m

Corollary 2.2.5.[9] Let {A;}[Z, be a set of arbitrary square matrices with the same size.

Then the Kronecker product has the following

tr (Ay Ay, - Al-l)®k = trk (Ai1Aiz Ail), For any positive integer k.

Proof : tr (4; Ay, ... A;))®* = tr[(4;, A, .. A,)® ... ®(A, Ay, .. A;)] (k-times)
= tr(A Ay, .. Ay) tr(AL A, o Ay) o (A A o Ay) ( by corollary 1.4.9)

= [tr(AilAiz Al'l)]k = trk(AilAiz Ail)' | |
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Corollaries 2.2.6 If A,B € P,,, and «,f > 0, then

(1) ((aA + BBY)®? > a(AZ)® + B(B2)®™.

(2) (A + BYD®? > (AZ)82 + (BZ)®2,

3) A+ Bﬁ)®2 > (A®B)% + (B@A)i.

Proof : (1) Take r = s in result (1) we get to

(aA + BB):®(aA + fB): = a(A:@A:)+B(B7®B?), then

(@A + BB)D)®? > a(42)® + B(B)®?  (by definition 2.2.1 ).

(2) From 1 in corollary 2.2.6 with a = f§ = 1.

(3) Take r = s in result (7) we get to
1 1 11 11
(A+B)2®(A + B): > (A2®B2) + (B2®A2), then

1 1 1
((A+ B)2)®? > (A®B)z + (B®A)2 ( by definition 2.2.1 and lemma 2.1.3 ).m

The next result is the AM-GM inequality for the Kronecker product of matrices :

Corollary 2.2.7 If A, B € P, commute under the Kronecker product, then
1 1
(A®B)2 < - ((A+B)2)®?, with equality iff A = B.
1 1 1
Proof: ((A+ B)2)®? > (A®B)z + (B®A)2 ( by corollary 2.2.6 (3) )

— (A®B)z + (A®B):  (A®B = B®A4, given
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— 2 (A®B)?

Hence, % A+ B)%)®2 > (A®B)%.

For the equality,

&) When A = B, we have > (4 + B))®? = 1 (4 + )% =1 ((24)9)®*

V2xv2
2

=§((2A)% ®(2A)§) - (A%®A%) — (D .. ()
(A®B)z = (A®A): = (A®?)z = (AZ)®2 ... (x).

From (+) and (++), we have » (4 + B)?)®2 = (A®B)>.

=) Assume that * ((4 + B))®2 = (A®B)?, then

2(A®B): = ((A+B))®2 = ((A+B)®%): (by theorem 2.2.4)

= [(A + BY®(4 + B)J, then
4 (A®B) = (A+B)®(A + B), then
(A®B) + (A®B) + (A®B) + (A®B) = (A®A4) + (A®B) + (A®B) + (B®B), then
(A®B) — (A®A) = (B®B) — (A®B), then
A®(B — A) = B®(B — A), then
A®(B — A) — B®(B — A) = 0, then
(A—B)®(B — A) = 0, then

(A—B)=0or(B—A)=0 (bycorollary1.42),s0A=B.m
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2.3 Inequalities for Hadamard products

In this section we drive inequalities for Hadamard products of positive definite matrices
Theorem 2.3.1.[10] ForA,B,C,D € P, and @, 3,7,s > O such that r + s =1,

(@A + BB) o (aC + BD)* = a(A" o C5) + B(B" o D%).

Proof : Define ¢ : P, X P,, = P,z by ¢(A, B) = A"®B®. The Hadamard product of
matrices is a principal submatrix of the Kronecker product of matrices. Consequently,
there exists a unital positive linear map ¢ : P,z — P, such that p(A®B) = A o B.
Hence, (¢ o d)(A,B) = go(q)(A, B)) = @(AT®BS) = A" o BS.Since ¢ is jointly concave
by theorem 2.2.1 and ¢ is positive and linear, the composition ¢ o ¢ is also jointly con-
cave. This means that for any 4, B, C,D € IP,, and any scalar 0 < € < 1,
(A+(1—€)B) o(eC+ (1 —€)D)*=€(A" o C5) + (1 —€)(B" o D%). Since

0 < a/(a+p) <1,byreplacing € with a/(a + f3), we get

(g + (1=25)8) = (e + (1-25)p)

=G5 8—ig) (o)

_ (aA+aB+[>’B—aB)T o (aC+aD+/3D—aD)S
- a+p a+p

= ()" l@a+pBY < (@C+pD)]

(L) [(@d A+ B) o(aC+pD)°] (sincer+s=1)

a+p
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> WoC)+ 5 37D = () la (7o C) + § (B2 DY)
Therefore (@A + BB)" o (aC + BD)* = a(A" o C5) + B(B' o D). m

From this theorem(2.3.1), we obtain the Holder inequality for positive definite matrices
as a special case.

Corollary 2.3.2 For A, B, C,D € IP,, and conjugate exponents p, q, we have

(AoB)+(CoD)S(Ap+Cp)% ° (Bq+Dq)%.

Proof : Takea = =1, r = % and s = 2 in theorem 2.3.1. Then

1 1 1 1 1 1
(A+B)P o (C+D)i = (AP o C1)+ (BP o D7),
Replacing B with C, hence

1 1 1 1 1 1
(A+C)p o (B+D) > (AP o Bq> + (CP o Dq).
Finally we replace 4, B, C, D with AP, B4, C?, D9 respectively we have

1 1 1 1 1 1
(AP +CP)P o (BY+ DO = ((4P)? o (BN)T) + ((CP)P o (DU)0).
1 1

Therefore, (AoB)+ (CoD) < (AP +CP)r o (B1+ D). m
Remarks 2.3.1 The Cauchy-Schwarz inequality is obtained from corollary (2.3.2) by

1 1
taking p = 2, since (Ao B) + (C o D) < (42 + C?)z o (B? + D?)z.
Definition 2.3.1 The Hadamard sum of A, B € M,, is denoted by A e B where

AeB =Ao1+10B.
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By corollary (2.3.2), and taking B = C = [ we obtain the following :

Corollary 2.3.3 For A4, B, C,D € P, and conjugate exponents p, q, we have
1 1
AeB< (AP +1)p o (B1+1)a.
1 1
Proof: AeB=Aocl+10B< (AP +1P)? o (B?+19)a ( by corollary 2.3.2)

1 1
= (AP +Dp o (BT +1)a.

For A,B,C,D € P, and , 5,7, s > 0 such that r + s = 1. Pattrawut Chansangiam,
Patcharin Hemchote, Praiboon Pantaragphong in[10], developed the following results :
(1) (@A + BB) o (aA+ B)° = a(A" o AS) + B(B" o BS).

Proof : Take A = C, B = D in theorem 2.3.1, we get

(@A + BB) o (aA+ B)S = a(A” o A®) + B(B" o B%).

(2) (@A + BB) o (BA+ aB)® = a(A” o B%) + B(AS o BY).

Proof : Let aC = A, D = aB in theorem (2.3.1) then we get the inequality
(@A + BB) o (BA+ aB)® = a(A" o BS) + B(AS o BY).

(3) (aA + BB)z o (aC + pD) > a(Az0C2) + B(BzoDz).

Proof : Let r = s in theorem (2.3.1) then we get the inequality

(aA + [)’B)% o (aC + BD)% > a (A% ° C%) + B(B% ° D%)
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4 (A+B)" o (C+D)s = (A" oC*) + (B o D%).

Proof : Take f = « in theorem 2.3.1 we get to

(@A + aB)" o (aC + aD)* = a(A" o C%) + a(B" o D%), then

a” (A+B)" o a’(C+D)S = a[(A" o C5) + (B o D%)], then

a™S[(A+B)" o (C+D)5] = a[(A" o C%) + (B" o D%)], ( by theorem 1.5.3 (a))
Then a [(A+B)" o (C+D)] = a[(A"oC5%) + (B"oD%)], (sincer+s=1)
Hence (A+B)" o (C+ D) > (4" oC%) + (B" o D%).

(5) (A+B)" o (A+B)* = (A" o B®) + (A% o B").

Proof : Let B = a =1 inresult (2), we have

(A+B)" o (A+B)S = (A" oB%) + (AS 0o B").

(6) (aA + BB)z o (BA + aB): > (a +B) (A2 o B2).

Proof : Let r = s inresult (2) then we get the inequality

(aA + BB)Z o (BA+aB)? > a (A% o B%) + B (A% o B%).

Thus, (aA+BB)z o (BA+aB)? > (a +B) (A7 o B2).

Definition 2.3.2 Let A € M,, then the kth Hadamard power of A is A®) = [aé‘j] =
Ao AV k=23, ...

Hence, if A € M,, then (@)™ = [(aa;)¥] = [a*af;] = a¥[af;] = a¥A®.
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Corollaries 2.3.4 If A,B € P,,, and «,f > 0, then
EN© 1 1
() (@A +B)z) = a(42)® + (B,

@ (@+ B)%)(z) > (42)@ + (B)®),

3 (@+ B)%)(Z) > 2 (4 o BY).

Proof : (1) Take r = s in result (1) then we get to

1 1 1 1 1 1
(@A + BB)z o (@A + B)z > a(AzoAz)+B(BzoB2). Then we have

((aa + ﬁB)%)(Z) >a (A%)(z) + B (B%)(Z) ( by definition 2.3.2).
(2) Let B=a =1 in(1), we get
(a+m?)” = ()" + (7)),

(3) Let f =a =1 inresult (6), we get

@

((A + Bﬁ) > 2 (A7 o B3).m

The next result is the AM-GM inequality for matrices involving the Hadamard product :

Corollary 2.2.5 For A, B € P,,, we have the following inequality
11 ENG
AzoB: < 1 ((A+B)) .
Proof : From (3) in Corollary (2.3.4), dividing both sides on 2, we get the inequality

11y ENG
AzoBz <2 ((A+B):) .m
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Chapter three
Bounds on the Spectral Radius of Hadamard Products

of Positive Operators on L,- Spaces
3.1 Hadamard product of matrices of operators on [,
Definition 3.1.1 The space L, is the space of all sequences x = (&;) = (&1, &, ...)

of numbers such that |&|? + |&,|P + -+ converges, thus

Definition 3.1.2 A linear operator A : X — Y from a normed space X into a normed
space Y is called bounded if there exists a positive numbers C such that

||[Ax|| < C||x]||, forall x € X.

We write x = 0 for x = (&) € L, whenever &, = 0 foralln > 1, and we denoted
by [ the setofall x > 0 in l,. Abounded linear operator A : I, — I, is called
positive ( denoted by A > 0) if Ax >0 forall x € [;. As we assume p < oo, every
bounded operator on [, has a matrix representation with respect to the standard basis,
and we will identify the operator with its matrix.

Incase A = 0, we have A = [ai j], where each a;; = 0. We will use frequently that if

0<A<Bonlj(ie, B—A20), then|AI<IBI.
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Theorem 3.1.1.[11] Let [I-]l be a matrix norm on M,,. Then

1
p(A) =lim, ., | A" |In, forall A € M,,.
In the following theorems we will see upper bounds for some Hadamards products of
positive operator on 1, :

Theorem 3.1.2[4] Let A, B, C and D be positive operators on [,,. Then we have

1 1
(AoB)(CoD) < ((AoA)(CC))? o ((BoB)(DoD))
Proof : Let [ai j], [bi j], [Ci j], and [di j] denote the matrices of the operators A4, B, C,

and D respectively. Then the matrix of the operator product (Ao B ) (C o D) is given

by Z a; by c;d;j. From Cauchy-Schwarz inequality we get
=

2 .2
aj Clj) (
|

((AoA)(Co C))% o ((BeB)(D°D)).m

1 1
2 2

00 2 g2
> aybycydy; < < bj du’)'
=

—~
N

Ii MS

—~

T Ms

Corollary 3.1.3 Let A and B be positive linear operator on l,,. Then we have

(AoB)? < ((AoA)(BoB))% 0 ((BoB)(AoA))%.

Proof : Take D = A and C = B in theorem (3.1.2) so,
1 1
(A°B)(BoA) < ((AoA)(BoB))? o ((BoB)(AoA))>

Thus, (A°B)? < ((AoA)(BoB))% 0 ((BoB)(AoA))% (sinceAocB=BoA).m

54



Corollary 3.1.4 Let A and B be positive linear operators on [,,. Then we have

2

(A%OB%) < (A)io (B

1 1
Proof : We substitute Az for both 4 and C, and Bz for B and D in theorem

(3.1.2) then,

1 1
(40 7) (o 57) = (a0 7) (4o 2) ) o (81 52) (3o 89) ).

1 1

So, (A%OB%)ZS ((A%OA%)Z)E . ((B%OB%)Z)Z (430 4%) o (870 B2)

2

Thus, (A2 0 B2) < (A%)(Z)o (35)(2) ( by definition (2.3.2)).

2

1 1 1 1
Therefore, (AE ° BE) < (4%)20 (B*)2.m

Theorem 3.1.5[4] Let A and B be positive linear operators on [,,. Then we have
(AeoA)(BoB) <ABo AB.

Proof: X; >0, Vi=1, .. ,n.
n n

Let p(n) be the statement, _ZlXiZ < (,E Xi) , n=1,2,...
i=

2
Forn=2, XX/=X!+ X3
i=

(

2 2
But, X;X, + X,X; = 0. Therefore, ,ZIXL? < (ZlXi) .
1=

2
1Xl) — (Xl + XZ )2 = X% + XZZ +X1X2 + X2X1'

I ™M
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k K 2
Assume that p(k) is true, so ,Zle-z < (,Z Xl-) .
i=

=1

k+1
,zlxl? =XE+ X2+ -+ XZ2)+ X2yt
=

k+1  \2 2
<i§1Xi) = (X1 + Xo+ -+ X)) + Xyys)
= Xt Ko+ X0)" + Kean)? + Ko+ Xp 400+ Xp) (Kiyr)
+ (Xpg1) (X1 + Xo + -+ Xp).
But, (X; + X, + -+ X)) Xpy1) + Kiy1) Xy + X, + -+ X;) = 0. Therefore,
p(k + 1) is true.
Hence, p(n) is true vn.
Take X; = a;y by;.
Let [ai j] and [bi j] denote the matrices of A and B, respectively.
Then the (i, j) entry of (Ao A) (B o B) is koZzlaizk b,Ej, and

[e%) 0 2
(4°4)(BoB) = X ak b < (T auby)

- (koz;a“"'bkf) (k;aikbkj )

= ABoAB.m
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The following lemma shows that the Hadamard product of two positive linear operators
on [, is bounded :

Lemma 3.1.6 [4] Let A and B be a positive linear operators on l,. Then Ao B isa
positive linear operator on [, and | Ae B II< I Al B Il.
Proof : It is sufficient to prove that || X oY || < 1, whenever | X =l Y lI= 1.
Assume Y = [bl-j]. From || Y ||I=1 it follows that bL-j <1 foralli,j, so that
0 < X oY < X. This implies immediately that X o Y is a positive operator from

l,tol,and || X oY || < 1. Thus we take

A B
= 1ar Y =— Then || X I=1 and 1Y =1,

thus [ X oY || < 1. Therefore

A B 1
| —o— | <1, then
Al 1Bl Al Bl

lAeB | <1.
Therefore, | AcBII<I Al BI|.m

1 1
Lemma 3.1.7 [4] Let A and B be positive linear operators on l,,. Then Az o Bz isa

ER, 1 1
AzoBz(| <Azl B Il2.

positive operator on l,, and |

1 2
Proof : By the identity (ab)z = min {% a+ % b; t > 0} , where a, b are positive
numbers, which refers to Krivine calculus in Banach lattices, we get

1 1 t2 1
AzoB2 < —A+—B, forall t > 0.
2 2t
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1 1
This implies that Az o B2 is a positive operator on [, and

By taking the minimum over t, we get

1 1 t2 1
Az o Bz|| < —||A|l + = |IB||, forall t > 0.
2 2t

. r 1 . (t? 1
min | Az o Bz|| < min {;IIAII + = IBIl, forall ¢ > 0}. Then,
1 1 1
|4z e B2|| < claniyz
1 1
= |lAllz [|B]|>. w

58



3.2 Inequalities for spectral radius of Hadamard products
In this section, we will see some inequalities for spectral radius of Hadamard products

of positive operators on [,,.

Lemma 3.2.1 [4] Let A and B be positive linear operator on [,,. Then we have
1 1 1 1
p (42 B2) < p(A): p(B):.
Proof : From corollary (3.1.4), it follows that
1 14 21 1 1
(470B7) < (2o (B2
Taking norms on both sides we get,
1 1
”(Az 0 Bz)
1 1
H(AE 0 BE)

Taking (2n)th roots on both sides we get,

2n

< ||(A2n)%° (BZn)%

, then

2n

< [I(A2)IE (B ( by lemma (3.1.7)).

1
2ny|z2n

< )@ &) jgzny) @) &),

”(A% 0 B%)

And taking limit for (n — o0) on both sides we have,

1
2n
lim

aim [|(ao82) [ <t ncamn@ @D i @) G

1 1 1 1
So, p Az Bz) < p(A)2 p(B)2  (by theorem (3.1.1)).m
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Lemma 3.2.2 [4] Let A and B be positive linear operators on [,,. Then we have
p(AeB) < p(A) p(B).
Proof : Take B = A in theorem (3.1.5) we get,
(Ao A)? < A% 0 A%
Then (A o A)?™ < A?™ o A?", taking norms in both sides we get,
(Ao )P < [|A%" o A2 < |42 |A®"]]  (by lemma(3.1.6)).
Taking (2n)th root and limit as n — oo, on both sides we have
p(Aeod) < p(A)? ..(a)
Similarly, p(BoB) < p(B)? .. (b).

In theorem (3.1.2), take C = A, D = B we get

1

(AoB)? < ((A°A)(A°A))? o ((B>B)(B-°B)).

Thus, (Ao B)? < ((A°A)2)z o ((B o B)2)a.
So,(A°B)? < (Ao A) o (B°B).
Then, (Ao B)*™ < (Ao A)" o (BoB)".
Taking norms in both sides we get,
ICA°B)?M| < [I(Ae A" o (BeB)"|
< 1A= A™I (B~ B)"|l.

Taking (2n)th root and limit as n — oo on both sides we have
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p(AoB) < p(AoA): p(BoB)

From (a) and (b) we get, p(A°oB) < p(Ao A)% p(B o B)% < p(A4) p(B).

Therefore, p(AoB) < p(A) p(B).m

Theorem 3.2.3 [4] Let A and B be positive linear operator on l,. Then,
p(AoB) < pz ((AoA) (BoB)) < pz(AB o AB) < p(AB).

Proof : From corollary (3.1.3), it follows that

(AoB)™ < (((A4oA)(BoB))") o (((BoBY(AoM)").

Taking norms in both sides we get,

I(A By < [|((A4 e A)(B o B)")? o (((B o BYA o))"

< (Ao A)(Bo B))”||% (BB A))”||% ( by lemma (3.1.7) ).
Taking (2n)th root and limit as n — oo on both sides we have
p(4oB) < ps (Ao A) (B B)) p+ (B oB) (40 A)
= p:((4=A) (BoB)) (since p(AB) = p(BA)).
From (Ao A) (B o B) < AB o AB, we get
p((A°A) (B°B)) < p(AB o AB) < p(AB) p(AB) ( by lemma (3.2.2) ).

= p*(4B).
Therefore, p% ((A 0A) (Bo B)) < p%(AB cAB) < p(AB).m

61



Chapter four

Applications on Kronecker product.
In this section we present application of the Kronecker product to matrix equations,
matrix differential equations :
4.1 Matrix equations
Knowledge of the Kronecker product and its application facilitates our analysis of
matrix equations, since the Kronecker product can be used to give a convenient represn-
tation for linear matrix equations.
We start by studying the simplest matrix equation as the following theorem :
Theorem 4.1.1 [7] Let A€ M,,, B € My,, C € My, ,, and X € M, ,;, such that
AXB = C, then the system (BT®A) Vec(X) = Vec(C). Has a unique solution
if and only if BT®A is invertible if and only if B and A both are invertible.
If either A or B are not invertible, then there exist a solution X if and only if
rank (BT®A) = rank ([BT®A : Vec(C)]). Where [BT®A : Vec(C)] is the augmented

matrix of BT®A and Vec(C); otherwise the system has no solution. s

This equation AXB = C can be generalized as follows :
Ay XBy + Ay XB, + -+ A,XB, = C, where A; € M, B;€M,, (j=1,.. ,p),

and X, C € M, ..
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With the same technique we can rewrite this equation as :
Vec(A,XBy) + Vec(A,XB,) + - + Vec(A,XB,) = Vec(C).

So, (BI®A4,) Vec(X) + -+ (BI®A4,) Vec(X) = Vec(C). ( by theorem 1.4.26).

14
i.e, jgl(BjT@Aj) Vec(X) = Vec(C).

p
The unique solution is obtained if and only if ¥ (Bf ®4;) is invertible.m
]:

The following theorem examine if the AXB = C has a unique X. By using eigenvalue of
the Kronecker sum.

Theorem 4.1.2 [13] Let A € M,, and B € M,,. The equation AX + XB = C has a
unique solution X € M,, ,,, for each C € M,, ,,, if and only if 0(4) N o(—=B) = ¢.

Proof : The eigenvalue of BT are the same as those of B. Now, if we take the Vec(.) of
both sides in equation AX + XB = C we get (A @ BT) Vec(X) = Vec(C) ( by coroll-
ary (1.4.27) ). And this system of equations has a unique solution if and only if A @ BT
is invertible, that is if and only if non of the eigenvalues of A @ BT is zero. But
c(A®BT) ={A;+u;:i=1,..,n, j=1,..,m}, wherea(A) ={4;: i =1,..,n}
and 0(B) = {uj : j=1,..,m}.So The equation AX + XB = C has a unique solution
ifand only if A4; + pu; # 0 foralli,j, i.e, ifand only if A; # —p; if and only if (A)

and (—B) have no common eigenvalue if and only if 6(A) No(—B) = ¢.m
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If on other hand A and - B have an eigenvalue in common, the existence of the solution
depends on the rank of the augmented matrix [A @ BT: Vec(C)]. If the rank of this

matrix is equal to the rank of A @ BT, then the solution exist otherwise they do not.
Theorem 4.1.3[7] IfA € M, and B € M,,,. The equationAX — XA = X, which has
a nontrivial solution if and only if u is an eigenvalue of —AT @A. But the eigenvalues
of —AT®A are {Ai A+ A€ G(A)}. Hence AX — XA = uX has a nontrivial solution
ifand only if u = A; — A; for some i,j. m

A B].

Lemma4.1.1.4 [8] Let A,B,Cand D € M,, such that CD = DC. Then [C plis

A B

Invertible if and only if AD — BC 1is invertible and det [ c pl= det(AD — BC). m

Theorem 4.1.1.5[8] Let A, By, C;, D,, A,, By, C,, D,, E,and F € M, be given
matrices such that C;D; = D;C; and C,D, = D,C,. Then the system
A, XA, + B,YB, = E
C,XC, +D,YD, =F
has a unique solution if and only if ATDI®A;D, — Bl CT®B,C; is invertible.m
Corollary 4.1.6 Let A,B,C,D,E, and F € M,, be given matrices. Then the system
AX+YB=E
CX+YD=F

has a unique solution if and only if DT®A — BT®C is invertible.m
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Corollary 4.1.7 Let A,B,C,D,E, and F € M,, be given matrices. Then the system
XA+BY =E
XC+DY=F

has a unique solution if and only if AT®D — CT®B is invertible.m

If we assume that CD = DC, then the system

Corollary 4.1.8 Let A,B,C,D, E, and F € M,, be given matrices. Then the system
AX+BY =E
CX+DY=F

has a unique solution if and only if AD — BC 1is invertible.m

Corollary 4.1.9 Let A,B,C, D, E, and F € M,, be given matrices. Then the system
XA+YB=E
XC+YD=F

has a unique solution if and only if DA — CB is invertible.m

The important application of the theorem (1.4.12.(b)) are for p(t) = et, g(t) = sint,

h(t) = cost, lead to the following result :

Corollary 4.1.10 [7] Let A € M,, be a scalar matrix. Then

(1) eW®m) = A@I,,.

(2) sin(A® I,) = sin(A) ®l,.
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Proof (1) : We can write e as a power series such as :
e =l + A+ A2+
so, e(®m) = (1,®1py) + (A®1y) + 5 (A®Iy)? + -+
= (1®lm) + (A1) + 5, (A2@1y,) + -+
=(n+ A+ A +) By
= e4Q®I,,.

Proof (2) : We can write sin A as a power series such as :

. A3 A5 A7
SmMA=A—-—+—-—+
3l 517

i Im 3 Im 5 Im 7
s0, sin(A®]I,,) = (A®I,,) _(A®3' ) +(A®5' )’ _ (A®7' )

_ (A3®Im) |, (A°@®lm)  (A7®Ip)

= (A8ln) = s on T
A A5 A7

=@t )8

= sinA®I,,.
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4.2  Matrix differential equations

In this section we present another application of the Kronecker product that deals with
matrix differential equations of the form X = AX + XB.

Definition 4.2.1 Given the matrix A(t) = [aij(t)] € M,y ,, where each a;;(t) is a
differentiable function, then the derivative of the matrix A with respect to the scalar ¢ is
defined as :% A(t) = [% aij(t)] = A.

Similarly, the integral of the matrix is defined as : [ A(t)dt = [[ a;;(t)dt].

Theorem 4.2.1 [7] Let A(t) € My, and B(t) € M,, 4, be differentiable matrices

( each matrix is assumed to be a function of t). Then

d d d
ZTA®) ® B(D)] = [aA(t)] ®B + A® [EB(L“)].
Proof : On differentiating the (i, j)th block of A(t)®B(t), we obtain
d d daij d
LA ® BO) = £ [ayB(®)] = ZLB(®) + ay 2 B(®).
d d
=[24®)]|®B + 4@ [=B(t)|m
Corollary 4.2.2 Let A(t) € M,, and B(t) € M,, be differentiable matrices ( each

matrix is assumed to be a function of t). Then

AW @B®)] = SA® ® LB,

Proof : %In = 0, and using definition 1.4.2, then we have
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A ® B = 2 [1,@A®] + S [B(O)®I,]
=1L,®[24®)] + [£B(®)] @,
= ZAD® < B(t).m
The simplest form of matrix differential equations as the following theotem :
Theorem 4.2.3 [7] x = Ax; x(0) = ¢, where A € M,, - (D
This equation has the following solution : x = e4fc.
Using this fact we can solve the matrix differential equation :
X=AX+XB;X(0)=C ..(2), where A€ M,, B € M, X € My, and
C € My, .
Proof: use the Vec(.)-notation, then we get VecX = (I,,®A + BT®I,) VecX, and
Vec X(0) = VecC. LetVec X = x,and Vec C = c.
Then (1) becomes x = (I,,®A + BT®I,) x; x(0) = c. By the solution (2) we have
x = (exp(I,®A + BT®I,)t)c. But exp(I,,®A + BT®I,,) = exp(l,,®4) exp(BT®I,)
= (I,,®expA) (expBT®I,)
= exp (BT® expA
so, x = (expBTt ® expAT) c; i.e.Vec X = (expBTt ® expAT) Vec C

= Vec (expAt .C.expBt).

Thus, X = expAt.C.expBt. m
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