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Abstract 

Many basic properties of the Kronecker products and Hadamard products are given , and 

many results for positive definite matrices are discussed. Moreover Holdert's inequality 

and  the  arthmetic,   geometric  mean  inequalities  are  also  applied  for  Kronecker  and  

Hadamard products . 

An analysis of  inequalities  concerning  the spectral  radius of  Hadamard products of   

positive  operators as   space  have been done in all details,  including some  applications 

for the Kronecker products in matrix equations and differential matrix equations. 

Furthermore we showed that these inequalities can be extended to infinite nonnegative 

matrices .  

A development of inequalities for Kronecker products and Hadamard products of positive 

definite matrices involving Kronecker  powers and Hadamard powers of linear  combinat- 

 ion of matrices are given in complete details.  
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  "كر والهادامارديلضرب الكرونبعض أطوال المتباينات "

  علاء عبد الفتاح مصطفى صالح: إعداد

  جميل جمال إسماعيل. د: إشراف

صملخ  

بالمصفوفات الموجبة  تتعلق  النتائج التي  بعض  آرونيكر وهادامارد  وآذلك  لضرب  آثيرة  تم استعراض خصائص  

. ومن ثم تطبيق متباينة هولدر والوسط الحسابي والهندسي لضرب آرونيكر وهادامارد  

 للمؤثرات الموجبة على فضاءات بنصف القطر الطبيعي   بعض المتباينات المتعلقة  تحليل  تم  وآذلك   تشملوالتي 

توسيعها  يمكن  المتباينات ان هذه   وبيان والتفاضلية   المصفوفية  في المعادلات  لضرب آرونيكر التطبيقات   بعض  

  وترآيبات  قوى  تشتمل على  والتي  الموجبة  للمصفوفات  المتباينات  للمصفوفات اللانهائية غير السالبة وتطوير هذه

     . خطية من هذه المصفوفات بالتفصيل التام
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Introduction 

When most people multiply two matrices together,   they generally use the conventional  

multiplication method. 

We consider two types of matrix multiplication, that are very interesting, these  multipl- 

ication are the Kronecker product and the Hadamard product. 

In mathematics, the Kronecker product denoted by      is an operation on two matrices  

of arbitrary sizes resulting in a block matrix. The Kronecker product should not be conf- 

used with the usual matrix multiplication which is an entirely different operation. 

The Hadamard product denoted by   is a binary operation that takes two matrices of the 

same dimensions, and produces another matrix where each    element is the product  

of the    element of the original two matrices.   

In chapter one,   sections 1, 2  and  3,  I give some basic concepts from matrix  analysis.  

In section 4, I give some of the basic properties of the Kronecker Product,   and  show 

The difference  between  matrix  multiplication and  Kronecker  Products  matrices,   by  

comparing some  basic properties, also,  we present the Kronecker sum of matrices,   the  

vec-vector. 

At the  end of  this  chapter  in  section 5,  we  present some properties of  the Hadamard 

products of matrices.  

In  chapter  two,  we  analyze  some  inequalities for Kronecker products  and Hadamard  

products of positive definite matrices in all details. 
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In chapter three,  we analyze the Hadamard product of matrices of operators on ,  and  

inequalities for spectral radius of Hadamard products in all details. 

Finally,   in chapter  four  we  put  some applications of  the  Kronecker product,  matrix   

equations,  and matrix differential equations.  
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Index of Special Notation 

                                       The set of all real numbers 

                                       The set of all complex numbers 

                                        Usually field (  or ) 

                                     Square matrix of size  

,                                   Matrix of  size   

det( )                                The determinant of the matrix  

                                      The transpose matrix of a matrix    

                                        Conjugate of  ,  

                                      Conjugate transpose of  ,   

                                    Inverse of a nonsingular  

                                      Square root of matrix such that   

tr                                     Trace of  

| |                                     Absolute value  or  

                                  Spectrum of     

                                  Spectral radius of   

,                               Submatrix of ,  

                                  Principal submatrix 

                               Vector of stacked columns of ,  

                                        Kronecker product 

                                          Hadamard product 

                                        Kronecker sum     

·                                         norm 

·                                         (Euclidean) norm, frobenius 
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·                                        (maximum absolute value) norm 

·                                         norm  

                                 Singular value of  ,    

                                           eigenvalue of    

Cond                                  Condition number 

                                           Column vector 

                                           Unitary matrix 

A                                            The Hadamard inverse   

J 1                            The Hadamard identity   

∑                                            Summation 

∏                                           Product 

                                       The  Kronecker power  

                                       The  Hadamard power  

•                                             The Hadamard sum   

                                         The positive definite matrices  
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Chapter one 

Preliminaries 

1. 1    Introduction 

The  contents of  sections 1.1, 1.2, and 1.3 can be found in ref. [11]. 

Definition  1.1.1  If   , , then ,  is Called the transporse 

of A  and    =  ,    is called the  adjoint  transpose of , and the  trace of   if 

  is defined by trace(A) =  Σ .  

Theorem 1.1.1   Let A be an   matrix and let B be an   matrix then 

                           trace( ) = trace( . 

Definition 1.1.2  If  then 

(a)  is called Hermition If  . 

(b)  is called normal If  . 

(c)  is called unitary If  , where  is an identity matrix of order n. 

 (d)  is called orthogonal if .  Therefore,  . 

Remark 1.1.3   All unitany and Hermition matrices are normal. 

Example 1.1.1   If 1 1
1   1  , then 2 0

0 2 ,  2 0
0 2 ,  therefore 

, thus A is normal. 

Theorem 1.1.2   If A is a Hermition matrix, then its eigenvalues are real number.  
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Definition 1.1.3  A matrix  is called idempotent if , and is called  

nilpotent if 0 for positive integer n. 

Definition 1.1.4   Let  .  A non-zero vector    is called an eigenvector  

corresponding to a scalar  if .  The  scalar  is  called an eigenvalue of ,  

 the set of all eigenvalues of  is called the spectrum of  and is  denoted by .  

Definition 1.1.5     The spectral radius of  is the non negative real number  

max   | |:  . 

Example 1.1.2  Consider the matrix 7 2
4   1 , then we have 

7 2
4 1 0, thus (7-  1 8 0,  which gives  3 , 5 , therefore 

  3 , 5 , Hence 5.     

Theorem 1.1.3 Let , then trace  equals to the sum of the eigenvalues of    

and det (  equals to the product of the eigenvalues of . 

Theorerm 1.1.4     ( Schurs unitary Triangularization theorem ) 

Given a matrix  with eigenvalues   , . . . ,   in any prescribed order, then  

 there is a unitary matrix   such that  where ,  is upper  

triangular matrix with diagonal entries  , 1 , 2 , … , n.  

Definition 1.1.6   The matrix   is called a permutation matrix if each row and  

column has exactly one 1, and zeros elsewhere. 
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Example 1.1.3  Let  
1 0 0
0 0 1
0 1 0

,

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

 , P and Q are permutation 

matrices. 

Definition 1.1.8 (a) Let , , for index sets  1 , …  ,  } and  1 ,  

…  , }, we denote the submatrix that lies in the rows of  indexed by  and the  

columns indexed by  as , . 

Example 1.1.4     ( { 1, 3 } , { 1, 2 , 3 } ) = .  

(b) If  and   , then the submatrix  is called a principal submatrix of . 

 

1.2   Norms of vectors and matrices 

Definition 1.2.1  Let  be a vector space over a field � (   .  

 A function .   is a vector norm if for all  , , we have: 

(1)  0. 

(2)  0  if and only if 0. 

(3)    | |   for all scalars �. 

(4)     . 
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Definition 1.2.2  Let X be a complex (or real) linear space. Then the function  

                            . , .    with the properties 

(1)            , 0, 

(2)           , 0  if and only if  0, 

(3)           , , , 

(4)           , , , , 

for all , ,     ,    is called an inner product space on X. 

Example 1.2.1  (  vector norms) 

(a) The Euclidean norm ( or  norm ) on  is 

| | | |  | |  = Σ | |  

(b) The sum norm ( or  norm )  on  is | | | | | |  Σ | |.  

(c) The max norm ( or ∞ Norm ) on  is ∞ { | |, …  , | | }. 

(d) The   Norm on  is  Σ | |   for   ∞  1. 

Theorem 1.2.1  ( Holders Inequality ) 

If 1 and  1 are real numbers such that  1, then 

Σ | |  Σ | |   Σ | | ,  that is      .  
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Theorem 1.2.2  ( Cauchy – Schwarz Inequality ) 

If  .  ,   .  is an inner product on a vector space  over field  �,  then   

| , |   ,  ,   . For all  ,  , equality occurs if and only if 

    are linearly dependent. 

Definition 1.2.3 A function .     is said to be a matrix Norm if for all 

 ,  it satisfies the Following : 

(a)  0,               0 0. 

(b)   | | ,  for all scalars � .                                                                

(c)     . 

 (d)     .   

Some important properties of matrix norm are : 

(a) If ,    ,    1.   

(b) I  1. 

(c) If  is invertible matrix, then   .  

(d) If 0  such that     1. 

Example 1.2.2  Let  , the p-Norm is defined by Σ
,

 

for 1 ∞, some special cases of the p-norm are : 
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(a) The -Norm defined for  by  Σ
,

. The maximum column sum 

matrix norm   is defined on   by    Σ .  

(b) The  ∞-Norm defined for  by ∞   
,

. The maximum row sum 

 matrix norm ∞ is defined on  by  ∞  Σ .  

(c) In particular , when p=2 then 

   Σ
,

  | |     ,  is called the Frobenius 

norm ( Euclidean norm ).  

(d)The spectral Norm is defined by         .  

Definition 1.2.4   Let X and Y be normed spaces and let      be a bounded  

linear operator with a bounded inverse . Then Cond (A) =  ,  

is called the condition number of . 

For example  the  invertible matrix A we have 

  
| |
| |

. 

Definition 1.2.5 A matrix norm ·  is called unitarily invariant norm if   

 For all  and all unitary matrices , .  
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1.3    Positive definite matrices  

Definition 1.3.1     A Hermition  matrix  ,  is  said to be   positive definite  if 

    0 for all nonzero ,  and it is called a positive semidefinite matrix if  

  0 for all  . 

  

Properties of positive definite (semidefinite) matrices : 

(a) Any principal submatrix of a positive definite matrix is positive definite. 

(b) The sum of any two positive definite (semidefinite) matrices of the same size is 

 positive definite (semidefinite). 

(c) Each eigenvalue of a positive definite (semidefinite) matrix is a positive 

 (nonnegative) real number.                                                                                         

(d) For a Hermition matrices ,  we write  if A – B is positive definite, similary  

we write  if  is positive semidefinite.  

(e) A Hermation matrix with positive (nonnegative) eigenvalues is  positive definite  

(semidefinite).  

Definition 1.3.2  Let , , then B is a square root of , if . 

Example 1.3.1 

Let 11 1
1 11 , be a Hermition matrix. 



8 
 

Then 11 1
1 11 0,  thus  11   11   1 0,  which gives 

 10 , 12. The eigenvector for 12  is 1
1 , and for 10 is    1

1 ,  so the matrix 

of  the  eigenvectors  is   1   1
1 1 .   Finally,  we  have to  convert  this  matrix into an   

orthogonal matrix  by applying  the Gram-Schmidt  orthonormalization process on the 

column vectors to give  √ √

√ √

 ,  which is a unitary matrix.  Thus 

  √ √

√ √

 √10 0
0 √12

 √ √

√ √

 
√ √ √ √

√ √ √ √
. 

Theorem 1.3.1  Let   be a positive semidefinite and let 1 be a given integer,  

then there exists a unique positive semidefinite Hermition matrix  such that  ,  

written as  .   

Example 1.3.2 (1) If  (positive definite matrix) with eigenvalues   ,  , …  ,  

 then A U dig λ  , λ  , …  , λ )  , where  is a unitary matrix. 

(2) If  0 ,   dig  λ  , λ  , …  , λ   U .  

(3) The function calculus for  is defined as U dig  f λ  , f λ  , …  , f λ  U . 

Definition 1.3.3  A map   is unital if  maps unit element to unit eleme- 

nt, . .  I I .   is positive if  maps positive element to positive element, . .  

A 0   A 0. 
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Definition 1.3.4  A map  is jointly concave if for any A, B, C, D  

 and any 0 1, 1 , 1  

                                                                              , 1  , . 

Definition 1.3.5  Let , ,  n . Let the eigenvalues of the  symmetric 

 matrix  be denoted by  , 1 , 2 , …  , . Where       …  

 σ  , then   ,   , …  ,  , are called the singular values of . 

Example 1.3.3  Let 2 1 0
0 2 2  ,  then 

2 0
1 2
0 2

 , thus 
4 2 0
2 5 4
0 4 4

.  

The eigenvalues of  are  0 , 4 , 9.  Thus the singular values are  0 , 2 , 3. 

Theorem 1.3.2 ( Singular value Decomposition ) 

Let ,  has rank r and let  be the nonzero singular value of , then  can  

be represented in the form A U D V  where U M  and  V M  are unitary and the  

matrix D σ , M , , σ , 0  for all ,  and  …  σ  

σ ,  0 . where q = min{m,n}, the numbers {σ , } = σ  are the  

singular values of , .  
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Theorem 1.3.3  ( Polar Decomposition ) 

Let , ,  with .  Then A may be written in the form ,  where 

 is positive semidefinite,  rank  rank ,  and U M ,  has orthonormal 

rows (that is UU I . The matrix  is always uniquely determined as  ( , 

 and  is uniquely determined when  has rank m . If  is real then  and  may be  

taken to be real. 

 

1.4    The Kronecker product of matrices  

Leopold Kronecker was a German mathematician was born in liegnitz, Prussia ( Dece- 

mber 7,1823-December 29,1891 ). 

In mathematics, the Kronecker product denoted by  is an operation on two matrices  

of arbitrary size resulting in a block matrix. The Kronecker product should not be conf- 

used with the usual matrix multiplication which is an entirely different operation. 

Definition 1.4.1   Let ,  ,  , .  Then the Kronecker 

product of A and B is defined as the matrix  A B
a B a B

a B a B
a B

M , , and has mn blocks. 

Example 1.4.1  Let  1 2 4
3 0 1 ,  and 1 0

3 2 ,  then  
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 A B B 2B 4B
3B 0 B  

1 0 2 0 4 0
3 2 6 4 12 8
3 0 0 0 1 0
9 6 0 0 3 2

.   

And  B A A 0A
3A 2A

1 2 4 0 0 0
3 0 1 0 0 0
3 6 12 2 4 8
9 0 3 6 0 2

,  thus A B B A , in general. 

 

Also if A I ,  then  A B

0 0 0
0 0 0
0 0 0

0 0 0

 , of size n n  where .  

 

 And  B A

b … 0

0 … b

b … 0

0 … b

b … 0

0 … b

b … 0

0 … b

 ,  of size n n .  

 We note that if A I   , B I  , then I I I .  For example 

    I I 1 0
0 1

1 0 0
0 0 1
0 0 1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

. 

And  if  , ,  then   ,    ,   …  ,    

 ,  , .  
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The following theorem states some  basic properties of the Kronecker Product : 

Theorem 1.4.1. 7   Let A M ,  then : 

(a) ( A B α A B A αB  , for all α F and B M , . 

(b) A B C A B C  , for B M ,   C , . 

(c) (A+B) C A C B C   for B M ,  and C M , . 

(d) A B C A B A C   for B , C M , . 

(e)     , . 

(f)      , . 

(g) O Ο O. 

Proof : a) ( A B α 
a a

a a
B

αa αa

αa αa
B 

                                   A B  

                                 αB . 

               e) . 

               f)   

____

____  .  
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g) O A
0A 0A

0A 0A

O O

O O
O.  

 

In the following, we will see the difference between AB and A B,  it is known that if  

,  , ,  and 0, it is not necessary that 0 or 0,  but the 

following corollary shows that if A B 0, then either 0  or 0. 

Corollary 1.4.2  Let A M ,  and B M , .  Then A B 0, if and only if either  

0  or 0.  

Proof :  if A B 0, then a  B
a B a B

a B a B

0 0

0 0
.   

So 0 or a  0 for all 1 , …  ,     1 , …  ,  , thus either 0 or  

0.  

Conversely,  let either 0  or 0. Then by theorem (1.4.1 (g) ) then A B 0.  

Theorem 1.4.3 ( The mixed product rule ) 

Let A M ,  , B M ,  , C M ,  and D M ,  then  A B  C D AC  BD  

Proof : ( see ref 13 .  

Theorem 1.4.4. 1    If A M  and B M  are normal matrices then, 

 A B is normal. 

Proof :  A B  A B A B  A B           ( by theorem 1.4.1 (f) ) 
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AA   BB                     ( by theorem 1.4.3 ) 

 A  A  B B                   ( since A and B are normal ) 

A B A B                ( by theorem 1.4.3 ) 

=  A B  A B .   

  

From the mixed rule product, we have the following corollaries : 

Corollary 1.4.5. 7   If A M  and B M  are nonsingular, then  A B  is also  

 nonsingular, with  A B A  . 

Proof : ( A B    A  AA  B        ( by theorem1.4.3 ) 

 I  I   I . 

  A    A B A   I  I   I .  

Thus A   =  A B  under conventional matrix multiplication , so A B  is 

nonsingular.  

Corollary 1.4.6  If A M  is similar to B M   and  is similar to  then  

A C  is similar to B D. 

Proof :  Since A is similar to B and C is similar to D , there exist nonsingular  matrices  

P, Q such that A PBP  and C QDQ ,  so  

A C PBP     QDQ   

          P Q  BP DQ       ( by mixed product rule ) 
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          P Q B D P Q     ( by mixed product rule ) 

           P Q B D  P Q       ( by corollary 1.4.5 ).  

 

The following corollaries present the orthogonal and unitary properties of Kronecker 

 product in the usual sense :  

Corollary 1.4.7  If A M  is orthogonal and B M  is orthogonal then A B is 

 orthogonal matrix. 

Proof :   and  are orthogonal, so AA I  and  BB  I . 

Using theorem (1.4.3), A B A B A B A B  AA BB  

  I I I  .  

Therefore A B is orthogonal.  

Corollary 1.4.8  Let U M  and V M  be a unitary matrices , then U V is a unitary 

matrix. 

Proof :   U and V are unitary implies U U  and  V V . Using corollary (1.4.5) 

U V U   V  U   V  U V  . Therefore U V is a unitary matrix.  

Theorem 1.4.9. 7  If A M  and B M  , then tr A B t A  tr B t B A . 

Proof :  tr (A B tr a B tr a B  … tr  

                              a tr B a tr B a tr B  

                               a a a   tr B 
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t    tr B. 

Consequently, tr (A B   t  tr B t  B tr A tr B A .  

Remark 1.4.1  By theorem  (1.4.9)  tr A B t A  tr B , if A and B are square  

matrices, but if A M , B M ,  then tr A B t B A   in general as will see 

in the following example : 

Example 1.4.2  Let A 2 1 , B

1  2
0   3
2   5
1 1

,   then A B

2   4 1 2
0   6   0 3
4 10 2 5
2 2 1   1

. 

And B A

2 1   4 2
0   0   6 3
4 2 10 5
2 1 2   1

.  Therefore  tr (A B 7, and tr B A 13.   

 

The mixed product rule can be generalized in two ways as will see in the following  

theorem : 

Theorem 1.4.10  If A , A , … , A M   and B , B , … , B M ,  then  

(a) ( A A … A    B B … B   A B A B … A B . 

(b) (A B  A B  … A B  A A … A   B B … B  .  

Proof :  We use mathematical induction to prove  (a) and (b). 

(a) Let 2, so by the mixed product property  ( A A   B B  A B A B .  

Assume that ( A A … A    B B … B   A B A B … A B .  
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Now , (  A A … A A    B B … B   

   A A … A   A    B B … B    B  

 A A … A  B B … B   A         ( by theorem 1.4.3  )  

A B A B … A B  A  A B A B … A B A B . 

(b) Let 2 , so by the mixed product property A B A B A A B B   

Assume that  (A B  A B  … A B  A A … A   B B … B     

Now ( A B  A B  … A B  A B  

         A B  A B  … A B   A B   

          A A … A   B B … B   A B  

          A A … A A    B B … B  B     by mixed product property   

          A A … A A  B B … B B  .  

Corollary 1.4.11  Let A M  and B M  .  

(a) if A and B are idempotent then  A B  is an idempotent.       

(b) If A and B  are nilpotent then  A B  is  nilpotent. 

Proof : (a)  A and B are idempotent then A A , B B, so  

A B A B  A B AA   BB  A B A B.   

(b)  A and B are nilpotent then A 0, B 0.  So,  

A B A B A B … A B AA … A BB … B A B 0  0 0. 
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Theorem 1.4.12. 13   Let A M  and B M  , then 

(a) A I A I  and I B I B ,  k 1 , 2 , … 

(b) For any polynomial p t  , p A I p A   I   and p I B I   p B  . 

Proof : (a) A I A I A I … A I  

                                     A A  …  A  I I …  I    ( by theorem 1.4.10 (b) ) 

                                 =  A I.  

And  I B  I B I B  … I B I I … I  B B … B  I B . 

(b) Let    …  ,  so  

            A a I  A  A  …  Σ a A   ,     A I . 

Now,  p A I   Σ a A I  Σ a A I     (by part a) 

Σ a A I         ( by theorem 1.4.1 (a) )                                                                          

 Σ a A I A  I  .  

Similarly, we can prove that p I B I   p B  .  

 

In the following lemma shows that the Kronecker product of two upper triangular 

 matrices is also upper triangular. 

Lemma 1.4.13 . 5   If A M  and B M  be upper triangular then A B is upper 

triangular. 
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Proof : A and B are upper triangular, then A a  where a 0 for j   and  

B b   where b 0  for p .  By definition, 

A B
a B a B

a B a B

a B a B

0 a B
  .  So, a B 0   for  j 

since a 0 for j.  Now the block matrices  a B are upper triangular since  

 is upper triangular, hence A B is upper triangular.  

The following theorem shows the relation between  A  , σ B   and  A B   

Theorem 1.4.14. 13   Let A M  and B M , if    is an eigenvalue of A with corres-  

ponding eigenvector  and if    is an eigenvalue of B with corresponding eigenve- 

ctor  ,  then     is an eigenvalue of  A B with corresponding eigenvector  

  y .  If  A   , . . . ,  and  σ B  , . . . , ,  then 

 A B  i 1 , … , n , j 1 , … , m         (including algebraic multiplicities).  

In particular,  A B   A  σ B .  

Proof :   Suppose  Ax    and  By ,  for  x , y 0.    Now by the mixed 

 product property 

A B    y   A x   B y         y . 

By schurs triangularization theorem, there exist unitary matrices U M  and V M , 

such that U AU T   and   V BV T  where  T  and  T  are upper triangular matrices  

Then by theorems 1.4.1(f) and 1.4.10 (b)  U V A B U V U AV V AV  
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  T T ,  is  

 upper triangular and is similar to A B.  The eigenvalues of A, B and A B are exactly 

the main diagonal entries of T  , T  and T T  respectively , and the main diagonal of 

T T  consists of pair wise products of the entries on the main diagonals of T  and T . 

Corollary 1.4.15  Let A M  and B M .  Then A B  . 

Proof :  Assume that  , . . . ,   and   , . . . ,   are the eigenvalues of A M   

and B M , respectively. Then we have  

A B
 ,   

  |  | 
 

 |  |      .   

Corollary 1.4.16.   If A M  and B M  , then det A B det A det B . 

 Proof : det A B Π  Π   λ  Π   λ  Π    .  .  .  λ  Π   

Π    Π  λ λ  .  .  .  λ  µ µ  .  .  .  µ det A det B .  

Corollary 1.4.17 If A M  and B M  are positive (semi) definite Hermitian matrices  

Then A B is also positive (semi) definite Hermitian .  

Proof : ( see ref  ).  
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In the following theorem prove the relation between ( S.V.D ) of ,  and A B : 

Theorem 1.4.18.   Let A M ,  and B M ,  have singular value decomposition  

A V D W  and B V D W , where D σ A M , , D σ B M , ,    

and let rank A r  and rank B r . Then A B  V  V D  D   .  

The nonzero singular values of A B are the r r   positive numbers  { σ A σ B  

1 r  , 1 j r } ( including multiplicites ).  Zero is a singular value of A B  

with multiplicity min{mp , nq} - r r .  In particular, the singular values of A B are the 

 same as those of B A,  and  rank A B rank B A   r  r .  

Theorem 1.4.19.   If A M  and B M  . Then for all p-norms A B    

 B . 

Proof : ( Case 1)  For Frobenius norm, A B  A  .  

A B  tr A B A B tr A B A B  (by theorem 1.4.1 (f) )  

tr  AA   BB          ( by Theorem 1.4.3 ) 

tr  AA   tr  BB  tr  A A  tr  B B    ( by theorem 1.4.9 ) 

A  B   A    .  Therefore  A B  A  . 

Now for the 2-norm ; 

A    λ A  λ B   A B  A B .   

(Case 2)  The max-norm , A B  A    
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A B    Σ
 ,   

 Σ
  

 Σ  b . 

 Σ a   Σ  A  .  

(Case 3) The ∞-norm is similar to the max-norm except the largest absolute row sum is  

used rather than the largest absolute column sum, by taking the transpose. 

(Case 4) The spectral-Norm A B
 ,   

  s A  s B   

 
  s A   

   
  s B  A  .  

Corollary 1.4.20.   If A M  and B M  are nonsingular,  then  cond A  B  

cond A  cond B . 

Proof :   cond A  B A B   A B  

                                      A B  A B        ( by corollary 1.4.4) 

  B      cond A  cond B .  

 

The following will concern the Kronecker sum of matrices : 

Definition 1.4.2  Let A M  and B M .  Then the Kronecker sum of A and B is the  

mn-by-mn matrix denoted by (A B  and defined as A B I A B I . 

the following example shows that  (A B B A   in general. 

Example 1.4.3  Let A
1 2 3
3 2 1
1 1 4

   and  B 2 1
2 3 . Then 
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A B  I A B I

3 2 3 1 0 0
3 4 1 0 1 0
1 1 6 0 0 1
2 0 0 4 2 3
0 2 0 3 5 1
0 0 2 1 1 7

   

B A I B A I  

3 1 2 0 3 0
2 4 0 2 0 3
3 0 4 1 1 0
0 3 2 5 0 1
1 0 1 0 6 1
0 1 0 1 2 7

.  

 

We saw the Kronecker product of two matrices A and B has as its eigenvalues all possi-  

ble pairwise products of the eigenvalues of A and B. The following theorem shows that 

the Kronecker sum of A and B  has as its eigenvalues all possible pairwise sums of the  

eigenvalues of A and B.  

Theorem 1.4.21  Let   A M  and B M . If  σ A  and   is a correspon- 

ding eigenvector of A, and if σ B  and   is a corresponding eigenvector of 

B, then     is an eigenvalue of the Kronecker sum I A B I  and y x  

 is a corresponding eigenvector of the Kronecker sum.  In fact  σ A B σ A   + 

σ B .  

Proof : ( see ref  .  

Remark 1.4.2.   Let A M  and B M  , then I A commutes with B I  . 

Proof : I   A  B  I  I B    A I  B  A  BI   I  A  
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B  I  I  A .  

Theorem 1.4.22  Let  A M  and B M  be a matrices then tr A B m tr A  

n tr B .  

Proof : tr A B   tr I A B I   

                                tr I A tr B I   

                                  tr I  tr A  tr I  tr B     ( by theorem 1.4.9 ) 

                                 m tr A  n tr B  .  

Theorem 1.4.23  Let A M  and B M .  Then for    1 ∞, 

A B   √n  A  √  B . 

Proof :  A B   I A B I   I A  B I  

 I  A  B  I           ( by theorem 1.4.19 ) 

 √n  A  √  B .   

 

We consider members of M  as vectors by ordering their entries in a conventional way 

from left to right , which is given in the following definition : 

Definition 1.4.3  Let A a M ,  we associate the vector vec A  defined by 

Vec A a   , … , a  , a  , … , a  , … , a  , … , a . 
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Remark 1.4.3.   Let A , B M  and α , .  Then Vec αA βB αVec A  

βVec B .                                                                                                                            

Proof :  Vec αA βB Vec 

a βb … βb
α … α b

… a

     

a βb  , … ,  , … , βb  , … , a    

a , … , , … ,  , … , a βb  , … ,  , … , βb  , … ,  

 a  , … ,  , … ,  , … , a β b  , … ,  , … , b  , … ,   

αVec A βVec B .     

   

The next theorem indicates to the close relationship between the Vec-vector and the 

 Kronecker Product : 

Theorem 1.4.24.    Let   A M ,   B M   and    X M ,  then   Vec AXB  

B A  Vec X .  

 Proof : Denote the K-th  column of  AXB  by  AXB   . Then AXB A XB  

 AXB .  This implies that  AXB
x b x b x b

x b x b x b
 

A
x

x
b

x

x
b

x

x
b b A

x

x
b A

x

x
  

b A , b A , … , b A  Vec X    for k 1,2, …  , q.  So, 
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Vec AXB  

B A
B A

B A

 B A  Vec X .    

Corollary 1.4.25.   Let  A M  , B M  and X M .  Then 

(a) Vec AX I A  Vec X . 

(b) Vec XB  B I  Vec X . 

(c) Vec AX XB A B  Vec X .   

Proof :  (c)  Vec AX XB   Vec AX  Vec XB            (by remark 1.4.3) 

                                             Vec AXI Vec I XB     

                                               I A  Vec X   B I  Vec X  (by theorem 1.4.24) 

                                              I A B I  Vec X  

 A B  Vec X     ( by definition 1.4.2 ).  

Corollary 1.4.26.   Let A M  and B M .  Then Vec AB I A  Vec B  

B A  Vec I  B I  VecA .  

Proof : Vec AB Vec ABI I A  Vec B    ( by theorem 1.4.24 ) 

                                                    I A  . 

Next,  I   is equivalent to Vec AB B A  Vec I .  Finally I  

is equivalent to Vec AB B I  VecA.   
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The following lemma describes the relation between  and A  

Lemma 1.4.27.  Let A M . Then A P  , where M   is a perm- 

utation matrix this matrix P is given by P = Σ  Σ  where each  has entry 1 

in position  i,j and all other entries are zero. 

    

The previous lemma leads us to the following theorem : 

 Theorem 1.4.28.  Let A M  and B M  . Then    where  

 ,  are permutation matrices such that M  ,  M . 

Proof : Let Y AXB , where  M .  Then BX A .  So VecY  X  

And Ve X     ( by theorem 1.4.24 ). 

But Ve VecY,  where M  is a permutation matrix, and VecX  X  

Where   M ,  is a permutation matrix.  So, 

X Ve VecY  X ,  i.e 

X  X  . But VecX  X , so  

X  X , for all  M  and this implies  

.  

Corollary 1.4.29  Let A M  and B M .  Then   for any  

unitarily invariant norm ·  on  M , . 
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Proof :       

                                                                                                                       

Since  ,  are unitary matrices.   

 

1.5     The Hadamard product of matrices 

The Hadamard product is a binary operation that takes two matrices of the same size, 

and produces another matrix where each element ij is the product of element ij of the 

original two matrices.    

Definition 1.5.1  The Hadamard product of A a M  and B b M  is  

defined by A B  a b M . 

Example 1.5.1  If   A
  2 3   i

1 7   9
 3i 0 5

      and     B
1   9   6

  2 5   0
i   1 2

.  Then 

 A B  
2   27 6i
2 35 0

  3   0 10
.  

   

The following theorem Shows the set of  matrices with nonzero entries form an  

abelian  group under the Hadamard product : 

Theorem 1.5.1    Let , .  Then A B  B A.  

Proof : Let A and B be  matrices with entries in .  Then A B  
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 =   B A    and therefore  A B  B A.    

Definition 1.5.2  The Hadamard identity is the  matrix J defined by J 1 

for all 1   , 1 . 

Theorem 1.5.2    Let . Then  A J J A .  

 Proof :  A J  J A    ( by theorem 1.5.1 ) 

                                   J     ( by definition H.P ) 

                                   1    (by definition HID ) 

                                   .   Therefore A J .  

Definition 1.5.3   Let  and suppose 0 for all 1   , 1 . 

Then  the  Hadamard  inverse  denoted by  A   is   A   , 0              

for  1   , 1 . 

Theorem 1.5.3    Let  such that 0 for all 1 , 1  .  

Then A A A A J .  

Proof :  A A A A    (by theorem 1.5.1 )  

                                A     ( by definition H.P ) 

                             =   1    J .   

Therefore  A A A A J .    
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The following theorem states some  basic properties of the Hadamard Product : 

Theorem 1.5.4     Suppose A , B , C M ,  then  

(a) α A B αA B A αB   ,     for all α .  

(b) C  C  C B. 

(c) A B . 

Proof :  (a) α A B α A B α   α  αA B  

So, α A B αA B.  And 

α A B  α A B α     α α  

 αB .  Therefore  α A B  A αB .  

(b) C         

                                                                    

                                                                C  C  

                                                                C  C .   

Therefore  C  C  C B.  

(c) A B  A B  A B     .  

From the previous results, we conclude the following corollary : 

Corollary 1.5.5  If A , B M ,  then  A B A  B   such that 0 and  

0.   
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Proof :  A B  A  B    A  B  

                                            A     B   

                                           J  J   ( by theorem 1.5.3 ) 

                                          = 1 . 1 = 1 = J .  

Therefore,  A  B    A B .   

 

 

Remark 1.5.1  Let A , B M  , if  A and B  are diagonal matrices then A B AB. 

Proof :  A B  
a 0

0 a
 

b 0

0 b
 

                           
a b 0

0 a b
A B.   

The following theorem gives the relation between diagonal matrices and the matrix  

products on the Hadamard multiplication : 

Theorem 1.5.6   If ,  and if   and   are diagonal then  

                           D  E B DA BE  . 

Proof : D  E  Σ D   E  

                                      Σ  Σ  D  A B  E   
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              Σ  Σ  D  A  B   E     ( by definition HP ) 

             Σ D   A  B   E     (  E 0  for all  ) 

               D   A  B   E            (   D 0  for all   ) 

               D   A  E  B     

               D    Σ   A  E  B      (   E 0  for all  ) 

                D   AE  B     ( by theorem entries matrix products ) 

                Σ D   AE     B        (   D 0  for all   ) 

                 B    DAE B    .  Therefore  D  E B. 

Also,  

D B   B  Σ   B    

                                                         B      (  E 0  for all  ) 

                                                     B    

    Σ  B  ,    E 0  for all  . 

    .  

Therefore,  D  E DA BE .  
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Definition 1.5.4  Define the diagonal matrix M  with entries from a vector  

by   . x                if  i j
 0                  if i j     

Theorem 1.5.7   Let ,  and let . Then the i th diagonal entry of the 

matrix   coincides with the i th entry of the vector  , 1 , …  , . 

Proof : If ,   and ,  then 

 Σ    Σ    ,  for   1 , …  , .   

 

The following lemma relate the Hadamard product to the Kronecker product by identif-  

ying  as a submatrix of .   

Lemma 1.5.8    If  ,  then   α , β   in which α  1 ,   

m 2 , 2m 3 ,   …  ,    and  β  1 , n 2 , 2n 3 ,   …  ,  .  In particular if 

,  is a principal submatrix of .   

Theorem 1.5.9   If  ,  then    . 

Proof : By lemma 1.5.8 the Hadamard product is a submatrix of the Kronecker product, 

but the rank of the submatrix is not greater than the rank of the matrix, thus  

   .      ( by theorem 1.4.18 ) 

Therefore     .   

Theorem 1.5.10   Let , , 0, and 0,  then  . 
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 Proof :  We have A B  , by corollary (1.4.16). But A B 0  and  

 is a principal submatrix of A B by Lemma (1.5.8), 

 A B  .  Therefore,  

 .     

  

Based on lemma (1.5.8) we will give the proof of the schu ,s product theorem in a new  

style as follows : 

Theorem 1.5.11 ( schu ,s product theorem ) 

 If  ,  are positive semidefinite, then  is also positive semidefinite. 

Proof :  , 0  given, it follows that 0  ( by corollary 1.4.17 ) , but  

 is a principal submatrix of A B    ( by lemma 1.5.8 ).  So,  0.   

  

The following theorem compares the determinant of the matrices ,  and  : 

 Theorem 1.5.12   ( Oppenhei ,  inequality ) 

If  ,  are positive semidefinite,  then 

 1)  det Π    det .  

2) det Π   det .   
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Theorem (1.5.12) implies the Hadamar ,  inequality in the usual way as follows :  

Theorem 1.5.13    ( Hadamar ,  inequality )  

If   is positive semidefinite , then  det(  Π  . 

Proof : Let A be any positive semidefinite matrix of size n.  Note that I  is positive  

semidefinite matrix of size n.  Now we have the following  

det(  I   …  I   det    det I      ( by theorem 1.5.12 ) 

                                                                …   Π  .   

Corollary 1.5.15    Let  ,   are  positive  semidefinite .  Then 

                                         det(  det B det .  

Proof : det     …    det B              ( by theorem 1.5.12 )  

                                    det  det B        ( by theorem 1.5.14 ).  
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Chapter two 

Inequalities for Kronecker products and Hadamard products 

of positive definite matrices 

In this chapter, we will see some inequalities for Kronecker products and Hadamard  

products of positive definite matrices. The contents of this chapter can be found in [10].  

2.1    Introduction 

The following property involving Kronecker products of matrices can be derived from  

The mixed-product property ( 1.4.3 ). 

Theorem 2.1.1 Let  and , then  for any natural num- 

ber  k. 

Proof :   …       ( k- times ) 

                               …       …       ( by theorem 1.4.3 ) 

                               .    

Corollary 2.1.2  For any ,  and , we have  .  

Proof : , , so 

( A ⁄  ⁄ , for any positive integer n, so it follows that  

 A ⁄   ⁄ . Now ⁄  A ⁄   ⁄  for any positive integer  

m, n. Therefore  for any .   
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The following lemma generalizing theorem ( 2.1.1 ) : 

Lemma 2.1.3  Let  and , are positive definite matrices. Then for any  

non-zero real number r  

                                          .    

Proof : ,   are positive definite matrices, assures that there exists unitary matrix    

and  , such that 

,  where  is a unitary matrix and  diag λ  , λ  , …  , λ . 

,  where   is a unitary matrix and diag µ  , µ  , …  , µ . 

Thus,   

                                ( by theorem 1.4.3 ) 

                                   ( by (2) in example 1.3.2 ) 

                                   

                                                ( by theorem 1.4.3 ) 

                             .   

Remark 2.1.4  Let A M  and B M  are matrices with polar decomposition (i.e) 

A U |A| and B U |B| . Then A B  U |A|  U |B|  

 U U   |A|  |B|                 (by theorem 1.4.3 ) 

 U U  A A   B B    (where |A| A A  , |B| B B   ) 
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U U  A A B B    , A B A B   for any positive real number    

 U U  A B A B U U  A B A B U U  |A B|.  

 

Lemma 2.1.5. 3   A map  defined by A, B A B  for ,  is 

 jointly concave. 

Theorem 2.1.6. 3    The following identity holds for any ,  and 0

A I I B A B  A B sI I I B . 

Proof :  ,  and s is positive, take A I, I B, A B  and 

. It follows from the mixed-product property of the Kronecker product that 

I I  I I P s Z  

I I I I  I I  X Y s Z  

                                                                                 I I X Y s Z  

I I X Y X Y  

 I X Y  I . 

That is 

I I P s Z  I I .  

Again, the mixed-product property yields 
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I I X Y s Z  

I I .   

Thus,  I I .  Which is 

A I I B A B  A B sI I I B .  

 

2.2    Inequalities for Kronecker products 

In this section we drive inequalities for the Kronecker product of positive definite matr- 

ices in the form  and C β B D  where , , ,  

 are positive definite matrices and , , ,  are positive real numbers such that  

1. 

Theorem 2.2.1. 10   For , , ,  and , , , 0 such that  1, 

 C β B D . 

Proof : Let  be a real-valued function defined by  for 0 and 0 1. 
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Clearly,  is continuous, and  is representation for  

  . write I B and A B . Hence, the functional calculus 

for A B  is   A B A B  can be written as 

 I I I I .  It follows from lemma 2.1.3 that 

I I I .  

Hence, by lemma 2.1.6 we obtain 

  I I I I  Y  

                   s Z I I    

                 s Z I I   

                 s I  .   ( by lemma 2.1.6 ) 

Since  I  and  I B  are positive definite, by lemma 2.1.5 we have that the map  

  defined by 

I , I B I I B  is jointly concave. It is well-known 

that the positive linear combination of the jointly concave maps is jointly concave. 

Hence, from the viewpoint of the Riemann integral, the integrand is also jointly concave 

and so is   . This means that for any , , ,  and scalar 0 1, 

1 1 1 . For 0  

and 1.  Let   ⁄ ,  thus 0 1. 
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So,  1 1   

                                                 

                                                      

                                            

                                                 ( since  1)  

                                            C  B D    

                                             C  B D   

Therefore   C β B D .   

 

From  theorem (2.2.1), we obtain the Holder inequality for positive definite matrices 

as a special case. 

Recall that the real numbers  ,  are conjugate exponents if ,  are positive and 

1 1
1. 

Corollary 2.2.2  For , , ,  and conjugate exponents  , , we have  

   . 

Proof : take 1,      and    in theorem 2.2.1. Then 
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    A   C     

Replacing  with , Hence 

    A   B     

Finally we replace , , ,  with , , ,  respectively we have 

            

Therefore       .  

Remarks 2.2.1  The Cauchy-Schwarz inequality is obtained from corollary (2.2.2) by  

taking  2,  since   . 

Corollary 2.2.3  For ,  and conjugate exponents , , we have 

  I   I .  

Proof :  Let I. By corollary (2.2.2) we get 

 I I I   I  .  Now let    then  

I I I   I    

Hence    I   I      ( since  I I I ).  

 

For , , ,  and , , , 0 such that 1. Pattrawut Chansangiam,  

Patcharin Hemchote, Praiboon Pantaragphong in 10 , developed the following results : 



43 
 

(1)   A β B B . 

Proof : Take ,  in theorem 2.2.1,  we get the inequality 

               A β B B . 

(2)   B β B A . 

Proof : Let  ,     in theorem 2.2.1 then we get the inequality 

                B β B A . 

(3)  A C B D .    

 Proof : Let   in theorem (2.2.1) we get 

 C β B D . 

Then by corollary (2.1.2), we get the inequality 

 A C B D .    

 (4) A B   C D  . 

Proof : Take  in theorem 2.2.1 we get to 

 C B D ,  then 

 A B    C D    C B D ,  then 

 A B    C D    C B D ,  ( by theorem 1.4.1 (a) ) 

Then   A B    C D    C B D ,   ( since 1  

Hence   A B   C D  .  
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(5)  A C B D .  

Proof : Let   in result (4) then 

A B   C D  ,  but ,  hence 

 A C B D .  

(6) A B   A B  . 

Proof : Let  in result (1) we get to 

   A B B ,  then 

      A B B ,  then 

      A B B ,   (since 1  

Hence  A B   A B  .   

(7) A B   A B  . 

Proof : Let  in result (2), then we get the inequality  

A B   A B  . 

 (8)  A B B A  

Proof :  Let   in result (2) and by  then we get the inequality 

 A B B A . 
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Definition 2.2.1  Let , . The  Kronecker power  is defined inductively  

 for all positive integer k by   and  for 2, 3, …  i. e  

     …       ( k-times ). This definition implies that , , the  

matrix   , .  

Theorem 2.2.4   For any , positive integer , and real number , then  

. 

Proof : Let  be the statement . If 2, then 

 , which is true. Therefore  2  is satisfies. 

Assume that   is satisfies,  . Now 

 . 

Thus,  1  is true, thus  is true for all .  

Corollary 2.2.5.  Let   be a set of arbitrary square matrices with the same size. 

Then the Kronecker product has the following  

  …    … , For any positive integer k. 

Proof :  … … … …      ( k-times ) 

…  …   …   …             ( by corollary 1.4.9 ) 

…  … .   
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Corollaries 2.2.6  If , , and  , 0, then  

(1) . 

(2) . 

(3)    . 

Proof : (1) Take  in result (1) we get to 

  A β B B ,  then 

              ( by definition 2.2.1 ). 

(2) From 1 in corollary 2.2.6 with  1. 

(3) Take  in result (7) we get to  

  B B A ,  then  

             ( by definition 2.2.1 and lemma 2.1.3 ).  

 

The next result is the AM-GM inequality for the Kronecker product of matrices : 

Corollary 2.2.7  If ,  commute under the  Kronecker product, then 

   ,  with equality iff . 

Proof :             ( by corollary 2.2.6 (3) ) 

                                                 ( ,  given  
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2    

Hence,      . 

For the equality,  

 When , we have       2   

 2  2 √ √   A        …   

A            …  .    

From  and , we have   .  

 Assume that   ,  then 

 2         ( by theorem 2.2.4 )  

                                               ,  then 

4  ,  then 

,  then 

, then 

,  then 

0, then 

0, then 

0  or 0    ( by corollary 1.4.2 ), so .  
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2.3   Inequalities for Hadamard products 

In this section we drive inequalities for Hadamard products of positive definite matrices  

Theorem 2.3.1.   For , , ,  and , , , 0 such that  1, 

 C β B D . 

Proof : Define    by  A, B A B . The Hadamard product of  

matrices is a principal submatrix of the Kronecker product of matrices. Consequently,  

there exists a unital positive linear map     such that .  

Hence, A, B A, B A B A B .Since  is jointly concave 

by theorem 2.2.1 and  is positive and linear, the composition  is also jointly con- 

cave. This means that for any , , ,  and any scalar 0 1, 

1 1 1 .  Since 

0 ⁄ 1, by replacing   ⁄ , we get 

1 1   

                                                 

                                                      

                                            

                                                 ( since  1)  
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  C  B D      C  B D   

Therefore   C β B D .  

From this theorem(2.3.1), we obtain the Holder inequality for positive definite matrices  

as a special case.  

Corollary 2.3.2  For , , ,  and conjugate exponents  , , we have  

   . 

Proof : Take 1,      and    in theorem 2.3.1. Then 

    A   C    . 

Replacing  with , hence 

    A   B    . 

Finally we replace , , ,  with , , ,  respectively we have 

            . 

Therefore,       .  

Remarks 2.3.1  The Cauchy-Schwarz inequality is obtained from corollary (2.3.2) by  

taking  2,  since    .  

Definition 2.3.1   The Hadamard sum of  ,  is denoted by •  where 

 • I I B. 
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By corollary (2.3.2), and taking   we obtain the following :  

Corollary 2.3.3  For , , ,  and conjugate exponents  , , we have  

•    .  

Proof :  • I I B I   I     ( by corollary 2.3.2 )  

                                                     .  

 

For , , ,  and , , , 0 such that 1. Pattrawut Chansangiam,  

Patcharin Hemchote, Praiboon Pantaragphong in 10 , developed the following results : 

(1)   A β B B . 

Proof : Take ,  in theorem 2.3.1,  we get  

   A β B B . 

(2)   B β A B . 

Proof : Let  ,     in theorem (2.3.1) then we get the inequality 

  B β A B . 

(3)  C β B D . 

Proof : Let    in theorem (2.3.1) then we get the inequality  

 C β B D . 
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(4) A B   C D  . 

Proof : Take  in theorem 2.3.1 we get to 

 C B D ,  then 

 A B    C D    C B D ,  then 

 A B    C D    C B D ,  ( by theorem 1.5.3 (a) ) 

Then   A B    C D    C B D ,   ( since 1  

Hence   A B   C D  .   

(5) A B   A B  A B .  

Proof : Let  β 1  in result (2), we have 

A B   A B  A B .  

(6)  β B . 

Proof :  Let    in result (2) then we get the inequality 

  B  B . 

Thus,    β B .   

 

Definition 2.3.2  Let  then the  Hadamard power of  is  

A , 2, 3, … . 

Hence,  if  ,  then . 
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Corollaries 2.3.4  If , , and  , 0, then 

(1) . 

(2) . 

(3)  2 .  

Proof : (1) Take    in result (1) then we get to 

  A β B B .   Then we have 

             (  by definition 2.3.2 ). 

              (2)   Let  1  in (1),  we get  

                        .  

               (3)   Let  1  in result (6),  we get   

                        2 .  

The next result is the AM-GM inequality for matrices involving the Hadamard product : 

Corollary 2.2.5  For , , we have the following inequality 

     . 

Proof :  From (3) in Corollary (2.3.4),  dividing both sides on 2, we get the inequality 

     .   
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Chapter three 

Bounds on the Spectral Radius of Hadamard Products 

of Positive Operators on - Spaces 

3.1    Hadamard product of matrices of operators on   

Definition 3.1.1  The space  is the space of all sequences  , , …  

of numbers such that   | | | |    converges, thus 

                                                   Σ | |   ∞.  

Definition 3.1.2  A linear operator  from a normed space X into a normed  

space Y  is called bounded if there exists a positive numbers C such that  

,   for all  .  

 We write  0  for  , whenever  0  for all 1, and we denoted 

 by   the set of all 0 in .   Abounded linear operator       is  called  

positive ( denoted by 0 )  if  0  for all .  As we assume ∞,  every 

bounded operator on   has a matrix representation with respect to the standard basis, 

and we will identify the operator with its matrix.  

In case  0, we have ,  where each  0. We will use frequently that if 

0   on    . ., 0 ,  then   . 
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Theorem 3.1.1.    Let  be a matrix norm on .  Then  

lim ,  for all . 

In the following theorems we will see upper bounds for some Hadamards products of  

positive operator on   : 

Theorem 3.1.2 [4]   Let , ,  and  be positive operators on .  Then we have 

         .   

Proof :  Let , , ,  and   denote the matrices of the operators  , , ,  

and   respectively. Then the matrix of the operator product        is given 

by  ∑
∞

=1l

. From Cauchy-Schwarz inequality we get  

                                    ∑
∞

=1l

  ∑
∞

=1l

  ∑
∞

=1l

  ,  

                                                                .     

Corollary 3.1.3  Let  and  be positive linear operator on .  Then we have  

                                   .   

Proof :  Take    and    in theorem (3.1.2)  so, 

         .   

Thus,          ( since  ).   
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Corollary 3.1.4  Let  and  be positive linear operators on .  Then we have  

                               .   

Proof :  We substitute   for both    and  ,  and   for    and    in theorem 

 (3.1.2)  then,  

     . 

So,            . 

Thus,                  ( by definition (2.3.2) ). 

Therefore,     .     

Theorem 3.1.5 [4]   Let  and  be positive linear operators on .  Then we have  

                           .   

Proof :  0,   1, …  , n.  

Let    be the statement, Σ   Σ ,     1, 2, …  . 

For 2,     Σ  . 

Σ        . 

But,   0.    Therefore,  Σ   Σ . 
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Assume that  is true, so    Σ   Σ .   

Σ    . 

Σ   

                      

                          .  

But ,     0.   Therefore, 

1  is true. 

Hence,    is true  . 

Take   .  

Let    and   denote the matrices of   and , respectively. 

Then the ,  entry of   is  Σ  ,  and 

 Σ    Σ  

                                                   Σ  Σ  

                                                    .    
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The following lemma shows that the Hadamard product of two positive linear operators 

on  is bounded :  

  Lemma 3.1.6  [4]  Let  and  be a positive linear operators on .  Then  is a 

 positive linear operator on  and    . 

Proof : It is sufficient to prove that   1, whenever   1. 

Assume . From  1  it follows that  1  for all  , ,  so that  

0 .  This implies immediately that  is a positive operator from 

  to  and  1.  Thus we take 

,        .  Then  1  and    1, 

thus    1.  Therefore 

 1,  then   
 

  1.   

Therefore,     .  

Lemma 3.1.7 [4]  Let  and  be positive linear operators on .  Then   is a 

 positive operator on  and   .  

Proof : By the identity   min ;  0  , where a, b are positive 

 numbers, which refers to Krivine calculus in Banach lattices, we get 

  ,  for all  0. 
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This implies that  is a positive operator on , and 

   ,  for all  0. 

By taking the minimum over t, we get 

   , for all  0 .  Then, 

    

                       .  

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

3.2     Inequalities for spectral radius of Hadamard products 

In this section, we will see some inequalities for spectral radius of Hadamard  products 

 of positive operators on .  

Lemma 3.2.1 [4]  Let  and  be positive linear operator on .  Then we have  

              .  

Proof : From  corollary (3.1.4), it follows that 

               .  

Taking norms on both sides we get,  

                ,  then 

                      ( by lemma (3.1.7) ). 

Taking (2  roots on both sides we get,   

                  . 

And taking limit for  ∞   on both sides we have, 

lim   lim    lim  . 

So,        ( by theorem (3.1.1) ).   
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Lemma 3.2.2 [4]  Let  and  be positive linear operators on .  Then we have   

                              .  

Proof : Take  in theorem (3.1.5) we get,  

                .    

              Then   ,  taking norms in both sides we get, 

                          ( by lemma(3.1.6) ). 

Taking 2  root and limit as ∞, on both sides we have 

                        …      

Similarly,          … . 

In theorem (3.1.2), take  ,   we get 

                 .   

           Thus,       .    

           So,       .    

           Then,        . 

Taking norms in both sides we get,  

                    

                                       .  

Taking 2  root and limit as ∞ on both sides we have  
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     .   

From (a) and (b) we get,          . 

Therefore,      .   

Theorem 3.2.3 [4]  Let  and  be positive linear operator on .  Then,  

                              .  

Proof :  From corollary (3.1.3), it follows that 

                  .  

Taking norms in both sides we get,  

     

                              ( by lemma (3.1.7) ).  

Taking 2  root and limit as ∞ on both sides we have  

           

                          ( since   ). 

From   ,  we get 

                ( by lemma (3.2.2) ). 

                                                             .                                                

Therefore,      .   
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Chapter four 

Applications on Kronecker product. 

In this section we present application of the Kronecker product to matrix equations, 

matrix differential equations : 

4.1    Matrix equations 

Knowledge of the Kronecker product and its application facilitates our analysis of 

matrix equations, since the Kronecker product can be used to give a convenient represn- 

tation for linear matrix equations.  

We start by studying the simplest matrix equation as the following theorem : 

Theorem 4.1.1 7    Let  , , ,  and , , such that 

 , then the system  .  Has a unique solution  

if and only if    is invertible if and only if  and  both are invertible. 

If either  or  are not invertible, then there exist a solution  if and only if  

rank  rank  . Where   is the augmented 

matrix of  and ; otherwise the system has no solution.  

 

This equation  can be generalized as follows : 

  ,  where  ,     1, …  , ,  

and , , .  
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With the same technique we can rewrite this equation as : 

. 

So,    .         ( by theorem 1.4.26). 

. ,   Σ  . 

The unique solution is obtained if and only if  Σ   is invertible.  

The following theorem examine if the  has a unique . By using eigenvalue of 

the Kronecker sum. 

Theorem 4.1.2 13   Let   and . The equation  has a  

unique solution ,  for each ,  if and only if    .  

Proof : The eigenvalue of  are the same as those of . Now, if we take the Vec(.) of  

both sides in equation  we get        ( by coroll- 

ary (1.4.27) ). And this system of equations has a unique solution if and only if     

is invertible, that is if and only if non of the eigenvalues of    is zero.  But  

  1, … , ,   1, … , , where 1, … ,  

and     1, … ,  . So The equation  has a unique solution 

if and only if  0  for all , , . .,  if and only if   if and only if  

and  have no common eigenvalue if and only if    .  
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If on other hand  and –  have an eigenvalue in common, the existence of the solution 

depends on the rank of the augmented matrix   : . If the rank of this  

matrix is equal to the rank of   , then the solution exist otherwise they do not. 

Theorem  4.1.3 7    If  and .  The equation , which has 

a nontrivial solution if and only if    is an eigenvalue of  . But the eigenvalues  

of    are  . Hence  has a nontrivial solution 

 if and only if   for some , .  

Lemma 4.1.1.4 8   Let A, B, C and D M  such that .   Then  is 

 Invertible if and only if  is invertible and det  det( .  

Theorem  4.1.1.5 8   Let , , , , , , , , , and  be given  

matrices such that  and . Then the system  

                               

                               

has a unique solution if and only if    is invertible.  

Corollary 4.1.6  Let A, B, C, D, E, and F M  be given matrices. Then the system  

 

 

has a unique solution if and only if    is invertible.  
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Corollary 4.1.7  Let A, B, C, D, E, and F M  be given matrices. Then the system  

 

 

 has a unique solution if and only if    is invertible.  

If we assume that , then the system 

Corollary 4.1.8  Let A, B, C, D, E, and F M  be given matrices. Then the system  

 

 

has a unique solution if and only if    is invertible.  

Corollary 4.1.9  Let A, B, C, D, E, and F M  be given matrices. Then the system  

 

 

has a unique solution if and only if    is invertible.  

The important application of the theorem (1.4.12.(b)) are for  , sin , 

cos ,  lead to the following result : 

Corollary 4.1.10     Let , be a scalar matrix. Then  

(1)  I . 

(2) sin A I  sin A I . 
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Proof (1) :  We can write   as a power series such as : 

                     I
!

   

so,   e I I I
!

I  

                      I I I
!

I   

                      I   
!

  I  

                        I .  

Proof (2) :  We can write  sin A as a power series such as : 

                   sin A
! ! !

 

so,   sin A I A I
! ! !

  

                             I
! ! !

 

                              
! ! !

I  

                               sin A I .  
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4.2      Matrix differential equations 

In this section we present another application of the Kronecker product that deals with  

matrix differential equations of the form  . 

Definition 4.2.1  Given the matrix  , , where each  is a  

differentiable function, then the derivative of the matrix  with respect to the scalar  is  

defined as  :   .  

Similarly, the integral of the matrix is defined as : . 

Theorem 4.2.1 7   Let  ,  and , , be differentiable matrices 

 ( each matrix is assumed to be a function of .  Then   

. 

Proof :  On differentiating the , th block of , we obtain 

                .  

                                                                      .   

Corollary 4.2.2  Let   and  be differentiable matrices ( each  

matrix is assumed to be a function of .  Then   

                                     .  

Proof :    I 0,  and using  definition 1.4.2,  then we have 
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                 I  I   

                                            I I  

                                                .    

The simplest form of matrix differential equations as the following theotem :  

Theorem 4.2.3 7    ;  0 , where          …  1   

This equation has the following solution : .    

Using this fact we can solve the matrix differential equation : 

;  0        … 2 ,   where , , , , and 

, . 

Proof: use the . -notation, then we get  I A B I  , and 

 0   .  Let  , and  .  

Then (1)  becomes  I A B I  ;   0 . By the solution (2) we have 

exp I A B I t . But exp I A B I exp exp B I  

                                                                                               =  B I  

                                                                                          exp   

so,     ;  . .       

                                                                         . . .                      

Thus,   . . .  



69 
 

References 

1  Alan J. Laub. Matrix analysis for scientists and engineers, the society for industrial 

       and applied mathematics, 2005.  

2  Amy N.L, William J. Stewart, the Kronecker product and stochastic automata  

        networks, J. Comput. Appl. Math 167 (2004) 429-447.  

3  Ando T, concavity of certain maps on positive definite matrices and applications to 

       Hadamard products, lin algebra appl 26 (1979) 203-41. 

4  Anton R. Schep, bounded on the spectral radius of Hadamard products of positive  

       operators on -Spaces, journal. Volume 22, pp. 443-447, April 2011.  

5  C.F. Van loan, the ubiquitous Kronecker product, J. Comput. Appl. Math.  

       123 (2000) 85-100. 

6  Charles Johnson, matrix theory and applications. American mathematical society,  

       1990. 

7  Graham, A, Kronecker product and matrix calculus with applications, 1st edition.  

        Eill Horwood, chichester, U.K, 1981.  

8  Halmos, P.R, A Hilbert space problem book, 2nd edition. Springer-verlag, newyork, 

       1982.   

9  Jianhong Xu, Mingqing Xiao, a characterization of generalized spectral radius with  

      Kronecker powers, automatic 47 (2011) 1530-1533.  



70 
 

10  P.Chansangiam, P.Hemchote and P.pantargphong, inequalities for Kronecker prod- 

         ucts and Hadamard products of positive definite matrices, science asia  

          35 (2009): 106-110.  

11  R.A. Horn and C.R. Johnson, matrix analysis, Cambridge university press, 1985. 

12  R.A. Horn and C.R. Johnson, matrix analysis, Cambridge university press, 1990. 

13  R.A. Horn and C.R. Johnson, Topic in matrix analysis, 1st edition. Cambridge 

         university press, 1991. 

14  Robert A. Beezer. A first course in linear algebra. Robert A. Beezer, 2nd edition,  

          2004    

 

 

 

 

 

  

 

 

 

      



71 
 

 

 

  

 

 

 

 

    

   

 

 

  

 

 

 

  

 

 

 



72 
 

     

 

 

  

 

 

 

   

  

 

 

 

 

 

 

 

 

 

 



73 
 

 

 




