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Abstract 
 

In this thesis, a meta-learning evolutionary artificial neural network by means of cellular 

automata (MLEANN-CA) is proposed. It is an adaptive computational framework based on 

evolutionary learning and local search procedures for automatic design of optimal artificial 

neural networks using direct and indirect encoding methods. In this proposed framework, the 

evolutionary cellular configurations are used to, first, design small feed-forward network 

architectures, and then all the generated architectures are trained and evolved separately using 

the meta-learning algorithm with the direct evolutionary approach, where four different 

learning algorithms are used in parallel mode. The neural network architecture, activation 

function, connection weights, and the learning algorithm with its parameters are adapted 

according to the problem. The performance of the MLEANN-CA framework is tested and 

explored, experimentally, using NeuroSolutions and NeuroGenetic Optimizer toolboxes, and 

two famous chaotic time series. Moreover, the performance of different neural network 

learning algorithms (backpropagation algorithm, conjugate gradient algorithm, quasi-Newton 

algorithm and Levenberg–Marquardt algorithm) is explored and evaluated for the two chaotic 

time series when the architecture was changed. The performance of the MLEANN-CA 

framework is compared with the previous MLEANN, which used the direct encoding methods 

for designing architectures, and with the conventional design of ANNs. The results showed 

how effective and scalable is the proposed MLEANN-CA framework to obtain an efficient 

design of feed-forward neural network that is smaller, faster and with better generalization 

performance.  
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 1 

CHAPTER ONE 

 

INTRODUCTION 

 
The human brain provides proof of the existence of massive neural networks that can succeed 

at those cognitive, perceptual, and control tasks in which humans are successful. The brain is 

capable of computationally demanding perceptual acts and control activities. The advantage of 

the brain is its effective use of massive parallelism, the highly parallel computing structure, 

and the imprecise information-processing capability. The human brain is a collection of more 

than 10 billion interconnected neurons. Each neuron, as shown is figure (1.1) (Jain, Mao, & 

Mohiuddin, 1996), is a cell that uses biochemical reactions to receive, process, and transmit 

information. Treelike networks of nerve fibers called dendrites are connected to the cell body 

or soma, where the cell nucleus is located. Extending from the cell body is a single long fiber 

called the axon, which eventually branches into strands and substrands, and is connected to 

other neurons through synaptic terminals or synapses. The transmission of signals from one 

neuron to another at synapses is a complex chemical process in which specific transmitter 

substances are released from the sending end of the junction. The effect is to raise or lower the 

electrical potential inside the body of the receiving cell. If the potential reaches a threshold, a 

pulse is sent down the axon and the cell is ‗fired‘. 

 

 
 

Figure 1.1: Mammalian neuron 

 

Artificial neural networks (ANN) have been developed as generalizations of mathematical 

models of biological nervous systems. The basic processing elements of neural networks are 

called artificial neurons, or simply neurons or nodes. In a simplified mathematical model of 

the neuron, the effects of the synapses are represented by connection weights that modulate 

the effect of the associated input signals, and the nonlinear characteristic exhibited by neurons 

is represented by a transfer function. The neuron impulse is then computed as the weighted 

sum of the input signals, transformed by the transfer function. The learning capability of an 

artificial neuron is achieved by adjusting the weights in accordance to the chosen learning 

algorithm (Jain, Mao, & Mohiuddin, 1996), (Lippmann,1987).  

 

Such artificial neural networks are currently one of the most popular techniques that are 

successfully used in many applications such as: pattern classification, pattern recognition, task 
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of optimization, medical diagnosis, financial modeling, etc. Many of the conventional ANNs 

being designed are statistically quite accurate but they still leave a bad taste with users who 

expect computers to solve their problems accurately. The important drawback is that the 

designer has to specify manually the number of neurons, their distribution over several layers 

and interconnection between them. As the complexity of the problem domain increases, 

manual design becomes more difficult and unmanageable. Several methods have been 

proposed to automatically construct ANNs for reduction in network complexity and the 

evolutionary algorithms (EAs) are one of these methods. The interest in evolutionary 

algorithms for designing ANN architecture has been growing in recent years as they can 

evolve towards the optimal architecture without outside interference, thus eliminating the 

tedious trial and error work of manually finding an optimal network (Korning, 1995), (Yoon, 

Holmes, & Langholz, 1994), (Yao, 1999), (Caudell & Dolan, 1989), (Abraham, 2004), 

(Abraham & Nath, 2001), (Binos, 2003), (Braun & Weisbrod, 1993), (Belew, McInerney, & 

Schraudolph, 1991), (Yao & Liu, 1998), (Andersen & Tsoi, 1993). The advantage of the 

automatic design over the manual design becomes clearer as the complexity of ANN 

increases.  

 

Despite many advantages in using evolutionary algorithms for designing artificial neural 

network architectures, some aspects require improvements. A notable problem is that the 

evolutionary algorithms are inefficient in fine tuning local search, although they are good at 

global searches (Yao, 1999), (Abraham, 2002), (Yao, 1993). This is especially true for genetic 

algorithms (GA‘s). The efficiency of evolutionary algorithms can be improved significantly by 

using a hybrid learning approach that incorporates the local search procedure into the 

evolution. Evolutionary algorithms are used to, first, locate a good region in the space and then 

a local search procedure is used to find a near optimal solution in this region. Several hybrid 

learning approaches had been successfully used for evolving neural network topology and/or 

weights (Abraham & Nath, 2000), (Abraham, 2004), (Abraham, 2002), (Yao & Liu, 1997), 

(Belew, McInerney, & Schraudolph, 1991), (Wong, Chung, & Wong, 1998), (Magoulas, 

Plagianakos, & Vrahatis, 2001), (Hendtlass & Podlena, 1995). One of these hybrid learning 

approaches is called meta-learning evolutionary artificial neural networks (MLEANN) 

(Abraham, 2004), (Abraham, 2002). It can be considered as an automatic computational 

framework that used a direct encoding method for the adaptive optimization of ANNs. The 

main aim of using the MLEANN framework is to improve the learning process and to obtain 

an efficient design of neural networks with faster convergence. 

 

1.1 Justification 

 

Until now, the MLEANN framework (Abraham, 2004) uses only the direct encoding methods 

for optimizing the neural network architectures. These direct encoding methods base on the 

codification of the complete network into the chromosome. They are relatively simple and 

straightforward to implement but requires much larger chromosomes especially for ANNs 

with complex architectures (Caudell & Dolan, 1989), (Yao, 1993), (Branke, 1995), (Koza & 

Rice, 1991), (Yao & Liu, 1998), (Braun & Weisbrod, 1993). This could end in a too huge 

space search that could make the method impossible in practice. On the other hand, 

implementation of crossover operator for the chromosome is often difficult due to production 

of non-functional offsprings. An alternative more interesting for optimizing the ANN 

architecture are the indirect encoding methods such as cellular automata (Gutierrez, Isasi, 
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Molina, Sanchis, & Galvan, 2001), (Harp, Samad, & Guha, 1989), (Kitano, 1990), (Molina, 

Galván, Isasi, & Sanchis, 2000-A), (Gruau & Whitley, 1993), (Gruau, Whitley, & Pyeatt, 

1995), (Harp, Samad, & Guha, 1990), (Koza & Rice, 1991), (Molina, Galván, Isasi, & 

Sanchis, 2000-B), (Chval, 2002), (Hussain & Browse, 1998), (Jacob & Rehder, 1993), (Luke 

& Spector, 1996). These methods concentrate on codifying a compact representation of the 

networks reducing the length of the genotype and avoiding the scalability problem. In this 

thesis, an automatic computational framework: meta-learning evolutionary artificial neural 

network by means of cellular automata (MLEANN-CA) is proposed. This proposed 

framework combines the local search methods with the evolutionary learning in order to 

obtain an efficient design of neural networks. The MLEANN-CA framework was explored 

and simulated using NeuroSolutions and NeuroGenetic Optimizer toolboxes, and two famous 

chaotic time series.  

 

1.2 Thesis Objective 

 

The primary objective of this thesis is to propose and design an efficient and effective 

framework: meta-learning evolutionary artificial neural network by means of cellular automata 

(MLEANN-CA). It is an adaptive computational framework based on direct and indirect 

evolutionary computation and local search methods for automatic design of optimal ANN. 

Using this framework significantly improves the learning process, increase the scalability, 

enhance the predictive accuracy of the results, and obtain a small and efficient design of neural 

networks with faster convergence and better generalization performance. 

 

1.3 Contribution 

 

In this thesis, we propose a hybrid meta-heuristic learning approach (MLEANN-CA) 

combining evolutionary learning and local search methods using direct and indirect 

evolutionary approaches (Abu Salah & Al-Salqan, 2006-A), (Abu Salah & Al-Salqan, 2006-

B). This thesis work moves forward the research on proposing and designing the MLEANN-

CA framework in the following way: 

  

 We use the evolutionary cellular configurations for designing small feed-forward 

neural network architectures. 

 

 We apply the meta-learning algorithm with the direct evolutionary approach for 

training and evolving, separately, the new generated architectures of neural networks 

(after optimized by cellular configurations) using different learning algorithms in 

parallel mode. 

 

 We test, investigate, and explore the performance of the MLEANN-CA framework 

using Neurosolution and NeuroGenetic Optimizer toolboxes and two famous chaotic 

time series. We also explore and evaluate the performance of different neural network 

learning algorithms for the two chaotic time series when the architecture was changed. 

 

 We compare the tested results of the MLEANN-CA with the previous MLEANN 

framework that used the direct encoding methods, and with the conventional design of 
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ANNs. The empirical results should indicate that the proposed MLEANN-CA 

framework is important and efficient in designing optimal ANNs that are smaller, 

faster, and with better generalization performance. 

  

1.4 Thesis Overview 

 

The rest of this thesis is organized as follows: 

 

In chapter two, Background Knowledge, an overview about the artificial neural networks and 

the learning algorithms is provided. Moreover, the evolutionary and genetic algorithms are 

presented and discussed. The definition of the cellular automata and the meta-learning concept 

is also introduced.  

 

In chapter three, Literature Review, a survey of the related works is presented. It is organized 

in two subtopics: Pure Evolutionary Algorithms for Training and Evolving Artificial Neural 

Networks, and Hybrid Evolutionary-Gradient Search Algorithms for Training and Evolving 

Artificial Neural Networks.  

 

In chapter four, Meta-Learning Evolutionary Artificial Neural Networks: By Means of Cellular 

Automata, the proposed framework (MLEANN-CA) is discussed and presented in details.  

 

In chapter five, Experiments and Results, the proposed framework is simulated and tested 

using two efficient toolboxes and two famous chaotic time series. The performance of the 

MLEANN-CA is explored and evaluated, and the results are discussed and compared with 

other approaches (i.e. MLEANN and the conventional design of ANNs).  

 

Finally in chapter six, Conclusions and Future Works, the main conclusions are listed and 

some recommended suggestions and ideas are provided as future works.  

 

We provide short description about the Neurosolution and NeuroGenetic Optimizer toolboxes 

that are used for the experiments simulations beside number of windows and screens that 

appeared during the experiments in appendix A. 
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CHAPTER TWO 

 

BACKGROUND KNOWLEDGE 
 

This chapter describes the paradigm of artificial neural network and number of its learning 

algorithms. Beside that, it introduces the concepts of evolutionary algorithms and the genetic 

algorithms. The description of the cellular automata is also presented. Furthermore, this 

chapter introduces the meta-learning concept and its benefits.  The material here is general; it 

is intended to clarify the concepts and paradigms used throughout this thesis. The topics 

related directly to the subject of the thesis, i.e. the Evolutionary Artificial Neural Networks, 

are discussed in details in subsequent chapters.  

 

2.1 Artificial Neural Networks 

 

Artificial Neural Networks (ANNs) are a component of artificial intelligence that simulates 

real brain‘s neurons. Also known as parallel distributed processing, or connectionist models, 

artificial neural networks are information processors inspired by the way the highly 

interconnected structures of the brain process information (Jain, Mao, & Mohiuddin, 1996), 

(Lippmann,1987). Artificial neural networks are mathematical models that emulate some 

properties observed from the biological neural network: the knowledge is acquired by the 

network through a learning process and the synaptic weight is used to store the knowledge. 

Computations are performed through the passing of signals within a structured arrangement of 

highly interconnected processing units (neurons) in response to a given input signal. The 

artificial neural network model was introduced by McCulloch and Pitts, after the definition of 

the computational model for the traditional perceptron in 1943. This is an artificial neuron 

with a hard-limiting activation function. Since that, artificial neural networks have been 

implemented to solve a variety of problems involving pattern classification, pattern 

recognition, task of optimization, medical diagnosis, and financial modeling. 

 

2.1.1 Artificial Neural Networks Components: 

 

2.1.1.1 Artificial Neurons: 

 

The basic element of an artificial neural network is the artificial neuron which simulates some 

of the operations the natural neuron can perform. This artificial neuron is shown in the 

following figure (2.1) (Lippmann,1987), (Jain, Mao, & Mohiuddin, 1996):   

 

 
 

Figure 2.1: The artificial neuron model 
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The neuron receives as inputs the outputs from other neurons, if the combined strength of the 

signal reaches a specific threshold; the neuron sends a signal to all the neurons waiting for the 

output. This process can be described by the following equation (Yao, 1999): 
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where symbols xi, represent the strength of the input signals, wi, represent the connection 

strengths of the given input signal, and the output is represented by the symbol y,  θ is a 

threshold value (or bias), and f is the neuron‘s activation function. Different activation 

functions (also known as transfer functions) were found and the most commonly ones are 

shown in the following figure (2.2) (Jain, Mao, & Mohiuddin, 1996): 

 

 
 

Figure 2.2: Most commonly used transfer functions 

 

2.1.1.2 Architectural Elements of an Artificial Neural Network: 

 

The basic components of neural network architecture are neurons, the layers, and neuron 

connection. A neural network consists of a set of neurons highly interconnected, grouped into 

three types of layers: the input layer, output layer and the hidden layers. The behavior of the 

neural network depends on the interaction between the neurons. Interaction between network 

components depends on the type of connection that is used to pass messages between neurons. 

There are two major types of synaptic connections: feed forward and feedback connections 

(Jain, Mao, & Mohiuddin, 1996), (Rumelhart, Hinton, & Williams, 1986). It is important to 

highlight that synaptic connections may be fully interconnected or partially interconnected. In 

feed-forward neural networks, connections are used to propagate the output from the neurons 
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of a lower layer to neurons of an upper layer as shown in figure (2.3) (a) (Jain, Mao, & 

Mohiuddin, 1996). They have the property of being static, producing only one output pattern 

for each input pattern. The feed forward networks could be single-layer or multi-layer 

(Rumelhart, Hinton, & Williams, 1986). Single-layer feed forward networks consist of input 

and output layers only, where the multi-layer feed forward network contains at least one 

hidden layer of nodes that receives connections from the previous adjacent layer of nodes.  

 

                                  (a)                                                                  (b) 

                

 

Figure 2.3:  (a) Feed Forward connections (b) Feedback connections 

 

Artificial neural networks with an architecture that includes feedback connections are 

recurrent or feedback neural networks. The feedback connections are used to send the output 

from neurons of an upper layer back to neurons of a lower layer, as shown in figure (2.3) (b). 

As a result, feedback neural networks are dynamic systems, entering more than one state for 

each new input pattern (Jain, Mao, & Mohiuddin, 1996). In this research, the feed forward 

networks with multilayer perceptron (MLP) will be used in the experiments as in Ajith‘s work 

(Abraham, 2004) for easy comparisons. 
 

 

2.1.2 Learning Process for Artificial Neural Networks: 

 

The purpose of neural network training is to produce appropriate output patterns for 

corresponding input patterns. It is achieved by an iterative learning process that updates the 

connection weights based on the neural network response to a set of training input patterns. 

Learning algorithms (processes) in an artificial neural network are classified into: supervised, 

reinforcement, and unsupervised learning (Jain, Mao, & Mohiuddin, 1996), (Lippmann,1987). 

Supervised learning occurs when the correct output pattern is known and used during training. 

It is based on direct comparison between the actual output and the desired correct output. 

Reinforcement learning is a special case of supervised learning where the exact desired output 

is unknown. It is based only on the information of whether or not the actual output is correct. 

Unsupervised learning does not require a correct output to be available during training. It is 

based on the correlations among input data. The essence of a learning algorithm is the learning 

rule, i.e., a weight-updating rule which determines how connection weights are changed. 

Examples of popular learning rules include the delta rule, the Hebbian rule, the anti-Hebbian 

rule, the competitive learning rule, etc.  
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2.1.3 Artificial Neural Network Learning Algorithms: 

 

This subsection discusses the most popular supervised learning algorithms that we will use in 

our research for training multi-layer feed forward neural networks. These are: 

Backpropagation, Conjugate Gradient Descent, Scaled Conjugate Gradient, Quasi-Newton, 

and Levenberg-Marquardt. 

 

2.1.3.1 Training Multilayer Perceptrons: 

 

For any MLP, once the number of layers and number of units in each layer has been selected, 

the network's weights and thresholds must be set (or adjusted) so as to minimize the prediction 

error made by the network (Molar, 1997). This is the role of the training / learning algorithms. 

The Learning algorithms differ from each other in the way in which the adjustment ∆ wk j to 

the synaptic weight wk j is formulated (Battiti, 1992). The error of a particular configuration of 

the network can be determined by running all the training cases through the network, 

comparing the actual or predicted output generated with the desired or target outputs. The 

differences are combined together by a cost (error) function to give the network error. The 

most common cost function is the sum of the squared differences between the networks actual 

output and the desired output. This is commonly known as the mean-squared error (MSE) cost 

function. 
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where tk (n) denotes the desired outcome (response) for the k
th 

neuron at time n, yk (n) is the 

actual response of the neuron, and ek (n) is the difference between the desired response and the 

actual response (error signal). Here, summation runs over all neurons in the output layer of the 

network. This method has the task of continually search for the bottom of cost function in 

iterative manner. Minimization of the cost function j with respect to free parameters of the 

network leads to so-called method of Gradient Descent gn (the first derivative of the cost 

function) (Molar, 1997). In practice, there are four types of optimization algorithms that are 

used to minimize the cost function j. These algorithms are: back-propagation (gradient 

descent), conjugate gradients, quasi-Newton, and Levenberg Marquardt. A common feature of 

these training algorithms is the requirement of repeated efficient calculation of gradients. 

 

A plot of the cost function versus the synaptic weights characterizes the neural network 

consists of a multidimensional surface called error surface (as shown in figure 2.4) (Burney, 

Jilani , & Ardil, 2004). The neural network consists of cross-correction learning algorithm to 

start from n arbitrary point on the error surface (initial weights) and then move towards global 

minima, in step-by-step fashion.  
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Figure 2.4: Quadratic error surface with local and global minima  

 

In a linear model with sum squared error function, this error surface is a parabola (a 

quadratic), which means that it is a smooth bowl-shape with a single minimum. It is therefore 

"easy" to locate the minimum. In case of non-linear model (neural network), the error surfaces 

are much more complex, and are characterized by a number of unhelpful features, such as 

many local minima, flat-spots and plateaus, saddle-points, and long narrow ravines (Burney, 

Jilani , & Ardil, 2004). Therefore, it is not possible to analytically determine where the global 

minimum of the error surface is, and so neural network training is essentially an exploration of 

the error surface. In presence of many plateaus, training will get slow. To overcome this 

situation momentum is introduced that forces the iterative process to cross saddle-points and 

small landscapes(Molar, 1997).  

 

2.1.3.2 Back-Propagation:  

 

Back propagation is a training algorithm used for training multi-layer feed forward neural 

networks that have nonlinear differentiable activation (transfer) functions. Based on the 

generalized delta rule, backpropagation is a gradient descent algorithm that updates the 

network weights and biases in the direction in which the performance function decreases most 

rapidly - the negative of the gradient of the cost function (Hinton, 1989), (Rumelhart, Hinton, 

& Williams, 1986), (Battiti, 1992), (Burney, Jilani , & Ardil, 2004). The gradient of the cost 

function (the first derivative of the network error with respect to the weights) and the weights 

updating are given by:  

nn1n ΔWWW   

nn
W

E
ΔW jαα 




  

nn1n gWW α  

 

where wn is a vector of current weights and biases, gn is the current gradient, and α is the 

learning rate (step-size) that controls how big a step is taken in the negative gradient direction 

(defines the proportion of error for weight updating). The learning parameter has a profound 

impact on the performance of convergence of learning (Burney, Jilani , & Ardil, 2004). The 

negative sign indicates that the new weight vector wn+1 is moving in a direction opposite to 

that of the gradient. A momentum term (µ) can also be added to stabilize the learning in the 
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algorithm. The momentum encourages movement in a fixed direction, so that if several steps 

are taken in the same direction, the algorithm "picks up speed", which gives it the ability to 

escape local minimum, and also to move rapidly over flat spots and plateaus.  

 

1nnn1n WgWW   μα       1,0  μ  

 

 

An outline of the back-propagation algorithm is given as follows (Lippmann,1987):  

 

1. Initialize weights of the network with small random values. 

2. Choose an input and desired output pair. 

3. Propagate the activation of the input layer to the hidden layer, and calculate the 

activation of the hidden nodes using sigmoid function. 

4. Propagate the activation of the hidden nodes to the output layer, and calculate the 

activation of the actual output using sigmoid function. 

5. Calculate the errors (deltas) of the output layer. 

6. Compute the errors (deltas) for the hidden layer. 

7. Adjust the weights between the hidden layer and output layer. 

8. Adjust the weights between the input layer and hidden layer. 

9. Repeat steps 4 to 8 until the total error of the network is small enough for each of 

the training-vector pairs in the training set. 

 

2.1.3.3 Faster Training Algorithms:  

 

Earlier in the previous paragraphs, we discussed how the back propagation algorithm 

performs gradient descent on the error surface. This method is often too slow for practical 

problems. It does not produce the fastest convergence (Burney, Jilani , & Ardil, 2004), (Battiti, 

1992), (Schiffmann, Joost, & Werner, 1993). In the following paragraphs, we discuss other 

learning algorithms that can converge from ten to one hundred times faster than the 

backpropagation algorithm. Theses algorithms are: Conjugate Gradient Descent, Scaled 

Conjugate Gradient, Quasi-Newton, and Levenberg-Marquardt which are very successful 

forms of two types of algorithm: line search and model-trust region approaches. They are 

collectively known as second order training algorithms / faster training algorithms.  

 

 Line Search and Trust-region Models 

 

A line search algorithm (Burney, Jilani , & Ardil, 2004) works as follows: pick a sensible 

direction to move in the multi-dimensional landscape. Then, project a line in that direction 

(how far to move), locate the minimum of the error function along that line in the weight 

space, and repeat (Schraudolph & Grapple, 2003). An obvious choice of the direction in this 

context is the direction of steepest descent (the same direction that would be chosen by back 

propagation). Actually, this intuitively obvious choice proves to be rather poor. Having 

minimized along one direction, the next line of steepest descent may spoil the minimization 

along the initial direction. A better approach is to select conjugate or non-interfering directions 

i.e. conjugate gradient descent and quasi-newton. 
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A model-trust region approach (Hunt & Deller, 1995), (Burney, Jilani , & Ardil, 2004) 

works as follows: instead of following a search direction, assume that the surface is a simple 

shape such that the minimum can be located (and jumped to) directly - if the assumption is 

true. The model typically assumes that the surface is a nice well-behaved shape (e.g., a 

parabola), which will be true if sufficiently close to a minima. Elsewhere, the assumption may 

be grossly violated, and the model could choose wildly inappropriate points to move to. The 

model can only be trusted within a region of the current search point, and the size of this 

region isn't known. Therefore, choose new points to test as a compromise between that 

suggested by the model and that suggested by a standard gradient-descent jump. If the new 

point is good, move to it, and strengthen the role of the model in selecting a new point; if it is 

bad, don't move, and strengthen the role of the gradient descent step in selecting a new point 

(and make the step smaller). Levenberg-Marquardt uses a model-trust region that assumes the 

underlying function modeled by the network is locally linear.  

 

 Conjugate Gradient Descent   

 

Conjugate gradient descent (Hestenes & Stifle, 1952), (Burney, Jilani , & Ardil, 2004) works 

by constructing a series of line searches across the error surface. It starts out by searching in 

the steepest descent direction (negative of the gradient -g) on the first iteration, just as back 

propagation would do. The initial search direction (P) is given by: 

00 gP   
 

However, instead of taking a step proportional to a learning rate, conjugate gradient descent 

projects a straight line in that direction and then locates a minimum along this line, a process 

that is quite fast as it only involves searching in one dimension (Moller, 1993), (Hestenes & 

Stifle, 1952). So, conjugate gradient descent converges faster than steepest descent. This gives 

the next values for the weight vector (w n+1 ) as:  
 

nnn1n PWW λ  

 

where the parameter λ is chosen to minimize error (E) 
 

   nn PW λEλE   

 

The next search direction is determined so that it is conjugate to previous search directions. 

The general procedure for determining the new search direction (Pn+1) is to combine the new 

steepest descent direction with the previous search direction (Schraudolph, 1993):   
 

n1n1n1n .PβgP    

 

The various versions of conjugate gradient are distinguished by the manner in which the 

constant βn+1 is computed.  βn is a time varying parameter. For the Fletcher-Reeves update the 

procedure is:   
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where gn and gn+1 are the gradient vectors. For the Polak-Ribiére update, the constant βn+1 is 

computed by: 

nn
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  

 

The conjugate gradient algorithms are usually much faster than backpropagation, although the 

results will vary from one problem to another. They are often a good choice for networks with 

a large number of weights (more than a few hundred) and/or multiple output units (Burney, 

Jilani , & Ardil, 2004), (Schiffmann, Joost, & Werner, 1993). The conjugate gradient 

algorithms require only a little more storage than the simpler algorithms (it has memory 

requirements proportional to the number of weights). One of the common variations of 

conjugate gradient algorithms is the Scaled Conjugate Gradient, which we will present next. 

 

 Scaled Conjugate Gradient 

 

Each of the conjugate gradient algorithms requires a line search at each iteration. This line 

search is computationally expensive, since it requires that the network response to all training 

inputs be computed several times for each search. The scaled conjugate gradient algorithm 

(SCG), developed by Moller (Moller, 1993), was designed to avoid the time-consuming line 

search per learning iteration by using a step size scaling mechanism. This makes the algorithm 

faster and inexpensive than other algorithms. The scaled conjugate gradient algorithm is too 

complex to explain in a few lines, but the basic idea is to combine the model-trust region 

approach with the conjugate gradient approach. The Scaled Conjugate Gradient routine may 

require more iterations to converge than the other conjugate gradient algorithms, but the 

number of computations in each iteration is significantly reduced because no line search is 

performed. The storage requirements for the scaled conjugate gradient algorithm are about the 

same as those of conjugate gradient algorithms (Fletcher-Reeves). 

 

 Quasi-Newton  

 

Quasi-Newton (Battiti, 1992), (Burney, Jilani , & Ardil, 2004) is an advanced method of 

training multilayer perceptions. It is the most popular algorithm in nonlinear optimization, 

with a reputation for fast convergence. Quasi-Newton works by exploiting the observation 

that, on a quadratic (i.e. parabolic) error surface, one can step directly to the minimum using 

the Newton step (Newton‘s direction): 

gH 1      where   
W

E
H

2
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


  

 

It is a calculation involving the Hessian matrix H (the matrix of the second derivative for the 

cost function  – i.e. second derivative of the network error with respect to the weights E / W) 

(Pearlmutter, 1994), (Zhou & Si, 1998). The weights are updated at each iteration as follows: 
 

n

1

n1n gHWW 
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where H
-1

 is the inverse of the Hessian matrix H. Any error surface is approximately quadratic 

"close to" a minimum. Since, unfortunately, the Hessian matrix is difficult and expensive to 

calculate, and anyway the Newton step is likely to be wrong on a non-quadratic surface, 

Quasi-Newton iteratively builds up an approximation to the inverse Hessian. The 

approximation at first follows the line of steepest descent, and later follows the estimated 

Hessian more closely (Battiti, 1992). 

 

Newton's method often converges faster than conjugate gradient methods. It is used as an 

efficient training method for smaller networks with a small number of weights. Unfortunately, 

it is complex since it requires computing the analytical derivative of Hessian matrix at each 

iteration and thus requires more storage (it has memory requirements proportional to the 

square of the number of weights) (Lippmann,1987), (Pearlmutter, 1994). There is a class of 

algorithms that is based on Newton's method, but which doesn't require calculation of second 

derivatives. They update an approximate Hessian matrix at each iteration of the algorithm. The 

update is computed as a function of the gradient. Among theses general purpose quasi-Newton 

algorithms that is used to update the search direction is probably the Broydon–Fletcher–

Goldfarb–Shanno (BFGS) algorithm. The BFGS algorithm builds upon the earlier and similar 

Davidon–Fletcher–Powell (DFP) algorithm. 

 

 Levenberg-Marquardt 

 

Levenberg-Marquardt (Burney, Jilani , & Ardil, 2004), (Battiti, 1992) is an advanced non-

linear optimization algorithm. It is a trust region based method with hyper-spherical trust 

region. Levenberg-Marquardt appears to be the fastest method for training moderate-sized 

feed forward neural networks (up to several hundred weights) but it needs enough memory 

(Schiffmann, Joost, & Werner, 1993).  

 

The Levenberg-Marquardt algorithm is designed specifically to minimize the sum-of-squares 

error function, using a formula that assumes the underlying function modeled by the network 

is linear. Close to a minimum this assumption is approximately true, and the algorithm can 

make very rapid progress. Further away it may be a very poor assumption. Levenberg-

Marquardt therefore compromises between the linear model and a gradient-descent approach. 

A move is only accepted if it improves the error, and if necessary the gradient-descent model 

is used with a sufficiently small step to guarantee downhill movement.  

 

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to 

approach second-order training speed without having to compute the Hessian matrix H. When 

the performance function has the form of a sum of squares (as is typical in training feed 

forward networks), then the Hessian matrix can be approximated as 
 

J J  H T  

and the gradient (g) can be computed as 

eJg T  

 

Where J is the Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights and biases, and e is a vector of network errors. The Jacobian matrix can 
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be computed through a standard backpropagation technique (Zhou & Si, 1998), (Pearlmutter, 

1994) that is much less complex than computing the Hessian matrix. The Levenberg-

Marquardt algorithm uses this approximation to the Hessian matrix in the following equation 

to update weights and biases: 
 

  n

TT 
eJJJWW n

1

nnn1n



   
 

where (J
T
 J) is positive definite, but if it is not, then, we make some perturbation into it that 

will control the probability of being non positive definite. Such that the recursion equation is 
 

  nn

1

nnn1n eJIJJWW
TT

λ


   

 

where the quantity λ is called the learning parameter, it ensures that J
T
 J is positive definite. 

When the scalar λ is zero, this is just Newton's method, using the approximate Hessian matrix. 

When λ is large, this becomes gradient descent with a small step size. Newton's method is 

faster and more accurate near an error minimum, so the aim is to shift towards Newton's 

method as quickly as possible (Battiti, 1992). Thus, λ is decreased after each successful step 

(reduction in performance function) and is increased only when a tentative step would increase 

the performance function. In this way, the performance function will always be reduced at 

each iteration of the algorithm.  

 

2.2 Evolutionary Algorithms  

 

Evolutionary Algorithms are based on the basic concepts of biological reproduction and 

evolution that is used as a model to solve problems using computers to emulate the same 

process (Haupt, 1997). They are a robust heuristic search and optimization mechanism which 

can be applied to problems where normal solutions are not available or generally lead to 

unsatisfactory results (Salomon, 1998), (Yao, 1993). All possible solutions for a problem are 

represented with a particular genetic representation scheme (called chromosome). A set of 

solutions or individuals is generated to form the initial population of organisms, as shown in 

figure (2.5). Each organism in this figure is evaluated using a fitness function specific to the 

problem. The fitness function measures the performance of the organism according to specific 

characteristics. Using a particular selection algorithm based on the fitness value, some 

organisms are chosen to be the parents for the next generation. New organisms, also known as 

offspring are produced after the information contained in the parents is combined using 

reproduction operators such as crossover and mutation. Finally, some organisms are selected 

from the old population and from the new offspring to form the population for the next 

generation. These steps are repeated until a solution that satisfies the selected criteria is found. 

Evolutionary algorithms encompass: genetic algorithms, evolutionary programming, and 

evolution strategies.  
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Figure 2.5: Cycle of evolutionary algorithms 

 
 

2.2.1 Genetic Algorithms (GA): 

 

GA is one of the most popular areas of research in evolutionary algorithms (Whitley, 1994), 

(Haupt, 1997) particularly useful for multidimensional optimization problems. The goal of 

optimization problem is to find the best solution where several feasible solutions (know as 

search space) are available. An evaluation (fitness) function is used for determining how good 

each particular solution in the population is. In a particular problem, the search space and the 

evaluation function for the elements in the search space in terms of performance define a 

landscape. Given a set of possible solutions in the search space, there may be several local 

minimum or sub-optimal values, but the over all lowest value of the set is considered the 

optimal value (global minima). If the search space is small, all the possible solutions can be 

examined, but as the search space grows in size, this exhaustive search becomes impractical.  

 

Traditional search algorithms, such as the gradient descent, examine a point in the search 

space at the time, and the next point to be examined is obtained based on the current position. 

Usually, the next point to be examined has better performance than the previous point and it 

may be a local minimum. However since the new position is based on the previous one, it may 

not be possible to make a drastic move to go down the slope (gradient) towards the global 

minima (Burney, Jilani , & Ardil, 2004), (Salomon, 1998), (Sexton, Dorsey, & Johnson, 

1998). Another deficiency of this algorithm is that it is possible to get stuck on a plateau. This 

may happen if the algorithm is unable to move far away from the flat region. Another problem 

with this algorithm comes from the fact that the final result depends on the starting search 
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point, it may be possible that different starting points produce different results. In the GA, 

although some individuals in the search space may reside near local minima, it is less likely to 

get trapped because the population provides global information about the landscape. There is a 

better chance that some individual will be near the global minima, and the genetic operators 

allow the GA to move the population in large jumps to focus the search in the most fruitful 

regions of the landscape (region around the global minima). For these reasons, GAs are well 

suited for searching the space of neural networks. Instead of training a network by performing 

gradient-descent on an error surface, the GA samples the space of networks and recombines 

those that perform best on the task in question. 

 

The most important factors to consider in genetic algorithms as a search mechanism are: the 

encoding / representing of a chromosome, the reproduction operators, the selection methods, 

and the fitness function. 

 

2.2.1.1 Encoding of a Chromosome:  
 

The encoding of the chromosome is one of the important factors to consider in genetic 

algorithms as a search mechanism (Whitley, 1994). The chromosome should in some way 

contain information about solution which it represents. The most used way of encoding is a 

binary string. The chromosome then could look like figure (2.6). 

 

 
 

Figure 2.6: Example of chromosomes with binary encoding 

 

Each chromosome has one binary string. Each bit in this string can represent some 

characteristic of the solution. Or the whole string can represent a number – this has been used 

in the basic GA applet. Of course, there are many other ways of encoding. This depends 

mainly on the solved problem. For example, one can use the value encoding where every 

chromosome is a string of some values. Values can be anything connected to problem as 

integers, real numbers or chars for some complicated objects. Sometimes it is useful to encode 

some permutations where every chromosome is a string of numbers. 

 

2.2.1.2 Reproduction Operators: 
 

The two most common reproduction operators in GAs are mutation and crossover (Whitley, 

1994). When binary genotypic representations are used, crossover is performed by splitting 

two parent chromosomes at some point, and one part of one parent chromosome is exchanged 

for the corresponding part of the other parents' chromosome to produce offspring. Crossover 

can then look like figure (2.7) (a) ( | is the crossover point). Mutation involves changing one or 

more components of a chromosome at random. With binary representations, we can switch the 

chosen bits from 1 to 0 or from 0 to 1. Real valued genotypic representations implement 

mutation differently. Mutation is shown in figure (2.7) (b). The mutation depends on the 
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encoding method as well as the crossover. For example when we use the permutation 

encoding, mutation could be exchanging two genes. 

 

                                    (a)                                                                           (b) 

              
  

       Figure 2.7: (a) Example of crossover operator (b) Example of mutation operator 

 
 

2.2.1.3 Selection Methods:  

  

The chromosomes are selected from the population to be parents to crossover. The problem is 

how to select these chromosomes. According to Darwin's evolution theory the best ones 

should survive and create new offspring. There are many methods how to select the best 

chromosomes, these methods are (Whitley, 1994), (Blickle & Thiele, 1995):  

 

 Roulette Wheel Selection. Each individual has a selection probability proportional to 

its fitness. 

 

 Tournament Selection. A group of individuals is chosen from the population and the 

most fit in the group is selected. The size of the group chosen is called the tournament 

size. A tournament size of 2 is a binary tournament. 

 

 Linear Ranking Selection. The population is sorted by fitness and assigned a rank 

from best to worst. The selection probability is linearly assigned to the individuals 

according to their rank. 

 

2.2.1.4 Fitness: 

 

Fitness is determined by a fitness or objective function (Whitley, 1994). The fitness value 

represents the quality of the chromosome, and is used to grade and order the population. The 

fitness function is specific to the individual problem and is essential as a driving force for an 

effective evolutionary search. 

 

2.3 Cellular Automata 

 

In evolving artificial neural networks, several representation methods based on evolutionary 

computation paradigms are used to automatically determine the appropriate architectures of 

feed-forward neural networks. Some of those designed methods are based on direct 

representations of the parameters of the network. These representations become less effective 

with larger networks because the effects of crossover are often unfavorable for retaining any 

kind of high level network structure that may have evolved. This is known as the scalability 
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problem. An alternative more interesting are the indirect encoding methods that codify a 

compact representation of the neural network. Thus, they avoid the scalability problem and 

reduce the length of the genotype. In this thesis, we will use one of those indirect constructive 

encoding methods: cellular automata which provide an efficient way for representing network 

architectures. 

 

2.3.1 Principles of Cellular Automata: 

 
Cellular Automata (CA) are a class of discrete dynamical systems, consisting of an array of 

nodes (lattice of cells) of some dimension n (Gutowitz, 1991), (Nehaniv, 2002), (Wolfram, 

1994). Each cell in the lattice can be in one of k different states. At discrete time steps, all cells 

update and change their states simultaneously, in a way determined by the transition rules of 

the particular CA. The transition rules describe precisely how a given cell should change 

states, depending on its current state and the states of its neighbors. The cells that are in the 

neighborhood of a given cell must be specified explicitly. This process of simultaneously 

updating the cells in the lattice is repeated over time, starting from some particular (random) 

initial configuration of cell states. When plotted over time, the lattice as a whole can show a 

wide variety of behaviors, depending on the particular transition rules that are used. 

 

Cellular automata may differ in the following: 

 

 The set of initial states of all the automata. 

 The definition of the set of neighbours to a given grid point. 

 The actual finite automaton associated to each point in the grid.  

 The shape and size of the grid (lattice), usually square, rectangular or triangular, 

which may be infinite. 

 

Cellular automata have been successfully used as a simulation tool in several areas such as 

urban development, ecological systems, and image processing.  

 

2.3.2 Two-Dimensional Cellular Automata: 

 

Two-Dimensional Cellular Automata are a natural extension of the 1-D case (Nehaniv, 2002), 

(Gutowitz, 1991). The one-dimensional CA can be visualized as having a cell at each integral 

point on the real number line where the two-dimensional CA have cells at all points in the 

plane that have only integral coordinates. In 2-D CA, there are large numbers of rows and 

columns of cells whose states change with time according to transition rules. The iterative 

process in such 2-D cellular automata is that in each time step the number of neighbours is 

calculated for each site simultaneously and the automation is updated accordingly. This 

parallel processing characterizes the CA. This property makes them attractive the modelling of 

processes where such parallel processing is involved.  

 

The neighbours for each cell in 2-D cellular automata must be specified explicitly. The two 

most popular choices are the Von Neumann neighborhood and the Moore neighborhood; both 

are named after their creators (Gutowitz, 1991), (Wolfram, 1994). With the Von Neumann 

neighborhood, a cell has four neighbors in its north, south, east, and west sides. The Moore 
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neighborhood includes four additional neighbors in its northeast, southeast, southwest, and 

northwest corners. Generally, a cell is always part of its own neighbors; therefore there are 

five neighbors in the Von Neumann neighborhood and nine in the Moor neighborhood. The 

Von Neumann and the Moore neighborhood are shown in figure (2.8). 

 

 
 

Figure 2.8: Von Neumann and Moore neighborhood 

 

As it is indicated before, a set of transition rules governs each cell's state of being alive (white) 

or dead (black) based on it and it's immediate neighbour's states in the last time step. Conway's 

Game of Life is perhaps the most famous of the rule sets and a good place to start (Gardner, 

1970). In Conway's game of Life the rules are based on the values of all 8 neighbours and 

itself in the last time step. Examples of these rules are (see figure 2.9): 

 

1. An alive cell dies from exposure if less than 2 neighbors were alive.  

2. An alive cell dies from overcrowding if more than 3 neighbours were alive.  

3. A dead cell becomes alive if precisely 3 neighbours were alive.  

 

 
 

Figure 2.9: Examples of transition rules in Conway's game of Life [23] 

 

 

2.4 Meta-Learning 

 

Meta-learning is defined as learning from learned knowledge (Chan & Stolfo, 1993). It refers 

to a general strategy that seeks to learn how to integrate a number of separate learning 

processes in an intelligent fashion. The basic idea of the meta-learning is to compute a number 

of independent classifiers by executing number of machine learning processes to a collection 

of data subsets in parallel mode. These ―base classifiers" are then collected and combined into 

a final classifier by another learning process. A graphical representation of meta-learning 

process with three different classifiers is depicted in figure (2.10) (Prodromidis, 1999). In this 

figure, two classifiers are derived from the same data set (either from different samples or 

from different learning algorithms, or both) while the third is induced from a separate set. The 

meta-learning algorithm combines the three classifiers into an ensemble meta-classier by 

―learning‖ how they predict, i.e., by observing their input/output behavior. Meta-learning 

addresses the scaling problem for machine learning. It improves efficiency by executing in 

parallel the base-learning processes on (possibly disjoint) subsets of the training set (a data 

reduction technique). Meta-learning, is scalable because meta-classifiers can be similarly 

integrate into higher level meta-classifiers in a distributed fashion and it improves the 
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predictive performance and accuracy by combining classifiers with different inductive 

classifiers (Prodromidis & Stolfo, 1998). 

 

 
 

Figure 2.10: Meta-learning process 
 

 

2.4.1 Meta-Learning Techniques (Integrating multiple classifiers): 

 

The integration problem can be defined as follows (Seppo, Vagan, & Alexey, 1999-B). Let the 

training set T be:{(Xi, Yi), i=1,...,n}, where n is the number of the training instances, Xi is the 

vector of the attributes of the i-th training instance (the values of the attributes can be numeric, 

nominal, or symbolic), and Yi  {Y1,...,Yk} is the actual class of the i-th instance (k is the 

number of classes). Let the ensemble C of classifiers be:{C1,...,Cm}, where m is the number of 

the available classifiers (component classifiers). Each component classifier is either derived 

using some learning algorithm or using some heuristic knowledge. Let a new instance e* be an 

assignment of values to the vector of the attributes {Xi} without known actual classification. 

The integration problem is to use the ensemble C of the classifiers to classify the new instance 

e* as accurately as possible. Recently two basic approaches are used to integrate multiple 

component classifiers of an ensemble. In the first approach, all the component classifiers 

produce their classification results, which are then combined. In the second approach the best 

classifier is selected from the base classifiers and then it is used to produce the classification 

result. 
 
 

2.4.1.1 Combining Approach for Meta-Learning: 

 

The main idea of meta-learning approach is to learn a global classifier ―GC‖ that combines the 

output of a number of classifiers. Initially, each learning task, also called a base learner, 

computes a base classifier, i.e. a model of its underlying data subset or training set. Next, a 

separate learning task, called a meta learner, combines these independently computed base 
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classifiers into a higher level classifier, called a meta-classifier, by learning over a meta-level 

training set. This meta-level training set is composed from the predictions of the individual 

base-classifiers when tested against a separate subset of the raw training data, also called a 

validation dataset E. Validation data are extracted from the training set and are not used for 

classifier training. From these predictions, the meta-learner discovers the properties of the 

base-classifiers and computes a meta-classifier which models the ―global‖ dataset. To classify 

an unlabeled instance e*, the base-classifiers present their own predictions to the meta-

classifier which then makes the final classification (Prodromidis, 1999), (Seppo, Vagan, & 

Alexey, 1999-B). 

 

Figure (2.11) (Chan & Stolfo, 1993) depicts the different stages in a simplified meta-classifier 

scenario: 

 

1. The classifiers (base classifiers) are trained from the initial (base-level) training 

datasets. 

2. Predictions are generated by the learned classifiers on a separate validation dataset. 

 

3. A meta-level training set is composed from the validation set and the predictions 

generated by the classifiers on the validation dataset. 

 

4. The global classifier ―GC‖ (meta-classifier) is trained from the meta-level training set. 

 

 
 

Figure 2.11: The stages in a simplified meta-classifier scenario 

 

Several effective methods have been proposed to combine the results of the ensembled 

component classifiers. These methods include: Voting, Stacking, Bagging, Boosting, SCANN, 
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etc. They differ on the way the meta-level training set is formed and the way the final 

prediction of the meta-classier is synthesized.  
 

 

2.4.1.2 Selection Approach for Meta-Learning: 

 

Techniques of this approach try to select the best base classifier for the data. So there is no 

need for a meta-classifier. These techniques can be divided into two subsets: static and 

dynamic selection. The static approaches select the best classifier for the whole data space, 

while the dynamic approaches take into account each new instance to be classified (Seppo, 

Vagan, & Alexey, 1999-A), (Merz, 1996). Usually better results can be achieved if the 

classifier integration is done dynamically taking into account characteristics of each new 

instance. 

 

2.4.2 Benefits of Meta-Learning:  

 

 Meta-learning improves predictive performance, efficiency, and scalability. It 

illustrates two characteristics, parallelism and reduced communication. All base 

classifiers are generated in parallel and collected at any location without the time-

consuming process of writing parallel programs (i.e., using standard o-the-shelf serial 

code), where the communication overhead is negligible compared to the transfer of 

entire raw data (Chan & Stolfo, 1993), (Prodromidis, 1999). 

 

 Meta-learning improves predictive accuracy by combining different inductive 

classifier. By combining separately learned concepts, meta-learning is expected to 

derive a higher level learned model that explains a large data more accurately than 

individual learner (Prodromidis & Stolfo, 1998), (Prodromidis, 1999). 

 

 Meta-learning unifies and scales up learning algorithms to very large datasets in wide 

area computing networks. It is unifying because it is algorithm and representation 

independent, i.e., it does not examine the internal structure and strategies of the 

learning algorithms themselves, but only the outputs (predictions) of the individual 

classifiers, and it is scalable because it can be intuitively generalized to hierarchical 

multiple level meta-learning (Prodromidis & Stolfo, 1998), (Prodromidis, 1999), 

(Seppo, Vagan, & Alexey, 1999-B).  

 

 Meta-learning has been applied with success to a number of applications like 

Distributed Data Mining (DDM), Multiple Classifier Systems, and Information Fusion 

(Prodromidis, 1999), (Seppo, Vagan, & Alexey, 1999-B). 

 

 Meta-learning can be considered primarily as a method that reduces the size of the data 

basically due to its data reduction technique and its parallel nature. On the other hand, 

it is also generic, meaning that it is algorithm and representation independent, hence it 

can benefit from fast algorithms and efficient relational representations (Chan & 

Stolfo, 1993), (Prodromidis & Stolfo, 1998), (Prodromidis, 1999). 
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Summary 

 

This chapter presented the basic concepts that are used in this thesis. The artificial neural 

networks and genetic algorithms were described, as these are the main techniques used. In 

addition, we introduced other important paradigms such as meta-learning and cellular 

automata. In the next chapter we will outline a literature review of some previous works 

related to the main techniques used in this thesis.  
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CHAPTER THREE 

 

LITERATURE REVIEW AND PREVIOUS WORK 
 

This chapter outlines a literature review of some previous works related to the main techniques 

used in this thesis. First, it describes the use of pure evolutionary learning algorithms as a 

learning tool for traditional neural networks in addition to different evolution trends in 

evolutionary artificial neural networks including evolution of connection weights, 

architectures, and learning rules. Next, this chapter presents the hybrid training approaches 

that combine the global search capability of evolutionary algorithms with the efficient local 

search of gradient descent algorithms for training ANNs.  

 

3.1 Pure Evolutionary Algorithms for Training and Evolving Artificial Neural Networks 

 

The interest in using the pure evolutionary algorithms for training ANNs has been growing in 

recent years since they can handle the global search problem efficiently in a vast, complex, 

multimodal, and non differentiable surface. They can avoid the local minima by searching in 

several regions simultaneously in contracts with the traditional search algorithms (i.e. gradient 

descent algorithms) which may get stuck in local minima. Pure evolution in artificial neural 

networks can be found at three different levels: connection weights, architectures, and learning 

rules. So, EANN can be seen as a system that adapts to weights, architectures, and rules 

dynamically without human intervention. 

 

The evolution of connection weights in ANNs provides a global approach to connection 

weight training, especially when gradient information of the error function is difficult or costly 

to obtain. The architecture of an Artificial Neural Networks is known before the learning 

process, and it does not change (fixed) during the evolution of the connections weights. 

Researches and applications have been conducted on the evolution of connection weights by 

(Kitano, 1990), (Yao, 1999), (Caudell & Dolan, 1989), (Belew, McInerney, & Schraudolph, 

1991), (Fogel, Wasson, & Boughton, 1995), (Koza & Rice, 1991), (Sexton, Dorsey, & 

Johnson, 1998), (Yoon, Holmes, & Langholz, 1994), (Korning, 1995) because they can deal 

with very large, complex, not differentiable and multimodal spaces. The evolutionary 

approach to weight training in ANN‘s includes a major point which is the ability to decide the 

representation of connection weights, i.e., whether in the form of binary strings or not. Some 

of the early work in evolving ANN connection weights used binary strings for representation 

(Caudell & Dolan, 1989). In such a representation scheme, each connection weight is 

represented by a number of bits with certain length. Other works in evolving ANN connection 

weights used real numbers for representation (Fogel, Wasson, & Boughton, 1995). In such a 

representation scheme, each connection weight is represented by a one real number. 

 

Evolution can also be used to find a near-optimal ANN architecture automatically. This is the 

second level of evolution in artificial neural networks. The architecture includes its topological 

structure, i.e., connectivity, and the transfer function of each node in the ANN. The 

architecture design is crucial in the successful application of ANN‘s because the architecture 

has significant impact on a network‘s information processing capabilities. Recently, a lot of 

research on evolving ANN architectures has been carried out. Most of the research has 
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concentrated either on the evolution of artificial neural network topological structures alone 

(separated from that of the connection weights) (Yao, 1999), (Leung, Lam, & Ling, 2003), 

(Jacob & Rehder, 1993), or simultaneously with the evolution of ANN connection weights 

(Binos, 2003), (Yao, 1999), (Koza & Rice, 1991), (Branke, 1995). The transfer function is 

often assumed to be fixed and the same for all the nodes in an ANN, at least for all the nodes 

in the same layer. Relatively little has been done on the evolution of node transfer functions. 

 

Similar to the evolution of connection weights, one major phase involved in the evolution of 

architectures is the genotype representation scheme of architectures (encoding the ANN 

architectures). One of the key issues in encoding ANN architectures is to decide how much 

information about an architecture should be encoded in the chromosome. At one extreme, all 

the details, i.e., every connection and node of an architecture can be specified by the 

chromosome. This kind of representation scheme is called direct encoding (Yao & Liu, 1997), 

(Branke, 1995), (Koza & Rice, 1991), (Yao & Liu, 1998), (Braun & Weisbrod, 1993). Direct 

encoding scheme takes two different approaches, one separates the evolution of architectures 

from that of connection weights (Yao, 1999), (Leung, Lam, & Ling, 2003) and the other 

evolves architectures and connection weights simultaneously (Yao, 1999), (Koza & Rice, 

1991), (Branke, 1995). At the other extreme, only the most important parameters of an 

architecture, such as the number of hidden layers and hidden nodes in each layer, are encoded 

in the chromosome. Other details about each connection in an ANN are left to the training 

process to decide. This kind of representation scheme is called indirect encoding which can 

produce more compact genotypical representation of ANN architectures (Gutierrez, Isasi, 

Molina, Sanchis, & Galvan, 2001), (Harp, Samad, & Guha, 1989), (Kitano, 1990), (Molina, 

Galván, Isasi, & Sanchis, 2000-A), (Gruau & Whitley, 1993), (Gruau, Whitley, & Pyeatt, 

1995), (Harp, Samad, & Guha, 1990), (Koza & Rice, 1991), (Molina, Galván, Isasi, & 

Sanchis, 2000-B), (Chval, 2002), (Hussain & Browse, 1998), (Jacob & Rehder, 1993), (Luke 

& Spector, 1996). There are different kinds of indirect encoding schemes including: structural 

encoding, parametric encoding, and grammar encoding. 

 

Structural encoding defines the structure of the network that is embedded in the chromosome. 

Koza (Koza & Rice, 1991) applied genetic programming to discover both the architecture and 

the weights of a neural network. In this work, the neural network was represented as a point-

labeled tree. Parametric encoding uses certain important aspects of neural network architecture 

(such as the number of hidden layers, the number of hidden nodes in each layer, etc.) and is 

represented by fixed parameters (Harp, Samad, & Guha, 1989), (Harp, Samad, & Guha, 1990), 

(Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001). Another technique is grammatical 

encoding, where the neural network is represented as a sentence of a special language 

described by a grammar. Two basic approaches to grammar encoding include developmental 

grammar encoding, and derivation grammar encoding. Developmental grammar encoding 

describes the chromosome by grammar rules that will be used to develop a specific neural 

network structure (Kitano, 1990). Derivation grammar encoding design a single fixed 

grammar and the chromosome contains the derivation sequence which define the network 

architecture (Jacob & Rehder, 1993). 

 

Gruau and Whitley (Gruau & Whitley, 1993), Gruau and Whitley and Pyeatt (Gruau, Whitley, 

& Pyeatt, 1995) had used genetic programming to create the topology for recurrent neural 

networks. Luke and Spector (Luke & Spector, 1996) presented an edge encoding technique for 
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evolving graph and network structures via genetic programming. Hussain and Browse 

(Hussain & Browse, 1998) proposed the use attribute grammars in creating a useful and 

compact genetic encoding of neural networks. Molina and Galvan (Molina, Galván, Isasi, & 

Sanchis, 2000-B) used grammars and cellular automata for evolving Neural Networks 

Architectures. Gutiérrez and Isasi, (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001) had 

used the evolutionary cellular configurations for designing feed-forward neural networks 

architectures, and they used only the backpropagation algorithm for training neural networks. 

They did not apply the idea of meta-learning algorithm were different number of learning 

algorithms are used in parallel mode for training the neural networks separately. Harp et al. 

(Harp, Samad, & Guha, 1989) used a ―blueprint‖ to represent an architecture which consists of 

one or more segments representing an area (layer) and its efferent connectivity (projections). 

Andersen and Tsoi (Andersen & Tsoi, 1993) proposed different approach to the evolution of 

architectures where each individual in a population represents a hidden node rather than the 

whole architecture. An architecture is built layer by layer, i.e., hidden layers are added one by 

one if the current architecture cannot reduce the training error below certain threshold. Each 

hidden layer is constructed automatically through an evolutionary process which employs the 

GA with fitness sharing. Fitness sharing encourages the formation of different feature 

detectors (hidden nodes) in the population. The number of hidden nodes in each hidden layer 

can vary. This approach (Andersen & Tsoi, 1993) could only deal with strictly layered feed 

forward ANN‘s.  

 

The third level of evolution in artificial neural networks is evolving the learning rules. Since 

evolution is one of the most fundamental forms of adaptation, it is not surprising that the 

evolution of learning rules has been introduced into ANN‘s in order to learn their learning 

rules. Adapting a learning rule through evolution is expected to enhance ANN‘s adaptivity 

greatly in a dynamic environment. Research into the evolution of learning rules is still in its 

early stages (Chalmers, 1990), (S. Bengio, Y. Bengio, Cloutier, & Gecsei, 1992), (Baxter, 

1992). Other combinations between ANN‘s and EA‘s are also presented in: 1) The evolution 

of input features (Guo & Uhrig, 1992). 2) ANN as fitness estimator (Leung, Lam, & Ling, 

2003). 3) Evolving ANN ensembles (Yao & Liu, 1996). 
 

 

3.2 Hybrid Evolutionary-Gradient Search Algorithms for Training and Evolving ANNs 

 

As indicated before, the pure evolutionary algorithm for training ANN is attractive because it 

can handle the global search problem better in a vast, complex, multimodal, and non 

differentiable surface. However, most EA‘s are rather inefficient in fine-tuned local search 

(Yao, 1999), (Abraham, 2002), (Yao, 1993), (Salomon, 1998). The efficiency of evolutionary 

training for ANN can be improved significantly by using a hybrid training approach that 

incorporates the evolutionary algorithm‘s global search ability with local search‘s ability to 

fine tune. EA‘s can be used to locate a good region in the space and then a local search 

procedure is used to find a near-optimal solution in this region. The local search procedure 

could be backpropagation or any other gradient descent algorithms. Hybrid training approach 

has been used successfully in many application areas (Abraham, 2004), (Abraham, 2002), 

(Yao & Liu, 1997), (Belew, McInerney, & Schraudolph, 1991), (Hendtlass & Podlena, 1995), 

(Magoulas, Plagianakos, & Vrahatis, 2001), (Wong, Chung, & Wong, 1998), (Abraham & 

Nath, 2000). 
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Belew (Belew, McInerney, & Schraudolph, 1991) and many other researchers used GA‘s to 

search for a near-optimal set of initial connection weights and then used BP to perform local 

search from these initial weights. Their results showed that the hybrid GA/BP approach was 

more efficient than either the GA or BP algorithm used alone. If we consider that BP often has 

to run several times in practice in order to find good connection weights due to its sensitivity 

to initial conditions, the hybrid training algorithm will be quite competitive. In Wong and 

Chung work (Wong, Chung, & Wong, 1998), a hybrid approach, combining the global search 

capability of evolutionary algorithms for training ANN with the backpropagation algorithm 

has been used to solve the Unit Commitment problem (Wong, Chung, & Wong, 1998). A 

population of neural networks with a fixed number of nodes is evolved by altering the active 

connections with a genetic algorithm. High fitness individuals from this process are used as 

starting points that are then trained via backpropagation. 

 

In (Hendtlass & Podlena, 1995), a modified genetic algorithm is used to evolve neural network 

topology and weights for character recognition. Architectural mutations are achieved by 

uniform crossover between two individuals. Weights are modified by mutation only. Good 

networks resulting from this process undergo fine-tune training with backpropagation. In (Yao 

& Liu, 1997), the EPNet algorithm is a hybrid algorithm used to evolve feed forward artificial 

neural networks. It combines the architectural evolution of the network with its weight 

learning. Neural network node density, connectivity and weights (including biases) are 

evolved in a series of steps by the application of the five mutation operators: hybrid training 

using a modified back-propagation algorithm and simulated annealing, node and connection 

deletion, node and connection addition.  

 

In (Magoulas, Plagianakos, & Vrahatis, 2001), a hybrid algorithm combining a Differential 

Evolution Strategy and Stochastic Gradient Descent is used for on-line training of large fixed 

topology neural networks on image classification tasks. There are two stages to this algorithm 

that operates on a population of weight vectors representing neural network individuals. The 

first one uses stochastic gradient descent to train the network weights. This is done by 

modifying the weights using an adaptive step size and the error of the network. The second 

stage uses a differential evolution to increase the diversity of the population by using a 

combination of mutation and crossover. The results showed good generalization on two image 

classification tasks. Alexander (Topchy, Lebedko, & Miagkikh, 1995) proposed another work 

that combined the global search of EAs with the local search procedures. He developed a fast 

learning in multilayered neural networks by means of hybrid evolutionary and gradient 

algorithms. His research described two algorithms based on cooperative evolution of internal 

hidden network representations and a combination of global evolutionary and local search 

procedures.  

 

Abraham (Abraham, 2004) proposed a hybrid meta-heuristic learning approach, which is 

called meta-learning evolutionary artificial neural networks (MLEANN). His proposed 

approach can be considered as adaptive computational framework based on evolutionary 

learning and local search procedures for automatic design of optimal artificial neural 

networks. Abraham used four different learning algorithms in parallel mode for training neural 

networks. He also used the direct encoding methods for optimizing the neural network 

architectures and that requires much larger chromosomes especially for ANNs with complex 
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architectures. This could end in a too huge space search that could make the method 

impossible in practice.  

 

Summary 

 

In this chapter, a literature review of some works related to my research was outlined. 

Examining the previous works, we observed that the pure evolutionary learning algorithms, 

especially genetic algorithms, were used as a learning tool for traditional neural networks. 

Different evolution trends in evolutionary artificial neural networks were found at three levels: 

connection weights, architectures, and learning rules. Moreover, hybrid training approaches 

that combine the global search capability of evolutionary algorithms with the efficient local 

search of gradient descent algorithms for training ANNs were presented. Also, two types of 

genotype representation scheme, which were used for encoding the architecture of ANNs in 

chromosomes, were mentioned and the preferable one that reduced the complexity of the 

networks was the indirect encoding methods.  

 

In the next chapter, we will present our proposed approach: Meta-learning Evolutionary 

Artificial Neural Networks using one of the indirect encoding methods, i.e. cellular automata, 

instead of using the direct ones as in the previous MLEANN framework. 
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CHAPTER FOUR 

 

META-LEARNING EVOLUTIONARY ARTIFICIAL NEURAL 

NETWORKS: BY MEANS OF CELLULAR AUTOMATA 
 

This chapter presents the proposed framework: meta-learning evolutionary artificial neural 

networks by means of cellular automata (MLEANN-CA). It is an adaptive computational 

framework based on evolutionary learning and local search procedures for automatic design of 

optimal artificial neural networks using direct and indirect encoding methods. We start this 

chapter by presenting the evolutionary artificial neural networks followed by its general 

framework. Then, we describe the three kinds of evolution in EANNs: evolution of connection 

weights, architectures, and learning rules. Moreover, we introduce the hybrid meta-learning 

approach: MLEANN, which uses direct encoding methods in designing the network 

architecture. Finally, we examine our proposed framework: MLEANN-CA.  

 

4.1 Evolutionary Artificial Neural Networks  

 

Many of the conventional ANNs now being designed are statistically quite accurate. However, 

the important drawback is that neural network design relies heavily on human experts who 

have sufficient knowledge about the different aspects of the network and the problem domain. 

The human experts have to specify manually the number of neurons, their distribution over 

several layers and interconnection between them. As the complexity of the problem domain 

increases, manual design becomes more difficult and unmanageable. Several methods have 

been proposed to automatically construct ANNs for reduction in network complexity. Most of 

these methods got its own limitations. The interest in using evolutionary algorithms for 

designing ANN architecture, automatically, has been growing in recent years as they can 

evolve towards the optimal architecture without outside interference, thus eliminating the 

tedious trial and error work of manually finding an optimal network (Yao, 1999), (Abraham, 

2004), (Abraham, 2002), (Abraham & Nath, 2001), (Yao & Liu, 1997), (Yao & Liu, 1998), 

(Braun & Weisbrod, 1993). 

 

In Evolutionary Artificial Neural Networks (EANN), evolution has been introduced into 

ANNs at roughly three different levels: connection weights; architectures; and learning rules. 

EANNs provide a general framework, as indicated in figure (4.1), where interactions among 

the three levels of evolution are considered (Yao, 1999), (Abraham & Nath, 2000), (Abraham, 

2004), (Abraham, 2002), (Abraham & Nath, 2001), (Yao, 1993), (Liu & Yao, 1998). In this 

framework, the evolution of connection weights proceeds at the lowest level on the fastest 

time scale in an environment determined by an architecture, a learning rule, and learning tasks. 

There are, however, two alternatives to decide the level of the evolution of architectures and 

that of learning rules either the evolution of architectures is at the highest level and that of 

learning rules at the lower level or vice versa. The decision on the level of evolution depends 

on what kind of prior knowledge is available. The lower the level of evolution, the faster the 

time scale it is on.  
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Figure 4.1: A general framework for EANN‘s 
 
 

4.2 Evolutionary Search for Connection Weights, Architectures, and Learning Rules 

   

As described before, the evolution has been introduced into ANNs at three different levels: 

connection weights; architectures; and learning rules. The evolution of connection weights 

introduces an adaptive and global approach to training, especially in the reinforcement 

learning and recurrent network learning paradigm where gradient-based training algorithms 

often experience great difficulties. The evolution of architectures enables ANNs to adapt their 

topologies to different tasks without human intervention and thus provides an approach to 

automatic ANN design as both ANN connection weights and structures can be evolved. The 

evolution of learning rules can be regarded as a process of ―learning to learn‖ in ANNs where 

the adaptation of learning rules is achieved through evolution. It can also be regarded as an 

adaptive process of automatic discovery of novel learning rules. 

 

4.2.1 Evolutionary Search of Connection Weights:  

 

Weight training in ANNs is usually formulated as minimization of an error function, such as 

the mean square error between target and actual outputs averaged over all examples, by 

iteratively adjusting connection weights. Most training algorithms for ANN, such as BP and 

conjugate gradient algorithms (Burney, Jilani , & Ardil, 2004), (Schiffmann, Joost, & Werner, 

1993), (Rumelhart, Hinton, & Williams, 1986), are based on gradient descent. There have 

been some successful applications of BP in various areas, but BP has drawbacks due to its use 

of gradient descent. It often gets trapped in a local minimum of the error function and is 

incapable of finding a global minimum if the error function is multimodal and/or non-

differentiable. One way to overcome gradient-descent-based training algorithms‘ 

shortcomings is to adopt EANN‘s, i.e., to formulate the training process as the evolution of 

connection weights in the environment determined by the architecture and the learning task. 

EA‘s can then be used effectively in the evolution to find a near-optimal set of connection 

weights globally without computing gradient information. The architecture and the learning 

rules of the neural networks are pre-defined and fixed during the evolution. A key question in 

evolving connection weights is to decide the representation of connection weights, i.e., 

whether in the form of binary strings or real (Caudell & Dolan, 1989), (Fogel, Wasson, & 

Boughton, 1995), (Yao, 1999), (Koza & Rice, 1991). Thus, the proper genetic operators such 

as crossover and mutation are to be chosen in conjunction with the representation scheme. 
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Figure (4.2) illustrates the multilayered feed-forward neural network with its weight matrix, 

encoded directly, besides the connection weight chromosome using binary representation.  
 
 

 

 
 

Figure 4.2: The feed-forward neural network, its weight matrix, and its connection weight 

chromosome using binary representation 
 

 

The whole network is encoded directly by concatenation of all the connection weights of the 

network in the chromosome. A heuristic concerning the order of the concatenation is to put 

connection weights to the same node together. The representation of the connection weights in 

ANN using the real numbers could be: (4.0, 7.0, 8.0, 3.0, 1.0, 5.0). 

 

Evolutionary Search of connection weights can be formulated as follows (Yao, 1999), 

(Abraham, 2004), (Abraham, 2002):  

 

(1) Generate an initial population of N weight chromosomes. Evaluate the fitness of each 

EANN depending on the problem.  

(2) Depending on the fitness and using suitable selection methods reproduce a number of 

children for each individual in the current generation.  

(3) Apply genetic operators (crossover, mutation) to each child individual generated above 

and obtain the next generation.  

(4) Check whether the network has achieved the required error rate or the specified 

number of generations has been reached. Go to Step 2.  

(5) End.  

 

Using evolutionary algorithms to train the weights instead of gradient descent algorithms, 

which can only find local optimum in a neighborhood of the initial solution, can result in 

faster and better convergence. Better still, since EAs are good at global search but inefficient 

at local finely tuned search (Yao, 1999), (Abraham, 2004), (Abraham, 2002), (Abraham & 

Nath, 2001), a hybrid approach combining EAs and gradient descent could be attractive.  

 

4.2.2 Evolutionary Search of Architectures:  

 

The architecture of an ANN includes its topological structure, i.e., connectivity, and the 

transfer function of each node in the ANN. Architecture design is crucial in the successful 

application of ANNs because the architecture has significant impact on a network‘s 

information processing capabilities. Up to now, architecture design is still very much a human 
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expert‘s job. It depends heavily on the expert experience and a tedious trial-and-error process. 

There is no systematic way to design a near-optimal architecture for a given task 

automatically. Research on constructive and destructive algorithms represents an effort toward 

the automatic (evolutionary) design of neural network architectures (Yao, 1999), (Abraham, 

2004), (Abraham, 2002). A constructive algorithm starts with a minimal network (network 

with minimal number of hidden layers, nodes, and connections) and adds new layers, nodes, 

and connections when necessary during training while a destructive algorithm does the 

opposite, i.e., starts with the maximal network and deletes unnecessary layers, nodes, and 

connections during training.  

 

A key issue in evolving neural network architecture is to determine how to encode the 

architectures and how much information should be encoded in the chromosome. There are two 

types of encoding methods for finding the optimum architecture: direct and indirect encoding 

methods (Yao & Liu, 1997), (Branke, 1995), (Koza & Rice, 1991), (Gutierrez, Isasi, Molina, 

Sanchis, & Galvan, 2001), (Harp, Samad, & Guha, 1989), (Kitano, 1990), (Molina, Galván, 

Isasi, & Sanchis, 2000-A), (Gruau & Whitley, 1993), (Gruau, Whitley, & Pyeatt, 1995), 

(Harp, Samad, & Guha, 1990), (Molina, Galván, Isasi, & Sanchis, 2000-B). In direct 

encoding, all the details, i.e., every connection and node of an architecture, can be specified by 

the chromosome. The direct encoding method is relatively simple and straightforward to 

implement but requires much larger chromosomes. In indirect encoding, important parameters 

such as the number of hidden layers and hidden nodes in each layer of the network are 

represented and the details of the exact connectivity are left to developmental rules. Using the 

indirect encoding scheme will minimize the size of the genotype string and improve 

scalability. Several indirect encoding methods were successfully used in many applications for 

optimizing the neural network architecture such as: graph generation system, symbiotic 

adaptive neuro-evolution, marker based genetic coding, L-systems, cellular encoding, fractal 

representation, etc. The following figure (4.3) demonstrates how typical neural network 

architecture could be directly encoded by a square connectivity matrix and how the genotype 

is represented in a chromosome.  
 

 
 

Figure 4.3: Architecture chromosome using binary coding (direct encoding) 
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In evolving the NN architecture, the node transfer function is often assumed to be fixed and 

pre-defined before the architecture is decided. For an optimal network, the required node 

transfer function can be formulated as a global search problem, which is evolved 

simultaneously with the search for architectures. 

 

Evolutionary search of ANN architecture can be formulated as follows (Yao, 1999), 

(Abraham, 2004), (Abraham & Nath, 2001):  

 

(1) The evolution of architectures has to be implemented such that the evolution of weight 

chromosomes are evolved at a faster rate, i.e. for every architecture chromosome, there 

will be several weight chromosomes evolving at a faster time scale.  

(2) Generate an initial population of N architecture chromosomes. Evaluate the fitness of 

each EANN depending on the problem.  

(3) Depending on the fitness and using suitable selection methods reproduce a number of 

children for each individual in the current generation.  

(4) Apply genetic operators to each child individual generated above and obtain the next 

generation.  

(5) Check whether the network has achieved the required error rate or the specified 

number of generations has been reached. Go to Step 3.  

(6) End.  

 
 

4.2.3 Evolutionary Search of Learning Rules: 

 

An ANN learning algorithm may have different performance when applied to different 

architectures. The design of learning algorithms, more fundamentally the learning rules used 

to adjust connection weights (weight-updating rule), depends on the type of architectures 

under investigation and the task to be performed. In other words, ANN should learn its 

learning rule dynamically rather than have it designed and fixed manually. Evolving learning 

rules expected to enhance ANN‘s adaptivity greatly in a dynamic environment. 

 

The key issue in evolving learning rules is how to encode the dynamic behavior of a learning 

rule into static chromosomes. Trying to develop a universal representation scheme which can 

specify any kind of dynamic behaviors is clearly impractical, let alone the prohibitive long 

computation time required to search such a learning rule space. Constraints have to be set on 

the type of dynamic behaviors, i.e., the basic form of learning rules being evolved in order to 

reduce the representation complexity and the search space. Two basic assumptions which have 

often been made on learning rules are (Yao, 1999), (Yao, 1993):  

 

1) Weight updating depends only on local information such as the activation of the input 

node, the activation of the output node, the current connection weight, etc.,  

2) The learning rule is the same for all connections in an ANN. A learning rule is 

assumed to be a linear function of these local variables and their products.  
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The learning rule can be described by the following function (Yao, 1999), (Abraham, 2004), 

(Abraham & Nath, 2001): 
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Where t is time, ∆w is the weight change, x1,x2,…,xn are local variables, and ө‘s are real-

valued coefficients which will be determined by evolution. In other words, the evolution of 

learning rules in this case is equivalent to the evolution of real-valued vectors of ө‘s. Different 

ө‘s determine different learning rules.  

 

Evolutionary Search of learning rules can be formulated as follows (Yao, 1999), (Abraham, 

2004), (Yao, 1993):  

 

(1) The evolution of learning rules has to be implemented such that the evolution of 

architecture chromosomes are evolved at a faster rate i.e. for every learning rule 

chromosome, there will be several architecture chromosomes evolving at a faster time 

scale.  

(2) Generate an initial population of N learning rules. Evaluate the fitness of each EANN 

depending on the problem.  

(3) Depending on the fitness and using suitable selection methods reproduce a number of 

children for each individual in the current generation.  

(4) Apply genetic operators to each child individual generated above and obtain the next 

generation.  

(5) Check whether the network has achieved the required error rate or the specified 

number of generations has been reached. Go to Step 3.  

(6) End.  
 

 

Several researches have been working on formulating different optimal learning rules (Yao, 

1999), (Abraham, 2002), (Abraham & Nath, 2001), (Baxter, 1992), (Chalmers, 1990), (S. 

Bengio, Y. Bengio, Cloutier, & Gecsei, 1992). The adaptive adjustment of BP algorithm‘s 

parameters, such as the learning rate and momentum, through evolution could be considered 

as the first attempt of the evolution of learning rules (Harp, Samad, & Guha, 1989), (Belew, 

McInerney, & Schraudolph, 1991).  
 

 

4.3 Meta-Learning Evolutionary Artificial Neural Networks (MLEANN)  

 

Evolutionary algorithms are used to adapt the connection weights, network architecture, and 

learning algorithms according to the problem environment. Even though evolutionary 

algorithms are well known as efficient global search algorithms, very often they miss the best 

local solutions in the complex solution space. In other words, they are inefficiency in fine-

tuned local search (Yao, 1999), (Abraham, 2004), (Abraham, 2002), (Yao, 1993). This is 

especially true for GA‘s. The efficiency of evolutionary algorithms can be improved 

significantly by using a hybrid learning approach that incorporates the EA‘s global search 
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ability with local search‘s ability to fine tune. Thus, the EA is used to locate a good region in 

the space and then a local search procedure, such as BP or other random search algorithm, is 

used to find a near-optimal solution in this region. Several hybrid learning approaches had 

been successfully used for evolving neural network topology and/or weights (Abraham & 

Nath, 2000), (Abraham, 2004), (Abraham, 2002), (Yao & Liu, 1997), (Belew, McInerney, & 

Schraudolph, 1991), (Hendtlass & Podlena, 1995), (Magoulas, Plagianakos, & Vrahatis, 

2001), (Wong, Chung, & Wong, 1998). One of these hybrid learning approaches is called 

meta-learning evolutionary artificial neural networks (MLEANN) (Abraham, 2004), 

(Abraham, 2002), (Abraham & Nath, 2001). It can be considered as an automatic 

computational framework that used a direct encoding method for the adaptive optimization of 

ANNs. The main aim of using this framework is to improve the learning process and to obtain 

a small and efficient design of NNs with faster convergence. 

 

It is interesting to consider finding good initial weights as locating a good region in the weight 

space. Defining that basin of attraction of a local minimum as being composed of all the 

points, sets of weights in this case, which can converge to the local minimum through a local 

search algorithm, then a global minimum can easily be found by the local search algorithm if 

an EA can locate a point, i.e., a set of initial weights, in the basin of attraction of the global 

minimum. Figure (4.4) illustrates a simple case where there is only one connection weight in 

the ANN (Yao, 1999), (Abraham, 2004), (Yao, 1993). WG1 and WG2 could be considered as 

the initial weights as located by the evolutionary search and WA, WB could be considered as 

the corresponding final weights fine-tuned by meta-learning technique which is the work of 

the local search algorithms.  

 

 
 

Figure 4.4: Fine tuning of weights using meta-learning 

 

 

Figure (4.5) (Yao, 1999), (Abraham, 2004), (Abraham, 2002) illustrates the general interaction 

mechanism with the learning mechanism of the EANN evolving at the highest level on the 

slowest time scale. 
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Figure 4.5: Interaction of various evolutionary search mechanism 
 

 

In the MLEANN, all the randomly generated architecture of the initial population are trained 

and evolved separately by four different learning algorithms (backpropagation -BP, scaled 

conjugate gradient -SCG, quasi-Newton algorithm -QNA and Levenberg-Marquardt -LM) in a 

parallel environment. Parameters controlling the performance of the learning algorithm (as 

learning rate and momentum for BP) will be adapted according to the problem (Abraham, 

2002), (Abraham & Nath, 2001). The basic Meta-learning algorithm for the EANN is as 

follows (Abraham, 2004), (Abraham, 2002), (Abraham & Nath, 2001): 

 

1. Set t=0 and randomly generate an initial population of neural networks with 

architectures, node transfer functions and connection weights assigned at random.  

2. In  a  parallel  mode,  train  separately each  network  and evaluate its fitness using  the 

learning algorithms: BP,SCG,QNA, and  LM.  

3. Based on fitness value, select parents for reproduction  

4. Apply mutation to the parents and produce offspring (s) for next generation. Refill the 

population back to the defined size.  

5. Repeat step 2 

6. STOP when the required solution is found or number of iterations has reached the 

required limit. 

 

The architecture of the chromosome is depicted in figure (4.6) (Abraham, 2004), (Abraham, 

2002). For every learning algorithm parameter (LR2), there is the evolution of architectures 

(AR1, AR2, …, AR7) that proceeds on a faster time scale in an environment decided by the 

learning algorithm. For each architecture (AR3), the evolution of connection weights (WT1, 

WT2, ….., WT5) proceeds at a faster time scale in an environment decided by the problem, 

the learning algorithm and the architecture. 
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Figure 4.6: Chromosome representation of the MLEANN framework 

 

4.4 Meta-Learning Evolutionary Artificial Neural Networks by Means of Cellular 

Automata 

 

The previous MLEANN framework that was proposed by Ajith (Abraham, 2004), (Abraham, 

2002) used the direct encoding methods for the adaptive optimization of artificial neural 

network architectures. These direct encoding methods base on the codification of the complete 

network into the chromosome. They are relatively simple and straightforward to implement 

but requires much larger chromosomes especially for ANNs with complex architectures (Yao 

& Liu, 1997), (Branke, 1995), (Koza & Rice, 1991), (Yao & Liu, 1998), (Braun & Weisbrod, 

1993), (Yao, 1999). This could end in a too huge space search that could make the method 

impossible in practice. On the other hand, implementation of crossover operator for the 

chromosome is often difficult due to production of non-functional offsprings. An alternative 

more interesting for optimizing the ANN architecture is the indirect encoding methods 

(Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001), (Harp, Samad, & Guha, 1989), (Kitano, 

1990), (Molina, Galván, Isasi, & Sanchis, 2000-A), (Gruau & Whitley, 1993), (Gruau, 

Whitley, & Pyeatt, 1995), (Harp, Samad, & Guha, 1990), (Koza & Rice, 1991), (Molina, 

Galván, Isasi, & Sanchis, 2000-B), (Chval, 2002), (Hussain & Browse, 1998), (Jacob & 

Rehder, 1993), (Luke & Spector, 1996). These methods concentrate on codifying a compact 

representation of the networks reducing the length of the genotype and avoiding the scalability 

problem. One of these indirect encoding methods is the cellular automata (Gutierrez, Isasi, 

Molina, Sanchis, & Galvan, 2001), (Wolfram, 1994), (Molina, Galván, Isasi, & Sanchis, 2000-

B). This method was used by Gutirrez (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001) and 

according to his experiment, he proved that using cellular configurations for designing feed-

forward NN architectures is more efficient than using the direct encoding methods. 

 

Therefore, we present an adaptive computational framework: meta-learning evolutionary 

artificial neural network by means of cellular automata. This framework (MLEANN-CA) 

combines the local search methods with the evolutionary learning in order to obtain an 

efficient design of NNs that is smaller, faster and with better generalization performance using 

direct and indirect encoding methods (Abu Salah & Al-Salqan, 2006-A), (Abu Salah & Al-

Salqan, 2006-B). The MLEANN-CA framework is explored and simulated using 

Neurosolution and NeuroGenetic Optimizer toolboxes, and two famous chaotic time series. 
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4.4.1 The Proposed Approach -- MLEANN-CA: 

 

Two main stages compose the proposed framework in this research: the cellular configuration 

stage and the meta-learning stage. The cellular configuration stage includes three main 

modules for designing small neural network architectures: the genetic algorithm module, the 

cellular automata module, and the neural network module (Abu Salah & Al-Salqan, 2006-A). 

The meta-learning stage includes the meta-learning algorithm that is responsible for training 

and evolving the new generated architectures with the direct codification using different 

learning algorithms in parallel mode. The system architecture and the modules relationship is 

shown in the following figure (4.7) (Abu Salah & Al-Salqan, 2006-B).  
 

 

The MLEANN-CA approach can be summarized as follows: 

 
1. Randomly, generate an initial population of neural networks with architectures according 

to the indicated problem. 

 

2. Apply the indirect encoding technique (CA) for optimizing each NN architecture. This is 

done by the following steps: 

 

 The GA module takes charge of generating initial configurations of the cellular 

automata, i.e. seeds positions in a two-dimensional grid.  

 The cellular automata module takes the initial configurations and generates final 

configurations corresponding to particular NN architectures. This is done using cellular 

automata rules that allow the convergence of the automata toward a final 

configuration.  

 The neural network module translates these final cellular configurations into feed-

forward NN with smaller architectures. 

 

3. Use the translated NNs to create the population with architectures, node transfer functions, 

and weights assigned at random.   

 

4. In parallel mode, train each translated neural network separately and evaluate the fitness 

value for each one using the four learning algorithms (BP, SCG, QNA, and LM).  

 

5. Based on the fitness value, select parents for reproduction. 

 

6. Apply mutation to the parents and produce offspring (s) for the next generation Refill the 

population back to the defined size. 

 

7. Repeat step 4.  

 

8. Stop when the required solution is found or number of iterations reached the required 

limit. 
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Figure 4.7: System‘s architecture and modules relationship 
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4.4.2 Genetic Algorithm Module: 

 

As it was mentioned in Gutirrez research (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001), 

GA module takes charge of generating initial configurations of the cellular automata. This 

module works with a population of chromosomes that codifies the positions of the seeds 

(growing and decreasing seeds) in a two-dimension grid. The size of chromosomes in the GA 

corresponds with the number of seeds, and it codifies all the possible locations of seeds in the 

grid. Chromosomes have been codified in base b, where b is the number of rows in the grid 

and is given through the number of inputs plus the number of outputs of the neural network 

(Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001), (Molina, Galván, Isasi, & Sanchis, 2000-

B). Each seed is determined by a co-ordinate (x, y). A unique gene, indicating the row in 

which the seed is located, represents the first co-ordinate x. The second co-ordinate y will 

require more than one gene, if, as usual, the maximal number of hidden neurons is bigger than 

b. In this particular case, two genes have been used to codify the y coordinate, what allows a 

maximum of b*b hidden neurons. This could be a good estimation of the maximum number of 

neurons in the hidden layer, but any other consideration could be taken into account without 

modifying the proposed method. Hence, the chromosome will have 3 genes for each seed to be 

placed in the grid. The genetic algorithm module can be described by the following figure 

(4.8): 

 

 
 

Figure 4.8: Genetic algorithm module 
 

 

4.4.3 Cellular Automata Module: 

 

The cellular automaton takes the initial configuration and generates a final configuration 

corresponding to a particular NN architecture. For generating neural networks architectures, a 

two-dimension CA has been used. The size of the two-dimension grid is defined as follows: 

the number of rows is equal to the number of input neurons plus the number of output 

neurons; number of columns corresponds with the maximum number of hidden neurons to be 
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considered. Each cell in the grid could be in two different states: active (occupied by a seed) or 

inactive. Two different kinds of seeds have been introduced: growing seeds and decreasing 

seeds. The first kind allows making connections and the second one removing connections. 

Each seed type corresponds with a different type of automata rule, so there are two rules called 

growing rule and decreasing rule respectively. The rules determine the evolution of the grid 

configuration and they have been designed allowing the reproduction of growing and 

decreasing seeds. In the description of the rules, s is a specific growing seed, d is a decreasing 

seed, i is an inactive state for the cell, and a means that the cell could be in any state or 

contains any type of seed (even a decreasing seed).  

 

Growing Rules (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001): They reproduce a 

particular growing seed when there are at least three identical growing seeds in its 

neighborhood. There are different configurations, growing seeds located in: rows, columns, or 

in a corner of the neighborhood. In the following figures (4.9) (a) and (b), some of those rules 

are shown (the others are symmetrical). The growing rules allow obtaining feed-forward NN 

with a large number of connections. 
 

 

 
    

Figure 4.9 (a), (b): Examples of Growing Rules 

 

 

Decreasing Rules (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001): They remove 

connections in the network deactivating a cell in the grid when the cell has a seed and a cell of 

its neighborhood contains also a decreasing seed. One situation in which the decreasing rules 

can be applied is shown in the following figure (4.10), the others can be obtained 

symmetrically. 

 

 

       
   

Figure 4.10: Example of Decreasing Rules 

 

 

 

 



 42 

The mechanism of expanding the CA is as follows (Gutierrez, Isasi, Molina, Sanchis, & 

Galvan, 2001), (Molina, Galván, Isasi, & Sanchis, 2000-B):  

 

1) The growing seeds are located in the grid.  

2) An expansion of the growing seeds takes place. This expansion consists on replicating 

each seed in turns, over its quadratic neighborhood, in such a way that if a new seed has 

to be placed in a position previously occupied by another seed, the first one is replaced.  

3) The growing rules are applied until no more rules could be fired.  

4) The decreasing seeds are placed in the grid. If there are some other seeds in those places, 

they are replaced.  

5) The decreasing rules are applied until the final configuration is reached.  

6) The final configuration of the CA is obtained replacing the growing seeds by a 1 and the 

decreasing seeds or inactive cells by a 0.  

 

The cellular automata module can be described by the following figure (4.11) 

 

 
 

Figure 4.11: Cellular Automata module 

 

4.4.4 Neural Network Module:  

 

The neural network module translates the final cellular configuration into feed-forward NN 

architecture (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001), (Molina, Galván, Isasi, & 

Sanchis, 2000-B). To relate the final configuration of the cellular automata with an 

architecture of a neural network, the following meaning for a cell in the (x,y) grid is defined 

(Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001):  

 

 If x < n, with n the number of input neurons, (x,y) represents a connection between the 

x-th input neuron and the y-th hidden neuron. 

 If x > n, (x,y) represents a connection between the y-th hidden neuron and the (x -n) -th 

output neuron.  
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In the final configuration, 1 is interpreted as a connection, and 0 as the absence of connection. 

Thus, the rows and columns in the matrix with values 0 are removed. A new and shorter 

binary matrix (M) is obtained. If Mij=1 then a connection between the i-th input neuron and 

the j-th hidden neuron is created, or between the j-th hidden neuron and the (i-n)-th output 

neuron, as is previously described. If Mij=0, there do not exist connection between that 

neurons.  

 

In this module, when the final matrix connection is obtained from the final configuration of 

CA there are some special cases take into account, following these steps (Gutierrez, Isasi, 

Molina, Sanchis, & Galvan, 2001): 

 

 If there is a node in hidden layer without any connection to output, this node is 

eliminated from the net. 

 

 When a hidden node has no connection from input, but it's connected to output layer, 

two chances have been considerate: penalizes the net and don't train it, or eliminate 

that node and is training. 

 

 If an output node has no connection from hidden layer, the net is penalized and is not 

trained. 

 

The neural network module can be described by the following figure (4.12) 

 

 
 

Figure 4.12: Neural network module 
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After obtaining the new network architectures, they are initialized by random weights and 

trained and evolved in parallel mode using four different learning algorithms. This is, 

absolutely, the work of the meta-learning algorithm for the EANN. 

 

Summary 
 

In this chapter, we presented our proposed framework: Meta-Learning Evolutionary Artificial 

Neural Networks by means of Cellular Automata. It is an adaptive computational framework 

based on evolutionary learning and local search procedures for automatic design of optimal 

artificial neural networks using direct and indirect encoding methods. In this proposed 

framework, the evolutionary cellular configurations are used to, first, design small feed-

forward network architectures, and then all the generated architectures are trained and evolved 

separately using the meta-learning algorithm with the direct evolutionary approach, where four 

different learning algorithms are used in parallel mode. 

 

We started this chapter by presenting the evolutionary artificial neural networks and its 

general framework. Then, we introduced three kinds of evolution in EANNs: evolution of 

connection weights, architectures, and learning rules. After that, we described the previous 

MLEANN framework that was proposed by Ajith. In that framework, the direct encoding 

methods were used for the adaptive optimization of neural network architectures. These direct 

encoding methods based on the codification of the complete network into the chromosome, 

thus they required much larger chromosomes and this could end in a too huge space search. 

Finally, we examined our proposed framework (MLEANN-CA) that used indirect encoding 

methods, i.e. cellular automata, for designing optimal network architectures. These methods 

concentrate on codifying a compact representation of the networks reducing the length of the 

chromosomes. Using MLEANN-CA framework will significantly improve the learning 

process, increase the scalability, and obtain a small and efficient design of neural networks 

with faster convergence and better generalization performance. 

 

In the next chapter, Experiments and Results, we will test and explore the performance of our 

proposed framework (MLEANN-CA) and prove its efficiency. 
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CHAPTER FIVE 

 

EXPERIMENTS AND RESULTS 

 
This chapter deals with the experiments performed to evaluate the proposed MLEANN-CA 

framework and to compare it with previous approaches. In section 5.1 we describe the test 

collections (data sets) we will use. In section 5.2 we look at the test environment in which the 

experiments were conducted and at the parameters used during the experiments. Section 5.3 

describes how the experiments were performed and what results are collected from these 

experiments. The results are analyzed and discussed in this section.  

 

5.1 Test Collections - Data Sets  

 

In our experiments, we used two different time series for training the neural networks and 

evaluating their performance. These data sets were used before in Ajith‘s work (Abraham, 

2004), so it will be easy to compare our results with those in Ajith experiments. The raw data 

sets for these two time series could be found in http://neural.cs.nthu.edu.tw/jang/dataset/ 

 

 Mackey-glass Chaotic Time Series. The Mackey-glass differential equation (Mackey 

& Glass, 1977) is a well known and widely used benchmark problem in neural network 

and fuzzy modeling research communities. This time series is chaotic, it will not 

converge or diverge and the trajectory is highly sensitive to initial conditions.  
 

 
 

We used all or some of these values: {x(t −18), x(t −12), x(t −6), x(t)} to predict {x(t 

+6) and / or x(t+12)}. Fourth order Runge-Kutta method was used to generate 1000 

data series where data from t = 118 to 1117. The data was sampled every 6 points, as it 

is usually recommended for the Mackey Glass time series. The time step used in the 

method is 0.1 and initial condition were x(0) = 1.2, τ = 17, x(t) = 0 for t<0. First 500 

data sets were used for training and remaining data for testing.  

 

 Gas Furnace Time Series. The gas furnace data from the Box-Jenkins (Box & 

Jenkins, 1970) is used in our simulations. This time series was used to predict the CO2 

(carbon dioxide) concentration. In a gas furnace system, air and methane are combined 

to form a mixture of gases containing CO2. Air fed into the gas furnace is kept 

constant, while the methane feed rate can be varied in any desired manner. After that, 

the resulting CO2 concentration is measured in the exhaust gases at the outlet of the 

furnace. In this time series, there are originally 296 data points. We are trying to 

predict {y(t+1) and / or y(t)} based on all or some of these best set values {y(t-1), y(t-

2), u(t-3), u(t-4)}, where y is the CO2 concentration and u is the gas flow rate. This 

reduces the number of effective data points to 290. The first 50% of data was used for 

training and remaining for testing. 

http://neural.cs.nthu.edu.tw/jang/dataset/
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5.2 Test Environment 

 

The experiments were simulated using two toolboxes: Neurosolution toolbox, and 

NeuroGenetic Optimizer toolbox. These toolboxes are used for training and optimizing the 

neural networks. The experiments were carried out on a computer with the following 

configurations: 1.8 GHz AMD processor, 512 MB RAM, and Windows XP Professional. 

 

In our proposed framework (MLEANN-CA), several parameters can influence the 

experiments. These parameters can be distinguished into two categories: (i) the parameters 

that are related to the Evolutionary Artificial Neural networks, and (ii) the parameters that are 

related to the learning algorithms. These parameters in tables (5.1) and (5.2) were set to be the 

same for the two data sets, and were finalized after a few trail and error approaches according 

to Ajith (Abraham, 2004).  

 

Table 5.1: Parameters used for EANNs 

 

  Parameter  Setting 

Population size 40 (chromosomes) 

Maximum no of generations 40 

Number of hidden nodes  3 to 36 neurons 

Activation functions tanh (T), logistic (L), sigmoidal (S).  

Output neuron Linear  (Li) 

Training epochs 2500 for standard training , 500 for optimizing  

Initialization of weights + / - 0.3 

Ranked based selection 0.50 

Mutation rate 0.40 

Crossover / one point 0.50 

 

 

Table 5.2: Parameters for the Learning Algorithms 

 

 Learning algorithm Parameter Setting 

Backpropagation (BP) 
Learning rate 0.25-0.05 

Momentum rate 0.25-0.05 

Scaled conjugate gradient (SCG) ------------------ ------------- 

Quasi Newton algorithm (QNA) Step size 0.1 - 0.6 

Levenberg Marquardt (LM) Learning rate 0.001 -0.02 

 



 47 

5.3 The Experiments Conducted 

 

For each data set mentioned before, three main experimental simulations are carried out (Abu 

Salah & Al-Salqan, 2006-B). The first one evaluates the performance of the conventional 

design of artificial neural networks. The second one explores the performance of the 

MLEANN framework. The third one test and explore the performance of our proposed 

approach: MLEANN-CA. These experiments use four different learning algorithms (BP, SCG, 

QNA, LM) in the training process. By applying these experiments, we (a) should know the 

best solution, we (b) can carefully control various parameters, and we (c) should know the 

effect of different learning algorithms namely BP, SCG, QNA and LM on different data sets. 

 

5.3.1 Artificial Neural Networks: Experimentation and Simulation Results:  

 

In this subsection we explored the performance of the conventional design of artificial neural 

networks. We used two different time series, i.e. Mackey-glass and Gas furnace, for training 

the artificial neural networks and evaluating the performance. The Neurosolution and 

NeuroGenetic optimizer toolboxes are used for training the ANNs. We used a feed-forward 

neural network with one hidden layer for the two time series. The number of hidden neurons 

were varied (3, 5, 8, 14, 16, 18, 24, 36) as indicated in table (5.1). The speed of convergence 

and generalization error for each of the four learning algorithms was observed. Any required 

parameter for any learning algorithm is found in table (5.2). Performances of the four different 

learning algorithms were evaluated when the architecture is changed. The experiments were 

replicated three times each with a different starting condition (random weights) and the worst 

errors were reported. No stopping criterion, and no method of controlling generalization is 

used other than the maximum number of updates (epochs). All networks were trained for an 

identical number of stochastic updates: 2500 epochs. 

 

5.3.1.1 Mackey-glass Time Series with Different Network Architectures:  

 

This experiment investigates the training and generalization behavior of the networks for the 

Mackey glass time series when the network architecture was changed. The same architectures 

were used for the four learning algorithms using same node transfer function for the hidden 

layer and the output layer: tanh (T) and linear (Li). The node transfer function has an effect on 

the training speed and generalization performance. Therefore, I used the tanh function after 

examining its performance and compare it with other activation functions. Tables (5.3 -5.5) 

summarize the empirical results of training and generalization for the Mackey glass. Figures 

(5.1–5.6) graphically depict the training and generalization performance for the Mackey glass 

with different learning methods. 

 

Table (5.3) summarizes the empirical results of training and generalization for different 

architectures with four inputs and one output in Mackey-glass time series {x(t −18), x(t −12), 

x(t −6), x(t), x(t +6)}. 
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Table 5.3: Training and test performance for Mackey-glass time series for different 

architectures with four inputs and one output 

 

Mackey-glass time series 

Learning algorithm Hidden neurons 
RMSE 

Training data Testing data 

BP 

3 0.0990 0.0993 

5 0.0971 0.0965 

8 0.0932 0.0924 

14 0.0907 0.0897 

16 0.0838 0.0874 

18 0.0782 0.0768 

24 0.0456 0.0454 

36 0.0408 0.0403 

 

SCG 

3 0.0088 0.0095 

5 0.0079 0.0084 

8 0.0066 0.0075 

14 0.0052 0.0063 

16 0.0071 0.0069 

18 0.0070 0.0071 

24 0.0055 0.0055 

36 0.0048 0.0049 

 

QNA 

3 0.0076 0.0075 

5 0.0061 0.0062 

8 0.0055 0.0054 

14 0.0042 0.0041 

16 0.0033 0.0032 

18 0.0043 0.0044 

24 0.0037 0.0039 

36 0.0035 0.0034 

 

LM 

3 0.0051 0.0060 

5 0.0036 0.0043 

8 0.0020 0.0022 

14 0.0019 0.0019 

16 0.0017 0.0017 

18 0.0017 0.0017 

24 0.0012 0.0012 

36 0.0010 0.0010 
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Table (5.4) summarizes the empirical results of training and generalization for different 

architectures with four inputs and two outputs in Mackey-glass time series {x(t −18), x(t −12), 

x(t −6), x(t), x(t +6), x(t+12)}. 

 

 

Table 5.4: Training and test performance for Mackey-glass time series for different 

architectures with four inputs and two outputs 

 

Mackey-glass time series 

Learning algorithm Hidden neurons 
RMSE 

Training data Testing data 

BP 

3 0.1188 0.1192 

5 0.1165 0.1158 

8 0.1118 0.1109 

14 0.1088 0.1076 

16 0.1006 0.1049 

18 0.0938 0.0922 

24 0.0547 0.0545 

36 0.0490 0.0484 

 

SCG 

3 0.0106 0.0114 

5 0.0095 0.0101 

8 0.0079 0.0090 

14 0.0062 0.0076 

16 0.0085 0.0083 

18 0.0084 0.0085 

24 0.0066 0.0066 

36 0.0058 0.0059 

 

QNA 

3 0.0091 0.0090 

5 0.0073 0.0074 

8 0.0066 0.0065 

14 0.0050 0.0049 

16 0.0040 0.0038 

18 0.0052 0.0053 

24 0.0044 0.0047 

36 0.0042 0.0041 

 

LM 

3 0.0061 0.0072 

5 0.0043 0.0052 

8 0.0024 0.0026 

14 0.0023 0.0023 

16 0.0020 0.0020 

18 0.0020 0.0020 



 50 

24 0.0014 0.0014 

36 0.0012 0.0012 

 

 

Table (5.5) summarizes the empirical results of training and generalization for different 

architectures with three inputs and two outputs in Mackey-glass time series {x(t −12), x(t −6), 

x(t), x(t +6), x(t+12)}. 

 

 

Table 5.5: Training and test performance for Mackey-glass time series for different 

architectures with three inputs and two outputs 

 

Mackey-glass time series 

Learning algorithm Hidden neurons 
RMSE 

Training data Testing data 

BP 

3 0.1426 0.1430 

5 0.1398 0.1390 

8 0.1342 0.1331 

14 0.1306 0.1292 

16 0.1207 0.1259 

18 0.1126 0.1106 

24 0.0657 0.0654 

36 0.0588 0.0580 

 

SCG 

3 0.0127 0.0137 

5 0.0114 0.0121 

8 0.0095 0.0108 

14 0.0075 0.0091 

16 0.0102 0.0099 

18 0.0101 0.0102 

24 0.0079 0.0079 

36 0.0069 0.0071 

 

QNA 

3 0.0109 0.0108 

5 0.0088 0.0089 

8 0.0079 0.0078 

14 0.0060 0.0059 

16 0.0048 0.0046 

18 0.0062 0.0063 

24 0.0053 0.0056 

36 0.0050 0.0049 

 

LM 
3 0.0073 0.0086 

5 0.0052 0.0062 
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8 0.0029 0.0032 

14 0.0027 0.0027 

16 0.0024 0.0024 

18 0.0024 0.0024 

24 0.0017 0.0017 

36 0.0014 0.0014 

 

 

 

Figures (5.1–5.6) graphically depict the training and generalization performance for the 

different learning methods with different architectures using Mackey-glass time series. 
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Figure 5.1: Architecture variation: Mackey-glass time series training performance for 

different training algorithms with 4 inputs and 1 output network 
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Figure 5.2: Architecture variation: Mackey-glass time series generalization performance for 

different learning algorithms with 4 inputs and 1 output network 
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Figure 5.3: Architecture variation: Mackey-glass time series training performance for 

different training algorithms with 4 inputs and 2 output network 
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Figure 5.4: Architecture variation: Mackey-glass time series generalization performance for 

different learning algorithms with 4 inputs and 2 output network 
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Figure 5.5: Architecture variation: Mackey-glass time series training performance for 

different training algorithms with 3 inputs and 2 output network 
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Figure 5.6: Architecture variation: Mackey-glass time series generalization performance for 

different learning algorithms with 3 inputs and 2 output network 

 

5.3.1.2 Gas Furnace Time Series with Different Network Architectures:  

 

This experiment investigates the training and generalization behavior of the networks for the 

Gas furnace time series when the network architecture was changed. The same architectures 

were used for the four learning algorithms using same node transfer function for the hidden 

layer and the output layer: tanh (T) and linear (Li). Tables (5.6 -5.8) summarize the empirical 

results of training and generalization for the Gas furnace time series. Figures (5.7–5.12) 

graphically depict the training and generalization performance for the Gas furnace time series 

with different learning methods.  

 

Table (5.6) summarizes the empirical results of training and generalization for different 

architectures with four inputs and one output in Gas furnace time series {y(t-1), y (t-2), u(t-

3),u (t-4), y (t)}. 

 

 

 

 

 

 

 



 55 

Table 5.6: Training and test performance for Gas furnace time series for different 

architectures with four inputs and one output 

 

Gas Furnace time series 

Learning algorithm Hidden neurons 
RMSE 

Training data Testing data 

BP 

3 0.0461 0.0496 

5 0.0458 0.0527 

8 0.0451 0.0569 

14 0.0419 0.0807 

16 0.0522 0.0660 

18 0.0448 0.0479 

24 0.0414 0.0606 

36 0.0428 0.0686 

 

SCG 

3 0.0123 0.0333 

5 0.0115 0.0326 

8 0.0109 0.0318 

14 0.0100 0.0207 

16 0.0098 0.0206 

18 0.0103 0.0206 

24 0.0096 0.0229 

36 0.0093 0.0308 

 

QNA 

3 0.0098 0.0340 

5 0.0093 0.0332 

8 0.0089 0.0326 

14 0.0087 0.0343 

16 0.0083 0.0291 

18 0.0083 0.0235 

24 0.0080 0.0323 

36 0.0082 0.0329 

 

LM 

3 0.0081 0.0305 

5 0.0077 0.0313 

8 0.0079 0.0321 

14 0.0074 0.0281 

16 0.0082 0.0607 

18 0.0073 0.0675 

24 0.0069 0.1160 

36 0.0064 0.1342 
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Table (5.7) summarizes the empirical results of training and generalization for different 

architectures with four inputs and two outputs in Gas furnace time series {y(t-1), y (t-2), u(t-

3),u (t-4), y (t), y(t+1)}.  

 

Table 5.7: Training and test performance for Gas furnace time series for different 

architectures with four inputs and two outputs 

 

Gas Furnace time series 

Learning algorithm Hidden neurons 
RMSE 

Training data Testing data 

BP 

3 0.0553 0.0596 

5 0.0550 0.0632 

8 0.0541 0.0683 

14 0.0503 0.0968 

16 0.0626 0.0792 

18 0.0538 0.0575 

24 0.0497 0.0728 

36 0.0514 0.0823 

 

SCG 

3 0.0148 0.0433 

5 0.0138 0.0424 

8 0.0131 0.0414 

14 0.0120 0.0269 

16 0.0118 0.0268 

18 0.0124 0.0268 

24 0.0115 0.0298 

36 0.0112 0.0401 

 

QNA 

3 0.0118 0.0442 

5 0.0112 0.0431 

8 0.0107 0.0424 

14 0.0104 0.0446 

16 0.0100 0.0378 

18 0.0100 0.0306 

24 0.0096 0.0419 

36 0.0098 0.0427 

 

LM 

3 0.0097 0.0397 

5 0.0092 0.0407 

8 0.0095 0.0418 

14 0.0089 0.0366 

16 0.0098 0.0789 

18 0.0088 0.0878 
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24 0.0083 0.1508 

36 0.0077 0.1744 
 

 

Table (5.8) summarizes the empirical results of training and generalization for different 

architectures with three inputs and two outputs in Gas furnace time series {y(t-1), u(t-3), u(t-

4), y(t), y(t+1)}.  

 

 

Table 5.8: Training and test performance for Gas furnace time series for different 

architectures with three inputs and two outputs 

 

Gas Furnace time series 

Learning algorithm Hidden neurons 
RMSE 

Training data Testing data 

BP 

3 0.0664 0.0715 

5 0.0660 0.0759 

8 0.0649 0.0820 

14 0.0603 0.1162 

16 0.0752 0.0950 

18 0.0645 0.0689 

24 0.0596 0.0873 

36 0.0616 0.0987 

 

SCG 

3 0.0177 0.0520 

5 0.0166 0.0509 

8 0.0157 0.0496 

14 0.0144 0.0323 

16 0.0141 0.0322 

18 0.0148 0.0322 

24 0.0138 0.0358 

36 0.0134 0.0481 

 

QNA 

3 0.0141 0.0530 

5 0.0134 0.0518 

8 0.0128 0.0509 

14 0.0125 0.0535 

16 0.0120 0.0453 

18 0.0120 0.0367 

24 0.0115 0.0503 

36 0.0118 0.0513 

 

LM 3 0.0117 0.0476 
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5 0.0111 0.0488 

8 0.0114 0.0501 

14 0.0107 0.0439 

16 0.0118 0.0947 

18 0.0105 0.1053 

24 0.0099 0.1810 

36 0.0092 0.2093 
 

 

 

Figures (7–12) graphically depict the training and generalization performance for the different 

learning methods with different architectures using Gas furnace time series 
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Figure 5.7: Architecture variation: Gas furnace time series training performance for different 

training algorithms with 4 inputs and 1 output network 
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Figure 5.8: Architecture variation: Gas furnace time series generalization performance for 

different learning algorithms with 4 inputs and 1 output network 
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Figure 5.9: Architecture variation: Gas furnace time series training performance for different 

training algorithms with 4 inputs and 2 output network 
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Figure 5.10: Architecture variation: Gas furnace time series generalization performance for 

different learning algorithms with 4 inputs and 2 output network 
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Figure 5.11: Architecture variation: Gas furnace time series training performance for different 

training algorithms with 3 inputs and 2 output network 



 61 

0.000

0.050

0.100

0.150

0.200

0.250

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

 
 

Figure 5.12: Architecture variation: Gas furnace time series generalization performance for 

different learning algorithms with 3 inputs and 2 output network 
 

5.3.1.3 ANN- Results Discussion: 

 

This subsection includes evaluation and summarization of the experimentations results 

mentioned in subsections 5.3.1.1 and 5.3.1.2.  

 

For Mackey-glass series (tables 5.3 - 5.5), all the four learning algorithms tend to generalize 

well (i.e. test set RMSE decreased) as the hidden neurons were increased. The run time also 

increases for the four learning algorithms as the number of hidden nodes increase. LM showed 

the fastest convergence regardless of architecture. As an example (in table 5.3), the LM gave 

the lowest generalization RMSE of 0.0010 with 36 hidden neurons. However, the run time of 

LM algorithm is the longest in comparison with the other learning algorithms. On the other 

hand, for every learning algorithm with the same number of hidden nodes and same number of 

inputs, the RMSE and the run time will increase as the number of outputs increases. Also, the 

RMSE will increase and the run time will decrease for every learning algorithm as the number 

of inputs decrease using the same number of hidden nodes and outputs. This is true for 

Mackey glass and Gas furnace time series. 

 

For Gas furnace series (as shown in tables 5.6 - 5.8), the generalization performance were 

entirely different for the different learning algorithms. Better generalization does not depend 

on increasing the hidden neurons. For example (in table 5.6), BP gave the best generalization 

RMSE of 0.0479 with 18 hidden neurons. RMSE for SCG, QNA and LM were 0.0206 (16 
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neurons), 0.0235 (18 neurons) and 0.0281 (14 neurons), respectively. However, increasing the 

number of hidden nodes will cause increasing in execution time for every learning algorithm, 

and the LM algorithm will have the longest execution time. In spite of execution time, LM 

performed well for Mackey-glass series. For gas furnace SCG algorithm performed better. 

However, the speed of convergence of LM in all cases is worth noting.  

 

In general, the training speed and generalization performance of an ANN is totally dependant 

on the learning algorithm and its parameters, architecture, node transfer function, initial 

weights, and the data sets used for training and testing. From the above discussion it is clear 

that the selection of the topology of a network and the best learning algorithm and its 

parameters is a tedious task for designing an optimal ANN. Evolutionary algorithm is an 

adaptive search technique based on the principles and mechanisms of natural selection and 

survival of the fittest from natural evolution. The interest in evolutionary search procedures for 

designing neural network topology has been growing in recent years as they can evolve 

towards the optimal architecture without outside interference, thus eliminating the tedious trial 

and error work of manually finding an optimal network. 

 

5.3.2 MLEANN: Experimentation and Simulation Results:  

 

In this subsection we explore the performance of the MLEANN approach. We applied this 

MLEANN approach to the two-time series prediction problems discussed before. We used the 

Neurosolution and NeuroGenetic optimizer toolboxes in training and optimizing processes. 

For performance comparison, we used the same set of training and test data that were used for 

experimentations with conventional design of neural networks. We used the same feed-

forward neural network with one hidden layer for the two time series. The number of hidden 

neurons was varied (from 3 to 36) as indicated in table (5.1). For performance evaluation, the 

parameters used in this experiment were set to be the same for the two problems. Fitness value 

is calculated based on the RMSE achieved on the test set. In this experiment, we have 

considered the best-evolved neural network as the best individual of the last generation. As the 

learning process is evolved separately, user has the option to pick the best neural network (e.g. 

less RMSE, fast convergence, short run time, or small architecture size, etc.) among the four 

learning algorithms. All the genotypes were represented using binary coding and the initial 

populations were randomly generated based on the parameters shown in table (5.1). All 

networks with different architectures were trained for an identical number of stochastic 

updates (500 epochs) using the same four learning algorithms. The parameter settings, which 

were evolved for the different learning algorithms, are found in table (5.2). The experiments 

were repeated three times and the worst RMSE values are reported.  

 

5.3.2.1 MLEANN: Simulation Results: 

 

Tables (5.9 – 5.14) display empirical values of RMSE on test data for the two time series 

problems using the meta-learning technique with different architectures. For comparison 

purposes, test set RMSE values using conventional design techniques are also presented in 

these tables (adapted from tables 5.3 – 5.8).  
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Table 5.9: Performance comparison between MLEANN and ANN for Mackey-glass time 

series with different architectures (four inputs / one output) 

 

Time 

series 

Learning 

algorithm 

MLEANN ANN 

RMSE 
Architecture 

RMSE 
Architecture 

Train Test Test 

 

 

 

 

 

 

Mackey 

Glass 

BP 

0.0173 0.0175 3:3T:1Li 0.0993 4 : 3T : 1Li 

0.0168 0.0170 3:4T:1Li 0.0965 4 : 5T : 1Li 

0.0075 0.0080 3:10T:1Li 0.0454 4 :24T :1Li 

0.0067 0.0071
a 

3:17T:1Li 0.0403 4 :36T :1Li 

 

SCG 

0.0061 0.0065 3:3T:1Li 0.0095 4 : 3T : 1Li 

0.0057 0.0058 3:5T:1Li 0.0084 4 : 5T : 1Li 

0.0036 0.0038 3:11T:1Li 0.0055 4 :24T :1Li 

0.0032 0.0034
a 

3:19T:1Li 0.0049 4 :36T :1Li 

 

QNA 

0.0062 0.0060 3:3T:1Li 0.0075 4 : 3T : 1Li 

0.0050 0.0049 3:5T:1Li 0.0062 4 : 5T : 1Li 

0.0028 0.0030 3:10T:1Li 0.0039 4 :24T :1Li 

0.0022 0.0027
a 

3:17T:1Li 0.0034 4 :36T :1Li 

 

LM 

0.0025 0.0027 3:3T:1Li 0.0060 4 : 3T : 1Li 

0.0019 0.0019 3:4T:1Li 0.0043 4 : 5T : 1Li 

0.0005 0.0005 3:11T:1Li 0.0012 4 :24T :1Li 

0.0004 
*
0.0004

a
 3:18T:1Li 0.0010 4 :36T :1Li 

a : Lowest RMSE in each algorithm 

* : Lowest RMSE in all the algorithms 

 

 

Table 5.10: Performance comparison between MLEANN and ANN for Mackey-glass time 

series with different architectures (four inputs / two outputs) 

 

Time series 
Learning 

algorithm 

EANN ANN 

RMSE 
Architecture 

RMSE 
Architecture 

Train Test Test 

 

 

 

 

 

 

BP 

0.0207 0.0210 3:3T:2Li 0.1192 4 : 3T : 2Li 

0.0201 0.0204 3:5T:2Li 0.1158 4 : 5 T: 2 Li 

0.0091 0.0096 3:11T:2Li 0.0545 4 :24T :2 Li 

0.0081 0.0085
a 

3:18T:2Li 0.0484 4 :36T :2 Li 

 

SCG 0.0074 0.0079 3:3T:2Li 0.0114 4 : 3T : 2Li 
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Mackey 

Glass 

0.0068 0.0070 3:5T:2Li 0.0101 4 : 5 T: 2 Li 

0.0044 0.0045 3:13T:2Li 0.0066 4 :24T :2 Li 

0.0040 0.0041
a 

3:20T:2Li 0.0059 4 :36T :2 Li 

 

QNA 

0.0072 0.0071 3:3T:2Li 0.0090 4 : 3T : 2Li 

0.0061 0.0059 3:5T:2Li 0.0074 4 : 5 T: 2 Li 

0.0034 0.0037 3:11T:2Li 0.0047 4 :24T :2 Li 

0.0030 0.0033
a 

3:18T:2Li 0.0041 4 :36T :2 Li 

 

LM 

0.0027 0.0032 3:3T:2Li 0.0072 4 : 3T : 2Li 

0.0021 0.0023 3:5T:2Li 0.0052 4 : 5 T: 2 Li 

0.0006 0.0006 3:12T:2Li 0.0014 4 :24T :2 Li 

0.0005 
*
0.0005

a 
3:19T:2Li 0.0012 4 :36T :2 Li 

a : Lowest RMSE in each algorithm 

* : Lowest RMSE in all the algorithms 

 

Table 5.11: Performance comparison between MLEANN and ANN for Mackey-glass time 

series with different architectures (three inputs / two outputs) 

 

Time 

series 

Learning 

algorithm 

EANN ANN 

RMSE 
Architecture 

RMSE 
Architecture 

Train Test Test 

 

 

 

 

 

 

Mackey 

Glass 

BP 

0.0249 0.0252 3:3T:2Li 0.1430 3: 3T : 2Li 

0.0241 0.0245 3:4T:2Li 0.1390 3: 5T : 2 Li 

0.0110 0.0115 3:9T:2Li 0.0654 3:24T :2 Li 

0.0100 0.0102
a 

3:16T:2Li 0.0580 3:36T :2 Li 

 

SCG 

0.0090 0.0094 3:3T:2Li 0.0137 3: 3T : 2Li 

0.0081 0.0083 3:5T:2Li 0.0121 3: 5T : 2 Li 

0.0052 0.0054 3:12T:2Li 0.0079 3:24T :2 Li 

0.0047 0.0049
a 

3:19T:2Li 0.0071 3:36T :2 Li 

 

QNA 

0.0087 0.0086 3:3T:2Li 0.0108 3: 3T : 2Li 

0.0070 0.0071 3:5T:2Li 0.0089 3: 5T : 2 Li 

0.0041 0.0044 3:10T:2Li 0.0056 3:24T :2 Li 

0.0036 0.0039
a 

3:17T:2Li 0.0049 3:36T :2 Li 

 

LM 

0.0034 0.0038 3:3T:2Li 0.0086 3: 3T : 2Li 

0.0026 0.0028 3:4T:2Li 0.0062 3: 5T : 2 Li 

0.0008 0.0008 3:11T:2Li 0.0017 3:24T :2 Li 

0.0006 
*
0.0006

a 
3:18T:2Li 0.0014 3:36T :2 Li 

a : Lowest RMSE in each algorithm 

* : Lowest RMSE in all the algorithms 
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Table 5.12: Performance comparison between MLEANN and ANN for Gas furnace time 

series with different architectures (four inputs / one output) 

 

Time 

series 

Learning 

algorithm 

EANN ANN 

RMSE 
Architecture 

RMSE 
Architecture 

Train Test Test 

 

 

 

 

 

 

Gas 

furnace 

 

 

 

 

BP 

0.0121 0.0232 3:3T:1Li 0.0496 4 : 3T : 1Li 

0.0117 0.0246 3:4T:1Li 0.0527 4 : 5T : 1 Li 

0.0100 0.0224
a 

3:9T:1Li 0.0479 4 :18T :1 Li 

0.0108 0.0320 3:19T:1Li 0.0686 4 :36T :1 Li 

 

SCG 

0.0112 0.0191 3:3T:1Li 0.0333 4 : 3T : 1Li 

0.0106 0.0187 3:4T:1Li 0.0326 4 : 5T : 1 Li 

0.0069 
*
0.0131

a 
3:11T:1Li 0.0206 4 :16T :1 Li 

0.0095 0.0167 3:22T:1Li 0.0308 4 :36T :1 Li 

 

QNA 

0.0098 0.0196 3:3T:1Li 0.0340 4 : 3T : 1Li 

0.0103 0.0190 3:4T:1Li 0.0332 4 : 5T : 1 Li 

0.0072 0.0160
a 

3:10T:1Li 0.0235 4 :18T :1 Li 

0.0085 0.0175 3:21T:1Li 0.0329 4 :36T :1 Li 

 

LM 

0.0115 0.0180 3:3T:1Li 0.0305 4 : 3T : 1Li 

0.0111 0.0184 3:4T:1Li 0.0313 4 : 5T : 1 Li 

0.0075 0.0139
a 

3:9T:1Li 0.0281 4 :14T :1 Li 

0.0083 0.0623 3:20T:1Li 0.1342 4 :36T :1 Li 

a : Lowest RMSE in each algorithm 

* : Lowest RMSE in all the algorithms 

 

 

Table 5.13: Performance comparison between MLEANN and ANN for Gas furnace time 

series with different architectures (four inputs / two outputs) 

 

Time 

series 

Learning 

algorithm 

EANN ANN 

RMSE 
Architecture 

RMSE 
Architecture 

Train Test Test 

 

 

 

 

 

 

BP 

0.0145 0.0278 3:3T:2Li 0.0596 4 : 3T : 2Li 

0.0140 0.0295 3:5T:2Li 0.0632 4 : 5T : 2 Li 

0.0121 0.0269
a 

3:10T:2Li 0.0575 4 :18T :2 Li 

0.0130 0.0385 3:20T:2Li 0.0823 4 :36T :2 Li 

 

SCG 0.0146 0.0248 3:3T:2Li 0.0433 4 : 3T : 2Li 
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Gas 

furnace 

 

 

0.0138 0.0243 3:4T:2Li 0.0424 4 : 5T : 2 Li 

0.0090 
*
0.0171

a 
3:12T:2Li 0.0268 4 :16T :2 Li 

0.0124 0.0217 3:23T:2Li 0.0401 4 :36T :2 Li 

 

QNA 

0.0127 0.0255 3:3T:2Li 0.0442 4 : 3T : 2Li 

0.0134 0.0247 3:5T:2Li 0.0431 4 : 5T : 2 Li 

0.0094 0.0208
a 

3:11T:2Li 0.0306 4 :18T :2 Li 

0.0111 0.0228 3:22T:2Li 0.0427 4 :36T :2 Li 

 

LM 

0.015 0.0234 3:3T:2Li 0.0397 4 : 3T : 2Li 

0.0144 0.0239 3:4T:2Li 0.0407 4 : 5T : 2 Li 

0.0098 0.0181
a 

3:10T:2Li 0.0366 4 :14T :2 Li 

0.0108 0.0810 3:20T:2Li 0.1744 4 :36T :2 Li 

a : Lowest RMSE in each algorithm 

* : Lowest RMSE in all the algorithms 

 

Table 5.14: Performance comparison between MLEANN and ANN for Gas furnace time 

series with different architectures (three inputs / two outputs) 

 

Time 

series 

Learning 

algorithm 

EANN ANN 

RMSE 
Architecture 

RMSE 
Architecture 

Train Test Test 

 

 

 

 

 

 

 

 

Gas 

furnace 

BP 

0.0174 0.0334 3:3T:2Li 0.0715 3: 3T : 2Li 

0.0169 0.0355 3:4T:2Li 0.0759 3: 5T : 2 Li 

0.0144 0.0322
a 

3:8T:2Li 0.0689 3:18T :2 Li 

0.0155 0.0461 3:18T:2Li 0.0987 3:36T :2 Li 

 

SCG 

0.0175 0.0298 3:3T:2Li 0.0520 3: 3T : 2Li 

0.0165 0.0292 3:4T:2Li 0.0509 3: 5T : 2 Li 

0.0108 
*
0.0205

a 
3:10T:2Li 0.0322 3:16T :2 Li 

0.0148 0.0261 3:21T:2Li 0.0481 3:36T :2 Li 

 

QNA 

0.0153 0.0306 3:3T:2Li 0.0530 3: 3T : 2Li 

0.0161 0.0297 3:4T:2Li 0.0518 3: 5T : 2 Li 

0.0112 0.0250
a 

3:9T:2Li 0.0367 3:18T :2 Li 

0.0133 0.0273 3:20T:2Li 0.0513 3:36T :2 Li 

 

LM 

0.0179 0.0281 3:3T:2Li 0.0476 3: 3T : 2Li 

0.0173 0.0287 3:4T:2Li 0.0488 3: 5T : 2 Li 

0.0117 0.0217
a 

3:8T:2Li 0.0439 3:14T :2 Li 

0.0129 0.0972 3:19T:2Li 0.2093 3:36T :2 Li 

a : Lowest RMSE in each algorithm 

* : Lowest RMSE in all the algorithms 
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Figures (5.13 – 5.18) show the test set RMSE for the two time series problems using the meta-

learning technique with different architectures. 
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Figure 5.13: test set RMSE for Mackey glass using meta-learning technique (for architectures 

with 4 inputs – 1 output) 
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Figure 5.14: test set RMSE for Mackey glass using meta-learning technique (for architectures 

with 4 inputs – 2 outputs) 
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Figure 5.15: test set RMSE for Mackey glass using meta-learning technique (for architectures 

with 3 inputs – 2 outputs) 
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Figure 5.16: test set RMSE for Gas furnace using meta-learning technique (for architectures 

with 4 inputs – 1 output) 
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Figure 5.17: test set RMSE for Gas furnace using meta-learning technique (for architectures 

with 4 inputs –2 outputs) 

 

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

RMSE

BP SCG QNA LM

Learning algorithms

3 hidden nodes

 5 hidden nodes

18 hidden nodes for BP and QNA, 16 for SCG, 14 for LM

36  hidden nodes

 
 

Figure 5.18: test set RMSE for Gas furnace using meta-learning technique (for architectures 

with 3 inputs –2 outputs) 
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Tables (5.15, 5.16) illustrate the run times of the MLEANN for the two time series with 

different architectures  
 

 

Table 5.15: Run time comparison of MLEANN for Mackey glass time series with different 

architectures 

 

Time 

series 

Learning 

algorithm 

Hidden 

neurons 

Run time in minutes 

4 i/p - 1 o/p 4 i/p - 2 o/p 3 i/p - 2 o/p 

 

 

 

 

 

 

Mackey 

Glass 

BP 

3 240.96 268.80 246.60 

5 262.80 293.40 269.40 

24 295.80 501.00 305.40 

36 376.20
a 

537.60
a 

400.20
a 

  

SCG 

3 394.80 440.41 404.04 

5 433.20 483.64 444.08 

24 492.60 834.32 508.59 

36 634.20
a 

906.29
a 

674.66
a 

  

QNA 

3 417.00 465.18 426.76 

5 457.80 511.11 469.30 

24 522.60 885.13 539.56 

36 673.20
a 

962.02
a 

716.15
a 

  

LM 

3 470.40 524.75 481.41 

5 516.00 576.08 528.96 

24 588.60 996.92 607.70 

36 
*
760.20

a *
1086.35

a *
808.70

a 

a : Maximum run time in each algorithm 

* : Maximum run time in all the algorithms 
 

 

Table 5.16: Run time comparison of MLEANN for Gas furnace time series with different 

architectures 

 

Time 

 series 

Learning 

algorithm 

Hidden 

neurons 

Run time in minutes 

4 i/p -1 o/p 4 i/p -2 o/p 3 i/p -2 o/p 

 

 

 

 

Gas 

furnace 

BP 

3 88.20 106.80 91.20 

5 90.60 111.00 100.20 

18 102.00 113.40 108.60 

36 120.00
a 

141.60
a 

132.00
a 

 

SCG 3 166.20 201.25 171.85 
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5 174.00 213.18 192.44 

16 204.00 226.80 217.20 

36 229.20
a 

270.46
a 

252.12
a 

 

QNA 

3 174.00 210.69 179.92 

5 184.20 225.68 203.72 

18 216.00 240.14 229.98 

36 243.00
a 

286.74
a 

267.30
a 

 

LM 

3 179.40 217.23 185.50 

5 192.00 235.23 212.34 

14 228.60 254.15 243.39 

36 
*
251.40

a *
296.65

a *
276.54

a 

a : Maximum run time in each algorithm 

* : Maximum run time in all the algorithms 

 

 

Figures (5.19 – 5.24) show the run times of the MLEANN for the two time series with 

different architectures  
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Figure 5.19: Run time of the MLEANN for Mackey glass with different architectures (4 

inputs – 1 output) 
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Figure 5.20: Run time of the MLEANN for Mackey glass with different architectures (4 

inputs –2 outputs) 
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Figure 5.21: Run time of the MLEANN for Mackey glass with different architectures (3 

inputs –2 outputs) 
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Figure 5.22: Run time of the MLEANN for Gas furnace with different architectures (4 inputs 

– 1 output) 
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Figure 5.23: Run time of the MLEANN for Gas furnace with different architectures (4 inputs 

–2 outputs) 
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Figure 5.24: Run time of the MLEANN for Gas furnace with different architectures (3 inputs 

–2 outputs) 
 

 

Figures (5.25, 5.26) show the test results using 500 epochs BP meta-learning for the two time 

series (with architecture of 4 inputs and 1 output). 

 

 

 
 

Figure 5.25: Test results using 500 epochs BP meta-learning for Mackey-glass series. (36 

hidden nodes) 
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Figure 5.26: Test results using 500 epochs BP meta-learning for gas furnace series (18 hidden 

nodes) 

 

Convergence of test set RMSE for the two time series is depicted in figures (5.27– 5.28). This 

is for the architectures with the lowest RMSE. 

 

 
 

Figure 5.27: Mackey-glass time series: average test set RMSE values during the 40   

generations and meta-learning. (4 inputs-36 hidden nodes-1output) 
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Figure 5.28: Gas furnace time series: average test set RMSE values during the 40 generations 

and meta-learning. (4 inputs- 1 output - hidden nodes with 18 (BP), 16 (SCG), 18 (QNA), 14 

(LM)) 
 

5.3.2.2 MLEANN- Results Discussion:  

 

This subsection includes evaluation and summarization of the experimentation results 

mentioned in subsection 5.3.2.1. Tables (5.9 – 5.14) show comparative performance between 

MLEANN and a conventional ANN with different architectures for the two time series 

problems. Performance comparison reveals that EANN design performs more efficiently than 

conventional ANN design for the two time series. 

 

For Mackey-glass series (figure 5.25), using 500 epochs of BP learning with architecture of 36 

hidden nodes (table 5.9), the RMSE on test set was reduced by 82.4% (BP), 30.6% (SCG), 

20.6% (QNA) and 60% (LM). At the same time, number of hidden neurons got reduced by 

approximately 52.8% (BP), 47.2% (SCG), 52.7% (QNA) and 50% for LM. LM algorithm 

gave the best RMSE error on test set (0.0004) even though it takes long time (760.2 minutes) 

while the BP algorithm takes the shortest time (376.2 minutes) as shown in table (5.15). 

 

For the gas furnace time series (figure 5.26), using 500 epochs of BP learning with 

architectures indicated in table 5.12, RMSE on test set was reduced by 53.2% (BP with 18 

hidden nodes), 36.4% (SCG with 16 hidden nodes), 31.9% (QNA with 18 hidden nodes) and 

50.5% (LM with 14 hidden nodes). Savings in hidden neurons amounted to 50% (BP), 31.3% 

(SCG), 44.4% (QNA) and 35.7% (LM). SCG training gave the best RMSE value (0.0131) for 

gas furnace series. To have an empirical comparison, we deliberately terminated the local 

search after 500 epochs (regardless of early stopping in some cases) for all the training 

algorithms. In some cases the generalization performance could have been further improved.  
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As depicted in tables (5.9 - 5.14), our experimentations with small architectures also reveal the 

efficiency of MLEANN technique. The gas furnace time series could be learned just with 3 or 

5 hidden neurons using LM algorithm. LM produced best results with few hidden neurons. 

However, when the hidden neurons were increased, SCG algorithm marginally preformed 

better than LM. For Mackey-glass series the results were not that encouraging (using 4 hidden 

neurons) when compared with the conventional design using 36 hidden neurons. The Mackey-

glass series requires more hidden neurons to improve the RMSE values.  

 

In this experiment, the work was mostly concentrated on the evolutionary search of optimal 

learning algorithms for feed forward neural networks using direct encoding method (fixed 

chromosome structure) to represent the architecture. As the size of the network increases, the 

chromosome size grows. Moreover, implementation of crossover is often difficult due to 

production of non-functional offspring‘s. Indirect encoding methods overcome the problems 

with direct encoding although the search of architectures is restricted to layers. Using the 

cellular configuration as an indirect encoding method to explore the architecture of neural 

networks is more efficiently. Gutierrez (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001) 

had shown that their cellular automata technique performed better than direct codifications and 

this is what I used in the following experiment. 

 

5.3.3 MLEANN-CA: Experimentation and Simulation Results: 

 

In this subsection, we test and explore the performance of the proposed MLEANN-CA 

approach that used the cellular configurations in optimizing networks architectures. According 

to Gutteriez experiment (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001), he applied the 

evolutionary cellular configurations for designing feed-forward neural network architecture. 

He used a network with four inputs, 36 hidden nodes, and two outputs. By using the cellular 

automata technique, the positions of growing and decreasing seeds in the CA grid are codified 

into the genotype. The length of chromosome is 30, 3 genes for each growing or decreasing 

seed. The result is an optimized neural network with three inputs, three hidden nodes, and two 

outputs.  

 

In this experiment, we used the original neural network (4: 36: 2) and the optimized one (3: 3: 

2) from Gutteriez experiment. We assumed that the two networks are fully connected as a 

worst case. We evolved and trained these networks through the Neurosolution and 

NeuroGenetic optimizer toolboxes using two time series: Mackey-glass and Gas furnace. We 

used the direct encoding method in training and evolving the networks. We compared the 

results according to the architecture, RMSE error, and run time. The user has the option to 

pick the best neural network (e.g. small architecture size, less RMSE, fast convergence, or 

short run time, etc.) among the four learning algorithms used during the training process. 

 

5.3.3.1 MLEANN-CA: Simulation Results: 

 

Tables (5.17 – 5.18) display empirical values of RMSE on test data using the meta-learning 

technique for the two time series problems with the network architectures: (4:36:2) and 

(3:3:2). These tables also include the new optimized architectures generated after applying the 

meta-learning technique. The results are adapted from tables (5.10, 5.11, 5.13, 5.14). For 

comparison purposes, test set RMSE values using conventional design techniques are also 
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presented in these tables (adapted from tables 5.4, 5.5, 5.7, 5.8). In addition, the run times 

using the meta-learning technique for the two time series are also presented in tables (adapted 

from tables 5.15- 5.16) 

 

Table 5.17: Performance comparison between MLEANN and ANN for Mackey-glass time  

series with: original architecture, and the optimized one using cellular configurations 

 

Mackey glass time series 

Learning 

algorithm 

ANN EANN 

Architecture 
RMSE 

Architecture 
RMSE Run time 

(minutes) Test Test 

BP 
3:3T:2Li 0.1430 3:3T:2Li 0.0252 246.60 

4:36T:2Li 0.0484 3:18T:2Li 0.0085 537.60 

 

SCG 
3:3T:2Li 0.0137 3:3T:2Li 0.0094 404.04 

4:36T:2Li 0.0059 3:20T:2Li 0.0041 906.29 

 

QNA 
3:3T:2Li 0.0108 3:3T:2Li 0.0086 426.76 

4:36T:2Li 0.0041 3:18T:2Li 0.0033 962.02 

 

LM 
3:3T:2Li 0.0086 3:3T:2Li 0.0038 481.41 

4:36T:2Li 0.0012 3:19T:2Li 0.0005 1086.35 

 
 

Table 5.18: Performance comparison between MLEANN and ANN for Gas furnace time 

series with: original architecture, and the optimized one using cellular configurations 

 

Gas furnace time series 

Learning 

algorithm 

ANN EANN 

Architecture 
RMSE 

Architecture 
RMSE Run time 

(minutes) Test Test 

BP 
3:3T:2Li 0.0715 3:3T:2Li 0.0334 91.20 

4:36T:2Li 0.0823 3:20T:2Li 0.0385 141.60 

 

SCG 
3:3T:2Li 0.0520 3:3T:2Li 0.0298 171.85 

4:36T:2Li 0.0401 3:23T:2Li 0.0217 270.46 

 

QNA 
3:3T:2Li 0.0530 3:3T:2Li 0.0306 179.92 

4:36T:2Li 0.0427 3:22T:2Li 0.0228 286.74 

 

LM 
3:3T:2Li 0.0476 3:3T:2Li 0.0281 185.50 

4:36T:2Li 0.1744 3:20T:2Li 0.0810 296.65 
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Figures (5.29 – 5.30) show the test set RMSE for the two time series problems using the meta-

learning technique with the tested network architectures.  
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Figure 5.29: test set RMSE for Mackey glass using meta-learning technique with two network 

architectures: original network (4:36:2), optimized network by cellular (3:3:2) 
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Figure 5.30: test set RMSE for Gas furnace using meta-learning technique with two network 

architectures: original network (4:36:2), optimized network by cellular (3:3:2) 
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Figures (5.35 – 5.36) show the run times of the MLEANN for the two time series with the 

tested network architectures.  
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Figure 5.31: Run time of the MLEANN for Mackey glass with two network architectures: 

original network (4:36:2), optimized network by cellular (3:3:2) 
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Figure 5.32: Run time of the MLEANN for Gas furnace with two network architectures: 

original network (4:36:2), optimized network by cellular (3:3:2) 
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5.3.3.2 MLEANN-CA: Results Discussion: 

 

This subsection includes evaluation and summarization of the experimentation results 

mentioned in section 5.3.3. The cellular automata technique is able to provide more optimal 

architectures than direct codification methods. According to Gutteriez experiment result 

(Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001), the number of hidden neurons got 

reduced by approximately 91.7% (from 36 to 3 hidden nodes) using the cellular 

configurations. Using the direct codification in my experiments, for the Mackey glass (table 

5.17) the number of hidden neurons (36 hidden nodes) reduced by 50% (BP), 44.4% (SCG), 

50% (QNA), and 47.2% (LM). For the Gas furnace (table 5.18), the number of hidden neurons 

(36 hidden nodes) reduced by 44.4% (BP), 36.1% (SCG), 38.9% (QNA), and 44.4% (LM). 

Tables (5.17 – 5.18) also show comparative performance between the MLEANN and the 

conventional design of ANNs for the two time series problems with architectures: (4:36:2) and 

(3:3:2). For Mackey-glass series (table 5.17), the results of RMSE on test set were not that 

encouraging (using 3 hidden neurons) when compared with the architecture design of 36 

hidden neurons. The Mackey-glass series requires more hidden neurons to improve the RMSE 

values. LM algorithm gave the best RMSE error on test set for the architecture of 36 hidden 

nodes even though it takes the longest time. For the gas furnace time series (table 5.18), the 

results of RMSE on test set were much better than in Mackey glass results. For BP and LM 

algorithms, the RMSE for architecture with 3 hidden nodes was less than in architecture with 

36 hidden nodes. This is different in SCG and QNA algorithms, since the RMSE for 

architecture with 36 hidden nodes was less than in architecture with 3 hidden nodes. The LM 

algorithm produced the best results of RMSE with 3 hidden neurons while SCG algorithm 

produced the best results with 36 hidden neurons. For the two time series in tables (5.17 – 

5.18), all the learning algorithms take short run time for the architecture with 3 hidden nodes 

in comparison with 36 hidden nodes. For the Mackey glass, the time for evolving and training 

was much longer than in Gas furnace for all algorithms with different architectures.  

 

Summary 

 

In this chapter, three main experiments were performed and compared together using 

NeuroSolutions and NeuroGenetic Optimizer toolboxes, and two famous chaotic time series. 

These experiments used four different learning algorithms in the training process. By applying 

these experiments, we recognized the best solution and we distinguished the effect of different 

learning algorithms on different data sets. In the first experiment, the performance of the 

conventional design of ANNs was tested. We found that the training speed and generalization 

performance of an ANN is totally dependant on the learning algorithms, architectures, transfer 

functions, and initial weights. In the second experiment, the performance of the MLEANN 

approach was explored. In this experiment, the work was concentrated on the evolutionary 

search of optimal network architectures using direct encoding methods which required much 

larger chromosomes especially for ANNs with complex architectures. This ended in a too 

huge space search and thus had longer time in the training process. The third experiment 

investigated the performance of the MLEANN-CA approach that used indirect encoding 

methods for designing network architectures. The results revealed the efficiency of the 

proposed MLEANN–CA in obtaining an efficient design of feed-forward network architecture 

that is smaller, faster and with better generalization performance.  
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CHAPTER SIX 

 

CONCLUSIONS AND FUTURE WORKS 

 
This chapter deals with the conclusions and future works in our research. In section 6.1 we 

start by presenting the main conclusions and in section 6.2 we provide some recommended 

suggestions on future works. 

 

6.1 Main Conclusions  

 

In this thesis, we had proposed and formulated; MLEANN-CA: an adaptive computational 

framework based on evolutionary computation and local search procedures for the automatic 

design of optimal artificial neural networks using direct and indirect encoding methods. In this 

framework, the evolutionary cellular configurations (indirect encoding methods) were used for 

designing small feed-forward neural network architectures. Then all the generated 

architectures were trained and evolved separately using the meta-learning algorithm with the 

direct evolutionary approach, where four different learning algorithms (BP, SCG, QNA, LM) 

were used separately for training the neural networks in parallel mode. We tested and 

explored, experimentally, the performance of the MLEANN-CA, MLEANN, and ANNs using 

NeuroSolutions and NeuroGenetic Optimizer toolboxes, and two famous chaotic time series. 

We also explored and evaluated the performance of different neural network learning 

algorithms for the two chaotic time series when the architecture was changed. We compared 

the performance of the MLEANN-CA approach with the previous MLEANN that used only 

the direct codifications in optimizing network architectures and with the conventional design 

of ANNs. Empirical results illustrated the importance, scalability, and the efficacy of this 

MLEANN-CA approach in obtaining an efficient design of feed-forward network architecture 

that was smaller, faster and with better generalization performance.  

 

The three main experiments that were performed in this thesis, using NeuroSolutions / 

NeuroGenetic Optimizer toolboxes and two chaotic time series, are summarized below: 

 

1. In the first experiment (Artificial neural networks): the performance of the 

conventional design of ANNs was tested for the two time series. We found that the 

training speed and generalization performance (i.e. test set RMSE) of an ANN was 

totally dependant on the learning algorithms, architectures - hidden neurons, transfer 

functions, initial weights, and the type of the data sets used. The main drawback in this 

experiment was that for the two time series with different number of hidden neurons, 

the values of the RMSE were very large in comparison with the results in the other two 

experiments. Also, there was no optimization and reduction in the network 

architectures. 

 

2. In the second experiment (MLEANN): the performance of the MLEANN framework 

was explored. This experiment showed that the EANN design performs more 

efficiently than conventional ANN design for the two time series since the RMSE 

values and the numbers of hidden neurons were clearly reduced. So, using the 
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MLEANN framework improved the learning process and obtained efficient design of 

network architectures with faster convergence. These results were similar and very 

close to what was found by Ajith in his experiment with MLEANN framework 

(Abraham, 2002), (Abraham, 2004). The main drawback in this experiment was in 

using the direct encoding methods for evolving and optimizing network architectures 

which required much larger chromosomes especially for ANNs with complex 

architectures. This ended in a too huge space search and thus had longer time in the 

training and evolving processes (scalability problem), besides the difficulty in 

implementing crossover operation.  

 

3. In the third experiment (MLEANN-CA): the performance of the MLEANN-CA 

framework was investigated. In this experiment we used the evolutionary cellular 

configurations for designing and optimizing network architectures, instead of using the 

direct encoding methods as in Ajith‘s work (Abraham, 2004), and then we applied the 

meta-learning algorithm for training and evolving these new architectures. This work 

was different to what was done by Gutteriez (Gutierrez, Isasi, Molina, Sanchis, & 

Galvan, 2001) since he used the evolutionary cellular configurations for designing 

feed-forward neural networks architectures but he did not apply the idea of meta-

learning algorithm for training the new generated architectures. The experiment results 

revealed the efficiency of the proposed MLEANN-CA in obtaining an efficient design 

of feed-forward network architecture that was smaller, faster and with better 

generalization performance (small values of RMSE).  

 

In general, the following points summarize the main conclusions and notes in this thesis: 

 

1. Selecting the architecture of a network (number of layers, hidden neurons, activation 

functions, and connection weights) and the correct learning algorithm with its correct 

parameters is a tedious task for designing an optimal ANN. Moreover, the optimal 

design of network architecture often becomes a necessity for critical applications and 

hardware implementations.  

 

2. Evolutionary computation techniques are good approaches for automatically generate 

appropriate neural network architectures. However the codification of the network is a 

crucial point in the success of the method. Direct codifications become inefficient from 

a practical point of view. They don‘t allow scalability, so to represent large network 

architectures; very large structures of chromosomes are required which need long time 

during their operations. Moreover, implementation of crossover is often difficult due to 

production of non-functional offspring‘s. To solve these problems an indirect 

constructive encoding method is used although the search of architectures is restricted 

to layers. Indirect encoding method, based on evolutionary cellular configurations, is 

driven to reduce the search space in such a way that similar solutions are eliminated 

and represented by the only one representative. In this case, the codification makes the 

method able to find appropriate architectures, which are smaller, and faster.  

 

3. In the meta-learning algorithm, all the generated architectures of the initial population 

are trained and evolved separately by four different learning algorithms in a parallel 

environment. Therefore, meta-learning improves the performance, efficiency, 
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accuracy, and scalability. Meta-learning is also generic, meaning that it is algorithm 

independent, hence it can benefit from fast and efficient learning algorithms.  

 

4. Different learning algorithms have their staunch proponents, who can always construct 

instances in which their algorithm performs better than most others. This study reveals 

the difficulty to generalize which is the best local search algorithm that would work for 

all the problems. As example, for smaller networks with few numbers of hidden 

neurons, LM algorithm gave the best results, while SCG algorithm produced the best 

results with large number of hidden neurons for specific problems. 

 

6.2 Future Works 

 

Like most researches in artificial neural networks and evolutionary computations, this thesis is 

widely open for improvement. As a future work we recommend the followings: 

 

1. Use the proposed MLEANN-CA approach for optimizing recurrent neural networks, 

morphological neural networks, and other connectionist networks instead of feed-

forward neural networks. 

 

2. Study the influence of the rules in the cellular automata evolution and the capability of 

other rules to generate a complete space of NN architectures.  

 

3. Use other different time series, as waste water flow prediction (Kasabov, 1996), in 

training and evolving the neural networks and investigate its effect and performance. 

 

4. Use other different learning algorithms for training neural networks and investigate 

their effect and performance. 

 

5. Use the MLEANN-CA approach in variety of applications including: 
 

 Financial, Insurance, and Securities: Real estate appraisal, loan advisor, 

credit line use analysis, corporate financial analysis, currency price prediction, 

Policy application evaluation, product optimization, market analysis, automatic 

bond rating, stock trading advisory systems. 

 

 Manufacturing: Manufacturing process control, product design and analysis, 

process and machine diagnosis, real-time particle identification, visual quality 

inspection systems, beer testing, paper quality prediction, computer chip quality 

analysis, analysis of grinding operations, chemical product design analysis, 

machine maintenance analysis, dynamic modeling of chemical process system, 

selecting flexible manufacturing systems (FMS), from a group of candidate-

FMSs, under disparate level-of-satisfaction of decision maker (Bhattacharya, 

Abraham, Grosan, & Vasant, 2006). 
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 Medical: Breast cancer cell analysis, EEG and ECG analysis, prosthesis 

design, optimization of transplant times, hospital expense reduction, hospital 

quality improvement, emergency room test advisement. 

 Electronics and Telecommunications: Code sequence prediction, integrated 

circuit chip layout, chip failure analysis, machine vision, voice synthesis, 

nonlinear modeling, image and data compression, automated information 

services, real-time translation of spoken language. 

 

 Defense: Target tracking, facial recognition, radar and image signal processing 

including data compression, feature extraction and noise suppression, 

signal/image identification. 
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APPENDIX A 

 

TRAINING AND EVOLVING ANNS USING NEUROSOLUTIONS AND 

NEUROGENETIC OPTIMIZER TOOLBOXES 
 

In this appendix we introduce short description about the NeuroSolutions and NeuroGenetic 

Optimizer toolboxes we used in our experiments (chapter 5). In addition, we present the 

important screens and windows that are shown during the experiments simulations using these 

toolboxes.  

 

A.1 NeuroGenetic Optimizer (version 2.1) 

 

NeuroGenetic Optimizer (NGO) automates much of the neural network design and 

development chores we used to do, probably by hand using trial and error.  Some of these 

tedious tasks include testing/training data set selection, determining which input variables to 

use and neural network type selection and architectural design.  The NGO uses Genetic 

Algorithms to evolve neural network structures and select suitable input variables. This 

evolving, learning, adapting Artificial Life capability is a powerful problem solving paradigm. 

We can use these techniques to solve any number of real world challenges.  

 

The NGO, like most other leading neural network tools, is being used in a wide variety of 

applications, including financial predictions, medical diagnosis, market classification, 

modeling manufacturing processes and resulting product quality, classification of biological 

organisms, job cost estimating, fraud detection and many others. The NGO is a general 

purpose, robust, practical tool to naturally genetically engineer neural networks. This system 

emerged from the need to easily and quickly discover the best data elements and neural 

network architectures to build effective neural network applications. Previously, many hours 

of human effort were spent attempting to find the best networks manually. It was clear that an 

effective automation tool was needed to off-load these hours of effort onto computers and 

hence the NGO was born.  

 

During a run, the NGO provides us the ability to view the status of what is happening, view 

the evolving population, see the configurations and statistics of the Top 10 networks found so 

far, observe learning curves and watch the neural outputs match our desired data for the 

network being trained and view and/or print reports on the specifics of the system setup and 

the resulting top networks. The NGO was developed by BioComp Systems, Inc. 

 

A.1.1 NGO Screens: 

 

The following screens show how to make training or evolving (optimizing) for ANNs using 

NGO toolbox. 

  

http://www.bio-comp.com/pages/prod01.htm
http://www.bio-comp.com/
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Figure A.1.1: Neural network training mode: optimizing, or standard training 

 

 

 

 

Figure A.1.2: Application type: time series prediction, classification, diagnosis, etc 
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Figure A.1.3: Time series configuration: optimizing mode 

 

 

 

 

Figure A.1.4: Time series configuration: standard training mode 
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Figure A.1.5: Load data file: time series problem (Mackey-glass or Gas furnace) 

 

 

 

 

 

 

 

Figure A.1.6: Data import: includes network inputs & outputs (4 inputs, 2 outputs) 
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Figure A.1.7: Data preparation: scaling and splitting 

 

 

 

Figure A.1.8: Neural network parameters: hidden nodes, transfer function, initial weight, etc 
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Figure A.1.9: Genetic algorithm parameters: population size, selection, mutation, etc 

 

 

 

 

Figure A.1.10: System configuration: type of error, stopping criteria and maximum 

generation, etc 
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Figure A.1.11: Status of what happing during training and optimizing neural networks 

 

 

 

 

Figure A.1.12: Configurations and status of top 10 networks 
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Figure A.1.13: Neural network output: desired and predicted 

 

 

 

 

 

 

Figure A.1.14: Learning curves: accuracy / error trend 
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A.2 NeuroSolutions (version 5.01) 

 

For many years neural networks have been successfully applied to various data prediction, 

data classification and data mining problems in research, business and industrial 

environments. NeuroSolutions is a highly graphical neural network simulation tool for 

Windows 98/2000/XP. This leading-edge software combines a modular, icon-based network 

design interface with an implementation of advanced learning procedures (such as conjugate 

gradients, Levenberg Marquard, and backpropagation) and genetic optimization giving us the 

power and flexibility needed to design the neural network that produces the best solution for 

our specific problem.  

 

Some other notable features include C++ source code generation, customized components 

through DLLs, neuro-fuzzy architectures, and programmatic control from Visual Basic using 

OLE Automation.  NeuroSolutions includes Genetic Optimization which allows us to optimize 

virtually any parameter in a neural network to produce the lowest error. For example, the 

number of hidden units, the learning rates, and the input selection can all be optimized to 

improve the network performance. Individual weights used in the neural network can even be 

updated through Genetic Optimization as an alternative to traditional training methods.  

 

NeuroSolutions includes number of important wizards and the NeuralBuilder is one of them, 

which I used in my experiments simulations. The NeuralBuilder is a sophisticated neural 

network builder that sends commands to NeuroSolutions to automatically construct a fully-

functional neural network. The object-oriented simulation environment of NeuroSolutions 

gives the user an unprecedented flexibility to construct neural network simulations. However, 

flexibility and power require a substantial amount of knowledge about neural networks. The 

NeuralBuilder aids the user by encapsulating the network building rules and reducing the user 

decisions down to an easy, step-by-step procedure.  

 

Much of the construction effort necessary to build neural networks with NeuroSolutions 

becomes transparent to the user. There is a wide range of conventional neural network 

architectures (models) to choose from. Some of these models / architectures include: 

Multilayer Perceptron, Generalized Feedforward, Modular, Probabilistic Neural Network 

(PNN), Self-Organizing Map (SOM), etc. When an architecture is selected, the user is lead 

through a series of panels containing the configuration parameters for the model such as: the 

number of hidden layers, the number of processing elements, the learning algorithm, and the 

transfer function. We can also use the genetic algorithm to optimize any parameter. After 

completing all the panels, the utility makes calls to NeuroSolutions to automatically construct 

the network according to the specifications. NeuroSolutions is developed by NeuroDimension 

Incorporated. 

 

A.2.1 NeuroSolutions Screens: 

 

The following screens show how to make training or evolving (optimizing) for ANNs using 

NeuroSolutions toolbox. 

 

http://www.neurosolutions.com/products/ns/
http://www.nd.com/
http://www.nd.com/
http://www.nd.com/
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Figure A.2.1: Selecting the network architecture we want to build 

 

 

 
 

Figure A.2.2: Importing data: training data and the desired response 
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Figure A.2.3: Splitting data: specify data for testing and validation 

 

 

 
 

Figure A.2.4: Specifying the number of hidden layers in the network 
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Figure A.2.5: Specifying the number of nodes in the hidden layer, transfer function, learning 

algorithm, and selecting GA for optimization 

 

 

 
 

Figure A.2.6: Specifying the transfer function and the learning rule in the output layer 
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Figure A.2.7: Specifying the maximum epochs, termination, and MSE 

 

 

 
 

Figure A.2.8: Probe configuration panel: visualizing the input, output, desired, 

and error 



 105 

 
 

Figure A.2.9: Breadboard including generalized feed-forward network architecture 

and its screens while evolving and optimizing process 

 

 

 
 

Figure A.2.10: Breadboard including generalized feed-forward network architecture 

and its screens while standard training process 
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Figure A.2.11: Genetic Algorithm parameter: population size 

 

 
 

Figure A.2.12: Genetic Algorithm operators: selection, crossover, mutation 

 

 
 

Figure A.2.13: Genetic Algorithm parameters: termination type and maximum generation 
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