
 I

Deanship of Graduate Studies

Al-Quds University

Meta-Learning Evolutionary Artificial Neural Networks:

Using Cellular Configurations for Designing Network

Architecture

Asma Hilmi Yousef Abu Salah

M.Sc. Thesis

Jerusalem, Palestine

1427 / 2006

 II

Meta-Learning Evolutionary Artificial Neural Networks:

Using Cellular Configurations for Designing Network

Architecture

Prepared by:
Asma Hilmi Yousef Abu Salah

B.Sc.: Computer Engineering

Palestine Polytechnic University
Hebron, Palestine

Supervisor: Dr. Yahya Al-Salqan

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in

Computer Science

Computer Science Department

College of Science and Technology

 Al-Quds University

 III

1427 / 2006
Al-Quds University

Deanship of Graduate Studies
Master of Computer Science / Computer Science Department

Thesis Approval

Meta-Learning Evolutionary Artificial Neural Networks: Using Cellular

Configurations for Designing Network Architecture

Prepared by: Asma Hilmi Yousef Abu Salah

Registration No: 20111391

Supervisor: Dr. Yahya Al-Salqan

Master thesis submitted and accepted, Date: ……………………………………

The names and signatures of the examining committee members are as follows:

1-Head of Committee:………………………….......Signature: ………………..

2-Internal Examiner:………………………………..Signature: ….……………..

3-External Examiner:...…………….......Signature: ….……………..

4-Committee Member:………….………..…………Signature: ……...………....

Jerusalem, Palestine

1427 / 2006

 IV

Dedication

To my parents, my husband, my brothers, and my sisters, for their

support, care, and love.

Asma Hilmi Yousef Abu Salah

 V

Declaration:

I certify that this thesis submitted for the degree of Master is the result of my own research,

except where otherwise acknowledged, and that this thesis (or any part of the same) has not

been submitted for a higher degree to any other university or institution.

Signed,

Asma Hilmi Yousef Abu Salah

15 July 2006

 VI

Acknowledgment:

I would like to thank my thesis advisor Dr. Yahya Al-Salqan for his valuable guidance and

support.

I am very thankful to the Department of Computer Science of Al-Quds University, and to the

master program supervisor and committee for their support and encouragement.

I am very grateful to the program chair of the international conference on computational

intelligence for modelling, control and automation (CIMCA 2005), to the program chair of the

IASTED international conference on artificial intelligence and applications (AIA 2006), and to

the reviewers committee for their valuable comments and suggestions on the paper I had

published based on my thesis.

 VII

Abstract

In this thesis, a meta-learning evolutionary artificial neural network by means of cellular

automata (MLEANN-CA) is proposed. It is an adaptive computational framework based on

evolutionary learning and local search procedures for automatic design of optimal artificial

neural networks using direct and indirect encoding methods. In this proposed framework, the

evolutionary cellular configurations are used to, first, design small feed-forward network

architectures, and then all the generated architectures are trained and evolved separately using

the meta-learning algorithm with the direct evolutionary approach, where four different

learning algorithms are used in parallel mode. The neural network architecture, activation

function, connection weights, and the learning algorithm with its parameters are adapted

according to the problem. The performance of the MLEANN-CA framework is tested and

explored, experimentally, using NeuroSolutions and NeuroGenetic Optimizer toolboxes, and

two famous chaotic time series. Moreover, the performance of different neural network

learning algorithms (backpropagation algorithm, conjugate gradient algorithm, quasi-Newton

algorithm and Levenberg–Marquardt algorithm) is explored and evaluated for the two chaotic

time series when the architecture was changed. The performance of the MLEANN-CA

framework is compared with the previous MLEANN, which used the direct encoding methods

for designing architectures, and with the conventional design of ANNs. The results showed

how effective and scalable is the proposed MLEANN-CA framework to obtain an efficient

design of feed-forward neural network that is smaller, faster and with better generalization

performance.

 VIII

 MLEANN-CA

NeuroSolutions NeuroGenetic Optimizer

 IX

Table of Contents

CHAPTER ONE .. 1

INTRODUCTION ... 1

1.1 JUSTIFICATION .. 2

1.2 THESIS OBJECTIVE .. 3

1.3 CONTRIBUTION ... 3

1.4 THESIS OVERVIEW .. 4

CHAPTER TWO ... 5

BACKGROUND KNOWLEDGE .. 5

2.1 ARTIFICIAL NEURAL NETWORKS .. 5

2.1.1 Artificial Neural Networks Components: ... 5

2.1.1.1 Artificial Neurons: ... 5

2.1.1.2 Architectural Elements of an Artificial Neural Network: 6

2.1.2 Learning Process for Artificial Neural Networks: ... 7

2.1.3 Artificial Neural Network Learning Algorithms: ... 8

2.1.3.1 Training Multilayer Perceptrons: .. 8

2.1.3.2 Back-Propagation: ... 9

2.1.3.3 Faster Training Algorithms: .. 10

2.2 EVOLUTIONARY ALGORITHMS .. 14

2.2.1 Genetic Algorithms (GA): ... 155

2.2.1.1 Encoding of a Chromosome: ... 16

2.2.1.2 Reproduction Operators: ... 16

2.2.1.3 Selection Methods: .. 17

2.2.1.4 Fitness: ... 17

2.3 CELLULAR AUTOMATA ... 17

2.3.1 Principles of Cellular Automata: ... 188

2.3.2 Two-Dimensional Cellular Automata: ... 188

2.4 META-LEARNING .. 19

2.4.1 Meta-Learning Techniques: ... 2020

2.4.1.1 Combining Approach for Meta-Learning: ... 20

2.4.1.2 Selection Approach for Meta-Learning: .. 22

2.4.2 Benefits of Meta-Learning: ... 2222

CHAPTER THREE ... 24

LITERATURE REVIEW AND PREVIOUS WORK .. 24

3.1 PURE EVOLUTIONARY ALGORITHMS FOR TRAINING AND EVOLVING ANNS 24

3.2 HYBRID EVOLUTIONARY-GRADIENT SEARCH ALGORITHMS FOR EVOLVING ANNS 26

CHAPTER FOUR ... 29

META-LEARNING EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS: BY

MEANS OF CELLULAR AUTOMATA .. 29

4.1 EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS .. 29

 X

4.2 EVOLUTIONARY SEARCH FOR WEIGHTS, ARCHITECTURES, AND LEARNING RULES.......... 30

4.2.1 Evolutionary Search of Connection Weights: .. 30

4.2.2 Evolutionary Search of Architectures: ... 311

4.2.3 Evolutionary Search of Learning Rules: .. 333

4.3 META-LEARNING EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS (MLEANN) 34

4.4 META-LEARNING EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS BY MEANS OF

CELLULAR AUTOMATA ... 37

4.4.1 The Proposed Approach -- MLEANN-CA: ... 388

4.4.2 Genetic Algorithm Module: .. 40

4.4.3 Cellular Automata Module: .. 40

4.4.4 Neural Network Module: .. 422

CHAPTER FIVE ... 45

EXPERIMENTS AND RESULTS ... 45

5.1 TEST COLLECTIONS - DATA SETS ... 45

5.2 TEST ENVIRONMENT ... 46

5.3 THE EXPERIMENTS CONDUCTED ... 47

5.3.1 Artificial Neural Networks: Experimentation and Simulation Results: 477

5.3.1.1 Mackey-glass Time Series with Different Network Architectures: 47

5.3.1.2 Gas Furnace Time Series with Different Network Architectures: 54

5.3.1.3 ANN- Results Discussion: ... 61

5.3.2 MLEANN: Experimentation and Simulation Results: .. 622

5.3.2.1 MLEANN: Simulation Results: .. 62

5.3.2.2 MLEANN- Results Discussion: .. 76

5.3.3 MLEANN-CA: Experimentation and Simulation Results: 777

5.3.3.1 MLEANN-CA: Simulation Results: .. 77

5.3.3.2 MLEANN-CA: Results Discussion: .. 81

CHAPTER SIX .. 82

CONCLUSIONS AND FUTURE WORKS .. 82

6.1 MAIN CONCLUSIONS ... 82

6.2 FUTURE WORKS .. 84

REFERENCES .. 86

APPENDIX A ... 92

TRAINING AND EVOLVING ANNS USING NEUROSOLUTIONS AND

NEUROGENETIC OPTIMIZER TOOLBOXES .. 92

A.1 NEUROGENETIC OPTIMIZER (VERSION 2.1) .. 92

A.2 NEUROSOLUTIONS (VERSION 5.01) .. 100

 XI

List of Figures

Figure 1.1: MAMMALIAN NEURON……………………………………………………… 1

Figure 2.1: THE ARTIFICIAL NEURON MODEL. .. 5 5

Figure 2.2: MOST COMMONLY USED TRANSFER FUNCTIONS. .. 6 6

Figure 2.3: (A) FEED FORWARD CONNECTIONS (B) FEEDBACK CONNECTIONS. .. 7 7

Figure 2.4: QUADRATIC ERROR SURFACE WITH LOCAL AND GLOBAL MINIMA. ... 9 9

Figure 2.5: CYCLE OF EVOLUTIONARY ALGORITHMS. .. 15 15

Figure 2.6: EXAMPLE OF CHROMOSOMES WITH BINARY ENCODING. ... 16 16

Figure 2.7: (A)EXAMPLE OF CROSSOVER OPERATOR (B)EXAMPLE OF MUTATION

OPERATOR. ... 17

17

Figure 2.8: VON NEUMANN AND MOORE NEIGHBORHOOD. .. 19 19

Figure 2.9: EXAMPLES OF TRANSITION RULES IN CONWAY'S GAME OF LIFE 19 19

Figure 2.10: META-LEARNING PROCESS. .. 20 20

Figure 2.11: THE STAGES IN A SIMPLIFIED META-CLASSIFIER SCENARIO. ... 21 21

Figure 4.1: A GENERAL FRAMEWORK FOR EANN‘S. .. 30 30

Figure 4.2: THE FEED-FORWARD NEURAL NETWORK, ITS WEIGHT MATRIX, AND ITS

CONNECTION WEIGHT CHROMOSOME USING BINARY REPRESENTATION. 31

31

Figure 4.3: ARCHITECTURE CHROMOSOME USING BINARY CODING (DIRECT ENCODING). 32 32

Figure 4.4: FINE TUNING OF WEIGHTS USING META-LEARNING. ... 35 35

Figure 4.5: INTERACTION OF VARIOUS EVOLUTIONARY SEARCH MECHANISM. ... 36 36

Figure 4.6: CHROMOSOME REPRESENTATION OF THE MLEANN FRAMEWORK. ... 37 37

Figure 4.7: SYSTEM‘S ARCHITECTURE AND MODULES RELATIONSHIP. ... 39 39

Figure 4.8: GENETIC ALGORITHM MODULE. ... 40 40

Figure 4.9: (A), (B): EXAMPLES OF GROWING RULES. ... 41 41

Figure 4.10: EXAMPLE OF DECREASING RULES... 41 41

Figure 4.11: CELLULAR AUTOMATA MODULE. ... 42 42

Figure 4.12: NEURAL NETWORK MODULE. ... 43 43

Figure 5.1: ARCHITECTURE VARIATION: MACKEY-GLASS TIME SERIES TRAINING

PERFORMANCE FOR DIFFERENT TRAINING ALGORITHMS (4 I/P- 1 O/P). 51

51

Figure 5.2: ARCHITECTURE VARIATION: MACKEY-GLASS TIME SERIES GENERALIZATION

PERFORMANCE FOR DIFFERENT LEARNING ALGORITHMS (4 I/P- 1 O/P). 52

52

Figure 5.3: ARCHITECTURE VARIATION: MACKEY-GLASS TIME SERIES TRAINING

PERFORMANCE FOR DIFFERENT TRAINING ALGORITHMS (4 I/P- 2 O/P). 52

52

Figure 5.4: ARCHITECTURE VARIATION: MACKEY-GLASS TIME SERIES GENERALIZATION

PERFORMANCE FOR DIFFERENT LEARNING ALGORITHMS (4 I/P- 2 O/P) 53

53

Figure 5.5: ARCHITECTURE VARIATION: MACKEY-GLASS TIME SERIES TRAINING

PERFORMANCE FOR DIFFERENT TRAINING ALGORITHMS (3 I/P- 2 O/P) 53

53

Figure 5.6: ARCHITECTURE VARIATION: MACKEY-GLASS TIME SERIES GENERALIZATION

PERFORMANCE FOR DIFFERENT LEARNING ALGORITHMS (3 I/P- 2 O/P). 54

54

Figure 5.7: ARCHITECTURE VARIATION: GAS FURNACE TIME SERIES TRAINING

PERFORMANCE FOR DIFFERENT TRAINING ALGORITHMS (4 I/P- 1 O/P). 58

58

Figure 5.8: ARCHITECTURE VARIATION: GAS FURNACE TIME SERIES GENERALIZATION

PERFORMANCE FOR DIFFERENT LEARNING ALGORITHMS (4 I/P- 1 O/P). 59

59

Figure 5.9: ARCHITECTURE VARIATION: GAS FURNACE TIME SERIES TRAINING

PERFORMANCE FOR DIFFERENT TRAINING ALGORITHMS (4 I/P- 2 O/P) 59

59

 XII

Figure 5.10: ARCHITECTURE VARIATION: GAS FURNACE TIME SERIES GENERALIZATION

PERFORMANCE FOR DIFFERENT LEARNING ALGORITHMS (4 I/P- 2 O/P) 60

60

Figure 5.11: ARCHITECTURE VARIATION: GAS FURNACE TIME SERIES TRAINING

PERFORMANCE FOR DIFFERENT TRAINING ALGORITHMS (3 I/P- 2 O/P). 60

60

Figure 5.12: ARCHITECTURE VARIATION: GAS FURNACE TIME SERIES GENERALIZATION

PERFORMANCE FOR DIFFERENT LEARNING ALGORITHMS (3 I/P- 2 O/P).. 61

61

Figure 5.13: TEST SET RMSE FOR MACKEY GLASS USING META-LEARNING TECHNIQUE

(FOR ARCHITECTURES WITH 4 INPUTS – 1 OUTPUT). ... 67

67

Figure 5.14: TEST SET RMSE FOR MACKEY GLASS USING META-LEARNING TECHNIQUE

(FOR ARCHITECTURES WITH 4 INPUTS – 2 OUTPUTS)... 67

67

Figure 5.15: TEST SET RMSE FOR MACKEY GLASS USING META-LEARNING TECHNIQUE

(FOR ARCHITECTURES WITH 3 INPUTS – 2 OUTPUTS)... 68

68

Figure 5.16: TEST SET RMSE FOR GAS FURNACE USING META-LEARNING TECHNIQUE

(FOR ARCHITECTURES WITH 4 INPUTS – 1 OUTPUT). ... 68

68

Figure 5.17: TEST SET RMSE FOR GAS FURNACE USING META-LEARNING TECHNIQUE

(FOR ARCHITECTURES WITH 4 INPUTS –2 OUTPUTS). .. 69

69

Figure 5.18: TEST SET RMSE FOR GAS FURNACE USING META-LEARNING TECHNIQUE

(FOR ARCHITECTURES WITH 3 INPUTS –2 OUTPUTS). .. 69

69

Figure 5.19: RUN TIME OF THE MLEANN FOR MACKEY GLASS WITH DIFFERENT

ARCHITECTURES (4 INPUTS – 1 OUTPUT). ... 71

71

Figure 5.20: RUN TIME OF THE MLEANN FOR MACKEY GLASS WITH DIFFERENT

ARCHITECTURES (4 INPUTS –2 OUTPUTS). .. 72

72

Figure 5.21: RUN TIME OF THE MLEANN FOR MACKEY GLASS WITH DIFFERENT

ARCHITECTURES (3 INPUTS –2 OUTPUTS). .. 72

72

Figure 5.22: RUN TIME OF THE MLEANN FOR GAS FURNACE WITH DIFFERENT

ARCHITECTURES (4 INPUTS – 1 OUTPUT). ... 73

73

Figure 5.23: RUN TIME OF THE MLEANN FOR GAS FURNACE WITH DIFFERENT

ARCHITECTURES (4 INPUTS –2 OUTPUTS). .. 73

73

Figure 5.24: RUN TIME OF THE MLEANN FOR GAS FURNACE WITH DIFFERENT

ARCHITECTURES (3 INPUTS –2 OUTPUTS). .. 74

74

Figure 5.25: TEST RESULTS USING 500 EPOCHS BP META-LEARNING FOR MACKEY-GLASS

SERIES. (36 HIDDEN NODES). .. 74

74

Figure 5.26: TEST RESULTS USING 500 EPOCHS BP META-LEARNING FOR GAS FURNACE

SERIES (18 HIDDEN NODES). ... 75

75

Figure 5.27: MACKEY-GLASS TIME SERIES: AVERAGE TEST SET RMSE VALUES DURING

THE 40 GENERATIONS AND META-LEARNING. (4 INPUTS-36 HIDDEN NODES-

1OUTPUT). .. 75

75

Figure 5.28: GAS FURNACE TIME SERIES: AVERAGE TEST SET RMSE VALUES DURING THE

40 GENERATIONS AND META-LEARNING. (4 INPUTS- 1 OUTPUT - HIDDEN

NODES WITH 18 (BP), 16 (SCG), 18 (QNA), 14 (LM)). ... 76

76

Figure 5.29: TEST SET RMSE FOR MACKEY GLASS USING META-LEARNING TECHNIQUE

WITH ARCHITECTURES: ORIGINAL NETWORK (4:36:2), OPTIMIZED NETWORK

BY CELLULAR (3:3:2). .. 79

79

Figure 5.30: TEST SET RMSE FOR GAS FURNACE USING META-LEARNING TECHNIQUE

WITH ARCHITECTURES: ORIGINAL NETWORK (4:36:2), OPTIMIZED NETWORK

BY CELLULAR (3:3:2). .. 79

79

 XIII

Figure 5.31: RUN TIME OF THE MLEANN FOR MACKEY GLASS WITH ARCHITECTURES:

ORIGINAL NETWORK (4:36:2), OPTIMIZED NETWORK BY CELLULAR (3:3:2). 80

80

Figure 5.32: RUN TIME OF THE MLEANN FOR GAS FURNACE WITH ARCHITECTURES:

ORIGINAL NETWORK (4:36:2), OPTIMIZED NETWORK BY CELLULAR (3:3:2). 80

80

Figure A.1.1: NEURAL NETWORK TRAINING MODE: OPTIMIZING, OR STANDARD TRAINING. 93 93

Figure A.1.2: APPLICATION TYPE: TIME SERIES PREDICTION, CLASSIFICATION, DIAGNOSIS. 93 93

Figure A.1.3: TIME SERIES CONFIGURATION: OPTIMIZING MODE. ... 94 94

Figure A.1.4: TIME SERIES CONFIGURATION: STANDARD TRAINING MODE. .. 94 94

Figure A.1.5: LOAD DATA FILE: TIME SERIES PROBLEM . .. 95 95

Figure A.1.6: DATA IMPORT: INCLUDES NETWORK INPUTS & OUTPUTS . .. 95 95

Figure A.1.7: DATA PREPARATION: SCALING AND SPLITTING. ... 96 96

Figure A.1.8: NEURAL NETWORK PARAMETERS: HIDDEN NODES, TRANSFER FUNCTION,

AND CONNECTION WEIGH ... 96

96

Figure A.1.9: GENETIC PARAMETERS: POPULATION SIZE, SELECTION, MUTATION, ETC. 97 97

Figure A.1.10: SYSTEM CONFIGURATION: TYPE OF ERROR, STOPPING CRITERIA ,MAXIMUM

GENERATION, ETC. ... 97

97

Figure A.1.11: STATUS OF WHAT HAPPING DURING TRAINING/OPTIMIZING NNS. .. 98 98

Figure A.1.12: CONFIGURATIONS AND STATUS OF TOP 10 NETWORKS. .. 98 98

Figure A.1.13: NEURAL NETWORK OUTPUT: DESIRED AND PREDICTED. ... 99 99

Figure A.1.14: LEARNING CURVES: ACCURACY / ERROR TREND. ... 99 99

FIGURE A.2.1: SELECTING THE NETWORK ARCHITECTURE WE WANT TO BUILD. .. 101 101

FIGURE A.2.2: IMPORTING DATA: TRAINING DATA AND THE DESIRED RESPONSE. .. 101 101

FIGURE A.2.3: SPLITTING DATA: SPECIFY DATA FOR TESTING AND VALIDATION. .. 102 102

FIGURE A.2.4: SPECIFYING THE NUMBER OF HIDDEN LAYERS IN THE NETWORK. ... 102 102

FIGURE A.2.5: SPECIFYING THE NUMBER OF NODES IN THE HIDDEN LAYER, TRANSFER

FUNCTION, LEARNING ALGORITHM, AND SELECTING GA FOR OPTIMIZATION. 103

103

FIGURE A.2.6: SPECIFYING THE TRANSFER FUNCTION AND THE LEARNING RULE IN THE

OUTPUT LAYER. .. 103

103

FIGURE A.2.7: SPECIFYING THE MAXIMUM EPOCHS, TERMINATION, AND MSE. .. 104 104

FIGURE A.2.8: PROBE CONFIGURATION PANEL: VISUALIZING THE INPUT, OUTPUT,

DESIRED,AND ERROR. ... 104

104

FIGURE A.2.9: BREADBOARD INCLUDING GENERALIZED FEED-FORWARD NETWORK

ARCHITECTURE AND ITS SCREENS WHILE EVOLVING AND OPTIMIZING

PROCESS. .. 105

105

FIGURE A.2.10: BREADBOARD INCLUDING GENERALIZED FEED-FORWARD NETWORK

ARCHITECTURE AND ITS SCREENS WHILE STANDARD TRAINING PROCESS. 105

105

FIGURE A.2.11: GENETIC ALGORITHM PARAMETER: POPULATION SIZE. .. 106 106

FIGURE A.2.12: GENETIC ALGORITHM OPERATORS: SELECTION, CROSSOVER, MUTATION. 106 106

FIGURE A.2.13: GENETIC ALGORITHM PARAMETERS: TERMINATION TYPE AND MAXIMUM

GENERATION. ... 106

106

 XIV

List of Tables

TABLE 5.1: PARAMETERS USED FOR EANNS. ... 466

TABLE 5.2: PARAMETERS FOR THE LEARNING ALGORITHMS. ... 46

TABLE 5.3:
TRAINING AND TEST PERFORMANCE FOR MACKEY-GLASS TIME SERIES FOR

DIFFERENT ARCHITECTURES WITH FOUR INPUTS AND ONE OUTPUT. ..

48

TABLE 5.4:
TRAINING AND TEST PERFORMANCE FOR MACKEY-GLASS TIME SERIES FOR

DIFFERENT ARCHITECTURES WITH FOUR INPUTS AND TWO OUTPUTS. ..

49

TABLE 5.5:
TRAINING AND TEST PERFORMANCE FOR MACKEY-GLASS TIME SERIES FOR

DIFFERENT ARCHITECTURES WITH THREE INPUTS AND TWO OUTPUTS. ..

50

TABLE 5.6:
TRAINING AND TEST PERFORMANCE FOR GAS FURNACE TIME SERIES FOR

DIFFERENT ARCHITECTURES WITH FOUR INPUTS AND ONE OUTPUT. ..

55

TABLE 5.7:
TRAINING AND TEST PERFORMANCE FOR GAS FURNACE TIME SERIES FOR

DIFFERENT ARCHITECTURES WITH FOUR INPUTS AND TWO OUTPUTS. ..56

56

TABLE 5.8:
TRAINING AND TEST PERFORMANCE FOR GAS FURNACE TIME SERIES FOR

DIFFERENT ARCHITECTURES WITH THREE INPUTS AND TWO OUTPUTS. ..57

57

TABLE 5.9:

PERFORMANCE COMPARISON BETWEEN MLEANN AND ANN FOR

MACKEY-GLASS TIME SERIES WITH DIFFERENT ARCHITECTURES (FOUR

INPUTS / ONE OUTPUT). ...63

63

TABLE 5.10:

PERFORMANCE COMPARISON BETWEEN MLEANN AND ANN FOR

MACKEY-GLASS TIME SERIES WITH DIFFERENT ARCHITECTURES (FOUR

INPUTS / TWO OUTPUTS). ...63

63

TABLE 5.11:

PERFORMANCE COMPARISON BETWEEN MLEANN AND ANN FOR

MACKEY-GLASS TIME SERIES WITH DIFFERENT ARCHITECTURES (THREE

INPUTS / TWO OUTPUTS). ...64

64

TABLE 5.12:

PERFORMANCE COMPARISON BETWEEN MLEANN AND ANN FOR GAS

FURNACE TIME SERIES WITH DIFFERENT ARCHITECTURES (FOUR INPUTS /

ONE OUTPUT). ...65

65

TABLE 5.13:

PERFORMANCE COMPARISON BETWEEN MLEANN AND ANN FOR GAS

FURNACE TIME SERIES WITH DIFFERENT ARCHITECTURES (FOUR INPUTS /

TWO OUTPUTS). ...65

65

TABLE 5.14:

PERFORMANCE COMPARISON BETWEEN MLEANN AND ANN FOR GAS

FURNACE TIME SERIES WITH DIFFERENT ARCHITECTURES (THREE INPUTS /

TWO OUTPUTS). ...66

66

TABLE 5.15:
RUN TIME COMPARISON OF MLEANN FOR MACKEY GLASS TIME SERIES

WITH DIFFERENT ARCHITECTURES. ..70

70

TABLE 5.16:
RUN TIME COMPARISON OF MLEANN FOR GAS FURNACE TIME SERIES

WITH DIFFERENT ARCHITECTURES. ..70

70

TABLE 5.17:

PERFORMANCE COMPARISON BETWEEN MLEANN AND ANN FOR

MACKEY-GLASS TIME SERIES WITH: ORIGINAL ARCHITECTURE, AND THE

OPTIMIZED ONE USING CELLULAR CONFIGURATIONS. ..78

78

TABLE 5.18:

PERFORMANCE COMPARISON BETWEEN MLEANN AND ANN FOR GAS

FURNACE TIME SERIES WITH: ORIGINAL ARCHITECTURE, AND THE

OPTIMIZED ONE USING CELLULAR CONFIGURATIONS. ..78

78

 1

CHAPTER ONE

INTRODUCTION

The human brain provides proof of the existence of massive neural networks that can succeed

at those cognitive, perceptual, and control tasks in which humans are successful. The brain is

capable of computationally demanding perceptual acts and control activities. The advantage of

the brain is its effective use of massive parallelism, the highly parallel computing structure,

and the imprecise information-processing capability. The human brain is a collection of more

than 10 billion interconnected neurons. Each neuron, as shown is figure (1.1) (Jain, Mao, &

Mohiuddin, 1996), is a cell that uses biochemical reactions to receive, process, and transmit

information. Treelike networks of nerve fibers called dendrites are connected to the cell body

or soma, where the cell nucleus is located. Extending from the cell body is a single long fiber

called the axon, which eventually branches into strands and substrands, and is connected to

other neurons through synaptic terminals or synapses. The transmission of signals from one

neuron to another at synapses is a complex chemical process in which specific transmitter

substances are released from the sending end of the junction. The effect is to raise or lower the

electrical potential inside the body of the receiving cell. If the potential reaches a threshold, a

pulse is sent down the axon and the cell is ‗fired‘.

Figure 1.1: Mammalian neuron

Artificial neural networks (ANN) have been developed as generalizations of mathematical

models of biological nervous systems. The basic processing elements of neural networks are

called artificial neurons, or simply neurons or nodes. In a simplified mathematical model of

the neuron, the effects of the synapses are represented by connection weights that modulate

the effect of the associated input signals, and the nonlinear characteristic exhibited by neurons

is represented by a transfer function. The neuron impulse is then computed as the weighted

sum of the input signals, transformed by the transfer function. The learning capability of an

artificial neuron is achieved by adjusting the weights in accordance to the chosen learning

algorithm (Jain, Mao, & Mohiuddin, 1996), (Lippmann,1987).

Such artificial neural networks are currently one of the most popular techniques that are

successfully used in many applications such as: pattern classification, pattern recognition, task

 2

of optimization, medical diagnosis, financial modeling, etc. Many of the conventional ANNs

being designed are statistically quite accurate but they still leave a bad taste with users who

expect computers to solve their problems accurately. The important drawback is that the

designer has to specify manually the number of neurons, their distribution over several layers

and interconnection between them. As the complexity of the problem domain increases,

manual design becomes more difficult and unmanageable. Several methods have been

proposed to automatically construct ANNs for reduction in network complexity and the

evolutionary algorithms (EAs) are one of these methods. The interest in evolutionary

algorithms for designing ANN architecture has been growing in recent years as they can

evolve towards the optimal architecture without outside interference, thus eliminating the

tedious trial and error work of manually finding an optimal network (Korning, 1995), (Yoon,

Holmes, & Langholz, 1994), (Yao, 1999), (Caudell & Dolan, 1989), (Abraham, 2004),

(Abraham & Nath, 2001), (Binos, 2003), (Braun & Weisbrod, 1993), (Belew, McInerney, &

Schraudolph, 1991), (Yao & Liu, 1998), (Andersen & Tsoi, 1993). The advantage of the

automatic design over the manual design becomes clearer as the complexity of ANN

increases.

Despite many advantages in using evolutionary algorithms for designing artificial neural

network architectures, some aspects require improvements. A notable problem is that the

evolutionary algorithms are inefficient in fine tuning local search, although they are good at

global searches (Yao, 1999), (Abraham, 2002), (Yao, 1993). This is especially true for genetic

algorithms (GA‘s). The efficiency of evolutionary algorithms can be improved significantly by

using a hybrid learning approach that incorporates the local search procedure into the

evolution. Evolutionary algorithms are used to, first, locate a good region in the space and then

a local search procedure is used to find a near optimal solution in this region. Several hybrid

learning approaches had been successfully used for evolving neural network topology and/or

weights (Abraham & Nath, 2000), (Abraham, 2004), (Abraham, 2002), (Yao & Liu, 1997),

(Belew, McInerney, & Schraudolph, 1991), (Wong, Chung, & Wong, 1998), (Magoulas,

Plagianakos, & Vrahatis, 2001), (Hendtlass & Podlena, 1995). One of these hybrid learning

approaches is called meta-learning evolutionary artificial neural networks (MLEANN)

(Abraham, 2004), (Abraham, 2002). It can be considered as an automatic computational

framework that used a direct encoding method for the adaptive optimization of ANNs. The

main aim of using the MLEANN framework is to improve the learning process and to obtain

an efficient design of neural networks with faster convergence.

1.1 Justification

Until now, the MLEANN framework (Abraham, 2004) uses only the direct encoding methods

for optimizing the neural network architectures. These direct encoding methods base on the

codification of the complete network into the chromosome. They are relatively simple and

straightforward to implement but requires much larger chromosomes especially for ANNs

with complex architectures (Caudell & Dolan, 1989), (Yao, 1993), (Branke, 1995), (Koza &

Rice, 1991), (Yao & Liu, 1998), (Braun & Weisbrod, 1993). This could end in a too huge

space search that could make the method impossible in practice. On the other hand,

implementation of crossover operator for the chromosome is often difficult due to production

of non-functional offsprings. An alternative more interesting for optimizing the ANN

architecture are the indirect encoding methods such as cellular automata (Gutierrez, Isasi,

 3

Molina, Sanchis, & Galvan, 2001), (Harp, Samad, & Guha, 1989), (Kitano, 1990), (Molina,

Galván, Isasi, & Sanchis, 2000-A), (Gruau & Whitley, 1993), (Gruau, Whitley, & Pyeatt,

1995), (Harp, Samad, & Guha, 1990), (Koza & Rice, 1991), (Molina, Galván, Isasi, &

Sanchis, 2000-B), (Chval, 2002), (Hussain & Browse, 1998), (Jacob & Rehder, 1993), (Luke

& Spector, 1996). These methods concentrate on codifying a compact representation of the

networks reducing the length of the genotype and avoiding the scalability problem. In this

thesis, an automatic computational framework: meta-learning evolutionary artificial neural

network by means of cellular automata (MLEANN-CA) is proposed. This proposed

framework combines the local search methods with the evolutionary learning in order to

obtain an efficient design of neural networks. The MLEANN-CA framework was explored

and simulated using NeuroSolutions and NeuroGenetic Optimizer toolboxes, and two famous

chaotic time series.

1.2 Thesis Objective

The primary objective of this thesis is to propose and design an efficient and effective

framework: meta-learning evolutionary artificial neural network by means of cellular automata

(MLEANN-CA). It is an adaptive computational framework based on direct and indirect

evolutionary computation and local search methods for automatic design of optimal ANN.

Using this framework significantly improves the learning process, increase the scalability,

enhance the predictive accuracy of the results, and obtain a small and efficient design of neural

networks with faster convergence and better generalization performance.

1.3 Contribution

In this thesis, we propose a hybrid meta-heuristic learning approach (MLEANN-CA)

combining evolutionary learning and local search methods using direct and indirect

evolutionary approaches (Abu Salah & Al-Salqan, 2006-A), (Abu Salah & Al-Salqan, 2006-

B). This thesis work moves forward the research on proposing and designing the MLEANN-

CA framework in the following way:

 We use the evolutionary cellular configurations for designing small feed-forward

neural network architectures.

 We apply the meta-learning algorithm with the direct evolutionary approach for

training and evolving, separately, the new generated architectures of neural networks

(after optimized by cellular configurations) using different learning algorithms in

parallel mode.

 We test, investigate, and explore the performance of the MLEANN-CA framework

using Neurosolution and NeuroGenetic Optimizer toolboxes and two famous chaotic

time series. We also explore and evaluate the performance of different neural network

learning algorithms for the two chaotic time series when the architecture was changed.

 We compare the tested results of the MLEANN-CA with the previous MLEANN

framework that used the direct encoding methods, and with the conventional design of

 4

ANNs. The empirical results should indicate that the proposed MLEANN-CA

framework is important and efficient in designing optimal ANNs that are smaller,

faster, and with better generalization performance.

1.4 Thesis Overview

The rest of this thesis is organized as follows:

In chapter two, Background Knowledge, an overview about the artificial neural networks and

the learning algorithms is provided. Moreover, the evolutionary and genetic algorithms are

presented and discussed. The definition of the cellular automata and the meta-learning concept

is also introduced.

In chapter three, Literature Review, a survey of the related works is presented. It is organized

in two subtopics: Pure Evolutionary Algorithms for Training and Evolving Artificial Neural

Networks, and Hybrid Evolutionary-Gradient Search Algorithms for Training and Evolving

Artificial Neural Networks.

In chapter four, Meta-Learning Evolutionary Artificial Neural Networks: By Means of Cellular

Automata, the proposed framework (MLEANN-CA) is discussed and presented in details.

In chapter five, Experiments and Results, the proposed framework is simulated and tested

using two efficient toolboxes and two famous chaotic time series. The performance of the

MLEANN-CA is explored and evaluated, and the results are discussed and compared with

other approaches (i.e. MLEANN and the conventional design of ANNs).

Finally in chapter six, Conclusions and Future Works, the main conclusions are listed and

some recommended suggestions and ideas are provided as future works.

We provide short description about the Neurosolution and NeuroGenetic Optimizer toolboxes

that are used for the experiments simulations beside number of windows and screens that

appeared during the experiments in appendix A.

 5

CHAPTER TWO

BACKGROUND KNOWLEDGE

This chapter describes the paradigm of artificial neural network and number of its learning

algorithms. Beside that, it introduces the concepts of evolutionary algorithms and the genetic

algorithms. The description of the cellular automata is also presented. Furthermore, this

chapter introduces the meta-learning concept and its benefits. The material here is general; it

is intended to clarify the concepts and paradigms used throughout this thesis. The topics

related directly to the subject of the thesis, i.e. the Evolutionary Artificial Neural Networks,

are discussed in details in subsequent chapters.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a component of artificial intelligence that simulates

real brain‘s neurons. Also known as parallel distributed processing, or connectionist models,

artificial neural networks are information processors inspired by the way the highly

interconnected structures of the brain process information (Jain, Mao, & Mohiuddin, 1996),

(Lippmann,1987). Artificial neural networks are mathematical models that emulate some

properties observed from the biological neural network: the knowledge is acquired by the

network through a learning process and the synaptic weight is used to store the knowledge.

Computations are performed through the passing of signals within a structured arrangement of

highly interconnected processing units (neurons) in response to a given input signal. The

artificial neural network model was introduced by McCulloch and Pitts, after the definition of

the computational model for the traditional perceptron in 1943. This is an artificial neuron

with a hard-limiting activation function. Since that, artificial neural networks have been

implemented to solve a variety of problems involving pattern classification, pattern

recognition, task of optimization, medical diagnosis, and financial modeling.

2.1.1 Artificial Neural Networks Components:

2.1.1.1 Artificial Neurons:

The basic element of an artificial neural network is the artificial neuron which simulates some

of the operations the natural neuron can perform. This artificial neuron is shown in the

following figure (2.1) (Lippmann,1987), (Jain, Mao, & Mohiuddin, 1996):

Figure 2.1: The artificial neuron model

 6

The neuron receives as inputs the outputs from other neurons, if the combined strength of the

signal reaches a specific threshold; the neuron sends a signal to all the neurons waiting for the

output. This process can be described by the following equation (Yao, 1999):





















n

i
ii xwfy

1

.

where symbols xi, represent the strength of the input signals, wi, represent the connection

strengths of the given input signal, and the output is represented by the symbol y, θ is a

threshold value (or bias), and f is the neuron‘s activation function. Different activation

functions (also known as transfer functions) were found and the most commonly ones are

shown in the following figure (2.2) (Jain, Mao, & Mohiuddin, 1996):

Figure 2.2: Most commonly used transfer functions

2.1.1.2 Architectural Elements of an Artificial Neural Network:

The basic components of neural network architecture are neurons, the layers, and neuron

connection. A neural network consists of a set of neurons highly interconnected, grouped into

three types of layers: the input layer, output layer and the hidden layers. The behavior of the

neural network depends on the interaction between the neurons. Interaction between network

components depends on the type of connection that is used to pass messages between neurons.

There are two major types of synaptic connections: feed forward and feedback connections

(Jain, Mao, & Mohiuddin, 1996), (Rumelhart, Hinton, & Williams, 1986). It is important to

highlight that synaptic connections may be fully interconnected or partially interconnected. In

feed-forward neural networks, connections are used to propagate the output from the neurons

 7

of a lower layer to neurons of an upper layer as shown in figure (2.3) (a) (Jain, Mao, &

Mohiuddin, 1996). They have the property of being static, producing only one output pattern

for each input pattern. The feed forward networks could be single-layer or multi-layer

(Rumelhart, Hinton, & Williams, 1986). Single-layer feed forward networks consist of input

and output layers only, where the multi-layer feed forward network contains at least one

hidden layer of nodes that receives connections from the previous adjacent layer of nodes.

 (a) (b)

Figure 2.3: (a) Feed Forward connections (b) Feedback connections

Artificial neural networks with an architecture that includes feedback connections are

recurrent or feedback neural networks. The feedback connections are used to send the output

from neurons of an upper layer back to neurons of a lower layer, as shown in figure (2.3) (b).

As a result, feedback neural networks are dynamic systems, entering more than one state for

each new input pattern (Jain, Mao, & Mohiuddin, 1996). In this research, the feed forward

networks with multilayer perceptron (MLP) will be used in the experiments as in Ajith‘s work

(Abraham, 2004) for easy comparisons.

2.1.2 Learning Process for Artificial Neural Networks:

The purpose of neural network training is to produce appropriate output patterns for

corresponding input patterns. It is achieved by an iterative learning process that updates the

connection weights based on the neural network response to a set of training input patterns.

Learning algorithms (processes) in an artificial neural network are classified into: supervised,

reinforcement, and unsupervised learning (Jain, Mao, & Mohiuddin, 1996), (Lippmann,1987).

Supervised learning occurs when the correct output pattern is known and used during training.

It is based on direct comparison between the actual output and the desired correct output.

Reinforcement learning is a special case of supervised learning where the exact desired output

is unknown. It is based only on the information of whether or not the actual output is correct.

Unsupervised learning does not require a correct output to be available during training. It is

based on the correlations among input data. The essence of a learning algorithm is the learning

rule, i.e., a weight-updating rule which determines how connection weights are changed.

Examples of popular learning rules include the delta rule, the Hebbian rule, the anti-Hebbian

rule, the competitive learning rule, etc.

 8

2.1.3 Artificial Neural Network Learning Algorithms:

This subsection discusses the most popular supervised learning algorithms that we will use in

our research for training multi-layer feed forward neural networks. These are:

Backpropagation, Conjugate Gradient Descent, Scaled Conjugate Gradient, Quasi-Newton,

and Levenberg-Marquardt.

2.1.3.1 Training Multilayer Perceptrons:

For any MLP, once the number of layers and number of units in each layer has been selected,

the network's weights and thresholds must be set (or adjusted) so as to minimize the prediction

error made by the network (Molar, 1997). This is the role of the training / learning algorithms.

The Learning algorithms differ from each other in the way in which the adjustment ∆ wk j to

the synaptic weight wk j is formulated (Battiti, 1992). The error of a particular configuration of

the network can be determined by running all the training cases through the network,

comparing the actual or predicted output generated with the desired or target outputs. The

differences are combined together by a cost (error) function to give the network error. The

most common cost function is the sum of the squared differences between the networks actual

output and the desired output. This is commonly known as the mean-squared error (MSE) cost

function.

 








k

kEj ne
2

1 2

, where    ny(n)tne kkk 

where tk (n) denotes the desired outcome (response) for the k
th

neuron at time n, yk (n) is the

actual response of the neuron, and ek (n) is the difference between the desired response and the

actual response (error signal). Here, summation runs over all neurons in the output layer of the

network. This method has the task of continually search for the bottom of cost function in

iterative manner. Minimization of the cost function j with respect to free parameters of the

network leads to so-called method of Gradient Descent gn (the first derivative of the cost

function) (Molar, 1997). In practice, there are four types of optimization algorithms that are

used to minimize the cost function j. These algorithms are: back-propagation (gradient

descent), conjugate gradients, quasi-Newton, and Levenberg Marquardt. A common feature of

these training algorithms is the requirement of repeated efficient calculation of gradients.

A plot of the cost function versus the synaptic weights characterizes the neural network

consists of a multidimensional surface called error surface (as shown in figure 2.4) (Burney,

Jilani , & Ardil, 2004). The neural network consists of cross-correction learning algorithm to

start from n arbitrary point on the error surface (initial weights) and then move towards global

minima, in step-by-step fashion.

 9

Figure 2.4: Quadratic error surface with local and global minima

In a linear model with sum squared error function, this error surface is a parabola (a

quadratic), which means that it is a smooth bowl-shape with a single minimum. It is therefore

"easy" to locate the minimum. In case of non-linear model (neural network), the error surfaces

are much more complex, and are characterized by a number of unhelpful features, such as

many local minima, flat-spots and plateaus, saddle-points, and long narrow ravines (Burney,

Jilani , & Ardil, 2004). Therefore, it is not possible to analytically determine where the global

minimum of the error surface is, and so neural network training is essentially an exploration of

the error surface. In presence of many plateaus, training will get slow. To overcome this

situation momentum is introduced that forces the iterative process to cross saddle-points and

small landscapes(Molar, 1997).

2.1.3.2 Back-Propagation:

Back propagation is a training algorithm used for training multi-layer feed forward neural

networks that have nonlinear differentiable activation (transfer) functions. Based on the

generalized delta rule, backpropagation is a gradient descent algorithm that updates the

network weights and biases in the direction in which the performance function decreases most

rapidly - the negative of the gradient of the cost function (Hinton, 1989), (Rumelhart, Hinton,

& Williams, 1986), (Battiti, 1992), (Burney, Jilani , & Ardil, 2004). The gradient of the cost

function (the first derivative of the network error with respect to the weights) and the weights

updating are given by:

nn1n ΔWWW 

nn
W

E
ΔW jαα 






nn1n gWW α

where wn is a vector of current weights and biases, gn is the current gradient, and α is the

learning rate (step-size) that controls how big a step is taken in the negative gradient direction

(defines the proportion of error for weight updating). The learning parameter has a profound

impact on the performance of convergence of learning (Burney, Jilani , & Ardil, 2004). The

negative sign indicates that the new weight vector wn+1 is moving in a direction opposite to

that of the gradient. A momentum term (µ) can also be added to stabilize the learning in the

 10

algorithm. The momentum encourages movement in a fixed direction, so that if several steps

are taken in the same direction, the algorithm "picks up speed", which gives it the ability to

escape local minimum, and also to move rapidly over flat spots and plateaus.

1nnn1n WgWW   μα 1,0  μ

An outline of the back-propagation algorithm is given as follows (Lippmann,1987):

1. Initialize weights of the network with small random values.

2. Choose an input and desired output pair.

3. Propagate the activation of the input layer to the hidden layer, and calculate the

activation of the hidden nodes using sigmoid function.

4. Propagate the activation of the hidden nodes to the output layer, and calculate the

activation of the actual output using sigmoid function.

5. Calculate the errors (deltas) of the output layer.

6. Compute the errors (deltas) for the hidden layer.

7. Adjust the weights between the hidden layer and output layer.

8. Adjust the weights between the input layer and hidden layer.

9. Repeat steps 4 to 8 until the total error of the network is small enough for each of

the training-vector pairs in the training set.

2.1.3.3 Faster Training Algorithms:

Earlier in the previous paragraphs, we discussed how the back propagation algorithm

performs gradient descent on the error surface. This method is often too slow for practical

problems. It does not produce the fastest convergence (Burney, Jilani , & Ardil, 2004), (Battiti,

1992), (Schiffmann, Joost, & Werner, 1993). In the following paragraphs, we discuss other

learning algorithms that can converge from ten to one hundred times faster than the

backpropagation algorithm. Theses algorithms are: Conjugate Gradient Descent, Scaled

Conjugate Gradient, Quasi-Newton, and Levenberg-Marquardt which are very successful

forms of two types of algorithm: line search and model-trust region approaches. They are

collectively known as second order training algorithms / faster training algorithms.

 Line Search and Trust-region Models

A line search algorithm (Burney, Jilani , & Ardil, 2004) works as follows: pick a sensible

direction to move in the multi-dimensional landscape. Then, project a line in that direction

(how far to move), locate the minimum of the error function along that line in the weight

space, and repeat (Schraudolph & Grapple, 2003). An obvious choice of the direction in this

context is the direction of steepest descent (the same direction that would be chosen by back

propagation). Actually, this intuitively obvious choice proves to be rather poor. Having

minimized along one direction, the next line of steepest descent may spoil the minimization

along the initial direction. A better approach is to select conjugate or non-interfering directions

i.e. conjugate gradient descent and quasi-newton.

 11

A model-trust region approach (Hunt & Deller, 1995), (Burney, Jilani , & Ardil, 2004)

works as follows: instead of following a search direction, assume that the surface is a simple

shape such that the minimum can be located (and jumped to) directly - if the assumption is

true. The model typically assumes that the surface is a nice well-behaved shape (e.g., a

parabola), which will be true if sufficiently close to a minima. Elsewhere, the assumption may

be grossly violated, and the model could choose wildly inappropriate points to move to. The

model can only be trusted within a region of the current search point, and the size of this

region isn't known. Therefore, choose new points to test as a compromise between that

suggested by the model and that suggested by a standard gradient-descent jump. If the new

point is good, move to it, and strengthen the role of the model in selecting a new point; if it is

bad, don't move, and strengthen the role of the gradient descent step in selecting a new point

(and make the step smaller). Levenberg-Marquardt uses a model-trust region that assumes the

underlying function modeled by the network is locally linear.

 Conjugate Gradient Descent

Conjugate gradient descent (Hestenes & Stifle, 1952), (Burney, Jilani , & Ardil, 2004) works

by constructing a series of line searches across the error surface. It starts out by searching in

the steepest descent direction (negative of the gradient -g) on the first iteration, just as back

propagation would do. The initial search direction (P) is given by:

00 gP 

However, instead of taking a step proportional to a learning rate, conjugate gradient descent

projects a straight line in that direction and then locates a minimum along this line, a process

that is quite fast as it only involves searching in one dimension (Moller, 1993), (Hestenes &

Stifle, 1952). So, conjugate gradient descent converges faster than steepest descent. This gives

the next values for the weight vector (w n+1) as:

nnn1n PWW λ

where the parameter λ is chosen to minimize error (E)

   nn PW λEλE 

The next search direction is determined so that it is conjugate to previous search directions.

The general procedure for determining the new search direction (Pn+1) is to combine the new

steepest descent direction with the previous search direction (Schraudolph, 1993):

n1n1n1n .PβgP  

The various versions of conjugate gradient are distinguished by the manner in which the

constant βn+1 is computed. βn is a time varying parameter. For the Fletcher-Reeves update the

procedure is:

nn

1n1n
1n

.gg

.gg
β

T

T


 

 12

where gn and gn+1 are the gradient vectors. For the Polak-Ribiére update, the constant βn+1 is

computed by:

nn

n1n1n
1n

.gg

)g.(gg
β

T

T


 


The conjugate gradient algorithms are usually much faster than backpropagation, although the

results will vary from one problem to another. They are often a good choice for networks with

a large number of weights (more than a few hundred) and/or multiple output units (Burney,

Jilani , & Ardil, 2004), (Schiffmann, Joost, & Werner, 1993). The conjugate gradient

algorithms require only a little more storage than the simpler algorithms (it has memory

requirements proportional to the number of weights). One of the common variations of

conjugate gradient algorithms is the Scaled Conjugate Gradient, which we will present next.

 Scaled Conjugate Gradient

Each of the conjugate gradient algorithms requires a line search at each iteration. This line

search is computationally expensive, since it requires that the network response to all training

inputs be computed several times for each search. The scaled conjugate gradient algorithm

(SCG), developed by Moller (Moller, 1993), was designed to avoid the time-consuming line

search per learning iteration by using a step size scaling mechanism. This makes the algorithm

faster and inexpensive than other algorithms. The scaled conjugate gradient algorithm is too

complex to explain in a few lines, but the basic idea is to combine the model-trust region

approach with the conjugate gradient approach. The Scaled Conjugate Gradient routine may

require more iterations to converge than the other conjugate gradient algorithms, but the

number of computations in each iteration is significantly reduced because no line search is

performed. The storage requirements for the scaled conjugate gradient algorithm are about the

same as those of conjugate gradient algorithms (Fletcher-Reeves).

 Quasi-Newton

Quasi-Newton (Battiti, 1992), (Burney, Jilani , & Ardil, 2004) is an advanced method of

training multilayer perceptions. It is the most popular algorithm in nonlinear optimization,

with a reputation for fast convergence. Quasi-Newton works by exploiting the observation

that, on a quadratic (i.e. parabolic) error surface, one can step directly to the minimum using

the Newton step (Newton‘s direction):

gH 1 where
W

E
H

2

2






It is a calculation involving the Hessian matrix H (the matrix of the second derivative for the

cost function – i.e. second derivative of the network error with respect to the weights E / W)

(Pearlmutter, 1994), (Zhou & Si, 1998). The weights are updated at each iteration as follows:

n

1

n1n gHWW 

 

 13

where H
-1

 is the inverse of the Hessian matrix H. Any error surface is approximately quadratic

"close to" a minimum. Since, unfortunately, the Hessian matrix is difficult and expensive to

calculate, and anyway the Newton step is likely to be wrong on a non-quadratic surface,

Quasi-Newton iteratively builds up an approximation to the inverse Hessian. The

approximation at first follows the line of steepest descent, and later follows the estimated

Hessian more closely (Battiti, 1992).

Newton's method often converges faster than conjugate gradient methods. It is used as an

efficient training method for smaller networks with a small number of weights. Unfortunately,

it is complex since it requires computing the analytical derivative of Hessian matrix at each

iteration and thus requires more storage (it has memory requirements proportional to the

square of the number of weights) (Lippmann,1987), (Pearlmutter, 1994). There is a class of

algorithms that is based on Newton's method, but which doesn't require calculation of second

derivatives. They update an approximate Hessian matrix at each iteration of the algorithm. The

update is computed as a function of the gradient. Among theses general purpose quasi-Newton

algorithms that is used to update the search direction is probably the Broydon–Fletcher–

Goldfarb–Shanno (BFGS) algorithm. The BFGS algorithm builds upon the earlier and similar

Davidon–Fletcher–Powell (DFP) algorithm.

 Levenberg-Marquardt

Levenberg-Marquardt (Burney, Jilani , & Ardil, 2004), (Battiti, 1992) is an advanced non-

linear optimization algorithm. It is a trust region based method with hyper-spherical trust

region. Levenberg-Marquardt appears to be the fastest method for training moderate-sized

feed forward neural networks (up to several hundred weights) but it needs enough memory

(Schiffmann, Joost, & Werner, 1993).

The Levenberg-Marquardt algorithm is designed specifically to minimize the sum-of-squares

error function, using a formula that assumes the underlying function modeled by the network

is linear. Close to a minimum this assumption is approximately true, and the algorithm can

make very rapid progress. Further away it may be a very poor assumption. Levenberg-

Marquardt therefore compromises between the linear model and a gradient-descent approach.

A move is only accepted if it improves the error, and if necessary the gradient-descent model

is used with a sufficiently small step to guarantee downhill movement.

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to

approach second-order training speed without having to compute the Hessian matrix H. When

the performance function has the form of a sum of squares (as is typical in training feed

forward networks), then the Hessian matrix can be approximated as

J J H T

and the gradient (g) can be computed as

eJg T

Where J is the Jacobian matrix that contains first derivatives of the network errors with

respect to the weights and biases, and e is a vector of network errors. The Jacobian matrix can

 14

be computed through a standard backpropagation technique (Zhou & Si, 1998), (Pearlmutter,

1994) that is much less complex than computing the Hessian matrix. The Levenberg-

Marquardt algorithm uses this approximation to the Hessian matrix in the following equation

to update weights and biases:

  n

TT
eJJJWW n

1

nnn1n



 

where (J
T
 J) is positive definite, but if it is not, then, we make some perturbation into it that

will control the probability of being non positive definite. Such that the recursion equation is

  nn

1

nnn1n eJIJJWW
TT

λ


 

where the quantity λ is called the learning parameter, it ensures that J
T
 J is positive definite.

When the scalar λ is zero, this is just Newton's method, using the approximate Hessian matrix.

When λ is large, this becomes gradient descent with a small step size. Newton's method is

faster and more accurate near an error minimum, so the aim is to shift towards Newton's

method as quickly as possible (Battiti, 1992). Thus, λ is decreased after each successful step

(reduction in performance function) and is increased only when a tentative step would increase

the performance function. In this way, the performance function will always be reduced at

each iteration of the algorithm.

2.2 Evolutionary Algorithms

Evolutionary Algorithms are based on the basic concepts of biological reproduction and

evolution that is used as a model to solve problems using computers to emulate the same

process (Haupt, 1997). They are a robust heuristic search and optimization mechanism which

can be applied to problems where normal solutions are not available or generally lead to

unsatisfactory results (Salomon, 1998), (Yao, 1993). All possible solutions for a problem are

represented with a particular genetic representation scheme (called chromosome). A set of

solutions or individuals is generated to form the initial population of organisms, as shown in

figure (2.5). Each organism in this figure is evaluated using a fitness function specific to the

problem. The fitness function measures the performance of the organism according to specific

characteristics. Using a particular selection algorithm based on the fitness value, some

organisms are chosen to be the parents for the next generation. New organisms, also known as

offspring are produced after the information contained in the parents is combined using

reproduction operators such as crossover and mutation. Finally, some organisms are selected

from the old population and from the new offspring to form the population for the next

generation. These steps are repeated until a solution that satisfies the selected criteria is found.

Evolutionary algorithms encompass: genetic algorithms, evolutionary programming, and

evolution strategies.

 15

Figure 2.5: Cycle of evolutionary algorithms

2.2.1 Genetic Algorithms (GA):

GA is one of the most popular areas of research in evolutionary algorithms (Whitley, 1994),

(Haupt, 1997) particularly useful for multidimensional optimization problems. The goal of

optimization problem is to find the best solution where several feasible solutions (know as

search space) are available. An evaluation (fitness) function is used for determining how good

each particular solution in the population is. In a particular problem, the search space and the

evaluation function for the elements in the search space in terms of performance define a

landscape. Given a set of possible solutions in the search space, there may be several local

minimum or sub-optimal values, but the over all lowest value of the set is considered the

optimal value (global minima). If the search space is small, all the possible solutions can be

examined, but as the search space grows in size, this exhaustive search becomes impractical.

Traditional search algorithms, such as the gradient descent, examine a point in the search

space at the time, and the next point to be examined is obtained based on the current position.

Usually, the next point to be examined has better performance than the previous point and it

may be a local minimum. However since the new position is based on the previous one, it may

not be possible to make a drastic move to go down the slope (gradient) towards the global

minima (Burney, Jilani , & Ardil, 2004), (Salomon, 1998), (Sexton, Dorsey, & Johnson,

1998). Another deficiency of this algorithm is that it is possible to get stuck on a plateau. This

may happen if the algorithm is unable to move far away from the flat region. Another problem

with this algorithm comes from the fact that the final result depends on the starting search

 16

point, it may be possible that different starting points produce different results. In the GA,

although some individuals in the search space may reside near local minima, it is less likely to

get trapped because the population provides global information about the landscape. There is a

better chance that some individual will be near the global minima, and the genetic operators

allow the GA to move the population in large jumps to focus the search in the most fruitful

regions of the landscape (region around the global minima). For these reasons, GAs are well

suited for searching the space of neural networks. Instead of training a network by performing

gradient-descent on an error surface, the GA samples the space of networks and recombines

those that perform best on the task in question.

The most important factors to consider in genetic algorithms as a search mechanism are: the

encoding / representing of a chromosome, the reproduction operators, the selection methods,

and the fitness function.

2.2.1.1 Encoding of a Chromosome:

The encoding of the chromosome is one of the important factors to consider in genetic

algorithms as a search mechanism (Whitley, 1994). The chromosome should in some way

contain information about solution which it represents. The most used way of encoding is a

binary string. The chromosome then could look like figure (2.6).

Figure 2.6: Example of chromosomes with binary encoding

Each chromosome has one binary string. Each bit in this string can represent some

characteristic of the solution. Or the whole string can represent a number – this has been used

in the basic GA applet. Of course, there are many other ways of encoding. This depends

mainly on the solved problem. For example, one can use the value encoding where every

chromosome is a string of some values. Values can be anything connected to problem as

integers, real numbers or chars for some complicated objects. Sometimes it is useful to encode

some permutations where every chromosome is a string of numbers.

2.2.1.2 Reproduction Operators:

The two most common reproduction operators in GAs are mutation and crossover (Whitley,

1994). When binary genotypic representations are used, crossover is performed by splitting

two parent chromosomes at some point, and one part of one parent chromosome is exchanged

for the corresponding part of the other parents' chromosome to produce offspring. Crossover

can then look like figure (2.7) (a) (| is the crossover point). Mutation involves changing one or

more components of a chromosome at random. With binary representations, we can switch the

chosen bits from 1 to 0 or from 0 to 1. Real valued genotypic representations implement

mutation differently. Mutation is shown in figure (2.7) (b). The mutation depends on the

 17

encoding method as well as the crossover. For example when we use the permutation

encoding, mutation could be exchanging two genes.

 (a) (b)

 Figure 2.7: (a) Example of crossover operator (b) Example of mutation operator

2.2.1.3 Selection Methods:

The chromosomes are selected from the population to be parents to crossover. The problem is

how to select these chromosomes. According to Darwin's evolution theory the best ones

should survive and create new offspring. There are many methods how to select the best

chromosomes, these methods are (Whitley, 1994), (Blickle & Thiele, 1995):

 Roulette Wheel Selection. Each individual has a selection probability proportional to

its fitness.

 Tournament Selection. A group of individuals is chosen from the population and the

most fit in the group is selected. The size of the group chosen is called the tournament

size. A tournament size of 2 is a binary tournament.

 Linear Ranking Selection. The population is sorted by fitness and assigned a rank

from best to worst. The selection probability is linearly assigned to the individuals

according to their rank.

2.2.1.4 Fitness:

Fitness is determined by a fitness or objective function (Whitley, 1994). The fitness value

represents the quality of the chromosome, and is used to grade and order the population. The

fitness function is specific to the individual problem and is essential as a driving force for an

effective evolutionary search.

2.3 Cellular Automata

In evolving artificial neural networks, several representation methods based on evolutionary

computation paradigms are used to automatically determine the appropriate architectures of

feed-forward neural networks. Some of those designed methods are based on direct

representations of the parameters of the network. These representations become less effective

with larger networks because the effects of crossover are often unfavorable for retaining any

kind of high level network structure that may have evolved. This is known as the scalability

 18

problem. An alternative more interesting are the indirect encoding methods that codify a

compact representation of the neural network. Thus, they avoid the scalability problem and

reduce the length of the genotype. In this thesis, we will use one of those indirect constructive

encoding methods: cellular automata which provide an efficient way for representing network

architectures.

2.3.1 Principles of Cellular Automata:

Cellular Automata (CA) are a class of discrete dynamical systems, consisting of an array of

nodes (lattice of cells) of some dimension n (Gutowitz, 1991), (Nehaniv, 2002), (Wolfram,

1994). Each cell in the lattice can be in one of k different states. At discrete time steps, all cells

update and change their states simultaneously, in a way determined by the transition rules of

the particular CA. The transition rules describe precisely how a given cell should change

states, depending on its current state and the states of its neighbors. The cells that are in the

neighborhood of a given cell must be specified explicitly. This process of simultaneously

updating the cells in the lattice is repeated over time, starting from some particular (random)

initial configuration of cell states. When plotted over time, the lattice as a whole can show a

wide variety of behaviors, depending on the particular transition rules that are used.

Cellular automata may differ in the following:

 The set of initial states of all the automata.

 The definition of the set of neighbours to a given grid point.

 The actual finite automaton associated to each point in the grid.

 The shape and size of the grid (lattice), usually square, rectangular or triangular,

which may be infinite.

Cellular automata have been successfully used as a simulation tool in several areas such as

urban development, ecological systems, and image processing.

2.3.2 Two-Dimensional Cellular Automata:

Two-Dimensional Cellular Automata are a natural extension of the 1-D case (Nehaniv, 2002),

(Gutowitz, 1991). The one-dimensional CA can be visualized as having a cell at each integral

point on the real number line where the two-dimensional CA have cells at all points in the

plane that have only integral coordinates. In 2-D CA, there are large numbers of rows and

columns of cells whose states change with time according to transition rules. The iterative

process in such 2-D cellular automata is that in each time step the number of neighbours is

calculated for each site simultaneously and the automation is updated accordingly. This

parallel processing characterizes the CA. This property makes them attractive the modelling of

processes where such parallel processing is involved.

The neighbours for each cell in 2-D cellular automata must be specified explicitly. The two

most popular choices are the Von Neumann neighborhood and the Moore neighborhood; both

are named after their creators (Gutowitz, 1991), (Wolfram, 1994). With the Von Neumann

neighborhood, a cell has four neighbors in its north, south, east, and west sides. The Moore

 19

neighborhood includes four additional neighbors in its northeast, southeast, southwest, and

northwest corners. Generally, a cell is always part of its own neighbors; therefore there are

five neighbors in the Von Neumann neighborhood and nine in the Moor neighborhood. The

Von Neumann and the Moore neighborhood are shown in figure (2.8).

Figure 2.8: Von Neumann and Moore neighborhood

As it is indicated before, a set of transition rules governs each cell's state of being alive (white)

or dead (black) based on it and it's immediate neighbour's states in the last time step. Conway's

Game of Life is perhaps the most famous of the rule sets and a good place to start (Gardner,

1970). In Conway's game of Life the rules are based on the values of all 8 neighbours and

itself in the last time step. Examples of these rules are (see figure 2.9):

1. An alive cell dies from exposure if less than 2 neighbors were alive.

2. An alive cell dies from overcrowding if more than 3 neighbours were alive.

3. A dead cell becomes alive if precisely 3 neighbours were alive.

Figure 2.9: Examples of transition rules in Conway's game of Life [23]

2.4 Meta-Learning

Meta-learning is defined as learning from learned knowledge (Chan & Stolfo, 1993). It refers

to a general strategy that seeks to learn how to integrate a number of separate learning

processes in an intelligent fashion. The basic idea of the meta-learning is to compute a number

of independent classifiers by executing number of machine learning processes to a collection

of data subsets in parallel mode. These ―base classifiers" are then collected and combined into

a final classifier by another learning process. A graphical representation of meta-learning

process with three different classifiers is depicted in figure (2.10) (Prodromidis, 1999). In this

figure, two classifiers are derived from the same data set (either from different samples or

from different learning algorithms, or both) while the third is induced from a separate set. The

meta-learning algorithm combines the three classifiers into an ensemble meta-classier by

―learning‖ how they predict, i.e., by observing their input/output behavior. Meta-learning

addresses the scaling problem for machine learning. It improves efficiency by executing in

parallel the base-learning processes on (possibly disjoint) subsets of the training set (a data

reduction technique). Meta-learning, is scalable because meta-classifiers can be similarly

integrate into higher level meta-classifiers in a distributed fashion and it improves the

 20

predictive performance and accuracy by combining classifiers with different inductive

classifiers (Prodromidis & Stolfo, 1998).

Figure 2.10: Meta-learning process

2.4.1 Meta-Learning Techniques (Integrating multiple classifiers):

The integration problem can be defined as follows (Seppo, Vagan, & Alexey, 1999-B). Let the

training set T be:{(Xi, Yi), i=1,...,n}, where n is the number of the training instances, Xi is the

vector of the attributes of the i-th training instance (the values of the attributes can be numeric,

nominal, or symbolic), and Yi  {Y1,...,Yk} is the actual class of the i-th instance (k is the

number of classes). Let the ensemble C of classifiers be:{C1,...,Cm}, where m is the number of

the available classifiers (component classifiers). Each component classifier is either derived

using some learning algorithm or using some heuristic knowledge. Let a new instance e* be an

assignment of values to the vector of the attributes {Xi} without known actual classification.

The integration problem is to use the ensemble C of the classifiers to classify the new instance

e* as accurately as possible. Recently two basic approaches are used to integrate multiple

component classifiers of an ensemble. In the first approach, all the component classifiers

produce their classification results, which are then combined. In the second approach the best

classifier is selected from the base classifiers and then it is used to produce the classification

result.

2.4.1.1 Combining Approach for Meta-Learning:

The main idea of meta-learning approach is to learn a global classifier ―GC‖ that combines the

output of a number of classifiers. Initially, each learning task, also called a base learner,

computes a base classifier, i.e. a model of its underlying data subset or training set. Next, a

separate learning task, called a meta learner, combines these independently computed base

 21

classifiers into a higher level classifier, called a meta-classifier, by learning over a meta-level

training set. This meta-level training set is composed from the predictions of the individual

base-classifiers when tested against a separate subset of the raw training data, also called a

validation dataset E. Validation data are extracted from the training set and are not used for

classifier training. From these predictions, the meta-learner discovers the properties of the

base-classifiers and computes a meta-classifier which models the ―global‖ dataset. To classify

an unlabeled instance e*, the base-classifiers present their own predictions to the meta-

classifier which then makes the final classification (Prodromidis, 1999), (Seppo, Vagan, &

Alexey, 1999-B).

Figure (2.11) (Chan & Stolfo, 1993) depicts the different stages in a simplified meta-classifier

scenario:

1. The classifiers (base classifiers) are trained from the initial (base-level) training

datasets.

2. Predictions are generated by the learned classifiers on a separate validation dataset.

3. A meta-level training set is composed from the validation set and the predictions

generated by the classifiers on the validation dataset.

4. The global classifier ―GC‖ (meta-classifier) is trained from the meta-level training set.

Figure 2.11: The stages in a simplified meta-classifier scenario

Several effective methods have been proposed to combine the results of the ensembled

component classifiers. These methods include: Voting, Stacking, Bagging, Boosting, SCANN,

 22

etc. They differ on the way the meta-level training set is formed and the way the final

prediction of the meta-classier is synthesized.

2.4.1.2 Selection Approach for Meta-Learning:

Techniques of this approach try to select the best base classifier for the data. So there is no

need for a meta-classifier. These techniques can be divided into two subsets: static and

dynamic selection. The static approaches select the best classifier for the whole data space,

while the dynamic approaches take into account each new instance to be classified (Seppo,

Vagan, & Alexey, 1999-A), (Merz, 1996). Usually better results can be achieved if the

classifier integration is done dynamically taking into account characteristics of each new

instance.

2.4.2 Benefits of Meta-Learning:

 Meta-learning improves predictive performance, efficiency, and scalability. It

illustrates two characteristics, parallelism and reduced communication. All base

classifiers are generated in parallel and collected at any location without the time-

consuming process of writing parallel programs (i.e., using standard o-the-shelf serial

code), where the communication overhead is negligible compared to the transfer of

entire raw data (Chan & Stolfo, 1993), (Prodromidis, 1999).

 Meta-learning improves predictive accuracy by combining different inductive

classifier. By combining separately learned concepts, meta-learning is expected to

derive a higher level learned model that explains a large data more accurately than

individual learner (Prodromidis & Stolfo, 1998), (Prodromidis, 1999).

 Meta-learning unifies and scales up learning algorithms to very large datasets in wide

area computing networks. It is unifying because it is algorithm and representation

independent, i.e., it does not examine the internal structure and strategies of the

learning algorithms themselves, but only the outputs (predictions) of the individual

classifiers, and it is scalable because it can be intuitively generalized to hierarchical

multiple level meta-learning (Prodromidis & Stolfo, 1998), (Prodromidis, 1999),

(Seppo, Vagan, & Alexey, 1999-B).

 Meta-learning has been applied with success to a number of applications like

Distributed Data Mining (DDM), Multiple Classifier Systems, and Information Fusion

(Prodromidis, 1999), (Seppo, Vagan, & Alexey, 1999-B).

 Meta-learning can be considered primarily as a method that reduces the size of the data

basically due to its data reduction technique and its parallel nature. On the other hand,

it is also generic, meaning that it is algorithm and representation independent, hence it

can benefit from fast algorithms and efficient relational representations (Chan &

Stolfo, 1993), (Prodromidis & Stolfo, 1998), (Prodromidis, 1999).

 23

Summary

This chapter presented the basic concepts that are used in this thesis. The artificial neural

networks and genetic algorithms were described, as these are the main techniques used. In

addition, we introduced other important paradigms such as meta-learning and cellular

automata. In the next chapter we will outline a literature review of some previous works

related to the main techniques used in this thesis.

 24

CHAPTER THREE

LITERATURE REVIEW AND PREVIOUS WORK

This chapter outlines a literature review of some previous works related to the main techniques

used in this thesis. First, it describes the use of pure evolutionary learning algorithms as a

learning tool for traditional neural networks in addition to different evolution trends in

evolutionary artificial neural networks including evolution of connection weights,

architectures, and learning rules. Next, this chapter presents the hybrid training approaches

that combine the global search capability of evolutionary algorithms with the efficient local

search of gradient descent algorithms for training ANNs.

3.1 Pure Evolutionary Algorithms for Training and Evolving Artificial Neural Networks

The interest in using the pure evolutionary algorithms for training ANNs has been growing in

recent years since they can handle the global search problem efficiently in a vast, complex,

multimodal, and non differentiable surface. They can avoid the local minima by searching in

several regions simultaneously in contracts with the traditional search algorithms (i.e. gradient

descent algorithms) which may get stuck in local minima. Pure evolution in artificial neural

networks can be found at three different levels: connection weights, architectures, and learning

rules. So, EANN can be seen as a system that adapts to weights, architectures, and rules

dynamically without human intervention.

The evolution of connection weights in ANNs provides a global approach to connection

weight training, especially when gradient information of the error function is difficult or costly

to obtain. The architecture of an Artificial Neural Networks is known before the learning

process, and it does not change (fixed) during the evolution of the connections weights.

Researches and applications have been conducted on the evolution of connection weights by

(Kitano, 1990), (Yao, 1999), (Caudell & Dolan, 1989), (Belew, McInerney, & Schraudolph,

1991), (Fogel, Wasson, & Boughton, 1995), (Koza & Rice, 1991), (Sexton, Dorsey, &

Johnson, 1998), (Yoon, Holmes, & Langholz, 1994), (Korning, 1995) because they can deal

with very large, complex, not differentiable and multimodal spaces. The evolutionary

approach to weight training in ANN‘s includes a major point which is the ability to decide the

representation of connection weights, i.e., whether in the form of binary strings or not. Some

of the early work in evolving ANN connection weights used binary strings for representation

(Caudell & Dolan, 1989). In such a representation scheme, each connection weight is

represented by a number of bits with certain length. Other works in evolving ANN connection

weights used real numbers for representation (Fogel, Wasson, & Boughton, 1995). In such a

representation scheme, each connection weight is represented by a one real number.

Evolution can also be used to find a near-optimal ANN architecture automatically. This is the

second level of evolution in artificial neural networks. The architecture includes its topological

structure, i.e., connectivity, and the transfer function of each node in the ANN. The

architecture design is crucial in the successful application of ANN‘s because the architecture

has significant impact on a network‘s information processing capabilities. Recently, a lot of

research on evolving ANN architectures has been carried out. Most of the research has

 25

concentrated either on the evolution of artificial neural network topological structures alone

(separated from that of the connection weights) (Yao, 1999), (Leung, Lam, & Ling, 2003),

(Jacob & Rehder, 1993), or simultaneously with the evolution of ANN connection weights

(Binos, 2003), (Yao, 1999), (Koza & Rice, 1991), (Branke, 1995). The transfer function is

often assumed to be fixed and the same for all the nodes in an ANN, at least for all the nodes

in the same layer. Relatively little has been done on the evolution of node transfer functions.

Similar to the evolution of connection weights, one major phase involved in the evolution of

architectures is the genotype representation scheme of architectures (encoding the ANN

architectures). One of the key issues in encoding ANN architectures is to decide how much

information about an architecture should be encoded in the chromosome. At one extreme, all

the details, i.e., every connection and node of an architecture can be specified by the

chromosome. This kind of representation scheme is called direct encoding (Yao & Liu, 1997),

(Branke, 1995), (Koza & Rice, 1991), (Yao & Liu, 1998), (Braun & Weisbrod, 1993). Direct

encoding scheme takes two different approaches, one separates the evolution of architectures

from that of connection weights (Yao, 1999), (Leung, Lam, & Ling, 2003) and the other

evolves architectures and connection weights simultaneously (Yao, 1999), (Koza & Rice,

1991), (Branke, 1995). At the other extreme, only the most important parameters of an

architecture, such as the number of hidden layers and hidden nodes in each layer, are encoded

in the chromosome. Other details about each connection in an ANN are left to the training

process to decide. This kind of representation scheme is called indirect encoding which can

produce more compact genotypical representation of ANN architectures (Gutierrez, Isasi,

Molina, Sanchis, & Galvan, 2001), (Harp, Samad, & Guha, 1989), (Kitano, 1990), (Molina,

Galván, Isasi, & Sanchis, 2000-A), (Gruau & Whitley, 1993), (Gruau, Whitley, & Pyeatt,

1995), (Harp, Samad, & Guha, 1990), (Koza & Rice, 1991), (Molina, Galván, Isasi, &

Sanchis, 2000-B), (Chval, 2002), (Hussain & Browse, 1998), (Jacob & Rehder, 1993), (Luke

& Spector, 1996). There are different kinds of indirect encoding schemes including: structural

encoding, parametric encoding, and grammar encoding.

Structural encoding defines the structure of the network that is embedded in the chromosome.

Koza (Koza & Rice, 1991) applied genetic programming to discover both the architecture and

the weights of a neural network. In this work, the neural network was represented as a point-

labeled tree. Parametric encoding uses certain important aspects of neural network architecture

(such as the number of hidden layers, the number of hidden nodes in each layer, etc.) and is

represented by fixed parameters (Harp, Samad, & Guha, 1989), (Harp, Samad, & Guha, 1990),

(Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001). Another technique is grammatical

encoding, where the neural network is represented as a sentence of a special language

described by a grammar. Two basic approaches to grammar encoding include developmental

grammar encoding, and derivation grammar encoding. Developmental grammar encoding

describes the chromosome by grammar rules that will be used to develop a specific neural

network structure (Kitano, 1990). Derivation grammar encoding design a single fixed

grammar and the chromosome contains the derivation sequence which define the network

architecture (Jacob & Rehder, 1993).

Gruau and Whitley (Gruau & Whitley, 1993), Gruau and Whitley and Pyeatt (Gruau, Whitley,

& Pyeatt, 1995) had used genetic programming to create the topology for recurrent neural

networks. Luke and Spector (Luke & Spector, 1996) presented an edge encoding technique for

 26

evolving graph and network structures via genetic programming. Hussain and Browse

(Hussain & Browse, 1998) proposed the use attribute grammars in creating a useful and

compact genetic encoding of neural networks. Molina and Galvan (Molina, Galván, Isasi, &

Sanchis, 2000-B) used grammars and cellular automata for evolving Neural Networks

Architectures. Gutiérrez and Isasi, (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001) had

used the evolutionary cellular configurations for designing feed-forward neural networks

architectures, and they used only the backpropagation algorithm for training neural networks.

They did not apply the idea of meta-learning algorithm were different number of learning

algorithms are used in parallel mode for training the neural networks separately. Harp et al.

(Harp, Samad, & Guha, 1989) used a ―blueprint‖ to represent an architecture which consists of

one or more segments representing an area (layer) and its efferent connectivity (projections).

Andersen and Tsoi (Andersen & Tsoi, 1993) proposed different approach to the evolution of

architectures where each individual in a population represents a hidden node rather than the

whole architecture. An architecture is built layer by layer, i.e., hidden layers are added one by

one if the current architecture cannot reduce the training error below certain threshold. Each

hidden layer is constructed automatically through an evolutionary process which employs the

GA with fitness sharing. Fitness sharing encourages the formation of different feature

detectors (hidden nodes) in the population. The number of hidden nodes in each hidden layer

can vary. This approach (Andersen & Tsoi, 1993) could only deal with strictly layered feed

forward ANN‘s.

The third level of evolution in artificial neural networks is evolving the learning rules. Since

evolution is one of the most fundamental forms of adaptation, it is not surprising that the

evolution of learning rules has been introduced into ANN‘s in order to learn their learning

rules. Adapting a learning rule through evolution is expected to enhance ANN‘s adaptivity

greatly in a dynamic environment. Research into the evolution of learning rules is still in its

early stages (Chalmers, 1990), (S. Bengio, Y. Bengio, Cloutier, & Gecsei, 1992), (Baxter,

1992). Other combinations between ANN‘s and EA‘s are also presented in: 1) The evolution

of input features (Guo & Uhrig, 1992). 2) ANN as fitness estimator (Leung, Lam, & Ling,

2003). 3) Evolving ANN ensembles (Yao & Liu, 1996).

3.2 Hybrid Evolutionary-Gradient Search Algorithms for Training and Evolving ANNs

As indicated before, the pure evolutionary algorithm for training ANN is attractive because it

can handle the global search problem better in a vast, complex, multimodal, and non

differentiable surface. However, most EA‘s are rather inefficient in fine-tuned local search

(Yao, 1999), (Abraham, 2002), (Yao, 1993), (Salomon, 1998). The efficiency of evolutionary

training for ANN can be improved significantly by using a hybrid training approach that

incorporates the evolutionary algorithm‘s global search ability with local search‘s ability to

fine tune. EA‘s can be used to locate a good region in the space and then a local search

procedure is used to find a near-optimal solution in this region. The local search procedure

could be backpropagation or any other gradient descent algorithms. Hybrid training approach

has been used successfully in many application areas (Abraham, 2004), (Abraham, 2002),

(Yao & Liu, 1997), (Belew, McInerney, & Schraudolph, 1991), (Hendtlass & Podlena, 1995),

(Magoulas, Plagianakos, & Vrahatis, 2001), (Wong, Chung, & Wong, 1998), (Abraham &

Nath, 2000).

 27

Belew (Belew, McInerney, & Schraudolph, 1991) and many other researchers used GA‘s to

search for a near-optimal set of initial connection weights and then used BP to perform local

search from these initial weights. Their results showed that the hybrid GA/BP approach was

more efficient than either the GA or BP algorithm used alone. If we consider that BP often has

to run several times in practice in order to find good connection weights due to its sensitivity

to initial conditions, the hybrid training algorithm will be quite competitive. In Wong and

Chung work (Wong, Chung, & Wong, 1998), a hybrid approach, combining the global search

capability of evolutionary algorithms for training ANN with the backpropagation algorithm

has been used to solve the Unit Commitment problem (Wong, Chung, & Wong, 1998). A

population of neural networks with a fixed number of nodes is evolved by altering the active

connections with a genetic algorithm. High fitness individuals from this process are used as

starting points that are then trained via backpropagation.

In (Hendtlass & Podlena, 1995), a modified genetic algorithm is used to evolve neural network

topology and weights for character recognition. Architectural mutations are achieved by

uniform crossover between two individuals. Weights are modified by mutation only. Good

networks resulting from this process undergo fine-tune training with backpropagation. In (Yao

& Liu, 1997), the EPNet algorithm is a hybrid algorithm used to evolve feed forward artificial

neural networks. It combines the architectural evolution of the network with its weight

learning. Neural network node density, connectivity and weights (including biases) are

evolved in a series of steps by the application of the five mutation operators: hybrid training

using a modified back-propagation algorithm and simulated annealing, node and connection

deletion, node and connection addition.

In (Magoulas, Plagianakos, & Vrahatis, 2001), a hybrid algorithm combining a Differential

Evolution Strategy and Stochastic Gradient Descent is used for on-line training of large fixed

topology neural networks on image classification tasks. There are two stages to this algorithm

that operates on a population of weight vectors representing neural network individuals. The

first one uses stochastic gradient descent to train the network weights. This is done by

modifying the weights using an adaptive step size and the error of the network. The second

stage uses a differential evolution to increase the diversity of the population by using a

combination of mutation and crossover. The results showed good generalization on two image

classification tasks. Alexander (Topchy, Lebedko, & Miagkikh, 1995) proposed another work

that combined the global search of EAs with the local search procedures. He developed a fast

learning in multilayered neural networks by means of hybrid evolutionary and gradient

algorithms. His research described two algorithms based on cooperative evolution of internal

hidden network representations and a combination of global evolutionary and local search

procedures.

Abraham (Abraham, 2004) proposed a hybrid meta-heuristic learning approach, which is

called meta-learning evolutionary artificial neural networks (MLEANN). His proposed

approach can be considered as adaptive computational framework based on evolutionary

learning and local search procedures for automatic design of optimal artificial neural

networks. Abraham used four different learning algorithms in parallel mode for training neural

networks. He also used the direct encoding methods for optimizing the neural network

architectures and that requires much larger chromosomes especially for ANNs with complex

 28

architectures. This could end in a too huge space search that could make the method

impossible in practice.

Summary

In this chapter, a literature review of some works related to my research was outlined.

Examining the previous works, we observed that the pure evolutionary learning algorithms,

especially genetic algorithms, were used as a learning tool for traditional neural networks.

Different evolution trends in evolutionary artificial neural networks were found at three levels:

connection weights, architectures, and learning rules. Moreover, hybrid training approaches

that combine the global search capability of evolutionary algorithms with the efficient local

search of gradient descent algorithms for training ANNs were presented. Also, two types of

genotype representation scheme, which were used for encoding the architecture of ANNs in

chromosomes, were mentioned and the preferable one that reduced the complexity of the

networks was the indirect encoding methods.

In the next chapter, we will present our proposed approach: Meta-learning Evolutionary

Artificial Neural Networks using one of the indirect encoding methods, i.e. cellular automata,

instead of using the direct ones as in the previous MLEANN framework.

 29

CHAPTER FOUR

META-LEARNING EVOLUTIONARY ARTIFICIAL NEURAL

NETWORKS: BY MEANS OF CELLULAR AUTOMATA

This chapter presents the proposed framework: meta-learning evolutionary artificial neural

networks by means of cellular automata (MLEANN-CA). It is an adaptive computational

framework based on evolutionary learning and local search procedures for automatic design of

optimal artificial neural networks using direct and indirect encoding methods. We start this

chapter by presenting the evolutionary artificial neural networks followed by its general

framework. Then, we describe the three kinds of evolution in EANNs: evolution of connection

weights, architectures, and learning rules. Moreover, we introduce the hybrid meta-learning

approach: MLEANN, which uses direct encoding methods in designing the network

architecture. Finally, we examine our proposed framework: MLEANN-CA.

4.1 Evolutionary Artificial Neural Networks

Many of the conventional ANNs now being designed are statistically quite accurate. However,

the important drawback is that neural network design relies heavily on human experts who

have sufficient knowledge about the different aspects of the network and the problem domain.

The human experts have to specify manually the number of neurons, their distribution over

several layers and interconnection between them. As the complexity of the problem domain

increases, manual design becomes more difficult and unmanageable. Several methods have

been proposed to automatically construct ANNs for reduction in network complexity. Most of

these methods got its own limitations. The interest in using evolutionary algorithms for

designing ANN architecture, automatically, has been growing in recent years as they can

evolve towards the optimal architecture without outside interference, thus eliminating the

tedious trial and error work of manually finding an optimal network (Yao, 1999), (Abraham,

2004), (Abraham, 2002), (Abraham & Nath, 2001), (Yao & Liu, 1997), (Yao & Liu, 1998),

(Braun & Weisbrod, 1993).

In Evolutionary Artificial Neural Networks (EANN), evolution has been introduced into

ANNs at roughly three different levels: connection weights; architectures; and learning rules.

EANNs provide a general framework, as indicated in figure (4.1), where interactions among

the three levels of evolution are considered (Yao, 1999), (Abraham & Nath, 2000), (Abraham,

2004), (Abraham, 2002), (Abraham & Nath, 2001), (Yao, 1993), (Liu & Yao, 1998). In this

framework, the evolution of connection weights proceeds at the lowest level on the fastest

time scale in an environment determined by an architecture, a learning rule, and learning tasks.

There are, however, two alternatives to decide the level of the evolution of architectures and

that of learning rules either the evolution of architectures is at the highest level and that of

learning rules at the lower level or vice versa. The decision on the level of evolution depends

on what kind of prior knowledge is available. The lower the level of evolution, the faster the

time scale it is on.

 30

Figure 4.1: A general framework for EANN‘s

4.2 Evolutionary Search for Connection Weights, Architectures, and Learning Rules

As described before, the evolution has been introduced into ANNs at three different levels:

connection weights; architectures; and learning rules. The evolution of connection weights

introduces an adaptive and global approach to training, especially in the reinforcement

learning and recurrent network learning paradigm where gradient-based training algorithms

often experience great difficulties. The evolution of architectures enables ANNs to adapt their

topologies to different tasks without human intervention and thus provides an approach to

automatic ANN design as both ANN connection weights and structures can be evolved. The

evolution of learning rules can be regarded as a process of ―learning to learn‖ in ANNs where

the adaptation of learning rules is achieved through evolution. It can also be regarded as an

adaptive process of automatic discovery of novel learning rules.

4.2.1 Evolutionary Search of Connection Weights:

Weight training in ANNs is usually formulated as minimization of an error function, such as

the mean square error between target and actual outputs averaged over all examples, by

iteratively adjusting connection weights. Most training algorithms for ANN, such as BP and

conjugate gradient algorithms (Burney, Jilani , & Ardil, 2004), (Schiffmann, Joost, & Werner,

1993), (Rumelhart, Hinton, & Williams, 1986), are based on gradient descent. There have

been some successful applications of BP in various areas, but BP has drawbacks due to its use

of gradient descent. It often gets trapped in a local minimum of the error function and is

incapable of finding a global minimum if the error function is multimodal and/or non-

differentiable. One way to overcome gradient-descent-based training algorithms‘

shortcomings is to adopt EANN‘s, i.e., to formulate the training process as the evolution of

connection weights in the environment determined by the architecture and the learning task.

EA‘s can then be used effectively in the evolution to find a near-optimal set of connection

weights globally without computing gradient information. The architecture and the learning

rules of the neural networks are pre-defined and fixed during the evolution. A key question in

evolving connection weights is to decide the representation of connection weights, i.e.,

whether in the form of binary strings or real (Caudell & Dolan, 1989), (Fogel, Wasson, &

Boughton, 1995), (Yao, 1999), (Koza & Rice, 1991). Thus, the proper genetic operators such

as crossover and mutation are to be chosen in conjunction with the representation scheme.

 31

Figure (4.2) illustrates the multilayered feed-forward neural network with its weight matrix,

encoded directly, besides the connection weight chromosome using binary representation.

Figure 4.2: The feed-forward neural network, its weight matrix, and its connection weight

chromosome using binary representation

The whole network is encoded directly by concatenation of all the connection weights of the

network in the chromosome. A heuristic concerning the order of the concatenation is to put

connection weights to the same node together. The representation of the connection weights in

ANN using the real numbers could be: (4.0, 7.0, 8.0, 3.0, 1.0, 5.0).

Evolutionary Search of connection weights can be formulated as follows (Yao, 1999),

(Abraham, 2004), (Abraham, 2002):

(1) Generate an initial population of N weight chromosomes. Evaluate the fitness of each

EANN depending on the problem.

(2) Depending on the fitness and using suitable selection methods reproduce a number of

children for each individual in the current generation.

(3) Apply genetic operators (crossover, mutation) to each child individual generated above

and obtain the next generation.

(4) Check whether the network has achieved the required error rate or the specified

number of generations has been reached. Go to Step 2.

(5) End.

Using evolutionary algorithms to train the weights instead of gradient descent algorithms,

which can only find local optimum in a neighborhood of the initial solution, can result in

faster and better convergence. Better still, since EAs are good at global search but inefficient

at local finely tuned search (Yao, 1999), (Abraham, 2004), (Abraham, 2002), (Abraham &

Nath, 2001), a hybrid approach combining EAs and gradient descent could be attractive.

4.2.2 Evolutionary Search of Architectures:

The architecture of an ANN includes its topological structure, i.e., connectivity, and the

transfer function of each node in the ANN. Architecture design is crucial in the successful

application of ANNs because the architecture has significant impact on a network‘s

information processing capabilities. Up to now, architecture design is still very much a human

 32

expert‘s job. It depends heavily on the expert experience and a tedious trial-and-error process.

There is no systematic way to design a near-optimal architecture for a given task

automatically. Research on constructive and destructive algorithms represents an effort toward

the automatic (evolutionary) design of neural network architectures (Yao, 1999), (Abraham,

2004), (Abraham, 2002). A constructive algorithm starts with a minimal network (network

with minimal number of hidden layers, nodes, and connections) and adds new layers, nodes,

and connections when necessary during training while a destructive algorithm does the

opposite, i.e., starts with the maximal network and deletes unnecessary layers, nodes, and

connections during training.

A key issue in evolving neural network architecture is to determine how to encode the

architectures and how much information should be encoded in the chromosome. There are two

types of encoding methods for finding the optimum architecture: direct and indirect encoding

methods (Yao & Liu, 1997), (Branke, 1995), (Koza & Rice, 1991), (Gutierrez, Isasi, Molina,

Sanchis, & Galvan, 2001), (Harp, Samad, & Guha, 1989), (Kitano, 1990), (Molina, Galván,

Isasi, & Sanchis, 2000-A), (Gruau & Whitley, 1993), (Gruau, Whitley, & Pyeatt, 1995),

(Harp, Samad, & Guha, 1990), (Molina, Galván, Isasi, & Sanchis, 2000-B). In direct

encoding, all the details, i.e., every connection and node of an architecture, can be specified by

the chromosome. The direct encoding method is relatively simple and straightforward to

implement but requires much larger chromosomes. In indirect encoding, important parameters

such as the number of hidden layers and hidden nodes in each layer of the network are

represented and the details of the exact connectivity are left to developmental rules. Using the

indirect encoding scheme will minimize the size of the genotype string and improve

scalability. Several indirect encoding methods were successfully used in many applications for

optimizing the neural network architecture such as: graph generation system, symbiotic

adaptive neuro-evolution, marker based genetic coding, L-systems, cellular encoding, fractal

representation, etc. The following figure (4.3) demonstrates how typical neural network

architecture could be directly encoded by a square connectivity matrix and how the genotype

is represented in a chromosome.

Figure 4.3: Architecture chromosome using binary coding (direct encoding)

 33

In evolving the NN architecture, the node transfer function is often assumed to be fixed and

pre-defined before the architecture is decided. For an optimal network, the required node

transfer function can be formulated as a global search problem, which is evolved

simultaneously with the search for architectures.

Evolutionary search of ANN architecture can be formulated as follows (Yao, 1999),

(Abraham, 2004), (Abraham & Nath, 2001):

(1) The evolution of architectures has to be implemented such that the evolution of weight

chromosomes are evolved at a faster rate, i.e. for every architecture chromosome, there

will be several weight chromosomes evolving at a faster time scale.

(2) Generate an initial population of N architecture chromosomes. Evaluate the fitness of

each EANN depending on the problem.

(3) Depending on the fitness and using suitable selection methods reproduce a number of

children for each individual in the current generation.

(4) Apply genetic operators to each child individual generated above and obtain the next

generation.

(5) Check whether the network has achieved the required error rate or the specified

number of generations has been reached. Go to Step 3.

(6) End.

4.2.3 Evolutionary Search of Learning Rules:

An ANN learning algorithm may have different performance when applied to different

architectures. The design of learning algorithms, more fundamentally the learning rules used

to adjust connection weights (weight-updating rule), depends on the type of architectures

under investigation and the task to be performed. In other words, ANN should learn its

learning rule dynamically rather than have it designed and fixed manually. Evolving learning

rules expected to enhance ANN‘s adaptivity greatly in a dynamic environment.

The key issue in evolving learning rules is how to encode the dynamic behavior of a learning

rule into static chromosomes. Trying to develop a universal representation scheme which can

specify any kind of dynamic behaviors is clearly impractical, let alone the prohibitive long

computation time required to search such a learning rule space. Constraints have to be set on

the type of dynamic behaviors, i.e., the basic form of learning rules being evolved in order to

reduce the representation complexity and the search space. Two basic assumptions which have

often been made on learning rules are (Yao, 1999), (Yao, 1993):

1) Weight updating depends only on local information such as the activation of the input

node, the activation of the output node, the current connection weight, etc.,

2) The learning rule is the same for all connections in an ANN. A learning rule is

assumed to be a linear function of these local variables and their products.

 34

The learning rule can be described by the following function (Yao, 1999), (Abraham, 2004),

(Abraham & Nath, 2001):









  
 

k

j
ijiii

n

k

n

iii

txtw
k

k 1
,...,,

1 1,...,,

)1()(
21

21



Where t is time, ∆w is the weight change, x1,x2,…,xn are local variables, and ө‘s are real-

valued coefficients which will be determined by evolution. In other words, the evolution of

learning rules in this case is equivalent to the evolution of real-valued vectors of ө‘s. Different

ө‘s determine different learning rules.

Evolutionary Search of learning rules can be formulated as follows (Yao, 1999), (Abraham,

2004), (Yao, 1993):

(1) The evolution of learning rules has to be implemented such that the evolution of

architecture chromosomes are evolved at a faster rate i.e. for every learning rule

chromosome, there will be several architecture chromosomes evolving at a faster time

scale.

(2) Generate an initial population of N learning rules. Evaluate the fitness of each EANN

depending on the problem.

(3) Depending on the fitness and using suitable selection methods reproduce a number of

children for each individual in the current generation.

(4) Apply genetic operators to each child individual generated above and obtain the next

generation.

(5) Check whether the network has achieved the required error rate or the specified

number of generations has been reached. Go to Step 3.

(6) End.

Several researches have been working on formulating different optimal learning rules (Yao,

1999), (Abraham, 2002), (Abraham & Nath, 2001), (Baxter, 1992), (Chalmers, 1990), (S.

Bengio, Y. Bengio, Cloutier, & Gecsei, 1992). The adaptive adjustment of BP algorithm‘s

parameters, such as the learning rate and momentum, through evolution could be considered

as the first attempt of the evolution of learning rules (Harp, Samad, & Guha, 1989), (Belew,

McInerney, & Schraudolph, 1991).

4.3 Meta-Learning Evolutionary Artificial Neural Networks (MLEANN)

Evolutionary algorithms are used to adapt the connection weights, network architecture, and

learning algorithms according to the problem environment. Even though evolutionary

algorithms are well known as efficient global search algorithms, very often they miss the best

local solutions in the complex solution space. In other words, they are inefficiency in fine-

tuned local search (Yao, 1999), (Abraham, 2004), (Abraham, 2002), (Yao, 1993). This is

especially true for GA‘s. The efficiency of evolutionary algorithms can be improved

significantly by using a hybrid learning approach that incorporates the EA‘s global search

 35

ability with local search‘s ability to fine tune. Thus, the EA is used to locate a good region in

the space and then a local search procedure, such as BP or other random search algorithm, is

used to find a near-optimal solution in this region. Several hybrid learning approaches had

been successfully used for evolving neural network topology and/or weights (Abraham &

Nath, 2000), (Abraham, 2004), (Abraham, 2002), (Yao & Liu, 1997), (Belew, McInerney, &

Schraudolph, 1991), (Hendtlass & Podlena, 1995), (Magoulas, Plagianakos, & Vrahatis,

2001), (Wong, Chung, & Wong, 1998). One of these hybrid learning approaches is called

meta-learning evolutionary artificial neural networks (MLEANN) (Abraham, 2004),

(Abraham, 2002), (Abraham & Nath, 2001). It can be considered as an automatic

computational framework that used a direct encoding method for the adaptive optimization of

ANNs. The main aim of using this framework is to improve the learning process and to obtain

a small and efficient design of NNs with faster convergence.

It is interesting to consider finding good initial weights as locating a good region in the weight

space. Defining that basin of attraction of a local minimum as being composed of all the

points, sets of weights in this case, which can converge to the local minimum through a local

search algorithm, then a global minimum can easily be found by the local search algorithm if

an EA can locate a point, i.e., a set of initial weights, in the basin of attraction of the global

minimum. Figure (4.4) illustrates a simple case where there is only one connection weight in

the ANN (Yao, 1999), (Abraham, 2004), (Yao, 1993). WG1 and WG2 could be considered as

the initial weights as located by the evolutionary search and WA, WB could be considered as

the corresponding final weights fine-tuned by meta-learning technique which is the work of

the local search algorithms.

Figure 4.4: Fine tuning of weights using meta-learning

Figure (4.5) (Yao, 1999), (Abraham, 2004), (Abraham, 2002) illustrates the general interaction

mechanism with the learning mechanism of the EANN evolving at the highest level on the

slowest time scale.

 36

Figure 4.5: Interaction of various evolutionary search mechanism

In the MLEANN, all the randomly generated architecture of the initial population are trained

and evolved separately by four different learning algorithms (backpropagation -BP, scaled

conjugate gradient -SCG, quasi-Newton algorithm -QNA and Levenberg-Marquardt -LM) in a

parallel environment. Parameters controlling the performance of the learning algorithm (as

learning rate and momentum for BP) will be adapted according to the problem (Abraham,

2002), (Abraham & Nath, 2001). The basic Meta-learning algorithm for the EANN is as

follows (Abraham, 2004), (Abraham, 2002), (Abraham & Nath, 2001):

1. Set t=0 and randomly generate an initial population of neural networks with

architectures, node transfer functions and connection weights assigned at random.

2. In a parallel mode, train separately each network and evaluate its fitness using the

learning algorithms: BP,SCG,QNA, and LM.

3. Based on fitness value, select parents for reproduction

4. Apply mutation to the parents and produce offspring (s) for next generation. Refill the

population back to the defined size.

5. Repeat step 2

6. STOP when the required solution is found or number of iterations has reached the

required limit.

The architecture of the chromosome is depicted in figure (4.6) (Abraham, 2004), (Abraham,

2002). For every learning algorithm parameter (LR2), there is the evolution of architectures

(AR1, AR2, …, AR7) that proceeds on a faster time scale in an environment decided by the

learning algorithm. For each architecture (AR3), the evolution of connection weights (WT1,

WT2, ….., WT5) proceeds at a faster time scale in an environment decided by the problem,

the learning algorithm and the architecture.

 37

Figure 4.6: Chromosome representation of the MLEANN framework

4.4 Meta-Learning Evolutionary Artificial Neural Networks by Means of Cellular

Automata

The previous MLEANN framework that was proposed by Ajith (Abraham, 2004), (Abraham,

2002) used the direct encoding methods for the adaptive optimization of artificial neural

network architectures. These direct encoding methods base on the codification of the complete

network into the chromosome. They are relatively simple and straightforward to implement

but requires much larger chromosomes especially for ANNs with complex architectures (Yao

& Liu, 1997), (Branke, 1995), (Koza & Rice, 1991), (Yao & Liu, 1998), (Braun & Weisbrod,

1993), (Yao, 1999). This could end in a too huge space search that could make the method

impossible in practice. On the other hand, implementation of crossover operator for the

chromosome is often difficult due to production of non-functional offsprings. An alternative

more interesting for optimizing the ANN architecture is the indirect encoding methods

(Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001), (Harp, Samad, & Guha, 1989), (Kitano,

1990), (Molina, Galván, Isasi, & Sanchis, 2000-A), (Gruau & Whitley, 1993), (Gruau,

Whitley, & Pyeatt, 1995), (Harp, Samad, & Guha, 1990), (Koza & Rice, 1991), (Molina,

Galván, Isasi, & Sanchis, 2000-B), (Chval, 2002), (Hussain & Browse, 1998), (Jacob &

Rehder, 1993), (Luke & Spector, 1996). These methods concentrate on codifying a compact

representation of the networks reducing the length of the genotype and avoiding the scalability

problem. One of these indirect encoding methods is the cellular automata (Gutierrez, Isasi,

Molina, Sanchis, & Galvan, 2001), (Wolfram, 1994), (Molina, Galván, Isasi, & Sanchis, 2000-

B). This method was used by Gutirrez (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001) and

according to his experiment, he proved that using cellular configurations for designing feed-

forward NN architectures is more efficient than using the direct encoding methods.

Therefore, we present an adaptive computational framework: meta-learning evolutionary

artificial neural network by means of cellular automata. This framework (MLEANN-CA)

combines the local search methods with the evolutionary learning in order to obtain an

efficient design of NNs that is smaller, faster and with better generalization performance using

direct and indirect encoding methods (Abu Salah & Al-Salqan, 2006-A), (Abu Salah & Al-

Salqan, 2006-B). The MLEANN-CA framework is explored and simulated using

Neurosolution and NeuroGenetic Optimizer toolboxes, and two famous chaotic time series.

 38

4.4.1 The Proposed Approach -- MLEANN-CA:

Two main stages compose the proposed framework in this research: the cellular configuration

stage and the meta-learning stage. The cellular configuration stage includes three main

modules for designing small neural network architectures: the genetic algorithm module, the

cellular automata module, and the neural network module (Abu Salah & Al-Salqan, 2006-A).

The meta-learning stage includes the meta-learning algorithm that is responsible for training

and evolving the new generated architectures with the direct codification using different

learning algorithms in parallel mode. The system architecture and the modules relationship is

shown in the following figure (4.7) (Abu Salah & Al-Salqan, 2006-B).

The MLEANN-CA approach can be summarized as follows:

1. Randomly, generate an initial population of neural networks with architectures according

to the indicated problem.

2. Apply the indirect encoding technique (CA) for optimizing each NN architecture. This is

done by the following steps:

 The GA module takes charge of generating initial configurations of the cellular

automata, i.e. seeds positions in a two-dimensional grid.

 The cellular automata module takes the initial configurations and generates final

configurations corresponding to particular NN architectures. This is done using cellular

automata rules that allow the convergence of the automata toward a final

configuration.

 The neural network module translates these final cellular configurations into feed-

forward NN with smaller architectures.

3. Use the translated NNs to create the population with architectures, node transfer functions,

and weights assigned at random.

4. In parallel mode, train each translated neural network separately and evaluate the fitness

value for each one using the four learning algorithms (BP, SCG, QNA, and LM).

5. Based on the fitness value, select parents for reproduction.

6. Apply mutation to the parents and produce offspring (s) for the next generation Refill the

population back to the defined size.

7. Repeat step 4.

8. Stop when the required solution is found or number of iterations reached the required

limit.

 39

Figure 4.7: System‘s architecture and modules relationship

 40

4.4.2 Genetic Algorithm Module:

As it was mentioned in Gutirrez research (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001),

GA module takes charge of generating initial configurations of the cellular automata. This

module works with a population of chromosomes that codifies the positions of the seeds

(growing and decreasing seeds) in a two-dimension grid. The size of chromosomes in the GA

corresponds with the number of seeds, and it codifies all the possible locations of seeds in the

grid. Chromosomes have been codified in base b, where b is the number of rows in the grid

and is given through the number of inputs plus the number of outputs of the neural network

(Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001), (Molina, Galván, Isasi, & Sanchis, 2000-

B). Each seed is determined by a co-ordinate (x, y). A unique gene, indicating the row in

which the seed is located, represents the first co-ordinate x. The second co-ordinate y will

require more than one gene, if, as usual, the maximal number of hidden neurons is bigger than

b. In this particular case, two genes have been used to codify the y coordinate, what allows a

maximum of b*b hidden neurons. This could be a good estimation of the maximum number of

neurons in the hidden layer, but any other consideration could be taken into account without

modifying the proposed method. Hence, the chromosome will have 3 genes for each seed to be

placed in the grid. The genetic algorithm module can be described by the following figure

(4.8):

Figure 4.8: Genetic algorithm module

4.4.3 Cellular Automata Module:

The cellular automaton takes the initial configuration and generates a final configuration

corresponding to a particular NN architecture. For generating neural networks architectures, a

two-dimension CA has been used. The size of the two-dimension grid is defined as follows:

the number of rows is equal to the number of input neurons plus the number of output

neurons; number of columns corresponds with the maximum number of hidden neurons to be

 41

considered. Each cell in the grid could be in two different states: active (occupied by a seed) or

inactive. Two different kinds of seeds have been introduced: growing seeds and decreasing

seeds. The first kind allows making connections and the second one removing connections.

Each seed type corresponds with a different type of automata rule, so there are two rules called

growing rule and decreasing rule respectively. The rules determine the evolution of the grid

configuration and they have been designed allowing the reproduction of growing and

decreasing seeds. In the description of the rules, s is a specific growing seed, d is a decreasing

seed, i is an inactive state for the cell, and a means that the cell could be in any state or

contains any type of seed (even a decreasing seed).

Growing Rules (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001): They reproduce a

particular growing seed when there are at least three identical growing seeds in its

neighborhood. There are different configurations, growing seeds located in: rows, columns, or

in a corner of the neighborhood. In the following figures (4.9) (a) and (b), some of those rules

are shown (the others are symmetrical). The growing rules allow obtaining feed-forward NN

with a large number of connections.

Figure 4.9 (a), (b): Examples of Growing Rules

Decreasing Rules (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001): They remove

connections in the network deactivating a cell in the grid when the cell has a seed and a cell of

its neighborhood contains also a decreasing seed. One situation in which the decreasing rules

can be applied is shown in the following figure (4.10), the others can be obtained

symmetrically.

Figure 4.10: Example of Decreasing Rules

 42

The mechanism of expanding the CA is as follows (Gutierrez, Isasi, Molina, Sanchis, &

Galvan, 2001), (Molina, Galván, Isasi, & Sanchis, 2000-B):

1) The growing seeds are located in the grid.

2) An expansion of the growing seeds takes place. This expansion consists on replicating

each seed in turns, over its quadratic neighborhood, in such a way that if a new seed has

to be placed in a position previously occupied by another seed, the first one is replaced.

3) The growing rules are applied until no more rules could be fired.

4) The decreasing seeds are placed in the grid. If there are some other seeds in those places,

they are replaced.

5) The decreasing rules are applied until the final configuration is reached.

6) The final configuration of the CA is obtained replacing the growing seeds by a 1 and the

decreasing seeds or inactive cells by a 0.

The cellular automata module can be described by the following figure (4.11)

Figure 4.11: Cellular Automata module

4.4.4 Neural Network Module:

The neural network module translates the final cellular configuration into feed-forward NN

architecture (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001), (Molina, Galván, Isasi, &

Sanchis, 2000-B). To relate the final configuration of the cellular automata with an

architecture of a neural network, the following meaning for a cell in the (x,y) grid is defined

(Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001):

 If x < n, with n the number of input neurons, (x,y) represents a connection between the

x-th input neuron and the y-th hidden neuron.

 If x > n, (x,y) represents a connection between the y-th hidden neuron and the (x -n) -th

output neuron.

 43

In the final configuration, 1 is interpreted as a connection, and 0 as the absence of connection.

Thus, the rows and columns in the matrix with values 0 are removed. A new and shorter

binary matrix (M) is obtained. If Mij=1 then a connection between the i-th input neuron and

the j-th hidden neuron is created, or between the j-th hidden neuron and the (i-n)-th output

neuron, as is previously described. If Mij=0, there do not exist connection between that

neurons.

In this module, when the final matrix connection is obtained from the final configuration of

CA there are some special cases take into account, following these steps (Gutierrez, Isasi,

Molina, Sanchis, & Galvan, 2001):

 If there is a node in hidden layer without any connection to output, this node is

eliminated from the net.

 When a hidden node has no connection from input, but it's connected to output layer,

two chances have been considerate: penalizes the net and don't train it, or eliminate

that node and is training.

 If an output node has no connection from hidden layer, the net is penalized and is not

trained.

The neural network module can be described by the following figure (4.12)

Figure 4.12: Neural network module

 44

After obtaining the new network architectures, they are initialized by random weights and

trained and evolved in parallel mode using four different learning algorithms. This is,

absolutely, the work of the meta-learning algorithm for the EANN.

Summary

In this chapter, we presented our proposed framework: Meta-Learning Evolutionary Artificial

Neural Networks by means of Cellular Automata. It is an adaptive computational framework

based on evolutionary learning and local search procedures for automatic design of optimal

artificial neural networks using direct and indirect encoding methods. In this proposed

framework, the evolutionary cellular configurations are used to, first, design small feed-

forward network architectures, and then all the generated architectures are trained and evolved

separately using the meta-learning algorithm with the direct evolutionary approach, where four

different learning algorithms are used in parallel mode.

We started this chapter by presenting the evolutionary artificial neural networks and its

general framework. Then, we introduced three kinds of evolution in EANNs: evolution of

connection weights, architectures, and learning rules. After that, we described the previous

MLEANN framework that was proposed by Ajith. In that framework, the direct encoding

methods were used for the adaptive optimization of neural network architectures. These direct

encoding methods based on the codification of the complete network into the chromosome,

thus they required much larger chromosomes and this could end in a too huge space search.

Finally, we examined our proposed framework (MLEANN-CA) that used indirect encoding

methods, i.e. cellular automata, for designing optimal network architectures. These methods

concentrate on codifying a compact representation of the networks reducing the length of the

chromosomes. Using MLEANN-CA framework will significantly improve the learning

process, increase the scalability, and obtain a small and efficient design of neural networks

with faster convergence and better generalization performance.

In the next chapter, Experiments and Results, we will test and explore the performance of our

proposed framework (MLEANN-CA) and prove its efficiency.

 45

CHAPTER FIVE

EXPERIMENTS AND RESULTS

This chapter deals with the experiments performed to evaluate the proposed MLEANN-CA

framework and to compare it with previous approaches. In section 5.1 we describe the test

collections (data sets) we will use. In section 5.2 we look at the test environment in which the

experiments were conducted and at the parameters used during the experiments. Section 5.3

describes how the experiments were performed and what results are collected from these

experiments. The results are analyzed and discussed in this section.

5.1 Test Collections - Data Sets

In our experiments, we used two different time series for training the neural networks and

evaluating their performance. These data sets were used before in Ajith‘s work (Abraham,

2004), so it will be easy to compare our results with those in Ajith experiments. The raw data

sets for these two time series could be found in http://neural.cs.nthu.edu.tw/jang/dataset/

 Mackey-glass Chaotic Time Series. The Mackey-glass differential equation (Mackey

& Glass, 1977) is a well known and widely used benchmark problem in neural network

and fuzzy modeling research communities. This time series is chaotic, it will not

converge or diverge and the trajectory is highly sensitive to initial conditions.

We used all or some of these values: {x(t −18), x(t −12), x(t −6), x(t)} to predict {x(t

+6) and / or x(t+12)}. Fourth order Runge-Kutta method was used to generate 1000

data series where data from t = 118 to 1117. The data was sampled every 6 points, as it

is usually recommended for the Mackey Glass time series. The time step used in the

method is 0.1 and initial condition were x(0) = 1.2, τ = 17, x(t) = 0 for t<0. First 500

data sets were used for training and remaining data for testing.

 Gas Furnace Time Series. The gas furnace data from the Box-Jenkins (Box &

Jenkins, 1970) is used in our simulations. This time series was used to predict the CO2

(carbon dioxide) concentration. In a gas furnace system, air and methane are combined

to form a mixture of gases containing CO2. Air fed into the gas furnace is kept

constant, while the methane feed rate can be varied in any desired manner. After that,

the resulting CO2 concentration is measured in the exhaust gases at the outlet of the

furnace. In this time series, there are originally 296 data points. We are trying to

predict {y(t+1) and / or y(t)} based on all or some of these best set values {y(t-1), y(t-

2), u(t-3), u(t-4)}, where y is the CO2 concentration and u is the gas flow rate. This

reduces the number of effective data points to 290. The first 50% of data was used for

training and remaining for testing.

http://neural.cs.nthu.edu.tw/jang/dataset/

 46

5.2 Test Environment

The experiments were simulated using two toolboxes: Neurosolution toolbox, and

NeuroGenetic Optimizer toolbox. These toolboxes are used for training and optimizing the

neural networks. The experiments were carried out on a computer with the following

configurations: 1.8 GHz AMD processor, 512 MB RAM, and Windows XP Professional.

In our proposed framework (MLEANN-CA), several parameters can influence the

experiments. These parameters can be distinguished into two categories: (i) the parameters

that are related to the Evolutionary Artificial Neural networks, and (ii) the parameters that are

related to the learning algorithms. These parameters in tables (5.1) and (5.2) were set to be the

same for the two data sets, and were finalized after a few trail and error approaches according

to Ajith (Abraham, 2004).

Table 5.1: Parameters used for EANNs

 Parameter Setting

Population size 40 (chromosomes)

Maximum no of generations 40

Number of hidden nodes 3 to 36 neurons

Activation functions tanh (T), logistic (L), sigmoidal (S).

Output neuron Linear (Li)

Training epochs 2500 for standard training , 500 for optimizing

Initialization of weights + / - 0.3

Ranked based selection 0.50

Mutation rate 0.40

Crossover / one point 0.50

Table 5.2: Parameters for the Learning Algorithms

 Learning algorithm Parameter Setting

Backpropagation (BP)
Learning rate 0.25-0.05

Momentum rate 0.25-0.05

Scaled conjugate gradient (SCG) ------------------ -------------

Quasi Newton algorithm (QNA) Step size 0.1 - 0.6

Levenberg Marquardt (LM) Learning rate 0.001 -0.02

 47

5.3 The Experiments Conducted

For each data set mentioned before, three main experimental simulations are carried out (Abu

Salah & Al-Salqan, 2006-B). The first one evaluates the performance of the conventional

design of artificial neural networks. The second one explores the performance of the

MLEANN framework. The third one test and explore the performance of our proposed

approach: MLEANN-CA. These experiments use four different learning algorithms (BP, SCG,

QNA, LM) in the training process. By applying these experiments, we (a) should know the

best solution, we (b) can carefully control various parameters, and we (c) should know the

effect of different learning algorithms namely BP, SCG, QNA and LM on different data sets.

5.3.1 Artificial Neural Networks: Experimentation and Simulation Results:

In this subsection we explored the performance of the conventional design of artificial neural

networks. We used two different time series, i.e. Mackey-glass and Gas furnace, for training

the artificial neural networks and evaluating the performance. The Neurosolution and

NeuroGenetic optimizer toolboxes are used for training the ANNs. We used a feed-forward

neural network with one hidden layer for the two time series. The number of hidden neurons

were varied (3, 5, 8, 14, 16, 18, 24, 36) as indicated in table (5.1). The speed of convergence

and generalization error for each of the four learning algorithms was observed. Any required

parameter for any learning algorithm is found in table (5.2). Performances of the four different

learning algorithms were evaluated when the architecture is changed. The experiments were

replicated three times each with a different starting condition (random weights) and the worst

errors were reported. No stopping criterion, and no method of controlling generalization is

used other than the maximum number of updates (epochs). All networks were trained for an

identical number of stochastic updates: 2500 epochs.

5.3.1.1 Mackey-glass Time Series with Different Network Architectures:

This experiment investigates the training and generalization behavior of the networks for the

Mackey glass time series when the network architecture was changed. The same architectures

were used for the four learning algorithms using same node transfer function for the hidden

layer and the output layer: tanh (T) and linear (Li). The node transfer function has an effect on

the training speed and generalization performance. Therefore, I used the tanh function after

examining its performance and compare it with other activation functions. Tables (5.3 -5.5)

summarize the empirical results of training and generalization for the Mackey glass. Figures

(5.1–5.6) graphically depict the training and generalization performance for the Mackey glass

with different learning methods.

Table (5.3) summarizes the empirical results of training and generalization for different

architectures with four inputs and one output in Mackey-glass time series {x(t −18), x(t −12),

x(t −6), x(t), x(t +6)}.

 48

Table 5.3: Training and test performance for Mackey-glass time series for different

architectures with four inputs and one output

Mackey-glass time series

Learning algorithm Hidden neurons
RMSE

Training data Testing data

BP

3 0.0990 0.0993

5 0.0971 0.0965

8 0.0932 0.0924

14 0.0907 0.0897

16 0.0838 0.0874

18 0.0782 0.0768

24 0.0456 0.0454

36 0.0408 0.0403

SCG

3 0.0088 0.0095

5 0.0079 0.0084

8 0.0066 0.0075

14 0.0052 0.0063

16 0.0071 0.0069

18 0.0070 0.0071

24 0.0055 0.0055

36 0.0048 0.0049

QNA

3 0.0076 0.0075

5 0.0061 0.0062

8 0.0055 0.0054

14 0.0042 0.0041

16 0.0033 0.0032

18 0.0043 0.0044

24 0.0037 0.0039

36 0.0035 0.0034

LM

3 0.0051 0.0060

5 0.0036 0.0043

8 0.0020 0.0022

14 0.0019 0.0019

16 0.0017 0.0017

18 0.0017 0.0017

24 0.0012 0.0012

36 0.0010 0.0010

 49

Table (5.4) summarizes the empirical results of training and generalization for different

architectures with four inputs and two outputs in Mackey-glass time series {x(t −18), x(t −12),

x(t −6), x(t), x(t +6), x(t+12)}.

Table 5.4: Training and test performance for Mackey-glass time series for different

architectures with four inputs and two outputs

Mackey-glass time series

Learning algorithm Hidden neurons
RMSE

Training data Testing data

BP

3 0.1188 0.1192

5 0.1165 0.1158

8 0.1118 0.1109

14 0.1088 0.1076

16 0.1006 0.1049

18 0.0938 0.0922

24 0.0547 0.0545

36 0.0490 0.0484

SCG

3 0.0106 0.0114

5 0.0095 0.0101

8 0.0079 0.0090

14 0.0062 0.0076

16 0.0085 0.0083

18 0.0084 0.0085

24 0.0066 0.0066

36 0.0058 0.0059

QNA

3 0.0091 0.0090

5 0.0073 0.0074

8 0.0066 0.0065

14 0.0050 0.0049

16 0.0040 0.0038

18 0.0052 0.0053

24 0.0044 0.0047

36 0.0042 0.0041

LM

3 0.0061 0.0072

5 0.0043 0.0052

8 0.0024 0.0026

14 0.0023 0.0023

16 0.0020 0.0020

18 0.0020 0.0020

 50

24 0.0014 0.0014

36 0.0012 0.0012

Table (5.5) summarizes the empirical results of training and generalization for different

architectures with three inputs and two outputs in Mackey-glass time series {x(t −12), x(t −6),

x(t), x(t +6), x(t+12)}.

Table 5.5: Training and test performance for Mackey-glass time series for different

architectures with three inputs and two outputs

Mackey-glass time series

Learning algorithm Hidden neurons
RMSE

Training data Testing data

BP

3 0.1426 0.1430

5 0.1398 0.1390

8 0.1342 0.1331

14 0.1306 0.1292

16 0.1207 0.1259

18 0.1126 0.1106

24 0.0657 0.0654

36 0.0588 0.0580

SCG

3 0.0127 0.0137

5 0.0114 0.0121

8 0.0095 0.0108

14 0.0075 0.0091

16 0.0102 0.0099

18 0.0101 0.0102

24 0.0079 0.0079

36 0.0069 0.0071

QNA

3 0.0109 0.0108

5 0.0088 0.0089

8 0.0079 0.0078

14 0.0060 0.0059

16 0.0048 0.0046

18 0.0062 0.0063

24 0.0053 0.0056

36 0.0050 0.0049

LM
3 0.0073 0.0086

5 0.0052 0.0062

 51

8 0.0029 0.0032

14 0.0027 0.0027

16 0.0024 0.0024

18 0.0024 0.0024

24 0.0017 0.0017

36 0.0014 0.0014

Figures (5.1–5.6) graphically depict the training and generalization performance for the

different learning methods with different architectures using Mackey-glass time series.

0.000

0.020

0.040

0.060

0.080

0.100

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

Figure 5.1: Architecture variation: Mackey-glass time series training performance for

different training algorithms with 4 inputs and 1 output network

 52

0.000

0.020

0.040

0.060

0.080

0.100

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

Figure 5.2: Architecture variation: Mackey-glass time series generalization performance for

different learning algorithms with 4 inputs and 1 output network

0.000

0.020

0.040

0.060

0.080

0.100

0.120

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

Figure 5.3: Architecture variation: Mackey-glass time series training performance for

different training algorithms with 4 inputs and 2 output network

 53

0.000

0.020

0.040

0.060

0.080

0.100

0.120

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

Figure 5.4: Architecture variation: Mackey-glass time series generalization performance for

different learning algorithms with 4 inputs and 2 output network

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

Figure 5.5: Architecture variation: Mackey-glass time series training performance for

different training algorithms with 3 inputs and 2 output network

 54

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

Figure 5.6: Architecture variation: Mackey-glass time series generalization performance for

different learning algorithms with 3 inputs and 2 output network

5.3.1.2 Gas Furnace Time Series with Different Network Architectures:

This experiment investigates the training and generalization behavior of the networks for the

Gas furnace time series when the network architecture was changed. The same architectures

were used for the four learning algorithms using same node transfer function for the hidden

layer and the output layer: tanh (T) and linear (Li). Tables (5.6 -5.8) summarize the empirical

results of training and generalization for the Gas furnace time series. Figures (5.7–5.12)

graphically depict the training and generalization performance for the Gas furnace time series

with different learning methods.

Table (5.6) summarizes the empirical results of training and generalization for different

architectures with four inputs and one output in Gas furnace time series {y(t-1), y (t-2), u(t-

3),u (t-4), y (t)}.

 55

Table 5.6: Training and test performance for Gas furnace time series for different

architectures with four inputs and one output

Gas Furnace time series

Learning algorithm Hidden neurons
RMSE

Training data Testing data

BP

3 0.0461 0.0496

5 0.0458 0.0527

8 0.0451 0.0569

14 0.0419 0.0807

16 0.0522 0.0660

18 0.0448 0.0479

24 0.0414 0.0606

36 0.0428 0.0686

SCG

3 0.0123 0.0333

5 0.0115 0.0326

8 0.0109 0.0318

14 0.0100 0.0207

16 0.0098 0.0206

18 0.0103 0.0206

24 0.0096 0.0229

36 0.0093 0.0308

QNA

3 0.0098 0.0340

5 0.0093 0.0332

8 0.0089 0.0326

14 0.0087 0.0343

16 0.0083 0.0291

18 0.0083 0.0235

24 0.0080 0.0323

36 0.0082 0.0329

LM

3 0.0081 0.0305

5 0.0077 0.0313

8 0.0079 0.0321

14 0.0074 0.0281

16 0.0082 0.0607

18 0.0073 0.0675

24 0.0069 0.1160

36 0.0064 0.1342

 56

Table (5.7) summarizes the empirical results of training and generalization for different

architectures with four inputs and two outputs in Gas furnace time series {y(t-1), y (t-2), u(t-

3),u (t-4), y (t), y(t+1)}.

Table 5.7: Training and test performance for Gas furnace time series for different

architectures with four inputs and two outputs

Gas Furnace time series

Learning algorithm Hidden neurons
RMSE

Training data Testing data

BP

3 0.0553 0.0596

5 0.0550 0.0632

8 0.0541 0.0683

14 0.0503 0.0968

16 0.0626 0.0792

18 0.0538 0.0575

24 0.0497 0.0728

36 0.0514 0.0823

SCG

3 0.0148 0.0433

5 0.0138 0.0424

8 0.0131 0.0414

14 0.0120 0.0269

16 0.0118 0.0268

18 0.0124 0.0268

24 0.0115 0.0298

36 0.0112 0.0401

QNA

3 0.0118 0.0442

5 0.0112 0.0431

8 0.0107 0.0424

14 0.0104 0.0446

16 0.0100 0.0378

18 0.0100 0.0306

24 0.0096 0.0419

36 0.0098 0.0427

LM

3 0.0097 0.0397

5 0.0092 0.0407

8 0.0095 0.0418

14 0.0089 0.0366

16 0.0098 0.0789

18 0.0088 0.0878

 57

24 0.0083 0.1508

36 0.0077 0.1744

Table (5.8) summarizes the empirical results of training and generalization for different

architectures with three inputs and two outputs in Gas furnace time series {y(t-1), u(t-3), u(t-

4), y(t), y(t+1)}.

Table 5.8: Training and test performance for Gas furnace time series for different

architectures with three inputs and two outputs

Gas Furnace time series

Learning algorithm Hidden neurons
RMSE

Training data Testing data

BP

3 0.0664 0.0715

5 0.0660 0.0759

8 0.0649 0.0820

14 0.0603 0.1162

16 0.0752 0.0950

18 0.0645 0.0689

24 0.0596 0.0873

36 0.0616 0.0987

SCG

3 0.0177 0.0520

5 0.0166 0.0509

8 0.0157 0.0496

14 0.0144 0.0323

16 0.0141 0.0322

18 0.0148 0.0322

24 0.0138 0.0358

36 0.0134 0.0481

QNA

3 0.0141 0.0530

5 0.0134 0.0518

8 0.0128 0.0509

14 0.0125 0.0535

16 0.0120 0.0453

18 0.0120 0.0367

24 0.0115 0.0503

36 0.0118 0.0513

LM 3 0.0117 0.0476

 58

5 0.0111 0.0488

8 0.0114 0.0501

14 0.0107 0.0439

16 0.0118 0.0947

18 0.0105 0.1053

24 0.0099 0.1810

36 0.0092 0.2093

Figures (7–12) graphically depict the training and generalization performance for the different

learning methods with different architectures using Gas furnace time series

0.000

0.010

0.020

0.030

0.040

0.050

0.060

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

Figure 5.7: Architecture variation: Gas furnace time series training performance for different

training algorithms with 4 inputs and 1 output network

 59

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

Figure 5.8: Architecture variation: Gas furnace time series generalization performance for

different learning algorithms with 4 inputs and 1 output network

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

Figure 5.9: Architecture variation: Gas furnace time series training performance for different

training algorithms with 4 inputs and 2 output network

 60

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP QNA SCG LM

Figure 5.10: Architecture variation: Gas furnace time series generalization performance for

different learning algorithms with 4 inputs and 2 output network

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

Figure 5.11: Architecture variation: Gas furnace time series training performance for different

training algorithms with 3 inputs and 2 output network

 61

0.000

0.050

0.100

0.150

0.200

0.250

RMSE

3 5 8 14 16 18 24 36

Hidden nodes

BP SCG QNA LM

Figure 5.12: Architecture variation: Gas furnace time series generalization performance for

different learning algorithms with 3 inputs and 2 output network

5.3.1.3 ANN- Results Discussion:

This subsection includes evaluation and summarization of the experimentations results

mentioned in subsections 5.3.1.1 and 5.3.1.2.

For Mackey-glass series (tables 5.3 - 5.5), all the four learning algorithms tend to generalize

well (i.e. test set RMSE decreased) as the hidden neurons were increased. The run time also

increases for the four learning algorithms as the number of hidden nodes increase. LM showed

the fastest convergence regardless of architecture. As an example (in table 5.3), the LM gave

the lowest generalization RMSE of 0.0010 with 36 hidden neurons. However, the run time of

LM algorithm is the longest in comparison with the other learning algorithms. On the other

hand, for every learning algorithm with the same number of hidden nodes and same number of

inputs, the RMSE and the run time will increase as the number of outputs increases. Also, the

RMSE will increase and the run time will decrease for every learning algorithm as the number

of inputs decrease using the same number of hidden nodes and outputs. This is true for

Mackey glass and Gas furnace time series.

For Gas furnace series (as shown in tables 5.6 - 5.8), the generalization performance were

entirely different for the different learning algorithms. Better generalization does not depend

on increasing the hidden neurons. For example (in table 5.6), BP gave the best generalization

RMSE of 0.0479 with 18 hidden neurons. RMSE for SCG, QNA and LM were 0.0206 (16

 62

neurons), 0.0235 (18 neurons) and 0.0281 (14 neurons), respectively. However, increasing the

number of hidden nodes will cause increasing in execution time for every learning algorithm,

and the LM algorithm will have the longest execution time. In spite of execution time, LM

performed well for Mackey-glass series. For gas furnace SCG algorithm performed better.

However, the speed of convergence of LM in all cases is worth noting.

In general, the training speed and generalization performance of an ANN is totally dependant

on the learning algorithm and its parameters, architecture, node transfer function, initial

weights, and the data sets used for training and testing. From the above discussion it is clear

that the selection of the topology of a network and the best learning algorithm and its

parameters is a tedious task for designing an optimal ANN. Evolutionary algorithm is an

adaptive search technique based on the principles and mechanisms of natural selection and

survival of the fittest from natural evolution. The interest in evolutionary search procedures for

designing neural network topology has been growing in recent years as they can evolve

towards the optimal architecture without outside interference, thus eliminating the tedious trial

and error work of manually finding an optimal network.

5.3.2 MLEANN: Experimentation and Simulation Results:

In this subsection we explore the performance of the MLEANN approach. We applied this

MLEANN approach to the two-time series prediction problems discussed before. We used the

Neurosolution and NeuroGenetic optimizer toolboxes in training and optimizing processes.

For performance comparison, we used the same set of training and test data that were used for

experimentations with conventional design of neural networks. We used the same feed-

forward neural network with one hidden layer for the two time series. The number of hidden

neurons was varied (from 3 to 36) as indicated in table (5.1). For performance evaluation, the

parameters used in this experiment were set to be the same for the two problems. Fitness value

is calculated based on the RMSE achieved on the test set. In this experiment, we have

considered the best-evolved neural network as the best individual of the last generation. As the

learning process is evolved separately, user has the option to pick the best neural network (e.g.

less RMSE, fast convergence, short run time, or small architecture size, etc.) among the four

learning algorithms. All the genotypes were represented using binary coding and the initial

populations were randomly generated based on the parameters shown in table (5.1). All

networks with different architectures were trained for an identical number of stochastic

updates (500 epochs) using the same four learning algorithms. The parameter settings, which

were evolved for the different learning algorithms, are found in table (5.2). The experiments

were repeated three times and the worst RMSE values are reported.

5.3.2.1 MLEANN: Simulation Results:

Tables (5.9 – 5.14) display empirical values of RMSE on test data for the two time series

problems using the meta-learning technique with different architectures. For comparison

purposes, test set RMSE values using conventional design techniques are also presented in

these tables (adapted from tables 5.3 – 5.8).

 63

Table 5.9: Performance comparison between MLEANN and ANN for Mackey-glass time

series with different architectures (four inputs / one output)

Time

series

Learning

algorithm

MLEANN ANN

RMSE
Architecture

RMSE
Architecture

Train Test Test

Mackey

Glass

BP

0.0173 0.0175 3:3T:1Li 0.0993 4 : 3T : 1Li

0.0168 0.0170 3:4T:1Li 0.0965 4 : 5T : 1Li

0.0075 0.0080 3:10T:1Li 0.0454 4 :24T :1Li

0.0067 0.0071
a

3:17T:1Li 0.0403 4 :36T :1Li

SCG

0.0061 0.0065 3:3T:1Li 0.0095 4 : 3T : 1Li

0.0057 0.0058 3:5T:1Li 0.0084 4 : 5T : 1Li

0.0036 0.0038 3:11T:1Li 0.0055 4 :24T :1Li

0.0032 0.0034
a

3:19T:1Li 0.0049 4 :36T :1Li

QNA

0.0062 0.0060 3:3T:1Li 0.0075 4 : 3T : 1Li

0.0050 0.0049 3:5T:1Li 0.0062 4 : 5T : 1Li

0.0028 0.0030 3:10T:1Li 0.0039 4 :24T :1Li

0.0022 0.0027
a

3:17T:1Li 0.0034 4 :36T :1Li

LM

0.0025 0.0027 3:3T:1Li 0.0060 4 : 3T : 1Li

0.0019 0.0019 3:4T:1Li 0.0043 4 : 5T : 1Li

0.0005 0.0005 3:11T:1Li 0.0012 4 :24T :1Li

0.0004
*
0.0004

a
 3:18T:1Li 0.0010 4 :36T :1Li

a : Lowest RMSE in each algorithm

* : Lowest RMSE in all the algorithms

Table 5.10: Performance comparison between MLEANN and ANN for Mackey-glass time

series with different architectures (four inputs / two outputs)

Time series
Learning

algorithm

EANN ANN

RMSE
Architecture

RMSE
Architecture

Train Test Test

BP

0.0207 0.0210 3:3T:2Li 0.1192 4 : 3T : 2Li

0.0201 0.0204 3:5T:2Li 0.1158 4 : 5 T: 2 Li

0.0091 0.0096 3:11T:2Li 0.0545 4 :24T :2 Li

0.0081 0.0085
a

3:18T:2Li 0.0484 4 :36T :2 Li

SCG 0.0074 0.0079 3:3T:2Li 0.0114 4 : 3T : 2Li

 64

Mackey

Glass

0.0068 0.0070 3:5T:2Li 0.0101 4 : 5 T: 2 Li

0.0044 0.0045 3:13T:2Li 0.0066 4 :24T :2 Li

0.0040 0.0041
a

3:20T:2Li 0.0059 4 :36T :2 Li

QNA

0.0072 0.0071 3:3T:2Li 0.0090 4 : 3T : 2Li

0.0061 0.0059 3:5T:2Li 0.0074 4 : 5 T: 2 Li

0.0034 0.0037 3:11T:2Li 0.0047 4 :24T :2 Li

0.0030 0.0033
a

3:18T:2Li 0.0041 4 :36T :2 Li

LM

0.0027 0.0032 3:3T:2Li 0.0072 4 : 3T : 2Li

0.0021 0.0023 3:5T:2Li 0.0052 4 : 5 T: 2 Li

0.0006 0.0006 3:12T:2Li 0.0014 4 :24T :2 Li

0.0005
*
0.0005

a
3:19T:2Li 0.0012 4 :36T :2 Li

a : Lowest RMSE in each algorithm

* : Lowest RMSE in all the algorithms

Table 5.11: Performance comparison between MLEANN and ANN for Mackey-glass time

series with different architectures (three inputs / two outputs)

Time

series

Learning

algorithm

EANN ANN

RMSE
Architecture

RMSE
Architecture

Train Test Test

Mackey

Glass

BP

0.0249 0.0252 3:3T:2Li 0.1430 3: 3T : 2Li

0.0241 0.0245 3:4T:2Li 0.1390 3: 5T : 2 Li

0.0110 0.0115 3:9T:2Li 0.0654 3:24T :2 Li

0.0100 0.0102
a

3:16T:2Li 0.0580 3:36T :2 Li

SCG

0.0090 0.0094 3:3T:2Li 0.0137 3: 3T : 2Li

0.0081 0.0083 3:5T:2Li 0.0121 3: 5T : 2 Li

0.0052 0.0054 3:12T:2Li 0.0079 3:24T :2 Li

0.0047 0.0049
a

3:19T:2Li 0.0071 3:36T :2 Li

QNA

0.0087 0.0086 3:3T:2Li 0.0108 3: 3T : 2Li

0.0070 0.0071 3:5T:2Li 0.0089 3: 5T : 2 Li

0.0041 0.0044 3:10T:2Li 0.0056 3:24T :2 Li

0.0036 0.0039
a

3:17T:2Li 0.0049 3:36T :2 Li

LM

0.0034 0.0038 3:3T:2Li 0.0086 3: 3T : 2Li

0.0026 0.0028 3:4T:2Li 0.0062 3: 5T : 2 Li

0.0008 0.0008 3:11T:2Li 0.0017 3:24T :2 Li

0.0006
*
0.0006

a
3:18T:2Li 0.0014 3:36T :2 Li

a : Lowest RMSE in each algorithm

* : Lowest RMSE in all the algorithms

 65

Table 5.12: Performance comparison between MLEANN and ANN for Gas furnace time

series with different architectures (four inputs / one output)

Time

series

Learning

algorithm

EANN ANN

RMSE
Architecture

RMSE
Architecture

Train Test Test

Gas

furnace

BP

0.0121 0.0232 3:3T:1Li 0.0496 4 : 3T : 1Li

0.0117 0.0246 3:4T:1Li 0.0527 4 : 5T : 1 Li

0.0100 0.0224
a

3:9T:1Li 0.0479 4 :18T :1 Li

0.0108 0.0320 3:19T:1Li 0.0686 4 :36T :1 Li

SCG

0.0112 0.0191 3:3T:1Li 0.0333 4 : 3T : 1Li

0.0106 0.0187 3:4T:1Li 0.0326 4 : 5T : 1 Li

0.0069
*
0.0131

a
3:11T:1Li 0.0206 4 :16T :1 Li

0.0095 0.0167 3:22T:1Li 0.0308 4 :36T :1 Li

QNA

0.0098 0.0196 3:3T:1Li 0.0340 4 : 3T : 1Li

0.0103 0.0190 3:4T:1Li 0.0332 4 : 5T : 1 Li

0.0072 0.0160
a

3:10T:1Li 0.0235 4 :18T :1 Li

0.0085 0.0175 3:21T:1Li 0.0329 4 :36T :1 Li

LM

0.0115 0.0180 3:3T:1Li 0.0305 4 : 3T : 1Li

0.0111 0.0184 3:4T:1Li 0.0313 4 : 5T : 1 Li

0.0075 0.0139
a

3:9T:1Li 0.0281 4 :14T :1 Li

0.0083 0.0623 3:20T:1Li 0.1342 4 :36T :1 Li

a : Lowest RMSE in each algorithm

* : Lowest RMSE in all the algorithms

Table 5.13: Performance comparison between MLEANN and ANN for Gas furnace time

series with different architectures (four inputs / two outputs)

Time

series

Learning

algorithm

EANN ANN

RMSE
Architecture

RMSE
Architecture

Train Test Test

BP

0.0145 0.0278 3:3T:2Li 0.0596 4 : 3T : 2Li

0.0140 0.0295 3:5T:2Li 0.0632 4 : 5T : 2 Li

0.0121 0.0269
a

3:10T:2Li 0.0575 4 :18T :2 Li

0.0130 0.0385 3:20T:2Li 0.0823 4 :36T :2 Li

SCG 0.0146 0.0248 3:3T:2Li 0.0433 4 : 3T : 2Li

 66

Gas

furnace

0.0138 0.0243 3:4T:2Li 0.0424 4 : 5T : 2 Li

0.0090
*
0.0171

a
3:12T:2Li 0.0268 4 :16T :2 Li

0.0124 0.0217 3:23T:2Li 0.0401 4 :36T :2 Li

QNA

0.0127 0.0255 3:3T:2Li 0.0442 4 : 3T : 2Li

0.0134 0.0247 3:5T:2Li 0.0431 4 : 5T : 2 Li

0.0094 0.0208
a

3:11T:2Li 0.0306 4 :18T :2 Li

0.0111 0.0228 3:22T:2Li 0.0427 4 :36T :2 Li

LM

0.015 0.0234 3:3T:2Li 0.0397 4 : 3T : 2Li

0.0144 0.0239 3:4T:2Li 0.0407 4 : 5T : 2 Li

0.0098 0.0181
a

3:10T:2Li 0.0366 4 :14T :2 Li

0.0108 0.0810 3:20T:2Li 0.1744 4 :36T :2 Li

a : Lowest RMSE in each algorithm

* : Lowest RMSE in all the algorithms

Table 5.14: Performance comparison between MLEANN and ANN for Gas furnace time

series with different architectures (three inputs / two outputs)

Time

series

Learning

algorithm

EANN ANN

RMSE
Architecture

RMSE
Architecture

Train Test Test

Gas

furnace

BP

0.0174 0.0334 3:3T:2Li 0.0715 3: 3T : 2Li

0.0169 0.0355 3:4T:2Li 0.0759 3: 5T : 2 Li

0.0144 0.0322
a

3:8T:2Li 0.0689 3:18T :2 Li

0.0155 0.0461 3:18T:2Li 0.0987 3:36T :2 Li

SCG

0.0175 0.0298 3:3T:2Li 0.0520 3: 3T : 2Li

0.0165 0.0292 3:4T:2Li 0.0509 3: 5T : 2 Li

0.0108
*
0.0205

a
3:10T:2Li 0.0322 3:16T :2 Li

0.0148 0.0261 3:21T:2Li 0.0481 3:36T :2 Li

QNA

0.0153 0.0306 3:3T:2Li 0.0530 3: 3T : 2Li

0.0161 0.0297 3:4T:2Li 0.0518 3: 5T : 2 Li

0.0112 0.0250
a

3:9T:2Li 0.0367 3:18T :2 Li

0.0133 0.0273 3:20T:2Li 0.0513 3:36T :2 Li

LM

0.0179 0.0281 3:3T:2Li 0.0476 3: 3T : 2Li

0.0173 0.0287 3:4T:2Li 0.0488 3: 5T : 2 Li

0.0117 0.0217
a

3:8T:2Li 0.0439 3:14T :2 Li

0.0129 0.0972 3:19T:2Li 0.2093 3:36T :2 Li

a : Lowest RMSE in each algorithm

* : Lowest RMSE in all the algorithms

 67

Figures (5.13 – 5.18) show the test set RMSE for the two time series problems using the meta-

learning technique with different architectures.

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

0.0160

0.0180

RMSE

BP SCG QNA LM

Learning algorithms

3 hidden nodes 5 hidden nodes 24 hidden nodes 36 hidden nodes

Figure 5.13: test set RMSE for Mackey glass using meta-learning technique (for architectures

with 4 inputs – 1 output)

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

RMSE

BP SCG QNA LM

Learning algorithms

3 hidden nodes 5 hidden nodes 24 hidden nodes 36 hidden nodes

Figure 5.14: test set RMSE for Mackey glass using meta-learning technique (for architectures

with 4 inputs – 2 outputs)

 68

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

RMSE

BP SCG QNA LM

Learning algorithms

3 hidden nodes 5 hidden nodes 24 hidden nodes 36 hidden nodes

Figure 5.15: test set RMSE for Mackey glass using meta-learning technique (for architectures

with 3 inputs – 2 outputs)

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

RMSE

BP SCG QNA LM

learning algorithms

3 hidden nodes

5 hidden nodes

18 hidden nodes for BP and QNA, 16 for SCG, 14 for LM

36 hidden nodes

Figure 5.16: test set RMSE for Gas furnace using meta-learning technique (for architectures

with 4 inputs – 1 output)

 69

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

RMSE

BP SCG QNA LM

Learning algorithms

3 hidden nodes

5 hidden nodes

18 hidden nodes for BP and QNA, 16 for SCG, 14 for LM

36 hidden nodes

Figure 5.17: test set RMSE for Gas furnace using meta-learning technique (for architectures

with 4 inputs –2 outputs)

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

RMSE

BP SCG QNA LM

Learning algorithms

3 hidden nodes

 5 hidden nodes

18 hidden nodes for BP and QNA, 16 for SCG, 14 for LM

36 hidden nodes

Figure 5.18: test set RMSE for Gas furnace using meta-learning technique (for architectures

with 3 inputs –2 outputs)

 70

Tables (5.15, 5.16) illustrate the run times of the MLEANN for the two time series with

different architectures

Table 5.15: Run time comparison of MLEANN for Mackey glass time series with different

architectures

Time

series

Learning

algorithm

Hidden

neurons

Run time in minutes

4 i/p - 1 o/p 4 i/p - 2 o/p 3 i/p - 2 o/p

Mackey

Glass

BP

3 240.96 268.80 246.60

5 262.80 293.40 269.40

24 295.80 501.00 305.40

36 376.20
a

537.60
a

400.20
a

SCG

3 394.80 440.41 404.04

5 433.20 483.64 444.08

24 492.60 834.32 508.59

36 634.20
a

906.29
a

674.66
a

QNA

3 417.00 465.18 426.76

5 457.80 511.11 469.30

24 522.60 885.13 539.56

36 673.20
a

962.02
a

716.15
a

LM

3 470.40 524.75 481.41

5 516.00 576.08 528.96

24 588.60 996.92 607.70

36
*
760.20

a *
1086.35

a *
808.70

a

a : Maximum run time in each algorithm

* : Maximum run time in all the algorithms

Table 5.16: Run time comparison of MLEANN for Gas furnace time series with different

architectures

Time

 series

Learning

algorithm

Hidden

neurons

Run time in minutes

4 i/p -1 o/p 4 i/p -2 o/p 3 i/p -2 o/p

Gas

furnace

BP

3 88.20 106.80 91.20

5 90.60 111.00 100.20

18 102.00 113.40 108.60

36 120.00
a

141.60
a

132.00
a

SCG 3 166.20 201.25 171.85

 71

5 174.00 213.18 192.44

16 204.00 226.80 217.20

36 229.20
a

270.46
a

252.12
a

QNA

3 174.00 210.69 179.92

5 184.20 225.68 203.72

18 216.00 240.14 229.98

36 243.00
a

286.74
a

267.30
a

LM

3 179.40 217.23 185.50

5 192.00 235.23 212.34

14 228.60 254.15 243.39

36
*
251.40

a *
296.65

a *
276.54

a

a : Maximum run time in each algorithm

* : Maximum run time in all the algorithms

Figures (5.19 – 5.24) show the run times of the MLEANN for the two time series with

different architectures

0

100

200

300

400

500

600

700

800

Time (min)

BP SCG QNA LM

Learning algorithms

3 hidden nodes 5 hidden nodes 24 hidden nodes 36 hidden nodes

Figure 5.19: Run time of the MLEANN for Mackey glass with different architectures (4

inputs – 1 output)

 72

0

200

400

600

800

1000

1200

Time (min)

BP SCG QNA LM

Learning algorithm

3 hidden nodes 5 hidden nodes 24 hidden nodes 36 hidden nodes

Figure 5.20: Run time of the MLEANN for Mackey glass with different architectures (4

inputs –2 outputs)

0

100

200

300

400

500

600

700

800

900

Time (min)

BP SCG QNA LM

Learning algorithms

3 hidden nodes 5 hidden nodes 24 hidden nodes 36 hidden nodes

Figure 5.21: Run time of the MLEANN for Mackey glass with different architectures (3

inputs –2 outputs)

 73

0

50

100

150

200

250

300

Time (min)

BP SCG QNA LM

learning algorithms

3 hidden nodes

5 hidden nodes

18 hidden nodes for BP and QNA, 16 for SCG, 14 for LM

36 hidden nodes

Figure 5.22: Run time of the MLEANN for Gas furnace with different architectures (4 inputs

– 1 output)

0

50

100

150

200

250

300

Time (min)

BP SCG QNA LM

Learning algorithms

3 hidden nodes

5 hidden nodes

18 hidden nodes for BP and QNA, 16 for SCG, 14 for LM

36 hidden nodes

Figure 5.23: Run time of the MLEANN for Gas furnace with different architectures (4 inputs

–2 outputs)

 74

0

50

100

150

200

250

300

Time (min)

BP SCG QNA LM

Learning algorithms

3 hidden nodes

5 hidden nodes

18 hidden nodes for BP and QNA, 16 for SCG, 14 for LM

36 hidden nodes

Figure 5.24: Run time of the MLEANN for Gas furnace with different architectures (3 inputs

–2 outputs)

Figures (5.25, 5.26) show the test results using 500 epochs BP meta-learning for the two time

series (with architecture of 4 inputs and 1 output).

Figure 5.25: Test results using 500 epochs BP meta-learning for Mackey-glass series. (36

hidden nodes)

 75

Figure 5.26: Test results using 500 epochs BP meta-learning for gas furnace series (18 hidden

nodes)

Convergence of test set RMSE for the two time series is depicted in figures (5.27– 5.28). This

is for the architectures with the lowest RMSE.

Figure 5.27: Mackey-glass time series: average test set RMSE values during the 40

generations and meta-learning. (4 inputs-36 hidden nodes-1output)

 76

Figure 5.28: Gas furnace time series: average test set RMSE values during the 40 generations

and meta-learning. (4 inputs- 1 output - hidden nodes with 18 (BP), 16 (SCG), 18 (QNA), 14

(LM))

5.3.2.2 MLEANN- Results Discussion:

This subsection includes evaluation and summarization of the experimentation results

mentioned in subsection 5.3.2.1. Tables (5.9 – 5.14) show comparative performance between

MLEANN and a conventional ANN with different architectures for the two time series

problems. Performance comparison reveals that EANN design performs more efficiently than

conventional ANN design for the two time series.

For Mackey-glass series (figure 5.25), using 500 epochs of BP learning with architecture of 36

hidden nodes (table 5.9), the RMSE on test set was reduced by 82.4% (BP), 30.6% (SCG),

20.6% (QNA) and 60% (LM). At the same time, number of hidden neurons got reduced by

approximately 52.8% (BP), 47.2% (SCG), 52.7% (QNA) and 50% for LM. LM algorithm

gave the best RMSE error on test set (0.0004) even though it takes long time (760.2 minutes)

while the BP algorithm takes the shortest time (376.2 minutes) as shown in table (5.15).

For the gas furnace time series (figure 5.26), using 500 epochs of BP learning with

architectures indicated in table 5.12, RMSE on test set was reduced by 53.2% (BP with 18

hidden nodes), 36.4% (SCG with 16 hidden nodes), 31.9% (QNA with 18 hidden nodes) and

50.5% (LM with 14 hidden nodes). Savings in hidden neurons amounted to 50% (BP), 31.3%

(SCG), 44.4% (QNA) and 35.7% (LM). SCG training gave the best RMSE value (0.0131) for

gas furnace series. To have an empirical comparison, we deliberately terminated the local

search after 500 epochs (regardless of early stopping in some cases) for all the training

algorithms. In some cases the generalization performance could have been further improved.

 77

As depicted in tables (5.9 - 5.14), our experimentations with small architectures also reveal the

efficiency of MLEANN technique. The gas furnace time series could be learned just with 3 or

5 hidden neurons using LM algorithm. LM produced best results with few hidden neurons.

However, when the hidden neurons were increased, SCG algorithm marginally preformed

better than LM. For Mackey-glass series the results were not that encouraging (using 4 hidden

neurons) when compared with the conventional design using 36 hidden neurons. The Mackey-

glass series requires more hidden neurons to improve the RMSE values.

In this experiment, the work was mostly concentrated on the evolutionary search of optimal

learning algorithms for feed forward neural networks using direct encoding method (fixed

chromosome structure) to represent the architecture. As the size of the network increases, the

chromosome size grows. Moreover, implementation of crossover is often difficult due to

production of non-functional offspring‘s. Indirect encoding methods overcome the problems

with direct encoding although the search of architectures is restricted to layers. Using the

cellular configuration as an indirect encoding method to explore the architecture of neural

networks is more efficiently. Gutierrez (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001)

had shown that their cellular automata technique performed better than direct codifications and

this is what I used in the following experiment.

5.3.3 MLEANN-CA: Experimentation and Simulation Results:

In this subsection, we test and explore the performance of the proposed MLEANN-CA

approach that used the cellular configurations in optimizing networks architectures. According

to Gutteriez experiment (Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001), he applied the

evolutionary cellular configurations for designing feed-forward neural network architecture.

He used a network with four inputs, 36 hidden nodes, and two outputs. By using the cellular

automata technique, the positions of growing and decreasing seeds in the CA grid are codified

into the genotype. The length of chromosome is 30, 3 genes for each growing or decreasing

seed. The result is an optimized neural network with three inputs, three hidden nodes, and two

outputs.

In this experiment, we used the original neural network (4: 36: 2) and the optimized one (3: 3:

2) from Gutteriez experiment. We assumed that the two networks are fully connected as a

worst case. We evolved and trained these networks through the Neurosolution and

NeuroGenetic optimizer toolboxes using two time series: Mackey-glass and Gas furnace. We

used the direct encoding method in training and evolving the networks. We compared the

results according to the architecture, RMSE error, and run time. The user has the option to

pick the best neural network (e.g. small architecture size, less RMSE, fast convergence, or

short run time, etc.) among the four learning algorithms used during the training process.

5.3.3.1 MLEANN-CA: Simulation Results:

Tables (5.17 – 5.18) display empirical values of RMSE on test data using the meta-learning

technique for the two time series problems with the network architectures: (4:36:2) and

(3:3:2). These tables also include the new optimized architectures generated after applying the

meta-learning technique. The results are adapted from tables (5.10, 5.11, 5.13, 5.14). For

comparison purposes, test set RMSE values using conventional design techniques are also

 78

presented in these tables (adapted from tables 5.4, 5.5, 5.7, 5.8). In addition, the run times

using the meta-learning technique for the two time series are also presented in tables (adapted

from tables 5.15- 5.16)

Table 5.17: Performance comparison between MLEANN and ANN for Mackey-glass time

series with: original architecture, and the optimized one using cellular configurations

Mackey glass time series

Learning

algorithm

ANN EANN

Architecture
RMSE

Architecture
RMSE Run time

(minutes) Test Test

BP
3:3T:2Li 0.1430 3:3T:2Li 0.0252 246.60

4:36T:2Li 0.0484 3:18T:2Li 0.0085 537.60

SCG
3:3T:2Li 0.0137 3:3T:2Li 0.0094 404.04

4:36T:2Li 0.0059 3:20T:2Li 0.0041 906.29

QNA
3:3T:2Li 0.0108 3:3T:2Li 0.0086 426.76

4:36T:2Li 0.0041 3:18T:2Li 0.0033 962.02

LM
3:3T:2Li 0.0086 3:3T:2Li 0.0038 481.41

4:36T:2Li 0.0012 3:19T:2Li 0.0005 1086.35

Table 5.18: Performance comparison between MLEANN and ANN for Gas furnace time

series with: original architecture, and the optimized one using cellular configurations

Gas furnace time series

Learning

algorithm

ANN EANN

Architecture
RMSE

Architecture
RMSE Run time

(minutes) Test Test

BP
3:3T:2Li 0.0715 3:3T:2Li 0.0334 91.20

4:36T:2Li 0.0823 3:20T:2Li 0.0385 141.60

SCG
3:3T:2Li 0.0520 3:3T:2Li 0.0298 171.85

4:36T:2Li 0.0401 3:23T:2Li 0.0217 270.46

QNA
3:3T:2Li 0.0530 3:3T:2Li 0.0306 179.92

4:36T:2Li 0.0427 3:22T:2Li 0.0228 286.74

LM
3:3T:2Li 0.0476 3:3T:2Li 0.0281 185.50

4:36T:2Li 0.1744 3:20T:2Li 0.0810 296.65

 79

Figures (5.29 – 5.30) show the test set RMSE for the two time series problems using the meta-

learning technique with the tested network architectures.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

RMSE

3:3T:2 4:36T:2

Network Architecture

BP SCG QNA LM

Figure 5.29: test set RMSE for Mackey glass using meta-learning technique with two network

architectures: original network (4:36:2), optimized network by cellular (3:3:2)

0.000

0.020

0.040

0.060

0.080

0.100

RMSE

3:3T:2 4:36T:2

Network Architecture

BP SCG QNA LM

Figure 5.30: test set RMSE for Gas furnace using meta-learning technique with two network

architectures: original network (4:36:2), optimized network by cellular (3:3:2)

 80

Figures (5.35 – 5.36) show the run times of the MLEANN for the two time series with the

tested network architectures.

0

200

400

600

800

1000

1200

Time (min)

3:3T:2 4:36T:2

Network Architecture

BP SCG QNA LM

Figure 5.31: Run time of the MLEANN for Mackey glass with two network architectures:

original network (4:36:2), optimized network by cellular (3:3:2)

0

50

100

150

200

250

300

Time (min)

3:3T:2 4:36T:2

Network Architecture

BP SCG QNA LM

Figure 5.32: Run time of the MLEANN for Gas furnace with two network architectures:

original network (4:36:2), optimized network by cellular (3:3:2)

 81

5.3.3.2 MLEANN-CA: Results Discussion:

This subsection includes evaluation and summarization of the experimentation results

mentioned in section 5.3.3. The cellular automata technique is able to provide more optimal

architectures than direct codification methods. According to Gutteriez experiment result

(Gutierrez, Isasi, Molina, Sanchis, & Galvan, 2001), the number of hidden neurons got

reduced by approximately 91.7% (from 36 to 3 hidden nodes) using the cellular

configurations. Using the direct codification in my experiments, for the Mackey glass (table

5.17) the number of hidden neurons (36 hidden nodes) reduced by 50% (BP), 44.4% (SCG),

50% (QNA), and 47.2% (LM). For the Gas furnace (table 5.18), the number of hidden neurons

(36 hidden nodes) reduced by 44.4% (BP), 36.1% (SCG), 38.9% (QNA), and 44.4% (LM).

Tables (5.17 – 5.18) also show comparative performance between the MLEANN and the

conventional design of ANNs for the two time series problems with architectures: (4:36:2) and

(3:3:2). For Mackey-glass series (table 5.17), the results of RMSE on test set were not that

encouraging (using 3 hidden neurons) when compared with the architecture design of 36

hidden neurons. The Mackey-glass series requires more hidden neurons to improve the RMSE

values. LM algorithm gave the best RMSE error on test set for the architecture of 36 hidden

nodes even though it takes the longest time. For the gas furnace time series (table 5.18), the

results of RMSE on test set were much better than in Mackey glass results. For BP and LM

algorithms, the RMSE for architecture with 3 hidden nodes was less than in architecture with

36 hidden nodes. This is different in SCG and QNA algorithms, since the RMSE for

architecture with 36 hidden nodes was less than in architecture with 3 hidden nodes. The LM

algorithm produced the best results of RMSE with 3 hidden neurons while SCG algorithm

produced the best results with 36 hidden neurons. For the two time series in tables (5.17 –

5.18), all the learning algorithms take short run time for the architecture with 3 hidden nodes

in comparison with 36 hidden nodes. For the Mackey glass, the time for evolving and training

was much longer than in Gas furnace for all algorithms with different architectures.

Summary

In this chapter, three main experiments were performed and compared together using

NeuroSolutions and NeuroGenetic Optimizer toolboxes, and two famous chaotic time series.

These experiments used four different learning algorithms in the training process. By applying

these experiments, we recognized the best solution and we distinguished the effect of different

learning algorithms on different data sets. In the first experiment, the performance of the

conventional design of ANNs was tested. We found that the training speed and generalization

performance of an ANN is totally dependant on the learning algorithms, architectures, transfer

functions, and initial weights. In the second experiment, the performance of the MLEANN

approach was explored. In this experiment, the work was concentrated on the evolutionary

search of optimal network architectures using direct encoding methods which required much

larger chromosomes especially for ANNs with complex architectures. This ended in a too

huge space search and thus had longer time in the training process. The third experiment

investigated the performance of the MLEANN-CA approach that used indirect encoding

methods for designing network architectures. The results revealed the efficiency of the

proposed MLEANN–CA in obtaining an efficient design of feed-forward network architecture

that is smaller, faster and with better generalization performance.

 82

CHAPTER SIX

CONCLUSIONS AND FUTURE WORKS

This chapter deals with the conclusions and future works in our research. In section 6.1 we

start by presenting the main conclusions and in section 6.2 we provide some recommended

suggestions on future works.

6.1 Main Conclusions

In this thesis, we had proposed and formulated; MLEANN-CA: an adaptive computational

framework based on evolutionary computation and local search procedures for the automatic

design of optimal artificial neural networks using direct and indirect encoding methods. In this

framework, the evolutionary cellular configurations (indirect encoding methods) were used for

designing small feed-forward neural network architectures. Then all the generated

architectures were trained and evolved separately using the meta-learning algorithm with the

direct evolutionary approach, where four different learning algorithms (BP, SCG, QNA, LM)

were used separately for training the neural networks in parallel mode. We tested and

explored, experimentally, the performance of the MLEANN-CA, MLEANN, and ANNs using

NeuroSolutions and NeuroGenetic Optimizer toolboxes, and two famous chaotic time series.

We also explored and evaluated the performance of different neural network learning

algorithms for the two chaotic time series when the architecture was changed. We compared

the performance of the MLEANN-CA approach with the previous MLEANN that used only

the direct codifications in optimizing network architectures and with the conventional design

of ANNs. Empirical results illustrated the importance, scalability, and the efficacy of this

MLEANN-CA approach in obtaining an efficient design of feed-forward network architecture

that was smaller, faster and with better generalization performance.

The three main experiments that were performed in this thesis, using NeuroSolutions /

NeuroGenetic Optimizer toolboxes and two chaotic time series, are summarized below:

1. In the first experiment (Artificial neural networks): the performance of the

conventional design of ANNs was tested for the two time series. We found that the

training speed and generalization performance (i.e. test set RMSE) of an ANN was

totally dependant on the learning algorithms, architectures - hidden neurons, transfer

functions, initial weights, and the type of the data sets used. The main drawback in this

experiment was that for the two time series with different number of hidden neurons,

the values of the RMSE were very large in comparison with the results in the other two

experiments. Also, there was no optimization and reduction in the network

architectures.

2. In the second experiment (MLEANN): the performance of the MLEANN framework

was explored. This experiment showed that the EANN design performs more

efficiently than conventional ANN design for the two time series since the RMSE

values and the numbers of hidden neurons were clearly reduced. So, using the

 83

MLEANN framework improved the learning process and obtained efficient design of

network architectures with faster convergence. These results were similar and very

close to what was found by Ajith in his experiment with MLEANN framework

(Abraham, 2002), (Abraham, 2004). The main drawback in this experiment was in

using the direct encoding methods for evolving and optimizing network architectures

which required much larger chromosomes especially for ANNs with complex

architectures. This ended in a too huge space search and thus had longer time in the

training and evolving processes (scalability problem), besides the difficulty in

implementing crossover operation.

3. In the third experiment (MLEANN-CA): the performance of the MLEANN-CA

framework was investigated. In this experiment we used the evolutionary cellular

configurations for designing and optimizing network architectures, instead of using the

direct encoding methods as in Ajith‘s work (Abraham, 2004), and then we applied the

meta-learning algorithm for training and evolving these new architectures. This work

was different to what was done by Gutteriez (Gutierrez, Isasi, Molina, Sanchis, &

Galvan, 2001) since he used the evolutionary cellular configurations for designing

feed-forward neural networks architectures but he did not apply the idea of meta-

learning algorithm for training the new generated architectures. The experiment results

revealed the efficiency of the proposed MLEANN-CA in obtaining an efficient design

of feed-forward network architecture that was smaller, faster and with better

generalization performance (small values of RMSE).

In general, the following points summarize the main conclusions and notes in this thesis:

1. Selecting the architecture of a network (number of layers, hidden neurons, activation

functions, and connection weights) and the correct learning algorithm with its correct

parameters is a tedious task for designing an optimal ANN. Moreover, the optimal

design of network architecture often becomes a necessity for critical applications and

hardware implementations.

2. Evolutionary computation techniques are good approaches for automatically generate

appropriate neural network architectures. However the codification of the network is a

crucial point in the success of the method. Direct codifications become inefficient from

a practical point of view. They don‘t allow scalability, so to represent large network

architectures; very large structures of chromosomes are required which need long time

during their operations. Moreover, implementation of crossover is often difficult due to

production of non-functional offspring‘s. To solve these problems an indirect

constructive encoding method is used although the search of architectures is restricted

to layers. Indirect encoding method, based on evolutionary cellular configurations, is

driven to reduce the search space in such a way that similar solutions are eliminated

and represented by the only one representative. In this case, the codification makes the

method able to find appropriate architectures, which are smaller, and faster.

3. In the meta-learning algorithm, all the generated architectures of the initial population

are trained and evolved separately by four different learning algorithms in a parallel

environment. Therefore, meta-learning improves the performance, efficiency,

 84

accuracy, and scalability. Meta-learning is also generic, meaning that it is algorithm

independent, hence it can benefit from fast and efficient learning algorithms.

4. Different learning algorithms have their staunch proponents, who can always construct

instances in which their algorithm performs better than most others. This study reveals

the difficulty to generalize which is the best local search algorithm that would work for

all the problems. As example, for smaller networks with few numbers of hidden

neurons, LM algorithm gave the best results, while SCG algorithm produced the best

results with large number of hidden neurons for specific problems.

6.2 Future Works

Like most researches in artificial neural networks and evolutionary computations, this thesis is

widely open for improvement. As a future work we recommend the followings:

1. Use the proposed MLEANN-CA approach for optimizing recurrent neural networks,

morphological neural networks, and other connectionist networks instead of feed-

forward neural networks.

2. Study the influence of the rules in the cellular automata evolution and the capability of

other rules to generate a complete space of NN architectures.

3. Use other different time series, as waste water flow prediction (Kasabov, 1996), in

training and evolving the neural networks and investigate its effect and performance.

4. Use other different learning algorithms for training neural networks and investigate

their effect and performance.

5. Use the MLEANN-CA approach in variety of applications including:

 Financial, Insurance, and Securities: Real estate appraisal, loan advisor,

credit line use analysis, corporate financial analysis, currency price prediction,

Policy application evaluation, product optimization, market analysis, automatic

bond rating, stock trading advisory systems.

 Manufacturing: Manufacturing process control, product design and analysis,

process and machine diagnosis, real-time particle identification, visual quality

inspection systems, beer testing, paper quality prediction, computer chip quality

analysis, analysis of grinding operations, chemical product design analysis,

machine maintenance analysis, dynamic modeling of chemical process system,

selecting flexible manufacturing systems (FMS), from a group of candidate-

FMSs, under disparate level-of-satisfaction of decision maker (Bhattacharya,

Abraham, Grosan, & Vasant, 2006).

 85

 Medical: Breast cancer cell analysis, EEG and ECG analysis, prosthesis

design, optimization of transplant times, hospital expense reduction, hospital

quality improvement, emergency room test advisement.

 Electronics and Telecommunications: Code sequence prediction, integrated

circuit chip layout, chip failure analysis, machine vision, voice synthesis,

nonlinear modeling, image and data compression, automated information

services, real-time translation of spoken language.

 Defense: Target tracking, facial recognition, radar and image signal processing

including data compression, feature extraction and noise suppression,

signal/image identification.

 86

REFERENCES

Abraham, A., Nath, B., (2000): ―Optimal Design of Neural Nets Using Hybrid Algorithms‖. In

Proceedings of the Sixth Pacific Rim International Conference on Artificial Intelligence

(PRICAI 2000), Melbourne, pp. 510-520.

Abraham, A., Nath, B., (2001): ―ALEC—An Adaptive Learning Framework for Optimizing

Artificial Neural Networks‖. In: N.A. Vassil, et al., (Eds.), Computational Science, Springer,

Germany, San Francisco, USA, pp. 171–180

Abraham, A., (2002): ―Optimization of Evolutionary Neural Networks Using Hybrid Learning

Algorithms‖. IEEE 2002 Joint International Conference on Neural Networks, Vol. 3, IEEE

Press, New York, pp.2797–2802

Abraham, A., (2004): ―Meta-Learning Evolutionary Artificial Neural Networks‖.

Neurocomputing Journal, Elsevier Science, Netherlands, Vol. 56c, pp. 1-38.

Abu Salah, A. Al-Salqan, Y. (2006-A): ―Meta-learning Evolutionary Artificial Neural

Networks: By Means of Cellular Automata‖. In: Proceedings of IEEE International

Conference on Computational Intelligence for Modelling, Control and Automation

(CIMCA2005), November 2005, Vienna-Austria, IEEE press, USA.

Abu Salah, A. Al-Salqan, Y. (2006-B): ―Meta-Learning Evolutionary Artificial Neural

Networks Using Cellular Configurations: Experimental Works‖, IEEE International

Conference on Intelligent Computing, China, Lecture Notes in Computer Science, Vol. 4113,

Springer, Verlag Berlin Heidelberg, pp. 178-193.

Andersen, H., Tsoi, A., (1993): ―A Constructive Algorithm for the Training of a Multilayer

Perceptron Based on the Genetic Algorithm‖. Complex System. vol. 7, no. 4, pp. 249–268.

Battiti, R. (1992): ―First and second-order methods for learning: between steepest descent and

Newton‘s method‖. Neural Computation 4, pp. 141-166.

Baxter, J., (1992): ―The Evolution of learning Algorithms for Artificial Neural Networks‖. In

Complex Systems, D. Green and T. Bossomaier, Eds. Amsterdam. The Netherlands: IOS, pp.

313–326.

Belew, R.., McInerney, J., Schraudolph, N., (1991): Evolving networks: Using genetic

algorithm with connectionist learning. Technical Report no. CS90-174 (revised). Computer

Science Engineering Department (C-014), Univ. of California, San Diego,

Bengio, S., Bengio, Y., Cloutier, J., Gecsei, J., (1992): ―On the Optimization of a Synaptic

Learning Rule‖. In Preprints Conf. Optimality in Artificial and Biological Neural Networks,

University of Texas, Dallas.

 87

Bhattacharya, A., Abraham, A., Grosan, C., Vasant, P., (2006): ―Meta-Learning Evolutionary

Artificial Neural Network for Selecting Flexible Manufacturing Systems under Disparate

Level-of-Satisfaction of Decision Maker‖. IEEE International Symposium on Neural

Networks, China, Lecture Notes in Computer Science, Springer Verlag.

Binos, T., (2003): Evolving Neural Network Architecture and Weights Using An Evolutionary

Algorithm, Department Of Computer Science, RMIT.

Blickle, T., Thiele, L., (1995): A comparison of selection schemes used in genetic algorithms.

(Technical Report, no.11). Computer Engineering and Communication Network Lab (TIK),

Swiss Federal Institute of technology, Zurich, Switzerland.

Box, G.E.P., Jenkins, G.M., (1970): Time Series Analysis, Forecasting and Control. Holden

Day, San Francisco, 1970.

Branke, J., (1995): ―Evolutionary Algorithms for Neural Network Design and Training‖, In

Jarmo Talander, ed.; Proceedings of the 1st Nordic Workshop Genetic Algorithms

Applications. Vaasa, Finland.

Braun, H., Weisbrod, J. (1993): ―Evolving neural feedforward networks‖. In Albrecht, R. F.,

Reeves, C. R., editors, Proceedings of ANNGA93, International Conference on Artificial

Neural Networks and Genetic Algorithms, Springer-Verlag, Innsbruck, pages 25–32.

Burney, S.M., Jilani, T.A., Ardil, C. (2004): ―A Comparison of First and Second Order

Training Algorithms for Artificial Neural Networks‖. International journal of computational

intelligence, volume 1, no. 3 issn:1304-4508.

Caudell, T.P., Dolan, C.P. (1989): ―Parametric Connectivity: Training of Constrained

Networks using Genetic Algorithms‖, Proc. of the third International Conference on Genetic

Algorithms and their applications, Morgan Kaufman, pp.370-374.

Chalmers, D., (1990): ―The Evolution of learning: An Experiment in genetic Connectionism‖.

In Proc. of Connectionist Models Summer School. San Mateo, CA: Morgan Kaufmann, pp.

81–90.

Chan, P., Stolfo, S., (1993): Toward Parallel and Distributed Learning by Meta-Learning.

Department of Computer Science, Columbia University, New York.

Chval, J., (2002): Evolving Artificial Neural Networks by Means of Evolutionary Algorithms

with L-systems based Encoding. Research Report. Faculty of Electrical Engineering,

Technical University in Prague.

Fogel, D. B., Wasson, E. C., Boughton, E. M., (1995): ―Evolving neural networks for

detecting breast cancer,‖ Cancer Lett., vol. 96, no. 1, pp. 49–53.

Gardner, M., (1970): ―The fantastic combinations of John Conway‘s new solitaire game life‖,

Scientific American, vol. 223, no. 4, pp. 120-123

 88

Gruau, F., Whitley, L.D., (1993): ―Adding Learning to the Cellular Development of Neural

Networks: Evolution and the Baldwin Effect‖. Evolutionary Computation, vol. 1, no. 3, pp.

213-233

Gruau F., Whitley, L.D, Pyeatt, L., (1995): ―Cellular Encoding Applied to Neurocontrol‖. In

Proceedings of the Sixth International Conference on Genetic Algorithms.

Guo, Z., Uhrig, R. E., (1992): ―Using genetic algorithms to select inputs for neural networks,‖

In Proc. Int. Workshop Combinations of Genetic Algorithms and Neural Networks

(COGANN-92), D. Whitley and J. D. Schaffer, Eds. Los Alamitos, CA: IEEE Computer Soc.,

pp. 223–234.

Gutierrez. G., Isasi, P., Molina, J.M., Sanchis, A., Galvan, I.M. (2001): ―Evolutionary cellular

configurations for designing feedforward neural network architectures‖. Lecture Notes in

Computer Science, Vol. 2084, Springer, Germany, pp. 514–521.

Gutowitz, H., (1991): ―Cellular Automata: Theory and Experiment‖. MIT Press. Special issue

of Physica D, Volume 45, Nos. 1/3.

Harp, S., Samad T., Guha A. (1989): ―Towards the Genetic Synthesis of Neural Networks‖.

Proceedings of the Third International Conference on Genetic Algorithms and their

applications, San Mateo, CA, USA, pp 360-369.

Harp, S.A., Samad, T., Guha, A., (1990): ―Designing application specific using genetic

algorithms‖, In Advances in Neural Information Processing Systems 2, Morgan Kaufmann,

San Mateo, CA, pp. 447-454.

Haupt, L., (December, 1997): ―Introduction to optimization‖. In Practical Genetic Algorithms.

John Wiley and Sons, pages 1-24.

Hendtlass, T., Podlena, J., (1995): ―Evolving complex neural networks that age‖. IEEE

International Conference on Evolutionary Computation, 2:590-595.

Hestenes, M. R., Stifle, E. (1952): ―Methods of conjugate gradients for solving linear

systems‖. Journal of Research of the National Bureau of Standards-49, pp. 409–436.

Hinton, G. E. (September, 1989): ―Connectionist learning procedures‖. Artificial Intelligence,

vol.40, pp. 185-234.

Hunt, S.D., Deller, J. R., (1995): ―Selective training of feedforward artificial neural networks

using matrix perturbation theory‖. Neural networks, vol. 8, no. 6, pp 931-944.

Husken, M., Gayko, J.E., Sendoff, B. (2000): ―Optimization for Problem Classes-Neural

Networks that Learn to Learn‖. IEEE Symposium of Evolutionary computation and Neural

networks (ECNN-2000), pages 98-109, IEEE Press 2000.

 89

Hussain, J.E,. Browse, R.A., (1998): ―Attribute Grammars for Genetic Representations of

Neural Networks and Syntactic Constrains of Genetic Programming‖. In AIVIGI‘98,

Workshop on Evolutionary Computation.

Jacob, C., Rehder, J., (1993): "Evolution of neural networks architectures by a hierarchical

grammar-based genetic system". ANNGA'93, Proc. of the International Conference on

Artificial Neural Networks & Genetic Algorithms, Innsbruck, pp.72 - 79.

Jain, A. K., Mao, J., Mohiuddin, K. (March, 1996): ―Artificial neural networks: A tutorial‖.

IEEE Computer special issue on Neural Computing, pp. 31-44.

Kasabov, N., (1996): Foundations of Neural Networks, Fuzzy Systems and Knowledge

Engineering. The MIT Press.

Kitano, H., (1990): ―Designing Neural Networks using Genetic Algorithms with Graph

Generation System‖, Complex System. Vol. 4, no. 4, pp. 461–476

Korning, P. G. (1995): ―Training neural networks by means of genetic algorithms working on

very long chromosomes‖. Int. J. Neural System, vol. 6, no. 3, pp. 299–316.

Koza, J., Rice, J., (1991): ―Genetic generation of both the weights and architecture for a neural

network‖. In Proceedings of IEEE International Joint Conference of Neural Networks

(IJCNN‘91 Seattle), vol. 2, pp. 397–404.

Leung, F., Lam, H. K., Ling, S. H., (January, 2003): ―Tuning of the Structure and Parameters

of a Neural Network Using an Improved Genetic Algorithm‖. IEEE transaction on Neural

networks, Vol. 14 No 1.

Lippmann, R. P. (1987): ―An introduction to computing with neural nets‖. IEEE ASSP

Magazine, pp. 4-22.

Liu, Y., Yao, X., (1998): ―Toward Designing Neural Network Ensembles by Evolution‖. In

Parallel Problem Solving from Nature (PPSN) V, Lecture Notes in Computer Science. Berlin,

Germany: Springer-Verlag, vol. 1498, pp. 623–632.

Luke, S., Spector, L., (1996): ―Evolving Graphs and Networks with Edge Encoding:

Preliminary Report‖. Genetic Programming conference (GP96), Stanford

Mackey, M.C., Glass, L., (1977): Oscillation and Chaos in Physiological Control Systems.

Science 197. pp. 287–289.

Magoulas, G., Plagianakos, V., Vrahatis, M., (2001): ―Hybrid methods using evolutionary

algorithms for on-line training‖. In Proc. of the IEEE International Joint Conference on Neural

Networks (IJCNN'2001), Washington.

Merz, C.J. (1996): ―Dynamical selection of learning algorithms‖. In: edited by F. Filnstone

and B. Bunny. Artificial Intelligence and Statistics. New York: Springer-Verlag.

 90

Molar, F., (1997): ―Efficient Training of feedforward Neural Networks‖. Computer Science

Department, Aarhus University.

Molina, J.M., Galván, I., Isasi, P., Sanchis, A., (2000-A): ―Evolution of Context-free

Grammars for Designing Optimal Neural Networks Architectures‖. GECCO 2000, Workshop

on Evolutionary Computation in development of ANN. USA.

Molina, J.M., Galvan, I., Isasi, P., Sanchis, A. (2000-B): ―Grammars and cellular automata for

evolving neural network architectures‖. IEEE International Conference on Systems, Man, and

Cybernetics, 4:2497-2502.

Moller, A. F. (1993): ―A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning.

Neural Networks‖. Vol. 6, no.4, pp. 525-533.

Nehaniv, C.L., (2002): ―Self-Reproduction in Asynchronous Cellular Automata‖. Adaptive

Systems Research Group, Faculty of Engineering & Information Sciences, University of

Hertfordshire, United Kingdom.

Pearlmutter, B.A., (1994): ―Fast exact multiplication by the Hessian‖. Neural Computation.

6(1), pp.147–160.

Prodromidis, A., Stolfo, S., (1998): ―Pruning meta-classifiers in a distributed data mining

system‖. In Proc of the KDD‘98 workshop in Distributed Data Mining.

Prodromidis, A., (1999): ―Management of Intelligent Learning Agents in Distributed Data

Mining Systems‖. Department of Computer Science, Columbia University, New York, NY.

Rumelhart, E., Hinton, G. E., Williams, R. J. (1986): ―Learning internal representations by

error propagation‖. Parallel distributed processing. Vol. I, MIT Press, Cambridge, MA, pp.

318-362.

Salomon, R., (1998): ―Evolutionary algorithms and gradient search: Similarities and

differences‖. IEEE Transactions on Evolutionary Computation, vol. 2, no. 2, pp. 45-55.

Schiffmann, W., Joost, M., Werner, R., (1993): ―Comparison of optimized backpropagation

algorithms‖. Proceedings f the European Symposium on Artificial Neural Networks, Brussels,

Belgium, pp. 97–104.

Schraudolph, N. N. (1999): ―Local gain adaptation in stochastic-gradient descent‖. In

Proceedings of the Ninth International Conference on Artificial Neural Networks, Edinburgh,

Scotland, IEE, London, pp. 569–574.

Schraudolph, N.N., Grapple, T. (January, 2003): ―Combining Conjugate Direction Methods

with Stochastic Approximation of Gradients‖. Proceedings of the Ninth International

Workshop on Artificial Intelligence and Statistics.

 91

Seppo, P., Vagan, T., Alexey, T., (1999-A): ―A Dynamic Integration Algorithm for an

Ensemble of Classifiers‖. University of Finland, Finland.

Seppo, P., Vagan, T., Alexey, T., (1999-B): ―Dynamic Integration of Data Mining Methods

Using Selection in a Knowledge Discovery Management System‖. University of Finland,

Finland.

Sexton, R. S., Dorsey, R. E., Johnson, J. D. (1998): ―Toward global optimization of neural

networks: A comparison of the genetic algorithm and backpropagation‖. Decision Support

System., vol. 22, no. 2, pp. 171–185.

Topchy, A., Lebedko, O., Miagkikh, V., (1995): ―Fast learning in multilayered neural

networks by means of hybrid evolutionary and gradient algorithms‖. Research Institute for

Multiprocessor Computer Systems Chekhov, Taganrog, RUSSIA.

Whitley, D. (1994): ―A genetic algorithm tutorial‖. Statistics and Computing, volume 4, pp.

65-85.

Wolfram, S. (1994): ―Cellular automata and complexity‖. Addison-Wesley.

Wong, M.H., Chung, T.S., Wong, Y.K., (1998): ―Application of evolving neural network to

unit commitment‖. Proceedings of EMPD '98 International Conference on Energy

Management and Power Delivery, 1:154 -159.

Yao, X., (1993): ―A review of Evolutionary Artificial Neural Networks‖, International Journal

of Intelligent Systems, vol. 8, pp. 539-567.

Yao, X. (1999): ―Evolving artificial neural networks‖. Proceedings of the IEEE, vol. 87, No.

9, pp.1423-1447.

Yao, X., Liu, Y., (1996): ―Ensemble Structure of Evolutionary Artificial Neural Networks‖. In

Proc. IEEE International Conference on Evolutionary Computation (ICEC‘96), Nagoya,

Japan, pp. 659–664.

Yao, X., Liu, Y., (1997): ―A New Evolutionary System for Evolving Artificial Neural

Networks‖, IEEE Trans. Neural Networks, vol. 8, no. 3, pp. 694–713.

Yao, X., Liu, Y., (1998): ―Towards designing artificial neural networks by evolution‖.

Applied Mathematics and Computation. vol. 91, no. 1, pp.83–90.

Yoon, B., Holmes, D. J., Langholz, G. (1994): ―Efficient genetic algorithms for training

layered feedforward neural networks‖. Inform. Sci., vol. 76, nos. 1–2, pp. 67–85

Zhou, G., Si, J., (1998): ―Advanced neural-network training algorithm with reduced

complexity based on Jacobian deficiency‖. IEEE Trans Neural Networks. Vol. 9, no. 3, pp.

448-453.

 92

APPENDIX A

TRAINING AND EVOLVING ANNS USING NEUROSOLUTIONS AND

NEUROGENETIC OPTIMIZER TOOLBOXES

In this appendix we introduce short description about the NeuroSolutions and NeuroGenetic

Optimizer toolboxes we used in our experiments (chapter 5). In addition, we present the

important screens and windows that are shown during the experiments simulations using these

toolboxes.

A.1 NeuroGenetic Optimizer (version 2.1)

NeuroGenetic Optimizer (NGO) automates much of the neural network design and

development chores we used to do, probably by hand using trial and error. Some of these

tedious tasks include testing/training data set selection, determining which input variables to

use and neural network type selection and architectural design. The NGO uses Genetic

Algorithms to evolve neural network structures and select suitable input variables. This

evolving, learning, adapting Artificial Life capability is a powerful problem solving paradigm.

We can use these techniques to solve any number of real world challenges.

The NGO, like most other leading neural network tools, is being used in a wide variety of

applications, including financial predictions, medical diagnosis, market classification,

modeling manufacturing processes and resulting product quality, classification of biological

organisms, job cost estimating, fraud detection and many others. The NGO is a general

purpose, robust, practical tool to naturally genetically engineer neural networks. This system

emerged from the need to easily and quickly discover the best data elements and neural

network architectures to build effective neural network applications. Previously, many hours

of human effort were spent attempting to find the best networks manually. It was clear that an

effective automation tool was needed to off-load these hours of effort onto computers and

hence the NGO was born.

During a run, the NGO provides us the ability to view the status of what is happening, view

the evolving population, see the configurations and statistics of the Top 10 networks found so

far, observe learning curves and watch the neural outputs match our desired data for the

network being trained and view and/or print reports on the specifics of the system setup and

the resulting top networks. The NGO was developed by BioComp Systems, Inc.

A.1.1 NGO Screens:

The following screens show how to make training or evolving (optimizing) for ANNs using

NGO toolbox.

http://www.bio-comp.com/pages/prod01.htm
http://www.bio-comp.com/

 93

Figure A.1.1: Neural network training mode: optimizing, or standard training

Figure A.1.2: Application type: time series prediction, classification, diagnosis, etc

 94

Figure A.1.3: Time series configuration: optimizing mode

Figure A.1.4: Time series configuration: standard training mode

 95

Figure A.1.5: Load data file: time series problem (Mackey-glass or Gas furnace)

Figure A.1.6: Data import: includes network inputs & outputs (4 inputs, 2 outputs)

 96

Figure A.1.7: Data preparation: scaling and splitting

Figure A.1.8: Neural network parameters: hidden nodes, transfer function, initial weight, etc

 97

Figure A.1.9: Genetic algorithm parameters: population size, selection, mutation, etc

Figure A.1.10: System configuration: type of error, stopping criteria and maximum

generation, etc

 98

Figure A.1.11: Status of what happing during training and optimizing neural networks

Figure A.1.12: Configurations and status of top 10 networks

 99

Figure A.1.13: Neural network output: desired and predicted

Figure A.1.14: Learning curves: accuracy / error trend

 100

A.2 NeuroSolutions (version 5.01)

For many years neural networks have been successfully applied to various data prediction,

data classification and data mining problems in research, business and industrial

environments. NeuroSolutions is a highly graphical neural network simulation tool for

Windows 98/2000/XP. This leading-edge software combines a modular, icon-based network

design interface with an implementation of advanced learning procedures (such as conjugate

gradients, Levenberg Marquard, and backpropagation) and genetic optimization giving us the

power and flexibility needed to design the neural network that produces the best solution for

our specific problem.

Some other notable features include C++ source code generation, customized components

through DLLs, neuro-fuzzy architectures, and programmatic control from Visual Basic using

OLE Automation. NeuroSolutions includes Genetic Optimization which allows us to optimize

virtually any parameter in a neural network to produce the lowest error. For example, the

number of hidden units, the learning rates, and the input selection can all be optimized to

improve the network performance. Individual weights used in the neural network can even be

updated through Genetic Optimization as an alternative to traditional training methods.

NeuroSolutions includes number of important wizards and the NeuralBuilder is one of them,

which I used in my experiments simulations. The NeuralBuilder is a sophisticated neural

network builder that sends commands to NeuroSolutions to automatically construct a fully-

functional neural network. The object-oriented simulation environment of NeuroSolutions

gives the user an unprecedented flexibility to construct neural network simulations. However,

flexibility and power require a substantial amount of knowledge about neural networks. The

NeuralBuilder aids the user by encapsulating the network building rules and reducing the user

decisions down to an easy, step-by-step procedure.

Much of the construction effort necessary to build neural networks with NeuroSolutions

becomes transparent to the user. There is a wide range of conventional neural network

architectures (models) to choose from. Some of these models / architectures include:

Multilayer Perceptron, Generalized Feedforward, Modular, Probabilistic Neural Network

(PNN), Self-Organizing Map (SOM), etc. When an architecture is selected, the user is lead

through a series of panels containing the configuration parameters for the model such as: the

number of hidden layers, the number of processing elements, the learning algorithm, and the

transfer function. We can also use the genetic algorithm to optimize any parameter. After

completing all the panels, the utility makes calls to NeuroSolutions to automatically construct

the network according to the specifications. NeuroSolutions is developed by NeuroDimension

Incorporated.

A.2.1 NeuroSolutions Screens:

The following screens show how to make training or evolving (optimizing) for ANNs using

NeuroSolutions toolbox.

http://www.neurosolutions.com/products/ns/
http://www.nd.com/
http://www.nd.com/
http://www.nd.com/

 101

Figure A.2.1: Selecting the network architecture we want to build

Figure A.2.2: Importing data: training data and the desired response

 102

Figure A.2.3: Splitting data: specify data for testing and validation

Figure A.2.4: Specifying the number of hidden layers in the network

 103

Figure A.2.5: Specifying the number of nodes in the hidden layer, transfer function, learning

algorithm, and selecting GA for optimization

Figure A.2.6: Specifying the transfer function and the learning rule in the output layer

 104

Figure A.2.7: Specifying the maximum epochs, termination, and MSE

Figure A.2.8: Probe configuration panel: visualizing the input, output, desired,

and error

 105

Figure A.2.9: Breadboard including generalized feed-forward network architecture

and its screens while evolving and optimizing process

Figure A.2.10: Breadboard including generalized feed-forward network architecture

and its screens while standard training process

 106

Figure A.2.11: Genetic Algorithm parameter: population size

Figure A.2.12: Genetic Algorithm operators: selection, crossover, mutation

Figure A.2.13: Genetic Algorithm parameters: termination type and maximum generation

 107

 MLEANN-CA

NeuroSolutions NeuroGenetic Optimizer

