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Abstract

The investigation of the problem of wave scattering from interfaces is im-

portant for many scientific and engineering disciplines such as photorealistic

image generation in computer graphics, the manufacture of the semiconduc-

tors. Nowadays, the research in this domain continues, because multiple

applications exist such as in telecommunication, medical imagery, military

operations, and radar remote sensing. Rigorous methods such as the Method

of Moments (MOM) are widely developed to calculate the Radar Cross Sec-

tion (RCS) [1]. These rigorous models have the advantage of being exact,

but they require, in general, a long computation time and a large memory

space.

Thus, it is of interest to use asymptotic models such as Kirchhoff Approx-

imation (KA), which have the great advantage of being faster to compute,

less complexity and little computational time. Because of their complexity,

the rigorous models usually allow us to treat surfaces with restricted dimen-

sions (typically, 30λ × 30λ for 3D problems) [2]; whereas the asymptotic

models usually permit to treat larger surfaces. However, asymptotic models

are applicable only in a restricted validity domain. Indeed, the models are

used for resolving the problem more easily and/or more rapidly. KA is one of

the widely used high-frequency asymptotic techniques to accelerate the radar

cross section calculation [4].

The purpose of this work is to adopt a mathematical model using KA to cal-

culate the scattered fields from a random rough surface (sea like surface) for
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a 3D electromagnetic problem and make a comparison with rigorous method

to validate it, then insert correction factor called shadowing function to the

approximation (KA), which depends on roughness parameters and incident

angles. A reference method is required to validate the domain of the pro-

posed approaches so, the Multilevel Fast Multi-Pole Method (MLFMM ) of

Electromagnatic Field (EM) simulator FEKO has been chosen as a reference

model for the calculation of rough surface RCS, to determine the validity do-

main KA approach. The comparison occurs for observation angles between

[−90◦ : +90◦].

This work is organized as follows: first, we introduce some concepts and basic

principles in electromagnetic theory necessary to introduce our work such as

the random rough surface statistical description, incident and reflection from

rough surface, integral equation based on Huygens principle and so on. Then

a computational methods of rough surface scattering is introduced showing

its properties and validity domain.

In chapter two, a mathematical model for 3D rough surface scattering prob-

lem is presented using KA, showing its properties and validity domain. In-

deed, the radar cross section results obtained from the KA model is compared

to rigorous algorithms to validate the method.

Finally in the last chapter, the shadowing function is inserted into KA ap-

proximation to improve the technique and take into account the region that

affected from the shadowing phenomenon. In addition, the Iterative Physical

Optics (IPO) method is discussed in the last section to compared with KA

since this technique is based on KA but in an iterative way.

x



Chapter 1

Electromagnetic Wave Scattering from Random Rough

Surface: Basics

This work is motivated by numerous applications of microwave remote sens-

ing of perfectly-conducting random rough surfaces. Such as earth observation

(both oceanic and continental surfaces remote sensing), military operations,

communications, and also in optical domain. Electromagnetic scattering at

various bands from these objects usually contains information about their ge-

ometry and properties, which can be exploited by microwave remote sensing.

As a noninvasive technique, microwave remote sensing is extremely attractive

for this purpose.

This chapter recalls the basic necessary concepts for dealing with electro-

magnetic wave scattering from random rough surfaces, by using integral

equations. First, it recalls the notions of radar equation, Maxwell equa-

tions, plane wave propagation, Snell-Descartes laws. Second, it presents an

introduction about solutions of scattering equations (Green’s function), and

how to use Huygens principle and extinction theory to introduce solution

for electromagnetic wave scattering, and then provide discussion about far

field and normalized radar cross section. Finally, it gives a literature re-

view about asymptotic models for rough surface scattering techniques like:

Kirchoff Approximation (KA), Geometric Optics (GO), Small Petrupation

Method (SPM) , and Small Slop Approximation (SSA).
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1.1 Introduction and Basic Principles

The incident wave illuminating the surfaces will be considered as a plane

wave. A wave can be called locally plane if it is located in the so-called

Fraunhofer zone1 [5], of the transmitter source, or far-field zone of the source.

This assumes that the source is far enough from the surface such that the

incident wave may appear as a plane on a distance greater than any dimen-

sion of the surface. The media are assumed to be linear, homogeneous and

isotropic (LHI)2, stationary and non-magnetic. The incident medium is per-

fectly dielectric 3, and can be assimilated to vacuum in general, although we

will trying to write the equations in the general case of any lossless perfect

dielectric medium.

The problem of electromagnetic (EM) wave scattering from non-flat sur-

faces, called rough surfaces, has been studied for decades. Among rough

surfaces, two main categories may be distinguished: periodic surfaces (such

as square surfaces, triangular surfaces, sawtooth surfaces and sinusoidal sur-

faces), which are deterministic, and random surfaces for which only some

statistical features are known. This chapter aims at introducing the main

necessary concepts for understanding the tools used in the following chap-

ters.
1The Fraunhofer zone or far-field zone corresponds to a distance R from the source which is greater than approxi-

mately 2D2/λ, where D is the greatest dimension of the source and λ is the transmitted electromagnetic wavelength
2The linearity characterizes the fact that the quantities ε and µ are independent of the intensity of E and H, the

homogeneity that ε and µ do not depend on the considered space point and the isotropy that, µ and σ are scalar
3A dielectric medium is called perfect if the considered dielectric medium does not have sources of load or current
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1.2 Maxwell’s Equations

In their local form, the Maxwell’s equations in dielectric media are given by

[6], [2]:

(Gauss Magnetic Equation) ∇ .B = 0 (1.1)

(Faraday Equation) ∇× E = −∂B

∂t
(1.2)

(Gauss Electric Equation ) ∇ .D = ρ (1.3)

(Ampers Law) ∇× H = J +
∂D

∂t
(1.4)

The vectors E and H denote here the electric and magnetic field vectors,

expressed in V/m and in A/m. They together form the electromagnetic

field. The symbol ∇ is the operator defined in the system of orthogonal

coordinates (Cartesian, cylindrical, spherical coordinates, etc.) associated

with the coordinate system in which the Maxwell equations are applied. It

should be pointed out that in this manuscript the vectors will be denoted in

bold, the unit vectors in bold and with a hat and the matrices will be marked

in bold and topped with a bar. D and B denote respectively the electric

displacement and magnetic induction vectors, expressed in C/m2 and in Tesla

[2]. The equation (1.1) and equation (1.2) express the law of induction.

Equation (1.3) and equation (1.4) which connect the electromagnetic field

(E, H) to the sources (ρ,J), respectively represent the densities of charge

in (C/m3) and current in (A/m2) of the material environment. Indeed, D

and B are linked to the electric and magnetic fields by constitutive relations

3



taking account of the medium (vacuum, dielectric material, etc.) [7]. They

check the charge conversation equation:

∂ρ

∂t
+ ∇.J = 0 (1.5)

If the media considered linear homogeneous and isotropic (LHI), these rela-

tions are expressed as [6]:

D = εE = ε0εrE (1.6)

B = µH = µ0µrH (1.7)

J = σE (1.8)

Where ε, µ and σ are, respectively, the permittivity, the permeability and

the conductivity of considered matter, with ε0 and µ0 as their constants in

vacuum, which are equal to:

ε0 =
1

36π ? 109
F/m (1.9)

µ0 = 4π ? 10−7H/m (1.10)

These two quantities check the relation: ε0µ0c
2 = 1, where c, is the light

propagation speed in free space, εr and µr are the relative electric permittiv-

ity and magnetic permeability, respectively: they are equal to 1 in vacuum.

Let us recall that in the following, only non-magnetic media will be consid-

ered; consequently, the relative magnetic permeability µr = 1. Moreover,

propagation media will be assumed to be free of charge, ρ = 0, and most of

4



the time free of current as well, J = 0. A medium that is free of charge is

then considered as a dielectric medium; a distinction will be made between

a dielectric medium free of current, which will be called perfect dielectric

medium or lossless dielectric medium and a dielectric medium not free of

current, which will be called lossy dielectric medium.

1.3 Propagation of a Plane Wave (Helmholtz equation)

The propagation of electromagnetic waves is described by the equations of

Maxwell. Considering an LHI medium in the presence of charges and current

(ρ 6= 0 and J = σc E 6= 0) from the four Maxwell equations of the relations

(1.6) and (1.7) the propagation equations of fields are obtained from the

Maxwell equations by using the property ∇ × (∇×) = ∇(∇.) − ∇2, where

∇2 is the vector Laplacian4. Then, in a general way, we obtain [6], [7]:

∇2E− εµ∂
2E

∂t2
− µσc

∂E

∂t
=

1

ε
∇ρ (1.11)

∇2H− εµ∂
2H

∂t2
− µσc

∂H

∂t
= 0 (1.12)

For a perfect dielectric medium (ρ = 0,J = 0), the equations reduce to:

∇2E− εµ∂
2E

∂t2
= 0 (1.13)

∇2H− εµ∂
2H

∂t2
= 0 (1.14)

4In Cartesian coordinates, if we represent the scalar Laplacian by 4 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2
the vector Laplacian of

A = Ax, Ay, Az,∇2A = ∆Axx̂+ ∆Ay ŷ + ∆Az ẑ
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In a general way, the solution of the propagation equation in a perfect dielec-

tric medium for a Plane Progressive Wave (PPW), which propagates in the

direction (û = R
‖R‖) at speed v, is written as [6]:

Ψ = Ψ+(t− û.R

v
) + Ψ−(t+

û.R

v
) (1.15)

Where, by definition of the plane wave, the wave planes (or surfaces of the

plane waves) are orthogonal to û defined by the planes û.R = C, where C

is a constant. The function Ψ+, sometimes called PPW+, is a a progressive

wave that propagates at speed v in the direction +R. Likewise, Ψ−, some-

times called PPW−, is a progressive wave that propagates at speed v in the

direction −R. This wave function is checked by both E and H, and it can

be shown that:

H = Zû× E (1.16)

Where Z =
√

µ
ε = Z0

√
µr
εr

is the wave impedance of the considered medium,

with Z0 the wave impedance of vacuum which is equal to Z0 =
√

µ0

ε0
= 120π.

Thus, (E, H, û) form a direct trihedral. The wave is then called transverse

electromagnetic (TEM), because both vectors E and H are orthogonal to

the propagation direction given by û. A harmonic plane progressive wave

(HPPW) is a space-time function of real expression, after take the real part

of exponential eiω(t− û.R
v )−φΨ̂ [2].
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Ψ(R, t) = A cos{ω(t− û.R

v
)− φ}Ψ̂ = A cos(ωt− k.R− φ)Ψ̂ (1.17)

Where k = (ω/v)û is the wave vector, ω is the pulsation in rad/s and φ is a

constant phase term. In the following, we will consider the harmonic regime

such that every EM quantity is an HPPW of complex form:

Ψ(R, t) = A exp[±i(ωt− k.R− φ)]Ψ̂ = Ψ(R) exp(±iωt)Ψ̂ (1.18)

where Ψ(R) = exp[±i(k.R + φ)]. Depending on the sign convention + or

− in exp[±i(ωt − k.R) , the time derivative operator ∂
∂t is equivalent to a

multiplication by ±iω and the space derivative operator ∇. is equivalent to

a multiplication by ±ik.

In the following, the retained convention is exp[−i(ωt − k.R)] . Thus, the

wave equation (1.13) of the electric field E(R, t) = E0(R) exp(±iωt) in a free

of charge and current medium becomes:

(∇2 + k2)E = 0 (1.19)

with k2 = ω2/v2(dispersion relation), where k represents the wavenumber

inside the considered perfect dielectric medium. This equation, which is

called the Helmholtz equation, is also checked by the magnetic field H.

By taking the surface currents J = σE into account, the wavenumber k is

expressed by the dispersion relation as [7]:

7



k2 =
ω2

v2
(1 + i

σ

ωε
) (1.20)

In this case, the wavenumber k is complex and the wave is damped during its

propagation inside the lossy medium. The time convention e(−jωt) is omitted

throughout this work.

1.4 Boundary condition

Every medium is by nature finite, bounded by at least one different medium.

It is therefore important to characterize the behavior of the waves at the

boundary of the two media. Thus, new equations valid at the interface

with another medium must be established. These equations, obtained from

Maxwell’s equations. Consider the scene presented in Figure 1.1. A surface

S separates a medium (1) from a medium (2) and n̂, the normal at S , is

oriented from (2) to (1).

Figure 1.1: Interface between two semi-infinite LHI media

The Boundary conditions (also referred to as continuity relationships) are

expressed:

8



n̂ . (B2 −B1) = 0, (1.21)

n̂ . (D2 −D1) = ρs, (1.22)

n̂× (E2 − E1) = 0, (1.23)

n̂× (H2 −H1) = js, (1.24)

Where ρs and Js represent the surface density of charge and the vector of

superficial (or surface) density of current, respectively, which may exist at

the boundary between the two media (ρs = 0 for dielectric media, ρs =

0 and Js = 0 for perfect dielectric media). Equations (1.21) and (1.23),

called continuity relations, describe the continuity of the normal component

of B and of the tangential component of E at the interface, respectively.

The other two equations (1.22) and (1.24) describe the discontinuity of the

normal component of D in the presence of surface charges of density ρs and

the discontinuity of the tangential component of H on a layer of current,

respectively. Using the same method, for the case when the two LHI media

are perfect dielectric, the equations take the form:

n̂ . (B2 −B1) = 0 (1.25)

n̂ . (D2 −D1) = 0 (1.26)

n̂× (E2 − E1) = 0 (1.27)

n̂× (H2 −H1) = 0 (1.28)

9



1.5 Polarizations

The plane of incident is formed by the wave vector incident onto the surface

k̂i and the normal to the surface n̂. In the case when the studied surface

is flat, n̂ ∈ (x̂, ẑ) with constant direction whatever the surface point, the

incidence plane (k̂i, n̂) is identical to the plane (x̂, ẑ) as illustrated in Figure

1.2. In the case of a rough surface, the normal to the surface becomes a local

normal that depends on the considered surface point.

Considering an arbitrary rough surface for which the height η depends on

the two horizontal parameters x and y,η(x, y), the normal does not belong to

the plane (x̂, ẑ), then the incidence plane depends on the considered surface

point. For better convenience, the polarization of the incident wave is defined

relatively to the mean plane (k̂i, n̂) as illustrated in Figure 1.2.

Figure 1.2: Incident wave on an infinite flat surface: cut view in the incidence plane (k̂i,n̂)

To study the polarization in the general case rigorously, it is necessary to con-
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sider an arbitrary elliptical polarization. However, by considering a cartesian

coordinate system and knowing that every polarization state of a wave can

be represented by the combination of two linear horizontal and vertical com-

ponents, we will study these two fundamental components.

A possible representation of the horizontal and vertical polarizations is given

in Figure 1.3 and Figure 1.4. Note that in the literature, various denomi-

nations of these polarizations are given: the horizontal (denoted by H) po-

larization is also called the transverse electric (denoted by TE) polarization

or perpendicular polarization. The vertical (denoted by V) polarization is

also called the transverse magnetic (denoted by TM) polarization or parallel

(denoted by P for parallel in the optical domain) polarization.

Figure 1.3: Incident wave onto a random rough interface in horizontal (H) polarizations: cut view
in the mean incidence plane (k̂i,ẑ) [2].
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Figure 1.4: Incident wave onto a random rough interface in vertical (V) polarizations: cut view in
the mean incidence plane (k̂i,ẑ)

1.6 Green’s function

The solution for EM differential equation called Green’s function. Each com-

ponent of E checks the propagation equation, in scalar where the operator

(4+ k2). Greens function associated with these operator checks [6]:

(4+ k2)G(R,R′) = −δ(R,R′). (1.29)

It’s seen that the Green’s function always depends on the source and obser-

vation vectors defined (R′,R) respectively. It corresponds physically to the

radiation of a point source. Finally the solution of equation (1.29) for 3D

scattering is [7]:
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G(R,R′) =
eik‖R−R

′‖

4π ‖ R−R′ ‖
. (1.30)

Then the solution of the integral equation is the convolution of EM waves

and Greens function. In order to obtain the integral representation, it’s

necessary to transform an integral volume form into surface integral form

using Ostogrdski’s theorem [13]:

∫ ∫ ∫
V

[Q.(∇×∇×P)−P.(∇×∇×Q)]dv =

∫ ∫
S

[P×(∇×Q)−Q×(∇×P)].n̂ds.

(1.31)

Where S is a surface delimiting a volume V and n̂ is the normal to the surface

S directed towards outside the volume V. P and Q are two vector functions of

the point (also called vector field or any vector field), at any point belonging

to volume V or surface S.

1.7 Huygens principle and extinction theory

The Huygens principle [2], [7] is a fundamental principle of the theory of

light. Huygens’ principle is based on the fact that each point of a wavefront

is itself a radiation source of a wave. By this principle, a source of radiation

can be replaced by a set of sources. These currents are placed on a surface

closed arbitrary encompassing the original source. This theorem allows us

to describe radiation from a current distribution on a surface, or to obtain a

surface integral equation of the currents induced on an object excited by a

incident field.
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Figure 1.5: Geometry of the Scattering Problem

Consider the scene presented in Figure 1.5. A source J is placed in a medium

Ω0 of permittivity ε0 and permeability µ0 containing a medium object Ω1 of

permittivity ε1 and permeability µ1. S is the surface delimiting the volume V

and its normal, n̂, is directed towards the outside of V (thus directed towards

the interior of V0). Where is the surface delimiting the volume V0 at infinity

and its normal point outward of V0. From equation (1.31) applied at volume

V0, and Maxwell’s equations, the following equation is obtained [7].


E(R′), if R′ ∈ V0

0, otherwise

= Ei(R
′) +

∫ ∫
S

[G(R,R′)iωµ(n̂(R)×H(R))+

(n̂(R)× E(R))×∇G(R,R′) + (n̂(R).E(R))∇G(R,R′)]ds.

(1.32)
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when R′ not belong V0 the equation (1.32) becomes :

Ei(R
′) = −

∫ ∫
S

[G(R,R′)iωµ(n̂(R)×H(R))+

(n̂(R)× E(R))×∇G(R,R′) + (n̂(R).E(R))∇G(R,R′)]ds.

(1.33)

This equation is known as the extinction vector theorem of Ewald-Oseen [14],

and imposes the cancellation of the total field inside the object of volume V;

the incident field being compensated by the contribution of the surface fields.

By defining the total field E as the sum of Ei, the incident field and Esr

the diffracted field (scattered field), equation (1.32) becomes in the volume

V0 :

Esr(R
′) =

∫ ∫
S

[G(R,R′)iωµ(n̂(R)×H(R)) + (n̂(R)× E(R))×∇G(R,R′)+

(n̂(R).E(R))∇G(R,R′)]ds.

(1.34)

This equation is known as the Huygens Principle and allows the propagation

of surface fields outside volume V, forming the total field after summation

with the incident field. If the object of volume V is dielectric, the field is not

necessarily zero for R′ not belong to V0, from the curl relations, this time

applied to volume V, we obtain a new equation
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
E(R′), if R′ ∈ V

0, otherwise

= −
∫ ∫

S

[G1(R,R
′)iωµ(n̂(R)×H(R))+

(n̂(R)× E(R))×∇G1(R,R
′) + (n̂(R).E(R))∇G1(R,R

′)]ds.

(1.35)

where G1(R,R
′) is the function of Green . For R′ belong to V, the equation

(1.43) shows the principle of Huygens applied in volume V; for R′ not belong

to V, we recognize the expression of the extinction theorem. Thus, equation

(1.35) imposes the cancellation of the radiated field towards the outside of

the object and makes it possible to calculate the total field in the object. So

the problem has been broken down into two parts, one looking for equiva-

lent sources creating the total field in volume V0 and the other looking for

equivalent sources creating the total field in volume V (equation (1.35)).

1.8 Radar Cross Section and Scattering Coefficient

The measure of the ability of a target to reflect radar signal in the direction

of the radar receiver is known as Radar Cross Section (RCS). If the incident

signals were reflected uniformaly in all direction, then the RCS is equal to

the cross-sectional area of a target seen by the transmitter [16].

RCS has been defined to characterize the target characteristics and not the

effects of transmitter power, receiver sensitivity, and position of the trans-

mitter or receiver distance.
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1.8.1 IEEE RCS Definition

The IEEE dictionary of electrical and electronics defines RCS (σ) as a mea-

sure of reflective strength of a target defined as 4π times the ratio of the

power per unit solid angle scattered in a specified direction to the power per

unit area in a plane wave incident on the scatterer from a specified direction.

More precisely, it is the limit of that ratio as the distance from the scatterer

to the point where the scattered power is measured approaches infinity [22]:

σ = lim
r→∞

4πr2‖Es‖2

‖Ei‖2
, (1.36)

where Es is the scattered electric field and Ei is the field incident at the

target. Three cases are distinguished: monostatic or backscatter, forward

scattering, and bistatic scattering. Bistatic cross section is for the case when

the transmitter and receiver are at different locations.

Figure 1.6: Monostatic and Bistatic scattering [22]

Forward cross section is a measure of scattered power in forward direction;

that is, in the same direction as the incident field. This forward scattered
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power is usually 1800 out of phase with the incident field so that when added

to the incident field a shadow region is formed behind the scattering object.

Monostatic or backscatter cross section is the radar systems where the re-

ceiver and transmitter are collocated, often times using the same antenna for

transmitting and receiving.

1.9 Literature Review: Computational Models [2],[7]

When studying the wave scattering from random rough surfaces, the problem

of predicting the surface is encountered. In some cases, it is possible to know

it exactly. For rough surfaces with spatial variations but not with time varia-

tions. For space- and time-varying surfaces, the problem is different a priori,

as the surface varies with time. For instance, for sea surfaces, sensors located

on buoys are used. Then, by assuming a stationary process, the knowledge

of some statistical features of the surface makes it possible to describe the

stochastic random rough surface: usually, it is the height probability density

function (PDF) and the height autocorrelation function [2].

The resolution of the problem of scattering from such surfaces then implies

determining the surface currents on the random rough surface. Models called

rigorous models make it possible to resolve the problem without any ap-

proximation on a parameter of the surface. For the case of scattering from

random rough surfaces, the analytical methods do not make it possible to

resolve the problem without approximation. Only numerical methods, for

which the surface is discretized, make it possible to resolve the problem with-
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out approximation. They are based on the resolution of the local Maxwell

equations on the surface. These methods are usually qualified as “exact ”or

simply “rigorous”, as the discretization has an influence on the precision of

the result.

These rigorous models resolved by numerical methods have the advantage

of being exact, but in return they require, in general, a long computation

time and a large memory space. Thus, it is of interest to use asymptotic

models, which have the great advantage of being faster to compute. Because

of their complexity, the rigorous models usually allow us to treat surfaces

with restricted dimensions (typically, 30λ× 30λ for 3D problems).

The asymptotic models usually allow us to treat larger surfaces. However,

as their name implies, asymptotic models are applicable only in a restricted

validity domain. Indeed, for resolving the problem more easily and/or more

rapidly, simplifying hypotheses must be used. Most of the time, these hy-

potheses rest on a parameter of the random rough surface, which must be less

or more than a parameter of the incident and/or scattered wave. For simple

asymptotic models, it is usually the height (RMS) σh relative to the wave-

length λ. If σh << λ, the model is of low-frequency type; on the contrary, if

σh > λ/4, the model is of high-frequency type.

Other surface parameters may also be involved, such as the mean surface

curvature radius Rc relative to the wavelength λ, the RMS slope σs relative

to the slopes of the incident and scattered waves or, similarly, the correlation

length Lc relative to the wavelength λ; moreover, several of these hypotheses

may combine. In order to study the validity of an asymptotic model, it is
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useful to compare the results with a rigourous model. This will permit to

study the limits and the validity domain of the asymptotic model.

1.9.1 Rigorous models

All rigorous models that deal with random rough surface scattering use nu-

merical techniques. These methods can be divided into two main categories:

differential methods and integral methods. Differential (or volumetric) meth-

ods are based on a problem of a partial differential equation. They require

a meshing of the space (3D meshing for a 3D problem, 2D meshing for a 2D

problem) whose shape and sampling step must be chosen carefully, depending

on the studied problem and on the desired precision. These methods are of

finite element type, such as the finite element method (FEM), for which the

problem is formulated in the frequency domain, and the methods of finite

difference type, such as the finite difference time domain (FDTD) technique,

for which the problem is formulated in the temporal domain [2]. The latter

methods are of interest for heterogeneous media.

As their name implies, the integral methods start from integral equations of

the field on the surface. In the frequency domain, the integral equations are

sampled in order to solve the problem. For doing so, the Method of Moments

(MoM) is often used. Then, the problem is transformed into a matrix, and

the difficulty lies in its inversion. It may be made directly; still, for computing

time and memory space constraints, it is better to optimize this inversion.

Thus, iterative methods are often used: the fast multipole method (FMM)

[9], the banded matrix iterative approach/ canonical grid (BMIA/CAG) [11],
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the multilevel fast multipole (MLFMM) [8], the forward-backward method

(FB) [7], the method of ordered multiple interactions (MOMI) [10] and so on

.

1.9.2 Asymptotic models

Asymptotic models may use either numerical or analytical resolution meth-

ods. Typically, numerical asymptotic methods were developed to resolve

complex problems that the exact numerical methods could either hardly re-

solve, or only by means of extensive computing time and/or memory space.

This is the case, for instance, of ray tracing and ray launching methods [15].

Moreover, classical asymptotic models, which are generally solved by analyt-

ical methods, may also be resolved numerically.

For instance, let us quote the methods based on KA [20] and the Small

Perturbation Method SPM [15]. As discussed earlier in the introduction,

in general, simple asymptotic models may be split up into two main cate-

gories: low-frequency and high-frequency models. A third category gathers

the asymptotic models that aim at being applicable to both low and high

frequencies: these models are then qualified as unified.

After, we will give a panorama of the different categories of models. Then, the

models taking the phenomenon of multiple scattering will not be presented,

and a summary of the validity domains of simple asymptotic models will be

given, the first developed model is a low-frequency model: the SPM, which

is sometimes called Bragg scattering theory. Its pioneer was Lord Rayleigh

[21] who treated the case of sinusoidal surfaces. The SPM may be considered
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as a series expansion of the scattered field depending on the surface heights.

It was developed at orders 1 and 2, before being completed by Peake [16].

Johnson et al [19], developed the model up to order 3, and then up to order 4.

The higher the surface RMS height is, the higher the order of SPM must be

considered for the model to be valid [4]. For the first order of SPM (denoted

SPM1), the normalized radar cross-section (NRCS) (or scattering coefficient)

is proportional to the surface height spectrum. Usually, SPM1 is considered

to be valid for RMS heights σh and RMS slopes σs as shown in Figure 1.7

checking [4]:

k0σh < 0.3, and σs < 0.3, where k0 is the wavenumber inside the incidence

medium, which is vacuum.

Figure 1.7: Random rough surface of SPM1 type [2]

The most often used and best-known high-frequency method is the KA. Usu-

ally called the Kirchhoff Approximation in short, or Physical Optics (PO)

approximation by numericians and/or in the radar scattering community [2],
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it assumes that the wavelength is (much) less than the mean surface curva-

ture radius Rc (Rc > λ): the surface is then locally smooth (flat). It is also

necessary that the wavelength be less than the surface correlation length,

Lc > λ. Thus, locally, at each surface point, the surface can be replaced by

its tangent plane, which is a flat surface whose local slope is equal to the slope

of the original random rough surface at the considered surface point. As a

result, each ray of the incident wave is reflected (or transmitted) specularly

by the tangent plane at each rough surface point. This method depends only

on the Fresnel reflection (or transmission) coefficient evaluated at the consid-

ered local incidence angle for giving the amplitude, and on the appropriate

Snell−Descartes law for giving the direction of the reflected (or transmitted)

wave. Note that, however, this model diverges for low-grazing incidence an-

gles, because of the shadowing phenomenon of the surface; that is why, it

is necessary to introduce a corrective parameter called shadowing function

which is added to KA (or sometimes illumination function) to overcome this

issue.

The Geometric Optics (GO) approximation was introduced by Eckart [7], who

was the first to demonstrate that, with this high-frequency approximation for

which the RMS height checks σh > λ/4, the scattering coefficient (or NRCS)

is proportional to the surface slope. More precisely, the GO is applicable

if the wavelength is much lower than any parameter of the surface. Then,

for a flat surface, the surface parameters are its length and width Lx and

Ly, respectively. For a random rough surface, the height variations must be

taken into account through the RMS height σh; also, its other characteristic
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dimensions should not be forgotten: in particular, the mean curvature radius

Rc and also the correlation length σs shown in Figure 1.8.

Figure 1.8: Random rough surface of KA type [2]

In the rough surface scattering community, the KA is not used as such;

its mathematical expression is simplified in order to obtain faster numerical

results. Method of Stationary Phase (MSP) [2] is used very commonly; this

approximation implies the following assumption: σh > λ/A with A > 4 a

constant.

Physically, it assumes that, for given incidence and observation directions, the

points of the surface that contribute to the scattering process are the points

that reflect the incident wave specularly into the observation direction. This

comes from the fact that the phase term inside the integral to be computed

oscillates very rapidly; then, the main contribution of the integrand can be

represented by the points for which the phase of the integrand is stationary

(i.e. null derivative of the phase). This corresponds to a commonly called
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saddle-point technique, and it may be assimilated physically to retain only

the envelope of the function (signal). As a result, the slope of the surface

points, which contribute to the scattering process, depends only on the angles

of incidence and observation: the dependence on the slopes in the integral is

suppressed, which makes it possible to greatly simplify the calculation of the

statistical moments.

Moreover, in order to get rid of the dependence on the surface heights, which

appear inside the phase term of the scattered intensity (or power), the GO

may also be used as a further approximation. From a qualitative point of

view, the associated constraint is the same as for the MSP, but it is a bit

stronger (σh > λ/B, with B also a constant checking B < A): it is applicable

to even rougher surfaces. In fact, σh > λ/4 (B = 4) is generally enough.

After we made a revision and introduction to concept and models used in

EM scattering, we will then focus and develop one asymptotic model in next

chapter called Kirchhoff approximation (KA) or Physical Optics (PO), we

will discuss it in details for 3D rough surface. Starting from applying this

technique for a flat surface (plate) and ending by applying it to very rough

surface, during that we check the validity of KA and make a comparison

between KA and the accelerated method of moments (MOM) which is called

Multilevel fast Multipole Method (MLFMM).
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Chapter 2

Electromagnetic Scattering from Two Dimensional

Rough Surface

This chapter describes classical statistical description of random rough sur-

faces, using the height distribution and autocorrelation function, then it in-

troduces asymptotic models used to evaluate the field scattered by random

rough surfaces, focusing on the Kirchhoff-tangent plane Approximation (KA).

Their theoretical math model and validity domains are given.

The previous chapter focused on the basic tools necessary for understanding

the problem of electromagnetic (EM) wave scattering from surfaces in general,

and random rough surfaces in particular. In this chapter, the first section

deals with the statistical description of random rough surfaces. The next

section introduces the first classification of random rough surface by Rayleigh

roughness, after that in section 2.4 will introduce the KA technique.

Finally, the RCS of a plate and random rough surface is calculated using KA

and compared to results obtained from the accelerated MOM (MLFMM)

obtained from commercial software EM simulator (FEKO).

2.1 Random Rough Surface

Rough surface is a random process {η = f(x, y)}, so we must study its sta-

tistical properties such as mean variance autocorrelation between points in

the surface; we start to identify the surface by understanding the surface
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height profile or Power Distribution Function (PDF). In this work we con-

sider a rough surface with Gaussian distribution, with mean η0 and standard

deviation σh .

2.1.1 Statistical Description of Random Rough Surfaces

We shall assume that the profile is defined randomly. The description of a

random rough surface with height variations η and surface height PDF ph(η)

represents the statistical height distribution of the random rough surface.

The probability density of the profiles under consideration will be chosen

Gaussian, centered with mean η0 and standard deviation σh, ph(η) is then

given by [19]:

Ph(η) =
1

σh
√

2π
exp{(−1

2
(
η − η0

σh
)2} (2.1)

and

〈1〉 =

∫ ∞

−∞
Ph(η)dη = 1, 〈η〉 =

∫ ∞

−∞
ηPh(η)dη = 0, (2.2)

for simplicity the mean height η0 will be taken as 0, this averaging of the

heights is the statistical moment of order one (average value). The statistical

moment of order two, 〈(η − 〈η〉)2〉 = 〈η2〉 (for η0 = 0), also called variance,

corresponds here to the averaging on the square of the heights [7]. It is

written as:

〈η2〉 =

∫ ∞

−∞
η2Ph(η)dη = σh

2, (2.3)
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Where σh =
√
〈η〉2, denotes the standard deviation of the profile heights,

which is also called root mean square (RMS) height σh. Thus for a Gaussian

height PDF, 99.73% of the surface heights are contained between η0 − 3σh

and η0 + 3σh as in Figure 2.1 .

Figure 2.1: One-dimensional (1D) random rough surface of Gaussian statistics, and its height
distribution [7]

2.1.2 Surface (spatial) height autocorrelation function and height spectrum

The autocorrelation function between two surface points M1 and M2 rep-

resents the statistical correlation between these two points, with respect to

their horizontal distance rd=r2 - r1. It is maximum if r2= r1 (or rd =0). Two

important pieces of information are contained in this function: Its correla-

tion lengths along x̂ and ŷ, Lc,x and Lc,y, and its type: Gaussian, Lorentzian,

exponential, etc. It is defined by [7]:
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Wh(r1, r2) = 〈η(r1)η(r2)〉 = lim
X,Y→∞

1

XY

∫ X
2

−X2

∫ Y
2

−Y2
η(r1)η(r2)dxdy (2.4)

Where X, Y are the surface lengths with respect to (x̂) and (ŷ), respec-

tively. For a stationary surface 1, W h(r1, r2)=Wh(rd), with the property

Wh(rd = 0)=σh
2 when rd = 0. The autocorrelation coefficient C(rd) is equal

to the autocorrelation function normalized by the RMS height (height stan-

dard deviation); it is written for a stationary surface as:

Ch(rd) =
〈η(r1)η(r1 + rd)〉

σh2
(2.5)

The correlation length Lc is a characteristic value of the autocorrelation func-

tion, which determines the so-called scale of roughness of the surface. Typi-

cally, it corresponds to the horizontal distance (xd for Lc,x or yd for Lc,y )

between two surface points for which the autocorrelation coefficient is equal

to 1/e as in Figure 2.2, provided that the autocorrelation function is taken

as Gaussian Wh(xd) = σh
2exp(−xd

2

Lc
2 ).

1In its usual definition, a stationary process is a stochastic process whose first moment and covariance do not change
when shifted in time or space. As applied to surfaces, it means that the mean value and the autocorrelation function
do not change with respect to space.
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Figure 2.2: 2D random rough surface and its height autocorrelation function [2]

2.1.3 Other Statistical properities [2]

In addition to the RMS height σh and the correlation length Lc, other im-

portant statistical parameters can be useful to characterize a random rough

surface. The first parameter is the surface RMS slope σs , which is defined

by:

σs =
√
〈{η′ − 〈η′〉}2〉 (2.6)

For a Gaussian PDF surface with Gaussian correlation, the RMS slope is

related to the RMS height and the correlation length by σs =
√

2σhLc . The

second commonly used parameter is the surface mean curvature radius Rc,

which is defined for 1D surface as:
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Rc = −{1 + 〈η′(x)2〉} 3
2

〈η′′(x)〉
(2.7)

For a Gaussian surface (i.e. Gaussian height PDF and Gaussian correla-

tion), under small slopes assumption, the mean curvature radius checks the

asymptotic relation, which simplifies for RMS slope σs�1 as:

Rc = 0.36
L2
c

σh
(2.8)

Sometimes, an additional parameter is used: the mean distance Dm between

two successive peaks of the surface. It can be estimated [2]:

Dm = π

√∫∞
−∞ dkk

2S(k)∫∞
−∞ dkk

4S(k)
(2.9)

Where

S(k) = FT{Wh(r1, r2)} =

∫ ∞

−∞

∫ ∞

−∞
Wh(rd) exp(−ik.rd)drd, (2.10)

is power spectrum density of auto correlation function . Physically, it is

expected that this distance Dm would be of the same order as the correlation

length Lc. Indeed, for a Gaussian surface, this distance checks the condition:

Dm =
π√
6
Lc ∼= 1.28Lc (2.11)

This is consistent with our qualitative physical prediction. Besides, it can be

noted that (at least for a Gaussian correlation surface) the distance between

two surface peaks is a bit greater than the correlation length.As an example
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of rough surface the next Figure 2.3, with σh = 0.02, Lc = 1.2, λ = 1,∆x =

∆y = λ/8, Rc = 25.92.

Figure 2.3: Random rough surface showes σh, Rc, σs

2.2 Electromagnetic roughness and Rayleigh roughness [21],[4]

The first work on the scattering of waves from rough surfaces was made by

Lord Rayleigh [21], who considered the problem of a HPPW propagating

upon a sinusoidal surface at normal incidence.

This work led to the so-called Rayleigh roughness criterion, which makes it

possible to establish the degree of EM roughness of a rough surface. It is used

in practice in several simple models to describe the EM wave scattering from

random rough surfaces. For instance, in ocean remote sensing, it is used to

calculate the grazing incidence forward radar propagation over sea surfaces;

in optics to determine optical constants of films model. The roughness (from
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an EM point of view) of a surface depends obviously on its height variations,

but it is also related to the incident wavelength. Indeed, the EM roughness

of a surface is related to the phase variations δφr of the wave reflected by the

surface, owing to the surface height variations.

It is obtained under the Kirchhoff-tangent plane approximation, which is

valid for large surface curvature radii and small slopes.

Figure 2.4: Electromagnetic roughness (in reflection) of a random rough surface: phase variations
of the reflected wave owing to the surface roughness

Let us consider an incident plane wave inside a medium 1 of wavenumber

k1 on a rough surface with angle θi as in Figure 2.3. For the case of a

random rough surface considered here, the total reflected field Er results

from the contribution of all reflected fields from the random heights of the

rough surface. Then, to quantify the EM surface roughness, it is the phase

variation δφr of the reflected field around its mean value (which corresponds

to the phase of the mean plane surface) that must be considered. For the
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case of a rough surface (see Figure 2.4), the phase variation δφr is given by

the relation [2]:

δφr = 2k1δηA cos θi (2.12)

Where δηA=ηA − 〈ηA〉 is the height variation, and θi is the incidence angle,

〈ηA〉 is the mean value of the rough surface heights (with 〈···〉 representing the

statistical average), which is equal to 0. If the phase variation is negligible,

δφ � π, for all positions of these points on the surface, then all the waves

scattered (reflected) by the random rough surface are nearly in phase and

will consequently interfere constructively. The surface is then considered as

slightly or very slightly rough: it may be assimilated to a flat surface.

On the contrary, if the phase variation checks δφ ∼ π, these rays interfere

destructively. The contribution of the energy scattered in this specular direc-

tion is then weak, and the surface is then considered as rough. The Rayleigh

roughness criterion [21] assumes the following condition: if δφ <
π
2 , the waves

interfere constructively. Consequently, the surface can be considered as very

slightly rough or even flat if δφ � π
2 . Conversely, if δφ >

π
2 , the waves inter-

fere destructively, and the surface can be considered as rough. To apply this

local approach to the whole surface, it is necessary to consider a mean phe-

nomenon, which implies quantifying this phenomenon by a statistical average

on δφ.

The mean value of the surface heights being taken as zero, 〈ηA〉 = 0, the

Rayleigh roughness parameter is quantified by the variance of the phase vari-
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ation σ2
δφ. Knowing that 〈η2

A〉 = σ2
h and 〈δφ〉 = 0, it is defind by:

σ2
δφ = 〈(δφ)2〉 = 〈(2k1δηA cos θi)

2〉 = 4k2
1σ

2
hcos

2θi (2.13)

The Rayleigh roughness parameter is then defined from the RMS value σδφ.

Its definition varies by a factor (coefficient) of 2, depending on the authors;

here we take:

Ra = k1σhcosθi, (2.14)

which corresponds to Ra =
σδφ
2 . The Rayleigh roughness criterion is then:

Ra <
π

4
(2.15)

which corresponds to σh cos θi < λ/8, it depends on the incident wavelength

λ1 ≡ λ. It is the ratio ση/λ that determines the degree of roughness of

a surface, for a given incidence angle. Besides, the influence of the term

cos θi is nearly always neglected. Nevertheless, it is not negligible when the

incidence angle becomes grazing, θi → 90◦: this implies that a surface can be

considered as rough for moderate incidence angles and becomes only slightly

rough for grazing angles.

If we look more closely at this roughness criterion, we can see that equation

(2.15) can be rewritten in the form:

σh <
1

8

λ1

cos θi
=

1

8
λapp (2.16)
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where λapp = λ1/ cos θi can be defined as an apparent wavelength along the

normal to the mean surface.

In the next section we will explain Kirchhoff Approximation (KA) and adopt

a mathmeatical model, to calculate RCS of a flat (plate) surface and a very

rough surface and check the validity domain of this approximation by com-

paring the result with MLFMM method.

2.3 Presentation of the model: KA for 3D problem

Physical optics or Kirchhoff Approximation (also referred to as the tangent

plane approximation) is a asymptotic method based on the simplification

of Stratton-Chu integral equations in which the currents on the surface are

approximated by the tangential field of the geometrical optics [6]. PO does

not take into account creeping waves or discontinuities of the surface. This

limits the area of validity of the PO to regions close to the specular directions

and forward scattering [23].

The PO is nevertheless very interesting because it lies in a simple integration,

which can be performed analytically without much difficulty on flat surfaces

(square or triangular meshes for example); any object can be processed by

the method via a mesh in elementary plane surfaces. Equation (1.42) can be

written according to currents as [7]:
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Esr(R
′) =

∫ ∫
S

[G(R,R′)iωµJs(R) + Ms(R)×∇G(R,R′)+

i

ωµ
[Js.∇]∇G(R,R′)]ds.

(2.17)

Where Js = n̂×H(R) is the surface electrical current and Ms = −n̂×E(R)

the surface magnetic current. After some developments by taking the curl of

green’s function and use equation (1.42), we obtain a new expression of the

electric field scattered by an obstacle :

Esr(R) =

∫ ∫
S

[(1 + ikr − k2r2)Js(R) +
ikr − k2r2

Z
Ms(R)× r̂+

(−3− 3ikr + k2r2)(r̂.Js(R))r̂]
G(R,R′)

r2
ds.

(2.18)

where G(R,R′) = eikr

4πr , and r = |R −R′|, represent green’s function in free

space for 3-D scattering; Z and k denote the impedance and wavenumber of

the propagation medium. Equation (2.18) is a general equation that can be

used in near and far fields. The goal of the PO approximation is to solve the

integral equation by using simplifying assumptions:

• High frequency hypothesis: the dimensions of the object are much higher

than the wave length. The current densities on the surface of the object

decrease very rapidly and can be considered null in the shadowing zone.

The PO method does not take into account counts creeping waves, nor

discontinuities.

• The radii curvature of the illuminated surface is much greater than the
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wavelength. The approximation of the PO is also called approximation

of the tangent plane: where the surface linked to an infinite plane at

each of its points. This infinite plane corresponds to the plane tangent

to the surface at the point considered. The surface is then qualified as

locally flat. Under this hypothesis, the field reflected by the surface can

be express very simply by applying laws of Snell-Descart. The Fresnel

coefficient allows knowing its amplitude, and the law of Snell-Descartes

gives the direction.

In the case of Perfectly Conductive surface (PC) all incident field are re-

flected, then: Hsr(R) = Hi(R) and Esr(R) = −Ei(R), where Ei, Hi are the

EM incident fields respectively. So we can then express the surface current

densities in term of incident fields as:

Js(R) = n̂× (Hi(R) + Hsr(R)) = 2(n̂×Hi(R)), (2.19)

and

Ms(R) = n̂× (Ei(R) + Esr(R)) = 0, (2.20)

Then for Perfect Conductors (PC) equation (2.18) becomes:

Esr =

∫ ∫
S

[(1 + ikr − k2r2)(n̂× (Hi(R) + (−3− 3ikr + k2r2)

(r̂.(n̂×Hi(R))r̂]
G(R,R′)

r2
ds.

(2.21)

38



2.4 Formulation for a PC scatterer in far field

The problem can be simplified by applying the far field condition. If the

surface element ds is away from the observation point such as k0r >> 1 then

the terms 1
r and 1

r2 in equation (2.21) can be considered null. Furthermore we

consider that the surface is placed in a medium assimilated to the vacuum

with geometry shown in Figure 2.4. Then we obtain a simplified expression

of the equation (2.21):

Figure 2.5: illustration of the polarization bases used in transmission and reception

Esr(R
′) =

iωµ

4πR′
eik0R

′
∫ ∫

S

[Js(R) + (r̂.Js(R))r̂]e−ik0k̂sds. (2.22)
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Under the condition of a plane wave illumination in the direction k̂i, the

incident electric field can be described in spherical coordinates, as follows:

Ei(R) = Eie
ik0k̂i.R = (Eθ

i θ̂i + Eφ
i φ̂i)e

ik0k̂i.R, (2.23)

and then magnetic field is:

Hi(R) =
1

Z0
k̂i × Ei(R). (2.24)

Expressing the different vectors as shown in Figure 2.5, in the Cartesian

coordinates we get,

k̂i =


sin θi cosφi

sin θi sinφi

− cos θi

 (2.25)

and

k̂s =


sin θs cosφs

sin θs sinφs

cos θs

 (2.26)

The vector Hi can be written in cartsian coordinates (x̂, ŷ,ẑ), as follows

where we get the matrix form for each components according to spherical

components Eθ
i and Eφ

i ,
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
Hix

Hiy

Hiz

 =
1

Z0


Eφ
i cos(θi) cos(φi)− Eθ

i sin(φi)

Eφ
i cos(θi) sin(φi) + Eθ

i cos(φi)

Eφ
i sin(θi)

 eik0k̂i.R (2.27)

and the normal to the surface n̂(R) expressed by [7]:

n̂(R) = nxx̂ + nyŷ + nzẑ =
−zxx̂− zyŷ + ẑ√

1 + z2
x + z2

y

, (2.28)

where zx = ∂z
∂x is the slope along the x-axis, and zy = ∂z

∂y is the slope along y-

axis. Using the PO approximation, Js(R) = 2n̂(R)×Hi(R), the components

of surface current are given from the equations (2.25), (2.27) and (2.28)

Js =
2

Z0


Eφ
i (ny sin θi − nz cos θi sinφi)− Eθ

i (nz cosφi)

−Eφ
i (nz cos θi cosφi + nx sin θi) + Eθ

i (nz sinφi)

Eφ
i (nx cos θi sinφi − ny cos θi cosφi) + Eθ

i (nx cosφi + ny sinφi)

 eik0k̂.R
(2.29)

and we can write Js as:

Js = J̄s

Eθ
i

Eφ
i

 (2.30)

or

J̄s =
2

Z0


Jθx Jφx

Jθy Jφy

Jθz Jφz

 eik0k̂.R (2.31)

from equation (2.29) we have:

41



J̄s =
2

Z0


−nz cosφi ny sin θi − nz cos θi sinφi

nz sinφi −(nz cos θi cosφi + nx sin θi)

nx cosφi + ny sinφi nx cos θi sinφi − ny cos θi cosφi

 eik0k̂i.R
(2.32)

From equations (2.22) and (2.32) we can write:

Esr(R
′) =

iωµ

2πR′Z0
eik0R

′
D̄s

Eθ
i

Eφ
i

 (2.33)

where D̄s matrix is defined the following :

D̄s =


S11 S12 S13

S21 S22 S23

S31 S32 S33



I11 I12

I21 I22

I31 I32

 (2.34)

with

I11 =

∫ ∫
s

Jθx.e
ik0(k̂i−k̂s).Rds, (2.35)

I12 =

∫ ∫
s

Jφx .e
ik0(k̂i−k̂s).Rds, (2.36)

I21 =

∫ ∫
s

Jθy .e
ik0(k̂i−k̂s).Rds, (2.37)

I22 =

∫ ∫
s

Jφy .e
ik0(k̂i−k̂s).Rds, (2.38)

I31 =

∫ ∫
s

Jθz .e
ik0(k̂i−k̂s).Rds, (2.39)

I13 =

∫ ∫
s

Jφz .e
ik0(k̂i−k̂s).Rds, (2.40)
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and



S11 = − sin2 θs sin2 φs − cos2 θs,

S12 = sin2 θs sinφs cosφs,

S13 = sin θs cos θs cosφs

S22 = − sinθs cos2 φs − cos2 θs,

S23 = sin θs cos θs sinφs,

S33 = − sin2 θs,

(2.41)

Thus we obtain the components of scattered field in (x̂, ŷ, ẑ) :


Ex
sr

Ey
sr

Ez
sr

 = P D̄s

Eθ
i

Eφ
i

 , (2.42)

where P= iωµ
2πR′η0

eik0R
′
is a scalar that depends on the observation distance, the

frequency, and EM properties of the incident medium. The components of

the scattered field in the Cartesian coordinate system are expressed according

to spherical componenets using the spherical rotation matrix (R̄s) as follows:

R̄s =


sin θs cosφs cos θs cosφs − sinφs

sin θs sinφs cos θs sinφs cosφs

cos θs − sin θs 0

 (2.43)

Eθ
sr

Eφ
sr

 = P R̄s
T
D̄s

Eθ
i

Eφ
i

 (2.44)
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Finally, the components of the incident and scattered field are linked by the

next expression:

Esr = S̄Ei (2.45)

where S̄ = P R̄
T
s D̄s is the scattering matrix.

S̄ =

Sθθ Sθφ

Sφθ Sφφ

 (2.46)

Then we finally obtain RCS matrix :

σ̄ = 4πR′2

|Sθθ|2 |Sθφ|2
|Sφθ|2 |Sφφ|2

 (2.47)

The previous equations can be defined as the numerical representation of the

KA or PO model, we will apply this model for the case of a PC plate, then

the case of PC rough surface will be tested.

2.4.1 KA to study the scattering from a plate

After we introduced the Kirchhoff Approximation (KA) for 3D rough surface

we start to check the validation of KA by testing it with a simple case of

zero height which is a smooth surface (plate). Consider a plate of surface

S = Lx × Ly located in the plane (x̂, O, ŷ), as shown in Figure 2.6.
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Figure 2.6: Geometry of the problem: illustration of the smooth plate.

The normal to the surface is directed along the z-axis, the method of the PO

is always compared to the reference models from FEKO software.
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Figure 2.7: Comparison of the bistatic RCS of the scattered field of a plate, obtained with the PO-
FEKO and the proposed method PO, with HH referto θθ polarization, Lcx = Lcy = 1.2λ0,4x =
4y = λ0/8, θi = ϕi = 0o .

We noticed from Figure 2.7 that the proposed model KA is a good approxi-

mation over all range of scattering angles θs ∈ [−90◦; +90◦].

After that we will check the validity of our approximation when incident

angle θi is changed, using the same specifications, Lcx = Lcy = 1.2, λ0 = 1m,

4x = 4y = λ0/8, ϕi = 0o, and θi = 60o.
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Figure 2.8: Comparison of the bistatic RCS of the scattered field of the plate, obtained with PO-
FEKO and the proposed method PO, with HH polarization, Lcx = Lcy = 10λ0,4x = 4y = λ0/8,
θi = 60, ϕi = 0o .

We notice that the maximum power is in the direction of the incident angle

θi as illustrated in Figure 2.8 and PO still a good approximation. Finally, as

shown in Figure 2.9 the RCS is plotted according to the observation angles

for both MLFMM-FEKO and our proposed approximation PO. The plate

is of Lcx = Lcy = 1.2, λ0 = 1m, the sampling steps of the surface are

4x = 4y = λ0/8, ϕi = 0o, and θi = 0o (normal incidence).

We notice that the PO method is in a good agreement with the MLFMM

around the specular direction θs = 0. Other values of θi, between −90o

and 90o have produced the same conclusion of obtaining maximum power for

θi = θs: the specular direction.

We also observe that the PO method does not allow to evaluating correctly

the RCS for grazing viewing angles, this being mainly due the concentra-
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tion of currents on the edge causing edge diffraction that are not taken into

account in the PO.

Figure 2.9: Comparison of the bistatic RCS and phase of the scattered field of the plate, obtained
with the MLFMM and the proposed method PO, with VV polarization, Lx = Ly = 12λ0,4x =
4y = λ0/8, θi = ϕi = 0o.

So the total power are in the direction of incident angle and the next Figure

2.10 gets from FEKO simulator shows 3D RCS scattering from plate and

current distribution when we take the result from PO-FEKO, we also notice

that the current is equally distributed and equal in magnitude.

Figure 2.11. Shows the distribution of current on a plate when using MLFMM

for scattering solution in EM simulator. We observe that the currents are not

equal on the geometry of the surface, since the MLFMM calculate the effect

of current in each part to other parts.
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Figure 2.10: Geometry of the problem: illustration of the plate shows the power scattered and the
major beam direction calculated using PO

Figure 2.11: Geometry of the problem: illustration of the plate show the current distribution and
the major beam direction calculated using MLFMM
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2.4.2 KA to study the scattering from two dimensional rough surface (3D prob-

lem)

In this section, we will discuss the validity of KA for 3D rough surface and

compare the result firstly with FEKO-PO and then with rigorous model

MLFMM.

Consider a rough surface of dimension 10λ × 10λ as shown in Figure 2.12,

generated by Gaussian random process, of which autocorrelation function

of height is given by Ch(x, y) = σ2
h exp(−x2/L2

cx − y2/L2
cy), the correlation

lengths Lcx = Lcy = 1.2λ0, and with standard deviation of the heights σh =

0.2λ0, (σs =
√

2× σh/Lc ≈ 0.24λ0).

Figure 2.12: Geometry of the problem: illustration of the rough surface

The surface is illuminated by a plane wave in normal incident, θi = 0o,

ϕi = 0o, the discretizing steps of the surface are ∆x = ∆y = λ0/8. The PO

is compared to FEKO-OP in Figure 2.13 and Figure 2.14, on which the RCS
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is plotted according to the angle of observation θs for both co-polarizations

HH.

Figure 2.13: Comparison of bistatic RCS obtained with FEKO-PO and proposed PO for HH co-
polarization, case of a rough surface of dimension 10λ × 10λ, 4x = 4y = λ0/8, θi = ϕi = 0o,
Lcx = Lcy = 1.2, σh = 0.2λ

We observe from Figure 2.13 and Figure 2.14 that the result obtained by the

proposed PO are in good agreement with those get from FEKO, that means

that PO still a good approximation.
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Figure 2.14: Comparison of bistatic RCS obtained with FEKO-PO and proposed PO for VV co-
polarization, case of a rough surface of dimension 10λ × 10λ, 4x = 4y = λ0/8, θi = ϕi = 0o,
Lcx = Lcy = 1.2, σh = 0.2λ

Figure 2.15: Geometry of the problem: illustration of the rough surface showing the power scattered
and the major beam direction

From Figure 2.15 we notice that maximum power is located around the spec-

ular direction. Since the surface is rough, the contribution of the specular

component decreases as the scattered power in the other directions increases.

Figure 2.14 which shows the 3D power scattered from geometry obtained by
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EM simulator calculated by MLFMM method.

Another comparison of the results of FEKO-PO, will be then done with

FEKO-MLFMM using the same specification σh = 0.2, dimension 10λ ×

10λ, Lcx = Lcy = 1.2, as in Figure 2.16.

Figure 2.16: Comparison of bistatic RCS obtained with FEKO-MLFMM and proposed PO for HH
co-polarization, case of a rough surface of dimension 10λ × 10λ, 4x = 4y = λ0/8, θi = ϕi = 0o,
Lcx = Lcy = 1.2, σh = 0.2λ

As seen from Figure 2.16, we also observe that PO approximation is in agree-

ment with the MLFMM for most scattering angles θs, except for grazing

angles.

After we checked the validity domain of PO from smooth to very rough

surface and compare the results with FEKO. We will introduce the shadowing

function and show how to insert this correction function into KA in the last

chapter.
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Chapter 3

Electromagnetic Scattering from Two Dimensional

Rough Surfaces using iterative method with shadowing

effect

In this chapter, the scattering field intensities of random rough surface are

derived by inserting a correction factor called illumination function or shad-

owing function, to improve the asymptotic KA model described in the previ-

ous chapter. And then we will check the validity of this new approximation

and compare the results with FEKO-MLFMM.

After we introduce and discuss the shadowing function, we present a new

approaches called Iterative Physical Optics (IPO) which focuses in studying

the effect of current between each part in the geometry and how this effect

react to improve and correct our mathematical assumption of PO.

From the previous chapter, the expressions of the field scattered in the far-

field zone of the surface make it possible to calculate the scattered intensities

through the so-called scattering coefficient (in reflection and transmission),

our mathematical model is checked for the validation. Now, in order to

improve KA we will introduce the shadowing function and then combine it

with the KA technique.
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3.1 Bistatic Shadowing Functions in Reflection

EM scattering from rough surface is affected by surface shadowing when the

angle of incidence is large, traditional rough surface scattering theories such

as small-perturbation method and KA do not directly include shadowing ef-

fects. Attempts have been made to include shadowing in these models by

incorporating “a shadowing function”[26]. In this section we will introduce

a correction factor to represent the shadowing effect. Firstly, we will intro-

duce monostatic shadowing function and then develop the bistatic shadowing

function.

3.1.1 Monostatic Shadowing Functions

There are a number of theories for the scattering by randomly rough surfaces,

based on a “ray-optics”approximation, whose validity may be extended by

properly accounting for surface shadowing . Wagners and Smiths approaches

[27], [28], are used to describe the shadowing function with single reflection

for a stationary rough surface.

Their formulation assumes that the surface is one dimensional with a Gaus-

sian process, where the correlation between the surface slopes and heights is

neglected. From these works, Bourlier et al [29] have extended the shadow-

ing function for any uncorrelated and correlated Gaussian processes. With

a Gaussian process, they showed for an infinite observation length that the

Smith results are more accurate than Wagners and the correlation weakly

improves the model. The Smith approach is chosen as a starting point to
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develop the statistical shadowing function with multiple reflections [30].

The monostatic statistical shadowing function represents the probability that

the incidence or scattering beam of direction K̂1 (and associated angle θ1) in

the medium Ω1 does not intercept before reaching the surface at the consid-

ered point A (of coordinates RA= (xA, ηA)) as illustrated in Figure 3.1. This

probability is conditioned by the surface height and slope at the considered

point A and defined for a surface with even statistics [2] as follows:

S1(K1 | ηA, γA) = Υ(µ1 − γA)[Ph(ηA)− Ph(−∞)] Λ(µ1) (3.1)

where

Ph =

∫
ph(η)dη, (3.2)

Λ(µ1) =
1

µ1

∫ +∞

µ1

(γ − µ1)ps(γ)dγ, with µ1 = | cot θ1|, (3.3)

Υ(x) =


1 if x ≥ 0

0 otherwise

, (3.4)

In equation (3.3), θ1 is the incidence angle (θi such that θi ∈ [−π/2; 0] for ori-

ented angles) or the scattering angle (θs ∈ [−π/2; +π/2]), with µ1 = | cot θ1|

the absolute value of the associated slope. Ph is a primitive of the height PDF

ph, ps is the slope PDF, and Υ is the Heaviside function. In equation (3.1),

the term [Ph(ηA) − Ph(−∞)]Λ(µ1) makes a restriction on the surface height

ηA.

The term [Ph(ηA) − Ph(−∞)] tends to 1 when point A is located at a high

altitude ηA(ηA → +∞), and then the shadowing function is maximum, that
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is to say, the shadowing effect is weak. Indeed, the higher point A, the lower

the probability that an incident or scattered wave in the upper medium Ω1

crosses before reaching the surface at point A, which is important. Reversely,

this term tends to 0 when point A is located at a low altitude ηA(ηA → −∞),

and the shadowing function tends to 0 as well, that is to say, the shadowing

effect is maximum. Indeed, the lower point A is, the higher the probability

that an incident or scattered wave in the upper medium Ω1 crosses the surface

before reaching at point A. This is illustrated in Figure 3.1, in which point

A′ of lower altitude than that of A is in the shadow of the beam with slope

µ1.

Figure 3.1: Influence of the height of point A

Moreover, the height cumulative distribution function (CDF) [Ph(ηA)−Ph(−∞)]

is weighted by the term Λ(µ1), which takes into account the surface slopes γ

that are greater than the absolute slope µ1 of the wave of direction K̂1. When

µ1 → 0 (corresponding to a grazing angle), the function Λ(µ1)→ +∞, then

S1 → 0 (as 0 ≤ Ph(ηA) − Ph(−∞) ≤ 1) : the shadowing effect is maximum.
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Reversely, when µ1 → +∞ (corresponding to a zero angle), the function

Λ(µ1)→ 0, then S1 → 1 : the shadowing effect is minimum. Thus, this func-

tion holds for the fact that for a given surface point A, the lower the absolute

slope of the beam of considered wave is, the higher is the shadowing effect.

This is illustrated in Figure 3.2, in which the beam with slope µ′1 that is lower

than the beam with slope µ1 induces a more significant shadowing.

Figure 3.2: The slope of the beam µ1 on the phenomenon of shadowing (propagation shadowing)
of a random rough surface [2]

The term Υ(µ1 − γA) holds for the condition that the absolute value µ1 of

the slope of the incident or scattered wave must be greater than the surface

slope γA, so that the incident field can contribute to the scattered field. This

function then makes a restriction on the surface slope γA. This is illustrated

in Figure 3.3, in which the beam with slope µ′1 inferior to the surface slope

γA at point A crosses the surface before reaching it at point A. This point

is then in the shadow of the beam with slope µ′1 < γA. In other words, it is
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due to the fact that at a given surface point, owing to the local surface slope

at considered point (tangent plane) and to the incidence or scattering angle,

the local incidence or scattering angle may be greater than π/2 in absolute

value. This being physically impossible, it is then necessary not to take these

points into account.

Figure 3.3: Phenomenon of shadowing of a random rough surface [2]

3.1.2 Bistatic Shadowing Functions

The bistatic statistical shadowing function in the case of reflection of a wave

in direction K̂i by a medium Ω1 onto a medium Ω2 in the direction of reflection

K̂r has been expressed in Wanger [30] and Boulier [29]. For the case of single

reflection inside Ω1, the expression of S11 is given in the convention of oriented

angles θi ∈ [−π/2; 0], as Figure 3.4 by [2] :
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S11(Ki,Kr | ηA, γA) =


S1(Kr | ηA, γA) if θr ∈ [−π/2; θi[

S1(Ki | ηA, γA) if θr ∈ [θi; 0[

S1(Ki | ηA, γA)S1(Kr | ηA, γA) if θr ∈ [0; +π/2[

(3.5)

where Ki,r are the incident and reflected wave vectors, with µi,r = | cot θi,s |

the absolute slopes of angles of incidence (θi ∈ [−π/2; 0]) and of reflection

(θs ∈ [−π/2; +π/2]). S1 denotes the monostatic statistical shadowing func-

tion (defined previously) inside the medium Ω1, which is located above the

rough surface ΣA. Now if we substitute equation (3.1) in equation (3.5) then

Figure 3.4: Configurations of the bistatic shadowing function in reflection: (a) θr ∈ [π/2; θi[, (b)
θr ∈ [θi; 0[ and (c) θr ∈ [0; +π/2[ [2]
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we get:

S11(Ki,Kr | ηA, γA) =


Υ(µr − γA)[Ph(ηA)− Ph(−∞)] Λ(µr) if θr ∈ [−π/2; θi[

Υ(µi − γA)[Ph(ηA)− Ph(−∞)] Λ(µi) if θr ∈ [θi; 0[

Π(γA)[Ph(ηA)− Ph(−∞)] Λ(µi)+Λ(µr) if θr ∈ [0; +π/2[

(3.6)

where

Π(γA) =


1 if γA ∈ [−µi; +µr]

0 otherwise

(3.7)

From equation (3.6), the restriction on the slope γA implies that γA ∈ [µr; +∞], γA ∈

[µi; +∞] and γA ∈ [µi; +µr], respectively.

With MSP approximation [2], the bistatic shadowing function in reflection

S11 is independent of the local tangent plane (or of the local surface slope),

and then become as:

S11(Ki,Kr | ηA, γ0(r)) =


[Ph(ηA)− Ph(−∞)]Λ(µr) if θr ∈ [−π/2; θi]

[Ph(ηA)− Ph(−∞)]Λ(µi) if θr ∈ [θi; 0]

[Ph(ηA)− Ph(−∞)]Λ(µi)+Λ(µr) if θr ∈ [0; +π/2]

(3.8)

Then, the only random variable inside the equation of the statistical shad-

owing function in reflection (3.8) is ηA, and then the avereging shadowing

function which given from an arbitrary process becomes [29]:
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S11(Ki,Kr | ηA, γ0(r)) =


1/[1 + Λ(µr)] if θr ∈ [−π/2; θi]

1/[1 + Λ(µi)] if θr ∈ [θi; 0]

1/[1 + Λ(µi) + Λ(µr)] if θr ∈ [0; +π/2]

(3.9)

For a Gaussian process and Beckmann distribution [31], by substituting

Λ(µi,r) in equation (3.3).

Note that Λ(µa) can written as:

Λ(µa) =
erf(Va)− 1

2
+

1

2Va
√
π
exp(−V 2

a ) (3.10)

where erf(Va) = 2/
√
π
∫ Va

0 exp(−t2)dt, is the error function for each element

of Va, Va = µa/σs
√

2, a ≡ {i, r}, σs is the surface root mean square (RMS)

slope.

3.2 KA with Shadowing effect

After we introduced shadowing region effect and derive the equations of shad-

owing function S11, shadowing correction factor is inserted to KA, and the re-

sults are checked with different incident angle θi and compared with MLFMM

.

Firstly, we demonstrate the shadowing function with incident angle θi = 80o

and observation angle θs ∈ [−π/2; +π/2] as shown in Figure 3.5.
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Figure 3.5: Bistatic shadowing function S11 with θi = −80o, θs ∈ [−π/2; +π/2], σs = 0.3

The shadowing effect increases and become important as the incident angle

θi increases over the range of scattering angle θs. Secondly the shadowing

function will inserted to KA and equation (2.45) becomes:

σ̄ = 4πR′2

|Sθθ|2 |Sθφ|2
|Sφθ|2 |Sφφ|2

S11. (3.11)

Where S11 is the shadowing factor is given by equartion (3.9).

Consider a rough surface of dimension 10λ × 10λ as shown in Figure 3.6,

generated by Gaussian random process, of which autocorrelation function of

height is given by Ch(x, y) = σ2
hexp(−x2/L2

cx−y2/L2
cy), the correlation lengths

Lcx = Lcy = 1.2λ0, and with standard deviation of the heights σh = 0.2λ0,

(σs =
√

2× σh/Lc ≈ 0.24λ0).
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Figure 3.6: Geometry of the problem: illustration of the rough surface

The surface is illuminated by a plane wave in normal incident, θi = 0o,

ϕi = 0o, the scaling step of the surface are ∆x = ∆y = λ0/8. The PO-with

shadowing is compared to FEKO-PO as in Figure 3.7 , on which the RCS is

plotted according to the angle of observation θs for both co-polarizations.
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Figure 3.7: Comparison of bistatic RCS obtained with PO-with shadowing, FEKO-PO and PO
proposed for HH co-polarization, case of a rough surface of dimension 10λ×10λ, 4x = 4y = λ0/8,
θi = φi = 0o, Lcx = Lcy = 1.2, σs = 0.3, σh = 0.2λ

We observe from Figure 3.7 that the result obtained by the proposed PO is

nearly the same except at the edge and in good agreement with those get

from FEKO. Now if we study the effect of shadowing by increase the incident

angle θi = 60o.
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Figure 3.8: Comparison of bistatic RCS obtained with FEKO-PO and PO proposed for, case of a
rough surface of dimention 10λ× 10λ, 4x = 4y = λ0/8, θi = 80o, Lcx = Lcy = 1.2, σs = 0.3, σh =
0.2λ

As seen in Figure 3.8 we observe that KA approximation is effected more

by shadowing phenomenon when θi increases, we observe that our proposed

model still applicable and good compared with MOM. So this correction leads

to improve the approximation at large scattering angles.

After we complete studying the shadowing effect and derive its formulation

with KA and testing the validity of the proposed approximation, we will

examine a new approximation in the last section which is called Iterative

Physical Optics (IPO).

3.3 Iterative Physical Optics (IPO)

This section describes an application of the Iterative Physical Optics (IPO)

method for computing the radio frequency (RF) scattering from electrically
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large targets. The IPO method generates the electromagnetic current on the

surface of the target, from which the scattered fields in the near-field and

far-field regions can be computed. Much of the early development of the

IPO method was focused on scattering by open-ended cavities [32], but it

has also been applied to more general targets. The method of the iterative

physical optics is much more efficient than purely numerical methods such

as the MOM (or boundary integral method) and finite element method [18],

because IPO is based on high frequency asymptotic principles of physical

optics (PO) and uses a much coarser discretization density.

Generally, the scattering problem of rough surface is considered as an extra-

large-scale electric scattering, for example 10,000 square lambda (λ, EM

wavelength) [33]. It is more feasible to solve such a large-scale scattering prob-

lem using the analytical method rather than the numerical method. Many

researchers focused on the KA, which is also called the PO [2].

According to the Huygens Principle, the volume induced current can be

changed into the equivalent surface current. Those currents are the elec-

tric surface current Js and the equivalent magnetic surface current Ms [7].

When the curvature radius Rc of the rough surface satisfies Rc >> λ, the

rough surface can be regarded as many small planar patches put together, so

the EM wave diffraction on the edge of the rough surface and the multiple

scattering and multipath effect among the surface patches are ignored [33].

The induced currents (Js,Ms) can be solved by the Fresnels equations un-

der the computational costs . The IPO is based on a modified form of the

magnetic field integral equation, as follows [35]:
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J(r) = J(0) + 2n̂(r)×HIPO(J) (3.12)

and

HIPO(J) = P

∫
n.R′<0

J(r′)× R̂′e
−ikR′

4πR′
(ik +

1

R′
)dS ′ (3.13)

in which J(r) is the surface current, n̂ is the surface normal unit vector,

k is the wavenumber, and the integral is over the surface S ′ of the target.

The symbol P indicates a principal value integral. Also, with R′ = r− r′ in

which r′ is the integration point on the surface (i.e., the source point) and r

is the point at which the integral is evaluated (i.e., the test point), we have

R̂′ = R′/R′ and R′ = |R′|. The lowest (zero) order IPO approximation J(0)

is appear as PO defined as follows:

J(0) =


2n̂(r)×Hi(r) for n̂.k < 0

0 for n̂.k ≥ 0

(3.14)

Rather than being non-zero on only those parts of the surface that are ge-

ometrically illuminated by the incident field, this current is non-zero every-

where that the outward surface normal vector has a nonzero component in

the direction opposite that of the incident plane wave.

These are directions for which the surface point would be illuminated by the

incident plane wave in the absence of geometrical shadowing by other parts of

the target surface. For non-convex surfaces, this is an important difference,
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in that portions of the surface that are in the shadow of other parts of the

target may have a non-zero lowest order IPO current.

A similar constraint, in the form of the condition n̂.R′ < 0, is also applied

to the integral in (3.13), such that the integral may include portions of the

surface that lie in the shadow of other parts of the target.

There are several methods for solving the IPO equations (3.13) and (3.14).

The most straightforward approach is a simple iterative process [35].

J(n)(r) = J(0)(r) + 2n̂(r)×HIPO(J(n−1)) (3.15)

where n is an iteration index. The interaction error ζs in the nth iteration

step, is defined as follows [33]:

ζ(n)
s =

|J(n+1)
s − J(n)

s |
|J(n)
s |

(3.16)

Once ζs is less than a residual error (e.g., 0.01), the interaction process is

assumed to converge and reach a stable state.

3.4 Simulation Results of IPO

Since the IPO is derived from the magnetic field integral equation (MFIE),

the interaction effects among all the patches of rough surface are taken into

account, and they can improve the computational accuracy and extend the

validity region of KA, compared with conventional PO. The Gaussian rough

surface is used to quantize it.
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The basic parameters are as follows: Size of rough surface 6λ×6λ, correlation

length of Lc = 1.2λ, root mean square height of rough surface is σh = 0.2λ.

Set the incident angle as θi = 0o.

Obviously, it issatisfying the KA condition. The co-polarization including

horizontal (HH) polarization and the vertical (VV) polarization are studied.

Figure 3.9: Comparison of bistatic RCS obtained with PO and IPO and FEKO-MLFMM for HH
co-polarization, case of a rough surface of dimension 6λ × 6λ, 4x = 4y = λ0/8, θi = φi = 0o,
Lcx = Lcy = 1.2, σh = 0.2λ

Radar cross section (σ) is calculated using the PO, IPO, and the rigorous

MLFMM (which is considered as the reference data in this work). And the

validity of IPO compared with MLFMM and PO, illustrated Figure 3.9.

IPO shows a good agreement with the rigorous method, even though the

surface is rough .
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Figure 3.10: Comparison of bistatic RCS obtained with PO and IPO and FEKO-MLFMM, case of
a rough surface of dimension 6λ× 6λ, 4x = 4y = λ0/8, θi = 60o, Lcx = Lcy = 1.2, σh = 0.2λ

At the large incident angle (θi = 60o), as shown in Figure 3.10 Radar Cross

Section scattering coefficient (σ) is given out using the PO, IPO, and the

rigorous MLFMM.

The validity of IPO compared with MLFMM is illustrated in Figure 3.10 IPO

shows a good agreement with the rigorous method , even though the surface

is rough and the incident angle is large.

To conclude, previous approximations (PO, PO-shadowing and IPO) are

called asymptotic models and useful to be applied when the surface is large

due to their simplifying assumptions, less complexity and low computational

time and capacity, but these techniques are restricted by their validity do-

main.
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Conclusion

In this thesis we studied the scattering of an electromagnetic wave by

a 2D random rough surface (3D electromagnetic problem) using asymptotic

models. Since remote sensing technology becomes very important in different

field especially in telecommunication and military, so many techniques appear

and are developed to calculate Radar Cross Section (RCS) such as the Method

of Moments (MOM) and it’s accelerations, but these methods are too complex

and need high computational time and capacity, and applicable for small

surface dimensions less than 30λ× 30λ.

In this work we adopted an asymptotic technique called Kirchhoff Approxi-

mation (KA) which is a simple approximation need less computational time

and capacity, applicable for large rough surfaces more than 100λ×100λ. then

a mathematical model based on KA is studied and the validity of the proposed

model is checked by comparing the results of the RCS with the accelerated

rigorous method called Multi Level Fast Multipole Method (MLFMM).

According to the results of the Radar Cross Section (RCS) of rough sur-

face, we observed that this model provides a good agreements with rigorous

method except at the edge due to facts that KA did not take into account

the concentration of currents at the edge and the shadowing phenomenon,

so to overcome this problem, and to improve the model a correction factor

called bistatic shadowing function is inserted to the KA math model. As a

result, the KA model with the shadowing function becomes more accurate,

but not exact as a rigorous method.
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Finally, in order to improve the results especially at the boundaries, an iter-

ative approach called Iterative Physical Optics (IPO) based on the Magnetic

Field Integral Equation (MFIE) used. The method uses simple and efficient

approaches for the computation of surface current interactions. Numerical re-

sults of scattering fields show that the proposed approach is preferable in EM

problems where the diffraction effects or currents in shadow regions would

cause large errors.

As future work, we can apply the previous study for the case of two scatteres

(object above rough surface). A Hybrid technique of IPO and KA can be

developed to calculate the scattered field from the total scene. The interaction

between the object and the rough surface can be calculated iteratively while

the KA can be applied only on the rough surface.
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Glossary and Abbreviation

EFIE Electric Field Integral Equation

FDTD Finite Difference Time-Domain

FSA Forward Scattering Alignment

GO Geometric Optics

IPO Iterative Physical Optics

KA Kirchhoff Approximation

LHI Liner Homogenous Isotropic

MoM Method of Moment

MSP Method of Stationary Phase

PDF Power Distribution Function

PO Physical Optics

PC Perfect Conductor

PPW Plane Progressive Wave

RCS Radar Cross Section

RMS Root Mean Squar

SPM Small Perturbation Method

SSA Small Slop Approximation
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S11 Shadowing Function

TE polarization Transverse Electric (polarizationn H)

TM polarization Transverse Magnetic (polarization V)

Z0 Intrinsic impedance

ε0 Permittivity of free space

µ0 Permeability of free space

η RMS surface height

θi Incident angle

θs Scattered Angle
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عة    (EM) السهرومغناطيسة  الموجةاتوتقنيات تقريبيه لدراسة  اةاةرا اناسةا   نماذج

 .( 2Dسطوح غير منتظمه ةندسيا ثنائي  الابااد )

 

 إعداد : اشرف طلال أحمد ربايعه

 المشرف : د. محمد كوعلي

  ملخص :

ةندسةيا  مة  السةطوح الغيةر  منتظمة   لبحة  والدراسة   ة  م ةاع اناسةا  ا  ةا ياتبةر ا

 الواقاية توليةد الوةور  ,مثل  والهندسي  الالمي أمرا ةاما للاديد م  الم الات  والاشوائي 

, وتوةةنيأ أ ةةبام المو,ةةفت , و حةةا تبةةاي  السةةطوح  ةة   الحاسةةوبي  ةة  الرسةةومات 

عة   أةميةه دراسة  اناسةا  ا  ةا  أبرزا وغيرةا,  ا موركل ةذم  ,الدقيق الالسترونيات 

 ةة  ةةةذا  والدراسةة يسةةتمر البحةة    , ةة  الوقةةح الحا ةةر ةندسةةيا   منتظمةةسةةطوح غيةةر 

التةة  تانةةل بالسةةطوح  بسةةب   اهةةور وتطةةور الاديةةد مةة  الم ةةالات والتطبيقةةات  ,الم ةةاع

السةلسي  والفسةلسي  مثةل الاتوةالات  ولةي  لهةا توزيةأ منةتظ ,  منتظم والغير  الاشوائي 

عة   الاستشاارع الاسسري وتطبيقات قطاوال الطبي    الوور  السيني  وتطبيقات ا  ا 

لدراسةة    (,MOMمثةةل) نظمةةه وتقنيةةاتأوغيرةةةا تةة  تطةةوير عةةدا   ا سةةبا باةةد  لهةةدم 

سةةتطيأ مار ةة  نحيةة  مةة  مةةفع مار تةةه وحسةةابه   (RCSوحسةةا  المقطةةأ الةةراداري )

دون  والإ ةةةارات الموجةةةات السهرومغناطيسةةي  اعنهةة الوةةادراح والسةةةط وطبياةة ماةيةة  

لفحوةها وماال تهةا وبالتةال   اوامةذ عينةات منهة بالسةطوحالاتوةاع المبا ةر  إلةل الحاجة 

ماقةةدم  نهةةاأ, ولسةة  مشةةسله ةةةذم التقنيةةات والةةدواع السةةطوح ماةيةة  وطبياةة  ةةةذم مار ةةه 

وبالتةال  وقةح  والالسترونيةات الحوسةب  ا جهةةاوقدرات عاليه     إمسانيات إللوبحاجه 

 وجهد وتساليف عاليه 

وتقنيات جديد اقةل تسلفةه  أسالي البح  ع   ابتدأ,  والمسلف  الماقداوبدلا م  ةذم التقنيات 

بدراسةة  غيرةةةا قمنةةا و ا سةةبا واقةةل دقةةه, ونتي ةة  لهةةذم  تقريبيةة  حووقةةح حتةةل لةةو كانةة

  ,(KAتاةر  باسة  دالةه كير ةو  ) ,(RCS) ي   المقطةأ الةرادارلحسةا وتطبيق تقنيه

بحيةة  تسةةون   (3D) ا باةةاد ةة  حالةة  السةةطوح ثفثيةة   (POأو البوةةريات الفيةيائيةة  )

 الماقةةداالتقنيةةات  أن ةة  حةةي    وتحتةةاج القليةةل مةة  الوقةةح الحسةةاب    أسةةرع واقةةل تسلفةةه,

بحية   المحةدودا الإباادذات  سطحللأ  RCSتسمح بماال ه وحسا  MOM) ) والدقيق 

 التقريبية الدالات  إن,    حي   (3D) الإباادثفثي   لأسطح( ل30λ×30λتسون اقل م  )
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تتةيح لماال ةه  (3D)  الإباةادثفثيةه  للأسةطح (KA) تطبيقهةا وتبنيهةابقمنةا  التة مثل تلك 

ولسةة   ةةم    (100λ×100λمةة  ) أكثةةر السبيةةرا الإباةةادذي  سةةطحللأ  RCSوحسةةا 

  التطبيق حسا  و,ارم    سون ي الااداانطباق ةذم الدواع      محددات و نطاق

 (KAريا ةيه ) دالةهل دراسة  ومقارنة ةةو عمةل  الهد  الرئيس   م  ةةذم ا طروحة ن إ

 الموجةةات السهرومغناطيسةةي  والتةة  تانةةل بحسةةا  المقطةةأ الةةراداري مةة  مةةفع حسةةا 

مة  و ,ةندسةيا منتظمة والغيةر  الخشن ( 3D) الإباادم  سطوح ثفثي   المناسس و المرتدا

 للتأكد  ,(MLFMM( وة  )MOMالدال  المسرع  م  ) مقارنتها بتقنيات دقيقه مثلث  

ولتحسةةي   اعليتهةةا    (RCSالمقطةةأ الةةراداري )  مةة  ,ةةحتها ومةةده  دقتهةةا  ةة  حسةةا 

مشةةون   نتي ةة اةةاةرا الظةةل  لاامةةل توةةحيح ياتمةةد علةةلم با ةةا   دراسةة  ودقتهةةا قمنةةا 

 وتطبيقهةا  ة  ماادلاتةه  بدراس بحي  قمنا   يسمل  ماامل الظل  سقوطال وزاوي السطوح 

بي  التقنيات  المقارن الحسا   تت   الت  يضيفا    عمليات الدق و حا مده  (KAدال  )

    ([ ◦90+ : ◦90−]  )زاوي  الاناسا  م  ال س  الاشوائعلل كامل نطاق 

  باة  المفةاةي  والمبةادلأ ا ساسةي  يت  تنظي  ا طروح  علل النحو التال : أولا، تقةدلقد 

 ا سةةةطحمثةةةل التمثيةةةل الإحوةةةائ  لو,ةةةف , السهرومغناطيسةةةي  الفزمةةة  ةةة  النظريةةة  

،  الخشةن ح ومة  السةط  ا  ا  اناسا  دراس ، بحي  يمس  دراستها وو,فها الاشوائي 

  وما إلل ذلك Huygensوالماادل  التساملي  القائم  علل مبدأ 

المقطأ  ( لحسا KA) نموذج ريا  ل دراس  أما    الفول الثان ، سو  يت  تقدي 

مأ تو يح  , (3D) ثفثي  ا بااد الاشوائي  الخشن ( للسطوح RCSالراداري )

يت        الواقأ،ومده  اعليته    حسا  المقطأ الراداري موائوه ومده ,فحيته

  لتحسي  وإمساني  تطبيقه بمقارنته مأ  التقنيات الدقيق  للتأكد م  دقته التأكد م   االيته

عامل الظل لةيادا  بتطبيق ماادلاتقمنا  المنطق  المتأثرا بظاةرا التظليلالتقني  ومراعاا 

تسرار   سو  يت  مناقش  نموذج جديد يار  بتقني  النهاي , و   النمودج اعلي  ودق  

ولس   (KAالذي ياتمد بحساباته علل النموذج المقدم ) (IPOالبوريات الفيةيائي  )

   بي  أجةاء السطح بطريقه تسراريه تو ح عفق  التيار  

 

  


