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Abstract

The investigation of the problem of wave scattering from interfaces is im-
portant for many scientific and engineering disciplines such as photorealistic
image generation in computer graphics, the manufacture of the semiconduc-
tors. Nowadays, the research in this domain continues, because multiple
applications exist such as in telecommunication, medical imagery, military
operations, and radar remote sensing. Rigorous methods such as the Method
of Moments (MOM) are widely developed to calculate the Radar Cross Sec-
tion (RCS) [1]. These rigorous models have the advantage of being exact,
but they require, in general, a long computation time and a large memory

space.

Thus, it is of interest to use asymptotic models such as Kirchhoff Approx-
imation (KA), which have the great advantage of being faster to compute,
less complexity and little computational time. Because of their complexity,
the rigorous models usually allow us to treat surfaces with restricted dimen-
sions (typically, 30\ x 30\ for 3D problems) [2]; whereas the asymptotic
models usually permit to treat larger surfaces. However, asymptotic models
are applicable only in a restricted validity domain. Indeed, the models are
used for resolving the problem more easily and/or more rapidly. KA is one of
the widely used high-frequency asymptotic techniques to accelerate the radar

cross section calculation [4].

The purpose of this work is to adopt a mathematical model using KA to cal-
culate the scattered fields from a random rough surface (sea like surface) for

ix



a 3D electromagnetic problem and make a comparison with rigorous method
to validate it, then insert correction factor called shadowing function to the
approximation (KA), which depends on roughness parameters and incident
angles. A reference method is required to validate the domain of the pro-
posed approaches so, the Multilevel Fast Multi-Pole Method (MLFMM ) of
Electromagnatic Field (EM) simulator FEKO has been chosen as a reference
model for the calculation of rough surface RCS, to determine the validity do-
main KA approach. The comparison occurs for observation angles between
[—90° : 490°].

This work is organized as follows: first, we introduce some concepts and basic
principles in electromagnetic theory necessary to introduce our work such as
the random rough surface statistical description, incident and reflection from
rough surface, integral equation based on Huygens principle and so on. Then
a computational methods of rough surface scattering is introduced showing

its properties and validity domain.

In chapter two, a mathematical model for 3D rough surface scattering prob-
lem is presented using KA, showing its properties and validity domain. In-
deed, the radar cross section results obtained from the KA model is compared

to rigorous algorithms to validate the method.

Finally in the last chapter, the shadowing function is inserted into KA ap-
proximation to improve the technique and take into account the region that
affected from the shadowing phenomenon. In addition, the Iterative Physical
Optics (IPO) method is discussed in the last section to compared with KA

since this technique is based on KA but in an iterative way.



CHAPTER 1

Electromagnetic Wave Scattering from Random Rough
Surface: Basics

This work is motivated by numerous applications of microwave remote sens-
ing of perfectly-conducting random rough surfaces. Such as earth observation
(both oceanic and continental surfaces remote sensing), military operations,
communications, and also in optical domain. Electromagnetic scattering at
various bands from these objects usually contains information about their ge-
ometry and properties, which can be exploited by microwave remote sensing.
As a noninvasive technique, microwave remote sensing is extremely attractive

for this purpose.

This chapter recalls the basic necessary concepts for dealing with electro-
magnetic wave scattering from random rough surfaces, by using integral
equations. First, it recalls the notions of radar equation, Maxwell equa-
tions, plane wave propagation, Snell-Descartes laws. Second, it presents an
introduction about solutions of scattering equations (Green’s function), and
how to use Huygens principle and extinction theory to introduce solution
for electromagnetic wave scattering, and then provide discussion about far
field and normalized radar cross section. Finally, it gives a literature re-
view about asymptotic models for rough surface scattering techniques like:
Kirchoff Approximation (KA), Geometric Optics (GO), Small Petrupation

Method (SPM) , and Small Slop Approximation (SSA).



1.1 Introduction and Basic Principles

The incident wave illuminating the surfaces will be considered as a plane
wave. A wave can be called locally plane if it is located in the so-called
Fraunhofer zone! [5], of the transmitter source, or far-field zone of the source.
This assumes that the source is far enough from the surface such that the
incident wave may appear as a plane on a distance greater than any dimen-
sion of the surface. The media are assumed to be linear, homogeneous and
isotropic (LHI)?, stationary and non-magnetic. The incident medium is per-
fectly dielectric ?, and can be assimilated to vacuum in general, although we
will trying to write the equations in the general case of any lossless perfect

dielectric medium.

The problem of electromagnetic (EM) wave scattering from non-flat sur-
faces, called rough surfaces, has been studied for decades. Among rough
surfaces, two main categories may be distinguished: periodic surfaces (such
as square surfaces, triangular surfaces, sawtooth surfaces and sinusoidal sur-
faces), which are deterministic, and random surfaces for which only some
statistical features are known. This chapter aims at introducing the main
necessary concepts for understanding the tools used in the following chap-

ters.

!The Fraunhofer zone or far-field zone corresponds to a distance R from the source which is greater than approxi-
mately 2D? /), where D is the greatest dimension of the source and X is the transmitted electromagnetic wavelength

2The linearity characterizes the fact that the quantities € and p are independent of the intensity of E and H, the
homogeneity that € and p do not depend on the considered space point and the isotropy that, u and o are scalar

3A dielectric medium is called perfect if the considered dielectric medium does not have sources of load or current



1.2 Maxwell’s Equations

In their local form, the Maxwell’s equations in dielectric media are given by

(6], [2]:
(Gauss Magnetic Equation) V.B =0 (1.1)
: 0B
(Faraday Equation) V x E = 5 (1.2)
(Gauss Electric Equation) V.D=p (1.3)
D
(Ampers Law) V x H=J+ 66_75 (1.4)

The vectors E and H denote here the electric and magnetic field vectors,
expressed in V/m and in A/m. They together form the electromagnetic
field. The symbol V is the operator defined in the system of orthogonal
coordinates (Cartesian, cylindrical, spherical coordinates, etc.) associated
with the coordinate system in which the Maxwell equations are applied. It
should be pointed out that in this manuscript the vectors will be denoted in
bold, the unit vectors in bold and with a hat and the matrices will be marked
in bold and topped with a bar. D and B denote respectively the electric
displacement and magnetic induction vectors, expressed in C'/m? and in Tesla
[2]. The equation (1.1) and equation (1.2) express the law of induction.
Equation (1.3) and equation (1.4) which connect the electromagnetic field
(E, H) to the sources (p,J), respectively represent the densities of charge
in (C/m?) and current in (A/m?) of the material environment. Indeed, D

and B are linked to the electric and magnetic fields by constitutive relations



taking account of the medium (vacuum, dielectric material, etc.) [7]. They

check the charge conversation equation:

dp
o, tVI=0 (1.5)

If the media considered linear homogeneous and isotropic (LHI), these rela-

tions are expressed as [6]:

D = ¢E = ¢, E (1.6)
B = uH = pou. H (1.7)
J=0oE (1.8)

Where €, u and o are, respectively, the permittivity, the permeability and
the conductivity of considered matter, with ¢y and py as their constants in

vacuum, which are equal to:

1
__ ' p 1.
0= s 10l /™ (1.9)
po = 4w x 10" 7TH/m (1.10)

These two quantities check the relation: eyupc? = 1, where c, is the light
propagation speed in free space, €, and u, are the relative electric permittiv-
ity and magnetic permeability, respectively: they are equal to 1 in vacuum.
Let us recall that in the following, only non-magnetic media will be consid-
ered; consequently, the relative magnetic permeability pu, = 1. Moreover,

propagation media will be assumed to be free of charge, p = 0, and most of



the time free of current as well, J = 0. A medium that is free of charge is
then considered as a dielectric medium; a distinction will be made between
a dielectric medium free of current, which will be called perfect dielectric
medium or lossless dielectric medium and a dielectric medium not free of

current, which will be called lossy dielectric medium.

1.3 Propagation of a Plane Wave (Helmholtz equation)

The propagation of electromagnetic waves is described by the equations of
Maxwell. Considering an LHI medium in the presence of charges and current
(p# 0 and J = o, E # 0) from the four Maxwell equations of the relations
(1.6) and (1.7) the propagation equations of fields are obtained from the
Maxwell equations by using the property V x (Vx) = V(V.) — V2, where

V? is the vector Laplacian®. Then, in a general way, we obtain [6], [7]:

O’E OE 1

0*H oH
V2H — EMW - MUCE =0 (112)

For a perfect dielectric medium (p = 0,J = 0), the equations reduce to:

O’E
2
0’H
2
VH — ey = 0 (1.14)

4In Cartesian coordinates, if we represent the scalar Laplacian by A = % + % + % the vector Laplacian of
A=A, Ay, A, VZA = AA G+ AA G+ AALE



In a general way, the solution of the propagation equation in a perfect dielec-
tric medium for a Plane Progressive Wave (PPW), which propagates in the

direction (0 = ﬁ) at speed v, is written as [6]:

\If:\I!+(t—&TR)+\If_(t+ﬁ'TR) (1.15)
Where, by definition of the plane wave, the wave planes (or surfaces of the
plane waves) are orthogonal to 1 defined by the planes u.R = C, where C
is a constant. The function ¥, sometimes called PPW ., is a a progressive
wave that propagates at speed v in the direction +R. Likewise, ¥_, some-
times called PPW _, is a progressive wave that propagates at speed v in the

direction —R. This wave function is checked by both E and H, and it can

be shown that:

H=_ZaxE (1.16)

Where Z = \/g = Zo\/‘::: is the wave impedance of the considered medium,
with Z; the wave impedance of vacuum which is equal to Zy = \/’::g = 120m.
Thus, (E, H, 0) form a direct trihedral. The wave is then called transverse
electromagnetic (TEM), because both vectors E and H are orthogonal to
the propagation direction given by u. A harmonic plane progressive wave

(HPPW) is a space-time function of real expression, after take the real part

of exponential ¢~ ~0@ [2].



1. R - .
T(R. 1) = Acos{w(t — =) — o}¥ = Acos(wt — kR —¢)¥  (1.17)
v
Where k = (w/v)u is the wave vector, w is the pulsation in rad/s and ¢ is a
constant phase term. In the following, we will consider the harmonic regime

such that every EM quantity is an HPPW of complex form:

U (R,t) = Aexp[ti(wt — k.R — ¢)]¥ = U(R) exp(+iwt) ¥ (1.18)

where W(R) = exp[zi(k.R + ¢)]. Depending on the sign convention + or

— in exp|ti(wt — k.R) , the time derivative operator % is equivalent to a
multiplication by +iw and the space derivative operator V. is equivalent to

a multiplication by +ik.

In the following, the retained convention is exp[—i(wt — k.R)] . Thus, the
wave equation (1.13) of the electric field E(R,t) = Eg(R) exp(Ziwt) in a free

of charge and current medium becomes:

(V2+E)E =0 (1.19)

with k% = w?/v?(dispersion relation), where k represents the wavenumber
inside the considered perfect dielectric medium. This equation, which is

called the Helmholtz equation, is also checked by the magnetic field H.

By taking the surface currents J = oE into account, the wavenumber k is

expressed by the dispersion relation as [7]:



k2 = 12(1 i) (1.20)

v? we
In this case, the wavenumber k is complex and the wave is damped during its
propagation inside the lossy medium. The time convention e(~7*? is omitted

throughout this work.

1.4 Boundary condition

Every medium is by nature finite, bounded by at least one different medium.
It is therefore important to characterize the behavior of the waves at the
boundary of the two media. Thus, new equations valid at the interface
with another medium must be established. These equations, obtained from
Maxwell’s equations. Consider the scene presented in Figure 1.1. A surface
S separates a medium (1) from a medium (2) and n, the normal at S , is

oriented from (2) to (1).

A

n
&.04 | EH
82_9 JUZ ]EZ,H2

Figure 1.1: Interface between two semi-infinite LHI media

S

The Boundary conditions (also referred to as continuity relationships) are

expressed:



A . (B,—B;) =0, (1.21)

n . (D2 — Dl) = Ps, (122)
n x (EQ — El) = O, (123)
n X (HQ - Hl) :j87 (124)

Where ps and J, represent the surface density of charge and the vector of
superficial (or surface) density of current, respectively, which may exist at
the boundary between the two media (p; = 0 for dielectric media, p, =
0 and J; = 0 for perfect dielectric media). Equations (1.21) and (1.23),
called continuity relations, describe the continuity of the normal component
of B and of the tangential component of E at the interface, respectively.
The other two equations (1.22) and (1.24) describe the discontinuity of the
normal component of D in the presence of surface charges of density p, and
the discontinuity of the tangential component of H on a layer of current,
respectively. Using the same method, for the case when the two LHI media

are perfect dielectric, the equations take the form:

i . (By—B)=0 (1.25)
i . (Dy—Dy) =0 (1.26)
i x (By— E;) =0 (1.27)
i x (Hy — Hy) =0 (1.28)



1.5 Polarizations

The plane of incident is formed by the wave vector incident onto the surface
Ri and the normal to the surface n. In the case when the studied surface
is flat, n € (X,z) with constant direction whatever the surface point, the
incidence plane (IEZ, n) is identical to the plane (x,z) as illustrated in Figure

1.2. In the case of a rough surface, the normal to the surface becomes a local

normal that depends on the considered surface point.

Considering an arbitrary rough surface for which the height n depends on
the two horizontal parameters x and y,n(z, y), the normal does not belong to
the plane (X, z), then the incidence plane depends on the considered surface
point. For better convenience, the polarization of the incident wave is defined

relatively to the mean plane (IEZ, n) as illustrated in Figure 1.2.

Figure 1.2: Incident wave on an infinite flat surface: cut view in the incidence plane (k;,n)

To study the polarization in the general case rigorously, it is necessary to con-

10



sider an arbitrary elliptical polarization. However, by considering a cartesian
coordinate system and knowing that every polarization state of a wave can
be represented by the combination of two linear horizontal and vertical com-

ponents, we will study these two fundamental components.

A possible representation of the horizontal and vertical polarizations is given
in Figure 1.3 and Figure 1.4. Note that in the literature, various denomi-
nations of these polarizations are given: the horizontal (denoted by H) po-
larization is also called the transverse electric (denoted by TE) polarization
or perpendicular polarization. The vertical (denoted by V) polarization is
also called the transverse magnetic (denoted by TM) polarization or parallel

(denoted by P for parallel in the optical domain) polarization.

Q, (g,) Y X

Figure 1.3: Incident wave onto a random rough interface in horizontal (H) polarizations: cut view
in the mean incidence plane (k;,z) [2].

11



Q, (&) Y !

Figure 1.4: Incident wave onto a random rough interface in vertical (V) polarizations: cut view in
the mean incidence plane (k;,z)

1.6 Green’s function

The solution for EM differential equation called Green’s function. Each com-
ponent of E checks the propagation equation, in scalar where the operator

(A + k?). Greens function associated with these operator checks [6]:

(A +E)GR,R) = —6(R,R). (1.29)

It’s seen that the Green’s function always depends on the source and obser-
vation vectors defined (R’,R) respectively. It corresponds physically to the
radiation of a point source. Finally the solution of equation (1.29) for 3D

scattering is [7]:

12



. /
ik R-R/|

/ _—
G(R.R)) = — RoRT (1.30)

Then the solution of the integral equation is the convolution of EM waves
and Greens function. In order to obtain the integral representation, it’s
necessary to transform an integral volume form into surface integral form

using Ostogrdski’s theorem [13]:

/// [Q.(VXxVXP)-P.(VxVxQ)]dv = //[Px(VxQ)—Qx(VxP)].ﬁdS.
: ’ (1.31)

Where S is a surface delimiting a volume V and n is the normal to the surface

S directed towards outside the volume V. P and Q are two vector functions of

the point (also called vector field or any vector field), at any point belonging

to volume V or surface S.

1.7 Huygens principle and extinction theory

The Huygens principle [2], [7] is a fundamental principle of the theory of
light. Huygens’ principle is based on the fact that each point of a wavefront
is itself a radiation source of a wave. By this principle, a source of radiation
can be replaced by a set of sources. These currents are placed on a surface
closed arbitrary encompassing the original source. This theorem allows us
to describe radiation from a current distribution on a surface, or to obtain a
surface integral equation of the currents induced on an object excited by a

incident field.

13



~
S~a —_ -

Figure 1.5: Geometry of the Scattering Problem

Consider the scene presented in Figure 1.5. A source J is placed in a medium
)y of permittivity ¢y and permeability py containing a medium object €2 of
permittivity €; and permeability uq. S is the surface delimiting the volume V
and its normal, 71, is directed towards the outside of V (thus directed towards
the interior of V). Where is the surface delimiting the volume V; at infinity
and its normal point outward of Vj. From equation (1.31) applied at volume

Vo, and Maxwell’s equations, the following equation is obtained [7].

ER/), if ReV
0 — E;(R)) _|_//S[G(R, R)iwpu(n(R) x H(R))+

0, otherwise

(A(R) x E(R)) x VG(R,R/) + (A(R).E(R))VG(R, R')]ds.

(1.32)

14



when R’ not belong V; the equation (1.32) becomes :

// G(R, R)iwp(n(R) x HR))+

(A(R) x E(R)) x VG(R,R/) + (1(R).E(R))VG(R, R)]ds.

(1.33)

This equation is known as the extinction vector theorem of Ewald-Oseen [14],
and imposes the cancellation of the total field inside the object of volume V;
the incident field being compensated by the contribution of the surface fields.
By defining the total field E as the sum of E;, the incident field and E,
the diffracted field (scattered field), equation (1.32) becomes in the volume

Vo :

E..(R)) = / /S [G(R, R )iwu(a(R) x H(R)) + (A(R) x E(R)) x VG(R,R')+

(a(R).E(R))VG(R, R)]ds.

(1.34)

This equation is known as the Huygens Principle and allows the propagation
of surface fields outside volume V, forming the total field after summation
with the incident field. If the object of volume V is dielectric, the field is not
necessarily zero for R’ not belong to Vj, from the curl relations, this time

applied to volume V, we obtain a new equation
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ER/), if ReV
— _//S[Gl(R, R')iwp((R) x H(R))+

0, otherwise (1.35)
(n(R) x E(R)) x VG1(R,R)) + (a(R).E(R))VG(R,R/)]ds.

where G1(R, R) is the function of Green . For R’ belong to V, the equation
(1.43) shows the principle of Huygens applied in volume V; for R’ not belong
to V, we recognize the expression of the extinction theorem. Thus, equation
(1.35) imposes the cancellation of the radiated field towards the outside of
the object and makes it possible to calculate the total field in the object. So
the problem has been broken down into two parts, one looking for equiva-
lent sources creating the total field in volume Vj and the other looking for

equivalent sources creating the total field in volume V (equation (1.35)).

1.8 Radar Cross Section and Scattering Coefficient

The measure of the ability of a target to reflect radar signal in the direction
of the radar receiver is known as Radar Cross Section (RCS). If the incident
signals were reflected uniformaly in all direction, then the RCS is equal to

the cross-sectional area of a target seen by the transmitter [16].

RCS has been defined to characterize the target characteristics and not the
effects of transmitter power, receiver sensitivity, and position of the trans-

mitter or receiver distance.
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1.8.1 IEEE RCS Definition

The IEEE dictionary of electrical and electronics defines RCS (o) as a mea-
sure of reflective strength of a target defined as 47 times the ratio of the
power per unit solid angle scattered in a specified direction to the power per
unit area in a plane wave incident on the scatterer from a specified direction.
More precisely, it is the limit of that ratio as the distance from the scatterer

to the point where the scattered power is measured approaches infinity [22]:

o = lim 47T7“2||E8H2

P SLTTWTER (1.36)

where E, is the scattered electric field and E; is the field incident at the
target. Three cases are distinguished: monostatic or backscatter, forward
scattering, and bistatic scattering. Bistatic cross section is for the case when

the transmitter and receiver are at different locations.

Scattering Obstacle

451(

Monostatic Bistatic
Scattered Field Angle
(backscatter)
Bistatic
Scattered

Field

Figure 1.6: Monostatic and Bistatic scattering [22]

Forward cross section is a measure of scattered power in forward direction;

that is, in the same direction as the incident field. This forward scattered
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power is usually 180" out of phase with the incident field so that when added
to the incident field a shadow region is formed behind the scattering object.
Monostatic or backscatter cross section is the radar systems where the re-
ceiver and transmitter are collocated, often times using the same antenna for

transmitting and receiving.

1.9 Literature Review: Computational Models [2],[7]

When studying the wave scattering from random rough surfaces, the problem
of predicting the surface is encountered. In some cases, it is possible to know
it exactly. For rough surfaces with spatial variations but not with time varia-
tions. For space- and time-varying surfaces, the problem is different a priori,
as the surface varies with time. For instance, for sea surfaces, sensors located
on buoys are used. Then, by assuming a stationary process, the knowledge
of some statistical features of the surface makes it possible to describe the
stochastic random rough surface: usually, it is the height probability density

function (PDF) and the height autocorrelation function [2].

The resolution of the problem of scattering from such surfaces then implies
determining the surface currents on the random rough surface. Models called
rigorous models make it possible to resolve the problem without any ap-
proximation on a parameter of the surface. For the case of scattering from
random rough surfaces, the analytical methods do not make it possible to
resolve the problem without approximation. Only numerical methods, for

which the surface is discretized, make it possible to resolve the problem with-
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out approximation. They are based on the resolution of the local Maxwell
equations on the surface. These methods are usually qualified as “exact ”or
simply “rigorous”, as the discretization has an influence on the precision of

the result.

These rigorous models resolved by numerical methods have the advantage
of being exact, but in return they require, in general, a long computation
time and a large memory space. Thus, it is of interest to use asymptotic
models, which have the great advantage of being faster to compute. Because
of their complexity, the rigorous models usually allow us to treat surfaces

with restricted dimensions (typically, 30\ x 30\ for 3D problems).

The asymptotic models usually allow us to treat larger surfaces. However,
as their name implies, asymptotic models are applicable only in a restricted
validity domain. Indeed, for resolving the problem more easily and/or more
rapidly, simplifying hypotheses must be used. Most of the time, these hy-
potheses rest on a parameter of the random rough surface, which must be less
or more than a parameter of the incident and/or scattered wave. For simple
asymptotic models, it is usually the height (RMS) oy, relative to the wave-
length \. If 05, << A, the model is of low-frequency type; on the contrary, if

on > A/4, the model is of high-frequency type.

Other surface parameters may also be involved, such as the mean surface
curvature radius R, relative to the wavelength A, the RMS slope o, relative
to the slopes of the incident and scattered waves or, similarly, the correlation
length L. relative to the wavelength \; moreover, several of these hypotheses

may combine. In order to study the validity of an asymptotic model, it is
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useful to compare the results with a rigourous model. This will permit to

study the limits and the validity domain of the asymptotic model.

1.9.1 Rigorous models

All rigorous models that deal with random rough surface scattering use nu-
merical techniques. These methods can be divided into two main categories:
differential methods and integral methods. Differential (or volumetric) meth-
ods are based on a problem of a partial differential equation. They require
a meshing of the space (3D meshing for a 3D problem, 2D meshing for a 2D
problem) whose shape and sampling step must be chosen carefully, depending
on the studied problem and on the desired precision. These methods are of
finite element type, such as the finite element method (FEM), for which the
problem is formulated in the frequency domain, and the methods of finite
difference type, such as the finite difference time domain (FDTD) technique,
for which the problem is formulated in the temporal domain [2]. The latter

methods are of interest for heterogeneous media.

As their name implies, the integral methods start from integral equations of
the field on the surface. In the frequency domain, the integral equations are
sampled in order to solve the problem. For doing so, the Method of Moments
(MoM) is often used. Then, the problem is transformed into a matrix, and
the difficulty lies in its inversion. It may be made directly; still, for computing
time and memory space constraints, it is better to optimize this inversion.
Thus, iterative methods are often used: the fast multipole method (FMM)

9], the banded matrix iterative approach/ canonical grid (BMIA/CAG) [11],
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the multilevel fast multipole (MLFMM) [8], the forward-backward method
(FB) [7], the method of ordered multiple interactions (MOMI) [10] and so on

1.9.2 Asymptotic models

Asymptotic models may use either numerical or analytical resolution meth-
ods. Typically, numerical asymptotic methods were developed to resolve
complex problems that the exact numerical methods could either hardly re-
solve, or only by means of extensive computing time and/or memory space.
This is the case, for instance, of ray tracing and ray launching methods [15].
Moreover, classical asymptotic models, which are generally solved by analyt-

ical methods, may also be resolved numerically.

For instance, let us quote the methods based on KA [20] and the Small
Perturbation Method SPM [15]. As discussed earlier in the introduction,
in general, simple asymptotic models may be split up into two main cate-
gories: low-frequency and high-frequency models. A third category gathers
the asymptotic models that aim at being applicable to both low and high

frequencies: these models are then qualified as unified.

After, we will give a panorama of the different categories of models. Then, the
models taking the phenomenon of multiple scattering will not be presented,
and a summary of the validity domains of simple asymptotic models will be
given, the first developed model is a low-frequency model: the SPM, which
is sometimes called Bragg scattering theory. Its pioneer was Lord Rayleigh

[21] who treated the case of sinusoidal surfaces. The SPM may be considered
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as a series expansion of the scattered field depending on the surface heights.
It was developed at orders 1 and 2, before being completed by Peake [16].
Johnson et al [19], developed the model up to order 3, and then up to order 4.
The higher the surface RMS height is, the higher the order of SPM must be
considered for the model to be valid [4]. For the first order of SPM (denoted
SPM1), the normalized radar cross-section (NRCS) (or scattering coefficient)
is proportional to the surface height spectrum. Usually, SPM1 is considered
to be valid for RMS heights o, and RMS slopes o, as shown in Figure 1.7

checking [4]:

koop, < 0.3, and o5 < 0.3, where ky is the wavenumber inside the incidence

medium, which is vacuum.

Figure 1.7: Random rough surface of SPM1 type [2]

The most often used and best-known high-frequency method is the KA. Usu-
ally called the Kirchhoff Approximation in short, or Physical Optics (PO)

approximation by numericians and/or in the radar scattering community [2],
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it assumes that the wavelength is (much) less than the mean surface curva-
ture radius R, (R. > A): the surface is then locally smooth (flat). It is also
necessary that the wavelength be less than the surface correlation length,
L. > A. Thus, locally, at each surface point, the surface can be replaced by
its tangent plane, which is a flat surface whose local slope is equal to the slope
of the original random rough surface at the considered surface point. As a
result, each ray of the incident wave is reflected (or transmitted) specularly
by the tangent plane at each rough surface point. This method depends only
on the Fresnel reflection (or transmission) coefficient evaluated at the consid-
ered local incidence angle for giving the amplitude, and on the appropriate
Snell—Descartes law for giving the direction of the reflected (or transmitted)
wave. Note that, however, this model diverges for low-grazing incidence an-
gles, because of the shadowing phenomenon of the surface; that is why, it
is necessary to introduce a corrective parameter called shadowing function
which is added to KA (or sometimes illumination function) to overcome this

1ssue.

The Geometric Optics (GO) approximation was introduced by Eckart [7], who
was the first to demonstrate that, with this high-frequency approximation for
which the RMS height checks o, > A\/4, the scattering coefficient (or NRCS)
is proportional to the surface slope. More precisely, the GO is applicable
if the wavelength is much lower than any parameter of the surface. Then,
for a flat surface, the surface parameters are its length and width L, and
L,, respectively. For a random rough surface, the height variations must be

taken into account through the RMS height oy,; also, its other characteristic
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dimensions should not be forgotten: in particular, the mean curvature radius

R, and also the correlation length o, shown in Figure 1.8.

Figure 1.8: Random rough surface of KA type [2]

In the rough surface scattering community, the KA is not used as such;
its mathematical expression is simplified in order to obtain faster numerical
results. Method of Stationary Phase (MSP) [2] is used very commonly; this
approximation implies the following assumption: o, > A/A with A > 4 a

constant.

Physically, it assumes that, for given incidence and observation directions, the
points of the surface that contribute to the scattering process are the points
that reflect the incident wave specularly into the observation direction. This
comes from the fact that the phase term inside the integral to be computed
oscillates very rapidly; then, the main contribution of the integrand can be
represented by the points for which the phase of the integrand is stationary

(i.e. null derivative of the phase). This corresponds to a commonly called
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saddle-point technique, and it may be assimilated physically to retain only
the envelope of the function (signal). As a result, the slope of the surface
points, which contribute to the scattering process, depends only on the angles
of incidence and observation: the dependence on the slopes in the integral is
suppressed, which makes it possible to greatly simplify the calculation of the

statistical moments.

Moreover, in order to get rid of the dependence on the surface heights, which
appear inside the phase term of the scattered intensity (or power), the GO
may also be used as a further approximation. From a qualitative point of
view, the associated constraint is the same as for the MSP, but it is a bit
stronger (o, > A/ B, with B also a constant checking B < A): it is applicable

to even rougher surfaces. In fact, o, > A\/4 (B = 4) is generally enough.

After we made a revision and introduction to concept and models used in
EM scattering, we will then focus and develop one asymptotic model in next
chapter called Kirchhoff approximation (KA) or Physical Optics (PO), we
will discuss it in details for 3D rough surface. Starting from applying this
technique for a flat surface (plate) and ending by applying it to very rough
surface, during that we check the validity of KA and make a comparison
between KA and the accelerated method of moments (MOM) which is called

Multilevel fast Multipole Method (MLFMM).
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CHAPTER 2

Electromagnetic Scattering from Two Dimensional
Rough Surface

This chapter describes classical statistical description of random rough sur-
faces, using the height distribution and autocorrelation function, then it in-
troduces asymptotic models used to evaluate the field scattered by random
rough surfaces, focusing on the Kirchhoff-tangent plane Approximation (KA).

Their theoretical math model and validity domains are given.

The previous chapter focused on the basic tools necessary for understanding
the problem of electromagnetic (EM) wave scattering from surfaces in general,
and random rough surfaces in particular. In this chapter, the first section
deals with the statistical description of random rough surfaces. The next
section introduces the first classification of random rough surface by Rayleigh

roughness, after that in section 2.4 will introduce the KA technique.

Finally, the RCS of a plate and random rough surface is calculated using KA
and compared to results obtained from the accelerated MOM (MLFMM)

obtained from commercial software EM simulator (FEKO).

2.1 Random Rough Surface

Rough surface is a random process {n = f(z,y)}, so we must study its sta-
tistical properties such as mean variance autocorrelation between points in

the surface; we start to identify the surface by understanding the surface
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height profile or Power Distribution Function (PDF). In this work we con-
sider a rough surface with Gaussian distribution, with mean 7y and standard

deviation oy, .

2.1.1 Statistical Description of Random Rough Surfaces

We shall assume that the profile is defined randomly. The description of a
random rough surface with height variations n and surface height PDF py,(n)
represents the statistical height distribution of the random rough surface.
The probability density of the profiles under consideration will be chosen
Gaussian, centered with mean 7y and standard deviation oy, py(n) is then

given by [19]:

1
Ph(ﬁ) - O'h\/%

exp{(—5(1—)) 2.)

and

1) = / " Pulnydn =1, (n) = / " nPu(n)dn =0, (2.2)

0 o0

for simplicity the mean height ny will be taken as 0, this averaging of the
heights is the statistical moment of order one (average value). The statistical
moment of order two, {(n — (n))?) = (n*) (for gy = 0), also called variance,
corresponds here to the averaging on the square of the heights [7]. It is

written as:

o) = | 2Py = 0, (2.3)



Where o, = 1/(n)?, denotes the standard deviation of the profile heights,
which is also called root mean square (RMS) height o,. Thus for a Gaussian
height PDF, 99.73% of the surface heights are contained between ny — 30y,

and 71y + 303, as in Figure 2.1 .

) b)

Figure 2.1: One-dimensional (1D) random rough surface of Gaussian statistics, and its height
distribution [7]

2.1.2 Surface (spatial) height autocorrelation function and height spectrum

The autocorrelation function between two surface points M; and M, rep-
resents the statistical correlation between these two points, with respect to
their horizontal distance ry=rs - r;. It is maximum if 7o=ry (or ry =0). Two
important pieces of information are contained in this function: Its correla-
tion lengths along & and ¢, L., and L.,, and its type: Gaussian, Lorentzian,

exponential, etc. It is defined by [7]:
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Wi(r1,r) = (r(e)n(es)) = tm o [ [ ntwnteaedy (20

[~

Where X, Y are the surface lengths with respect to (x) and (y), respec-
tively. For a stationary surface ', Wp,(ry,r2)=W),(ry), with the property
W, (ry = 0)=0, when ry = 0. The autocorrelation coefficient C/(ry) is equal
to the autocorrelation function normalized by the RMS height (height stan-

dard deviation); it is written for a stationary surface as:

(n(r1)n(ry +rg))
0h2

Ch(rq) = (2.5)

The correlation length L. is a characteristic value of the autocorrelation func-
tion, which determines the so-called scale of roughness of the surface. Typi-
cally, it corresponds to the horizontal distance (z4 for L., or ygfor L., )
between two surface points for which the autocorrelation coefficient is equal
to 1/e as in Figure 2.2, provided that the autocorrelation function is taken

as Gaussian Wj,(z4) = a;ﬂexp(—%‘clz).

Tn its usual definition, a stationary process is a stochastic process whose first moment and covariance do not change
when shifted in time or space. As applied to surfaces, it means that the mean value and the autocorrelation function
do not change with respect to space.
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Figure 2.2: 2D random rough surface and its height autocorrelation function [2]

2.1.3 Other Statistical properities [2]

In addition to the RMS height o5, and the correlation length L., other im-
portant statistical parameters can be useful to characterize a random rough

surface. The first parameter is the surface RMS slope o, , which is defined

by:

o5 =/ ({n/ — (n1)}?) (2.6)

For a Gaussian PDF surface with Gaussian correlation, the RMS slope is
related to the RMS height and the correlation length by oy = \/5% The
second commonly used parameter is the surface mean curvature radius R.,

which is defined for 1D surface as:
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For a Gaussian surface (i.e. Gaussian height PDF and Gaussian correla-

R. = (2.7)

tion), under small slopes assumption, the mean curvature radius checks the

asymptotic relation, which simplifies for RMS slope 04«1 as:

LQ
R.=0.36—% (2.8)
Op
Sometimes, an additional parameter is used: the mean distance D,, between

two successive peaks of the surface. It can be estimated [2]:

[ dkk2S (k)

D, = s
"\ T dkkrS ()

Where

S(k) = FT{W(r1,1s)} = /_ N /_ " Wies) exp(—ikorg)dra, (2.10)

is power spectrum density of auto correlation function . Physically, it is
expected that this distance D,, would be of the same order as the correlation

length L.. Indeed, for a Gaussian surface, this distance checks the condition:

™

V6

This is consistent with our qualitative physical prediction. Besides, it can be

Dy, L.~ 1.28L, (2.11)

noted that (at least for a Gaussian correlation surface) the distance between

two surface peaks is a bit greater than the correlation length.As an example
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of rough surface the next Figure 2.3, with o5, = 0.02, L. = 1.2, A =1, Az =
Ay = \/8, R, = 25.92.
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Figure 2.3: Random rough surface showes oy, R, 05

2.2 Electromagnetic roughness and Rayleigh roughness [21],[4]

The first work on the scattering of waves from rough surfaces was made by
Lord Rayleigh [21], who considered the problem of a HPPW propagating

upon a sinusoidal surface at normal incidence.

This work led to the so-called Rayleigh roughness criterion, which makes it
possible to establish the degree of EM roughness of a rough surface. It is used
in practice in several simple models to describe the EM wave scattering from
random rough surfaces. For instance, in ocean remote sensing, it is used to
calculate the grazing incidence forward radar propagation over sea surfaces;

in optics to determine optical constants of films model. The roughness (from
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an EM point of view) of a surface depends obviously on its height variations,
but it is also related to the incident wavelength. Indeed, the EM roughness
of a surface is related to the phase variations dg4, of the wave reflected by the

surface, owing to the surface height variations.

It is obtained under the Kirchhoff-tangent plane approximation, which is

valid for large surface curvature radii and small slopes.

Figure 2.4: Electromagnetic roughness (in reflection) of a random rough surface: phase variations
of the reflected wave owing to the surface roughness

Let us consider an incident plane wave inside a medium 1 of wavenumber
k1 on a rough surface with angle 6, as in Figure 2.3. For the case of a
random rough surface considered here, the total reflected field E, results
from the contribution of all reflected fields from the random heights of the
rough surface. Then, to quantify the EM surface roughness, it is the phase
variation dg4, of the reflected field around its mean value (which corresponds

to the phase of the mean plane surface) that must be considered. For the
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case of a rough surface (see Figure 2.4), the phase variation d,, is given by

the relation [2]:

Opr = 2k10,4 cos 0, (2.12)

Where 6,4=n4 — (na4) is the height variation, and 6; is the incidence angle,
(n4) is the mean value of the rough surface heights (with (---) representing the
statistical average), which is equal to 0. If the phase variation is negligible,
dp < m, for all positions of these points on the surface, then all the waves
scattered (reflected) by the random rough surface are nearly in phase and
will consequently interfere constructively. The surface is then considered as

slightly or very slightly rough: it may be assimilated to a flat surface.

On the contrary, if the phase variation checks d4 ~ 7, these rays interfere
destructively. The contribution of the energy scattered in this specular direc-
tion is then weak, and the surface is then considered as rough. The Rayleigh
roughness criterion [21] assumes the following condition: if §, < 7, the waves
interfere constructively. Consequently, the surface can be considered as very
slightly rough or even flat if §, < 5. Conversely, if 04 > 7, the waves inter-
fere destructively, and the surface can be considered as rough. To apply this
local approach to the whole surface, it is necessary to consider a mean phe-
nomenon, which implies quantifying this phenomenon by a statistical average

on (5¢.

The mean value of the surface heights being taken as zero, (n4) = 0, the

Rayleigh roughness parameter is quantified by the variance of the phase vari-
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ation o3, Knowing that (n3) = o and (dy) = 0, it is defind by:

agd) = ((64)%) = ((2k16,, cos 0;)?) = 4kZarcos™0); (2.13)

The Rayleigh roughness parameter is then defined from the RMS value os,.
Its definition varies by a factor (coefficient) of 2, depending on the authors;

here we take:

R, = kioy,c080;, (2.14)

which corresponds to R, = %. The Rayleigh roughness criterion is then:

R, < (2.15)

N

which corresponds to oy, cosf; < A/8, it depends on the incident wavelength
A1 = A It is the ratio o,/ that determines the degree of roughness of
a surface, for a given incidence angle. Besides, the influence of the term
cos 0; is nearly always neglected. Nevertheless, it is not negligible when the
incidence angle becomes grazing, #; — 90°: this implies that a surface can be
considered as rough for moderate incidence angles and becomes only slightly

rough for grazing angles.

If we look more closely at this roughness criterion, we can see that equation

(2.15) can be rewritten in the form:

1 N\ 1
- Aa 2.1
Oh < 8 cos 0; 8 bp ( 6)
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where Ay, = A1/ cosé; can be defined as an apparent wavelength along the

normal to the mean surface.

In the next section we will explain Kirchhoff Approximation (KA) and adopt
a mathmeatical model, to calculate RCS of a flat (plate) surface and a very
rough surface and check the validity domain of this approximation by com-

paring the result with MLFMM method.

2.3 Presentation of the model: KA for 3D problem

Physical optics or Kirchhoff Approximation (also referred to as the tangent
plane approximation) is a asymptotic method based on the simplification
of Stratton-Chu integral equations in which the currents on the surface are
approximated by the tangential field of the geometrical optics [6]. PO does
not take into account creeping waves or discontinuities of the surface. This
limits the area of validity of the PO to regions close to the specular directions

and forward scattering [23].

The PO is nevertheless very interesting because it lies in a simple integration,
which can be performed analytically without much difficulty on flat surfaces
(square or triangular meshes for example); any object can be processed by
the method via a mesh in elementary plane surfaces. Equation (1.42) can be

written according to currents as [7]:
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E.(R') = / /S [G(R,R)iwpd (R) + M,(R) x VG(R,R')+

| (2.17)
wiM[JS.V]VG(R, R')]ds.

Where J, = n x H(R) is the surface electrical current and My = —n x E(R)
the surface magnetic current. After some developments by taking the curl of
green’s function and use equation (1.42), we obtain a new expression of the

electric field scattered by an obstacle :

. 5 9 ikr — k*r?
E.(R) = //S[(l +ikr — k*r*)J4(R) 7 M;(R) >/< r+ 218
(=3 — 3ikr 4+ k*r?)(+.J4(R))T] G(P:;R )ds.

eikr

where G(R,R/) =

“, and r = |R — R/|, represent green’s function in free
space for 3-D scattering; Z and k denote the impedance and wavenumber of
the propagation medium. Equation (2.18) is a general equation that can be

used in near and far fields. The goal of the PO approximation is to solve the

integral equation by using simplifying assumptions:

e High frequency hypothesis: the dimensions of the object are much higher
than the wave length. The current densities on the surface of the object
decrease very rapidly and can be considered null in the shadowing zone.
The PO method does not take into account counts creeping waves, nor

discontinuities.
e The radii curvature of the illuminated surface is much greater than the
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wavelength. The approximation of the PO is also called approximation
of the tangent plane: where the surface linked to an infinite plane at
each of its points. This infinite plane corresponds to the plane tangent
to the surface at the point considered. The surface is then qualified as
locally flat. Under this hypothesis, the field reflected by the surface can
be express very simply by applying laws of Snell-Descart. The Fresnel
coefficient allows knowing its amplitude, and the law of Snell-Descartes

gives the direction.

In the case of Perfectly Conductive surface (PC) all incident field are re-
flected, then: Hy, (R) = H;(R) and E,, (R) = —E;(R), where E;, H; are the
EM incident fields respectively. So we can then express the surface current

densities in term of incident fields as:

J(R) =i x (H(R)+ H,(R)) = 2 x Hy(R)),  (219)

and

M,(R) =1 x (E;(R) + E;(R)) =0, (220)

Then for Perfect Conductors (PC) equation (2.18) becomes:

Esr://g[(1+ikr—kr)(ﬂx(Hi(R)+(—3—3ikr+kr)

GERR) (2.21)

(.(A x H;(R))] ds.
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2.4 Formulation for a PC scatterer in far field

The problem can be simplified by applying the far field condition. If the
surface element ds is away from the observation point such as kgr >> 1 then
the terms % and T% in equation (2.21) can be considered null. Furthermore we
consider that the surface is placed in a medium assimilated to the vacuum
with geometry shown in Figure 2.4. Then we obtain a simplified expression

of the equation (2.21):
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Figure 2.5: illustration of the polarization bases used in transmission and reception

E, (R) = j:—]‘;eikof%’ / /S J,(R) + (£.J,(R))E]e ok ds. (2.22)
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Under the condition of a plane wave illumination in the direction lAq, the

incident electric field can be described in spherical coordinates, as follows:

E,(R) = Ee"&R = (E0; + EP¢;)ek R, (2.23)

and then magnetic field is:

H,(R) = k; x E/(R). (2.24)

Expressing the different vectors as shown in Figure 2.5, in the Cartesian

coordinates we get,

sin 0; cos ¢;

k; = |sin 0; sin ¢; (2.25)

— cos b;

and

sin 0, cos ¢
ks = | sin 6, sin ¢, (2.26)

cos 0,

The vector H; can be written in cartsian coordinates (X, y,z), as follows
where we get the matrix form for each components according to spherical

components £ and Ez‘b ,

40



H; E;b cos(6;) cos(¢;) — EY sin(¢;)
1 —
H; | = Z E;b cos(6;) sin(¢;) + EY cos(¢;) gtk (2.27)

and the normal to the surface n(R) expressed by [7]:

—2,X — 2y + 2

n(R) =n,x+n,y +n.z = : (2.28)
1+ 22+ 22
where z, = % is the slope along the x-axis, and z, = g—; is the slope along y-

axis. Using the PO approximation, Js(R) = 2n(R) x H;(R), the components

of surface current are given from the equations (2.25), (2.27) and (2.28)

Efs(ny sin f; — n, cos 0; sin ¢;) — EY(n. cos ¢;)

2 .
Js = A —Ef’(nz cos 0; cos ¢; + ny sin6;) + EY (n, sin ¢;) etk R
0
Ef)(nm cos 0 sin ¢; — ny cos 0; cos ¢;) + E?(n, cos ¢; + ny sin ¢;)
] (2.29)
and we can write Jg as:
| EY
Jo=J, | ' (2.30)
E?
or ) )
Iy Je
_ 9 o
_ = 0 tkok.R
Js 7 JOJo| e (2.31)
JJe

from equation (2.29) we have:
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—n,, COS @;

n, sin ¢;

n, sin 0; — n cos 0; sin ¢;

—(n cos 0; cos ¢; + n, sin 6;)

From equations (2.22) and (2.32) we can write:

E, (R =

W

27TR/Z0

where D, matrix is defined the following :

with

Sll 512
S21 522

_531 532

. ;) —
elk()R Ds

N COS @; + My sin @; N, cos 0 sin ¢; — ny, cos 0; cos @;

I = //Jg.eikO(Ei_ES)'Rds,
Is ://Jf.eikO(Eiﬁs)'Rds,
Iy = //Jg.eikO(ﬁi_Es)’Rds,
Iy = //Jf.eiko(léi_lés)'Rds,
I3 = //Jf.eikO(Ei_Es)'Rds,
113://Jf.eik°(Eil€S)‘Rds,
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(2.32)

(2.33)

(2.34)

(2.35)
(2.36)
(2.37)
(2.38)
(2.39)
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and

Thus we obtain the components of scattered field in (x,¥,2) :

; . /
where P=L_cikolt

2mR'no

511 = — sin? 6, sin? ¢, — cos® b,

S12 = sin® 0, sin ¢, cos ¢,

S13 = sin @, cos B4 cos ¢

0

Sy = —sin’ cos? ¢, — cos? b,

Sz = sin B, cos b, sin ¢,

533 = — Sin2 (93,
\

S
| EY
EY = PDS ' )
Sr E'¢
L,

(2.41)

(2.42)

is a scalar that depends on the observation distance, the

frequency, and EM properties of the incident medium. The components of

the scattered field in the Cartesian coordinate system are expressed according

to spherical componenets using the spherical rotation matrix (R,) as follows:

sin 6 cos @5 cos B, cos ¢y

sin 0, sin ¢y cos 0, sin ¢y

cos 0 — sin 6,

EY . _ | EY
sr _ PRSTDS 1

ES, Ef
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COS (g

0
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Finally, the components of the incident and scattered field are linked by the

next expression:

E, = SE; (2.45)

where S = PRZ[_) s 1s the scattering matrix.

_ Seg S,
ST (2.46)
Seo Sep
Then we finally obtain RCS matrix :
Sool?  1Saq|?
o= irR? | 9‘9|2 | %'2 (2.47)
1Sg0° S0l

The previous equations can be defined as the numerical representation of the
KA or PO model, we will apply this model for the case of a PC plate, then

the case of PC rough surface will be tested.

2.4.1 KA to study the scattering from a plate

After we introduced the Kirchhoff Approximation (KA) for 3D rough surface
we start to check the validation of KA by testing it with a simple case of
zero height which is a smooth surface (plate). Consider a plate of surface

S = L, x L, located in the plane (%,0,y), as shown in Figure 2.6.
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Figure 2.6: Geometry of the problem: illustration of the smooth plate.

The normal to the surface is directed along the z-axis, the method of the PO

is always compared to the reference models from FEKO software.
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Figure 2.7: Comparison of the bistatic RCS of the scattered field of a plate, obtained with the PO-
FEKO and the proposed method PO, with HH referto 66 polarization, L.y = Ley = 1.2M, Az =
Ay =20/8,0, = p; = 0° .

We noticed from Figure 2.7 that the proposed model KA is a good approxi-

mation over all range of scattering angles 6, € [—90°; +90°].

After that we will check the validity of our approximation when incident
angle 0; is changed, using the same specifications, L., = L., = 1.2, Ag = 1m,

Axr = Ay = )\0/8, Q; = 00, and (91 = 60°.
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Figure 2.8: Comparison of the bistatic RCS of the scattered field of the plate, obtained with PO-
FEKO and the proposed method PO, with HH polarization, Le, = Ley = 10XAg,Ax = Ay = A\o/8,
91‘ = 60,@1 =0°.

We notice that the maximum power is in the direction of the incident angle
0; as illustrated in Figure 2.8 and PO still a good approximation. Finally, as
shown in Figure 2.9 the RCS is plotted according to the observation angles
for both MLFMM-FEKO and our proposed approximation PO. The plate

is of L, = Ly = 1.2, Ay = 1m, the sampling steps of the surface are

ANx = Ay = N/8, p; =0° and 0; = 0° (normal incidence).

We notice that the PO method is in a good agreement with the MLFMM
around the specular direction 65, = 0. Other values of 6;, between —90°
and 90° have produced the same conclusion of obtaining maximum power for

0; = 0,: the specular direction.

We also observe that the PO method does not allow to evaluating correctly

the RCS for grazing viewing angles, this being mainly due the concentra-
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tion of currents on the edge causing edge diffraction that are not taken into

account in the PO.

60

PO _
MLFMM-FEKQ

50

RCS (dBnf)

-20F
-30F

a0F
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-80 -60 -40 -20 0 20 40 60 80

Figure 2.9: Comparison of the bistatic RCS and phase of the scattered field of the plate, obtained
with the MLFMM and the proposed method PO, with VV polarization, L, = L, = 12X\, Ax =
Ay = Ao/8,0; = p; = 0°.

So the total power are in the direction of incident angle and the next Figure
2.10 gets from FEKO simulator shows 3D RCS scattering from plate and

current distribution when we take the result from PO-FEKO, we also notice

that the current is equally distributed and equal in magnitude.

Figure 2.11. Shows the distribution of current on a plate when using MLFMM
for scattering solution in EM simulator. We observe that the currents are not
equal on the geometry of the surface, since the MLFMM calculate the effect

of current in each part to other parts.
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Figure 2.10: Geometry of the problem: illustration of the plate shows the power scattered and the
major beam direction calculated using PO

Surface current [mA;m] Total RCS [m*2]
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z21.0 20000.0
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Figure 2.11: Geometry of the problem: illustration of the plate show the current distribution and
the major beam direction calculated using MLFMM
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2.4.2 KA to study the scattering from two dimensional rough surface (3D prob-

lem)

In this section, we will discuss the validity of KA for 3D rough surface and
compare the result firstly with FEKO-PO and then with rigorous model
MLFMM.

Consider a rough surface of dimension 10\ x 10\ as shown in Figure 2.12,
generated by Gaussian random process, of which autocorrelation function
of height is given by C(z,y) = o7 exp(—z?/L2, — y*/ Lgy), the correlation
lengths L., = L¢, = 1.2\, and with standard deviation of the heights o}, =

0.2, (05 = V2 x 03,/ L. = 0.24)).

c"‘;;i‘;;";’?}"‘"
NG

hY

Figure 2.12: Geometry of the problem: illustration of the rough surface

The surface is illuminated by a plane wave in normal incident, 6; = 0°,
¢; = 0°, the discretizing steps of the surface are A, = A, = A\o/8. The PO

is compared to FEKO-OP in Figure 2.13 and Figure 2.14, on which the RCS
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is plotted according to the angle of observation 6, for both co-polarizations

HH.

PO
PO-FEKO| +

401

RCS (dBn?)

Figure 2.13: Comparison of bistatic RCS obtained with FEKO-PO and proposed PO for HH co-
polarization, case of a rough surface of dimension 10\ x 10\, Az = Ay = X\/8, 0; = p; = 0°,

Lew = Ley = 1.2,04 = 0.2X

We observe from Figure 2.13 and Figure 2.14 that the result obtained by the

proposed PO are in good agreement with those get from FEKO, that means

that PO still a good approximation.
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Figure 2.14: Comparison of bistatic RCS obtained with FEKO-PO and proposed PO for VV co-
polarization, case of a rough surface of dimension 10\ x 10\, Az = Ay = A\/8, 0; = ¢; = 0°,
Ley = Loy =1.2,0, =0.2)
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Figure 2.15: Geometry of the problem: illustration of the rough surface showing the power scattered
and the major beam direction

From Figure 2.15 we notice that maximum power is located around the spec-
ular direction. Since the surface is rough, the contribution of the specular
component decreases as the scattered power in the other directions increases.

Figure 2.14 which shows the 3D power scattered from geometry obtained by
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EM simulator calculated by MLFMM method.

Another comparison of the results of FEKO-PO, will be then done with
FEKO-MLFMM using the same specification o5, = 0.2, dimension 10\ X

10\, Loy = Ly = 1.2, as in Figure 2.16.

50

PO
40t PO-FEKO
PO-MLFMM
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20

10

RCS (dBnf)

0

10k i

=20 7

-30 1 1 1 1 1 1 1 1 1
-80 -60 -40 -20 0 20 40 60 80
0 [e]

Figure 2.16: Comparison of bistatic RCS obtained with FEKO-MLFMM and proposed PO for HH
co-polarization, case of a rough surface of dimension 10\ x 10\, Az = Ay = A\o/8, 0; = ¢; = 0°,
Ley = Loy =12, 05, = 0.2\

As seen from Figure 2.16, we also observe that PO approximation is in agree-
ment with the MLFMM for most scattering angles 6,, except for grazing

angles.

After we checked the validity domain of PO from smooth to very rough
surface and compare the results with FEKO. We will introduce the shadowing
function and show how to insert this correction function into KA in the last

chapter.

53



CHAPTER 3

Electromagnetic Scattering from Two Dimensional
Rough Surfaces using iterative method with shadowing
effect

In this chapter, the scattering field intensities of random rough surface are
derived by inserting a correction factor called illumination function or shad-
owing function, to improve the asymptotic KA model described in the previ-

ous chapter. And then we will check the validity of this new approximation

and compare the results with FEKO-MLFMM.

After we introduce and discuss the shadowing function, we present a new
approaches called Iterative Physical Optics (IPO) which focuses in studying
the effect of current between each part in the geometry and how this effect

react to improve and correct our mathematical assumption of PO.

From the previous chapter, the expressions of the field scattered in the far-
field zone of the surface make it possible to calculate the scattered intensities
through the so-called scattering coefficient (in reflection and transmission),
our mathematical model is checked for the validation. Now, in order to
improve KA we will introduce the shadowing function and then combine it

with the KA technique.
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3.1 Bistatic Shadowing Functions in Reflection

EM scattering from rough surface is affected by surface shadowing when the
angle of incidence is large, traditional rough surface scattering theories such
as small-perturbation method and KA do not directly include shadowing ef-
fects. Attempts have been made to include shadowing in these models by
incorporating “a shadowing function”[26]. In this section we will introduce
a correction factor to represent the shadowing effect. Firstly, we will intro-
duce monostatic shadowing function and then develop the bistatic shadowing

function.

3.1.1 Monostatic Shadowing Functions

There are a number of theories for the scattering by randomly rough surfaces,
based on a “ray-optics”approximation, whose validity may be extended by
properly accounting for surface shadowing . Wagners and Smiths approaches
[27], [28], are used to describe the shadowing function with single reflection

for a stationary rough surface.

Their formulation assumes that the surface is one dimensional with a Gaus-
sian process, where the correlation between the surface slopes and heights is
neglected. From these works, Bourlier et al [29] have extended the shadow-
ing function for any uncorrelated and correlated Gaussian processes. With
a Gaussian process, they showed for an infinite observation length that the
Smith results are more accurate than Wagners and the correlation weakly

improves the model. The Smith approach is chosen as a starting point to
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develop the statistical shadowing function with multiple reflections [30].

The monostatic statistical shadowing function represents the probability that
the incidence or scattering beam of direction K; (and associated angle 6;) in
the medium €2; does not intercept before reaching the surface at the consid-
ered point A (of coordinates Ra= (z4,74)) as illustrated in Figure 3.1. This
probability is conditioned by the surface height and slope at the considered

point A and defined for a surface with even statistics [2] as follows:

S1 (Ko | nay74) = T = 7a) [ Pa(na) — Pu(—00)] 10 (3.1)

where

1 ifx>0
T(z) = : (3.4)

0 otherwise

In equation (3.3), 6, is the incidence angle (6; such that 0; € [—7/2; 0] for ori-
ented angles) or the scattering angle (05 € [—7/2;+7/2]), with pu; = | cot 6]
the absolute value of the associated slope. P}, is a primitive of the height PDF
Ph, Ps is the slope PDF, and T is the Heaviside function. In equation (3.1),
the term [Py,(n4) — Py(—00)]*") makes a restriction on the surface height
A

The term [Py (n4) — Pn(—00)] tends to 1 when point A is located at a high

altitude n4(na — +00), and then the shadowing function is maximum, that
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is to say, the shadowing effect is weak. Indeed, the higher point A, the lower
the probability that an incident or scattered wave in the upper medium {2,
crosses before reaching the surface at point A, which is important. Reversely,
this term tends to 0 when point A is located at a low altitude n4(n4s — —o0),
and the shadowing function tends to 0 as well, that is to say, the shadowing
effect is maximum. Indeed, the lower point A is, the higher the probability
that an incident or scattered wave in the upper medium {2; crosses the surface
before reaching at point A. This is illustrated in Figure 3.1, in which point

A’ of lower altitude than that of A is in the shadow of the beam with slope

M-

A’ in the
shadow of u

Figure 3.1: Influence of the height of point A

Moreover, the height cumulative distribution function (CDF) [Py, (n4)— Pr(—00)]
is weighted by the term A(pu), which takes into account the surface slopes
that are greater than the absolute slope u; of the wave of direction K;. When
p1 — 0 (corresponding to a grazing angle), the function A(p;) — +oo, then

S1— 0 (as 0 < Py(na) — Pu(—o0) < 1) : the shadowing effect is maximum.
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Reversely, when p; — +oo (corresponding to a zero angle), the function
A(p1) — 0, then S; — 1 : the shadowing effect is minimum. Thus, this func-
tion holds for the fact that for a given surface point A, the lower the absolute

slope of the beam of considered wave is, the higher is the shadowing effect.

This is illustrated in Figure 3.2, in which the beam with slope p that is lower

than the beam with slope p; induces a more significant shadowing.

— shadowing zone
for the slope u,

shadowing zone
for the slope p’,

Figure 3.2: The slope of the beam p; on the phenomenon of shadowing (propagation shadowing)
of a random rough surface [2]

The term Y(u; — 74) holds for the condition that the absolute value p; of
the slope of the incident or scattered wave must be greater than the surface
slope 74, so that the incident field can contribute to the scattered field. This
function then makes a restriction on the surface slope v4. This is illustrated
in Figure 3.3, in which the beam with slope p} inferior to the surface slope
v4 at point A crosses the surface before reaching it at point A. This point

is then in the shadow of the beam with slope pj < v4. In other words, it is
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due to the fact that at a given surface point, owing to the local surface slope
at considered point (tangent plane) and to the incidence or scattering angle,
the local incidence or scattering angle may be greater than 7/2 in absolute
value. This being physically impossible, it is then necessary not to take these

points into account.

O

A in the shadow
of ',

Figure 3.3: Phenomenon of shadowing of a random rough surface [2]

3.1.2 Bistatic Shadowing Functions

The bistatic statistical shadowing function in the case of reflection of a wave
in direction K; by a medium € onto a medium €2, in the direction of reflection
K, has been expressed in Wanger [30] and Boulier [29]. For the case of single
reflection inside )¢, the expression of Si; is given in the convention of oriented

angles 0; € [—m/2;0], as Figure 3.4 by [2] :
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p

S1(Kr | 04, 74) if O el=m/2;0i

S (Ki, Kp | na,74) = 4 S1(K; | ma,74) if 0, €0;0]

S1Ki | 14,74)S1(K, | ma,va) iof 0, € [0;4+7/2]
(3.5)

\

where K, are the incident and reflected wave vectors, with p;, = | cot 6, |
the absolute slopes of angles of incidence (6; € [—7/2;0]) and of reflection
(05 € [—7/2;4+m/2]). Si denotes the monostatic statistical shadowing func-
tion (defined previously) inside the medium €2y, which is located above the

rough surface X 4. Now if we substitute equation (3.1) in equation (3.5) then

Figure 3.4: Configurations of the bistatic shadowing function in reflection: (a) 0, € [7/2;6;], (b)
0, € [6;;0[ and (c) 6, € [0;+7/2[ [2]
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we get:

’

Y(pr = v)[ Pu(na) = Pu(=00)] ) if 0, € [-m/2;6;

Sll(KiaKr | nA;’VA) - < T(,LLZ — /YA)[Ph(nA) — Ph(—OO)] Alp:) Zf 0, € [92, 0[

(ya)[ Pu(na) — Pa(—o0)] M tMu) i f 6, € [0; 47 /2]
(3.6)

\

where

Loif ya € [—pis+u]
M(y4) = (3.7)

0 otherwise
From equation (3.6), the restriction on the slope 74 implies that v4 € [u,; +00], 74 €
[11i; +00] and 4 € [pi; +41,], respectively.

With MSP approximation [2], the bistatic shadowing function in reflection
Si1 is independent of the local tangent plane (or of the local surface slope),

and then become as:

(

[Pr(114) = Pa(—00)]M ) if  Or€[=m/2;0i
S (K, K, | na,7"") = [Py(na) — Pp(—00)]A0) if 0,€][0;0]

[Pa(na) — Pp(—o0)|Me) ) i f 6, € [0;+7/2]
(3.8)

\

Then, the only random variable inside the equation of the statistical shad-
owing function in reflection (3.8) is 14, and then the avereging shadowing

function which given from an arbitrary process becomes [29]:
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(

1/[L+ Alu,)] if 6, €-m/26]

(Ko, K [ 14,7") = 111+ Aw)] if 0, €0;0]

1[4 AGu) + Alp)] i 0 € (05472
(3.9)

For a Gaussian process and Beckmann distribution [31], by substituting

A(pi,) in equation (3.3).
Note that A(u,) can written as:

_67“f(Va)—1+ 1
-T2 Yt

A(pq) exp(—V;}) (3.10)

where erf(V,) = 2/\/m fOV“ exp(—1t?)dt, is the error function for each element
of Vo, Vo = pa/osV2, a = {i,r}, o, is the surface root mean square (RMS)

slope.

3.2 KA with Shadowing effect

After we introduced shadowing region effect and derive the equations of shad-
owing function S}, shadowing correction factor is inserted to KA, and the re-

sults are checked with different incident angle 8; and compared with MLFMM

Firstly, we demonstrate the shadowing function with incident angle 6, = 80°

and observation angle 6, € [—m/2;+7/2] as shown in Figure 3.5.
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Figure 3.5: Bistatic shadowing function S with 6; = —80°, 5 € [—7/2;+7/2],0s = 0.3

The shadowing effect increases and become important as the incident angle
0; increases over the range of scattering angle 6. Secondly the shadowing

function will inserted to KA and equation (2.45) becomes:

Soal® | Sag|”
o = 47 R" [Sol™ 150l Siy. (3.11)
[Sool* 1S60]”
Where Si; is the shadowing factor is given by equartion (3.9).

Consider a rough surface of dimension 10\ x 10\ as shown in Figure 3.6,
generated by Gaussian random process, of which autocorrelation function of
height is given by Cy(z,y) = ojexp(—x*/LZ,—y?/LZ,), the correlation lengths
Loy = Loy = 1.2, and with standard deviation of the heights o3, = 0.2,

(05 = V2 x 03,/ L. = 0.24)).

63



R s
1% .""\\ NPTy 992
\\\\ % o.o, ST
N
RN NS

i\

b

Figure 3.6: Geometry of the problem: illustration of the rough surface

The surface is illuminated by a plane wave in normal incident, 6, = 0°,
©; = 0° the scaling step of the surface are A, = A, = X\y/8. The PO-with
shadowing is compared to FEKO-PO as in Figure 3.7 , on which the RCS is

plotted according to the angle of observation 8, for both co-polarizations.
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Figure 3.7: Comparison of bistatic RCS obtained with PO-with shadowing, FEKO-PO and PO
proposed for HH co-polarization, case of a rough surface of dimension 10\ x 10\, Az = Ay = X\¢/8,
0; = ¢; =0° Leg = Ley = 1.2,05 = 0.3,0, = 0.2X

We observe from Figure 3.7 that the result obtained by the proposed PO is
nearly the same except at the edge and in good agreement with those get

from FEKO. Now if we study the effect of shadowing by increase the incident

angle 6; = 60°.
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Figure 3.8: Comparison of bistatic RCS obtained with FEKO-PO and PO proposed for, case of a
rough surface of dimention 10\ x 10X, Az = Ay = Ao/8, 0; =80°, Loy = Loy =1.2,05 =0.3,0p =
0.2

As seen in Figure 3.8 we observe that KA approximation is effected more
by shadowing phenomenon when 6; increases, we observe that our proposed

model still applicable and good compared with MOM. So this correction leads

to improve the approximation at large scattering angles.

After we complete studying the shadowing effect and derive its formulation
with KA and testing the validity of the proposed approximation, we will
examine a new approximation in the last section which is called Iterative

Physical Optics (IPO).

3.3 Iterative Physical Optics (IPO)

This section describes an application of the Iterative Physical Optics (IPO)

method for computing the radio frequency (RF) scattering from electrically
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large targets. The IPO method generates the electromagnetic current on the
surface of the target, from which the scattered fields in the near-field and
far-field regions can be computed. Much of the early development of the
IPO method was focused on scattering by open-ended cavities [32], but it
has also been applied to more general targets. The method of the iterative
physical optics is much more efficient than purely numerical methods such
as the MOM (or boundary integral method) and finite element method [18],
because IPO is based on high frequency asymptotic principles of physical

optics (PO) and uses a much coarser discretization density.

Generally, the scattering problem of rough surface is considered as an extra-
large-scale electric scattering, for example 10,000 square lambda (A, EM
wavelength) [33]. It is more feasible to solve such a large-scale scattering prob-
lem using the analytical method rather than the numerical method. Many

researchers focused on the KA, which is also called the PO [2].

According to the Huygens Principle, the volume induced current can be
changed into the equivalent surface current. Those currents are the elec-
tric surface current Jg and the equivalent magnetic surface current M, [7].
When the curvature radius R. of the rough surface satisfies R. >> A, the
rough surface can be regarded as many small planar patches put together, so
the EM wave diffraction on the edge of the rough surface and the multiple
scattering and multipath effect among the surface patches are ignored [33].
The induced currents (Js,My) can be solved by the Fresnels equations un-
der the computational costs . The IPO is based on a modified form of the

magnetic field integral equation, as follows [35]:
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J(r) =39 4 20(r) x H;po(J) (3.12)
and

—ikR'

- 1
H;po(J) = P J(rr) x R'S— (ik + =)dS' 1
wo@) =P [ 361 x R ik+ s (.13

in which J(r) is the surface current, n is the surface normal unit vector,
k is the wavenumber, and the integral is over the surface S’ of the target.
The symbol P indicates a principal value integral. Also, with R’ =r — 7’ in
which 7’ is the integration point on the surface (i.e., the source point) and r

is the point at which the integral is evaluated (i.e., the test point), we have

~

R’ = R'/R' and R = |R/|. The lowest (zero) order IPO approximation J©

is appear as PO defined as follows:

2n(r) x H;(r) for n.k<0
JO = (3.14)

0 for n.k>0
Rather than being non-zero on only those parts of the surface that are ge-
ometrically illuminated by the incident field, this current is non-zero every-
where that the outward surface normal vector has a nonzero component in

the direction opposite that of the incident plane wave.

These are directions for which the surface point would be illuminated by the
incident plane wave in the absence of geometrical shadowing by other parts of

the target surface. For non-convex surfaces, this is an important difference,
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in that portions of the surface that are in the shadow of other parts of the

target may have a non-zero lowest order IPO current.

A similar constraint, in the form of the condition n.R’ < 0, is also applied
to the integral in (3.13), such that the integral may include portions of the

surface that lie in the shadow of other parts of the target.

There are several methods for solving the IPO equations (3.13) and (3.14).
The most straightforward approach is a simple iterative process [35].
JW(r) = JO(r) + 20(r) x H;po(IJ™ ) (3.15)

where n is an iteration index. The interaction error (,; in the nth iteration

step, is defined as follows [33]:

e = (3.16)

Once (s is less than a residual error (e.g., 0.01), the interaction process is

assumed to converge and reach a stable state.

3.4 Simulation Results of IPO

Since the IPO is derived from the magnetic field integral equation (MFIE),
the interaction effects among all the patches of rough surface are taken into
account, and they can improve the computational accuracy and extend the
validity region of KA, compared with conventional PO. The Gaussian rough

surface is used to quantize it.
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The basic parameters are as follows: Size of rough surface 6\ x 6, correlation
length of L. = 1.2\, root mean square height of rough surface is o, = 0.2\.

Set the incident angle as 6; = 0°.

Obviously, it issatisfying the KA condition. The co-polarization including

horizontal (HH) polarization and the vertical (VV) polarization are studied.

far field
50 T T

PO
IPO i
MLFMM-FEKO

40r

Radar Cross Section (dB)

-10F

_20 1 1 1 1 1 1 1 1 1
-80 -60 -40 -20 0 20 40 60 80
03 (in deg)

Figure 3.9: Comparison of bistatic RCS obtained with PO and IPO and FEKO-MLFMM for HH
co-polarization, case of a rough surface of dimension 6\ x 6, Ax = Ay = \/8, 0; = ¢; = 0°,
Ley = Loy = 1.2,05 = 0.2)

Radar cross section (o) is calculated using the PO, IPO, and the rigorous
MLFMM (which is considered as the reference data in this work). And the

validity of IPO compared with MLFMM and PO, illustrated Figure 3.9.

IPO shows a good agreement with the rigorous method, even though the

surface is rough .
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Figure 3.10: Comparison of bistatic RCS obtained with PO and IPO and FEKO-MLFMM, case of
a rough surface of dimension 6 x 6, Az = Ay = X\g/8, 0; = 60°, Loy = Loy = 12,05, = 0.2A

At the large incident angle (6; = 60°), as shown in Figure 3.10 Radar Cross
Section scattering coefficient (o) is given out using the PO, IPO, and the
rigorous MLFMM.

The validity of IPO compared with MLFMM is illustrated in Figure 3.10 IPO
shows a good agreement with the rigorous method , even though the surface

is rough and the incident angle is large.

To conclude, previous approximations (PO, PO-shadowing and IPO) are
called asymptotic models and useful to be applied when the surface is large
due to their simplifying assumptions, less complexity and low computational
time and capacity, but these techniques are restricted by their validity do-

main.
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Conclusion

In this thesis we studied the scattering of an electromagnetic wave by
a 2D random rough surface (3D electromagnetic problem) using asymptotic
models. Since remote sensing technology becomes very important in different
field especially in telecommunication and military, so many techniques appear
and are developed to calculate Radar Cross Section (RCS) such as the Method
of Moments (MOM) and it’s accelerations, but these methods are too complex
and need high computational time and capacity, and applicable for small

surface dimensions less than 30\ x 30\.

In this work we adopted an asymptotic technique called Kirchhoff Approxi-
mation (KA) which is a simple approximation need less computational time
and capacity, applicable for large rough surfaces more than 100\ x 100\. then
a mathematical model based on KA is studied and the validity of the proposed
model is checked by comparing the results of the RCS with the accelerated
rigorous method called Multi Level Fast Multipole Method (MLEMM).

According to the results of the Radar Cross Section (RCS) of rough sur-
face, we observed that this model provides a good agreements with rigorous
method except at the edge due to facts that KA did not take into account
the concentration of currents at the edge and the shadowing phenomenon,
so to overcome this problem, and to improve the model a correction factor
called bistatic shadowing function is inserted to the KA math model. As a
result, the KA model with the shadowing function becomes more accurate,
but not exact as a rigorous method.
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Finally, in order to improve the results especially at the boundaries, an iter-
ative approach called Iterative Physical Optics (IPO) based on the Magnetic
Field Integral Equation (MFIE) used. The method uses simple and efficient
approaches for the computation of surface current interactions. Numerical re-
sults of scattering fields show that the proposed approach is preferable in EM
problems where the diffraction effects or currents in shadow regions would

cause large errors.

As future work, we can apply the previous study for the case of two scatteres
(object above rough surface). A Hybrid technique of IPO and KA can be
developed to calculate the scattered field from the total scene. The interaction
between the object and the rough surface can be calculated iteratively while

the KA can be applied only on the rough surface.
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Glossary and Abbreviation

EFIE Electric Field Integral Equation
FDTD Finite Difference Time-Domain
FSA Forward Scattering Alignment
GO Geometric Optics

IPO Iterative Physical Optics

KA Kirchhoff Approximation

LHI Liner Homogenous Isotropic
MoM Method of Moment

MSP Method of Stationary Phase
PDF Power Distribution Function
PO Physical Optics

PC Perfect Conductor

PPW Plane Progressive Wave

RCS Radar Cross Section

RMS Root Mean Squar

SPM Small Perturbation Method

SSA Small Slop Approximation
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S11 Shadowing Function

TE polarization Transverse Electric (polarizationn H)
TM polarization Transverse Magnetic (polarization V)
Zy Intrinsic impedance

€9 Permittivity of free space

o Permeability of free space

1 RMS surface height

0; Incident angle

0, Scattered Angle
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